机器学习-5-Bayes分类器
- 格式:pptx
- 大小:1.66 MB
- 文档页数:39
机器学习:贝叶斯分类器(⼆)——⾼斯朴素贝叶斯分类器代码实现⼀⾼斯朴素贝叶斯分类器代码实现⽹上搜索不调⽤sklearn实现的朴素贝叶斯分类器基本很少,即使有也是结合⽂本分类的多项式或伯努利类型,因此⾃⼰写了⼀遍能直接封装的⾼斯类型NB分类器,当然与真正的源码相⽐少了很多属性和⽅法,有兴趣的可以⾃⼰添加。
代码如下(有详细注释):class NaiveBayes():'''⾼斯朴素贝叶斯分类器'''def __init__(self):self._X_train = Noneself._y_train = Noneself._classes = Noneself._priorlist = Noneself._meanmat = Noneself._varmat = Nonedef fit(self, X_train, y_train):self._X_train = X_trainself._y_train = y_trainself._classes = np.unique(self._y_train) # 得到各个类别priorlist = []meanmat0 = np.array([[0, 0, 0, 0]])varmat0 = np.array([[0, 0, 0, 0]])for i, c in enumerate(self._classes):# 计算每个种类的平均值,⽅差,先验概率X_Index_c = self._X_train[np.where(self._y_train == c)] # 属于某个类别的样本组成的“矩阵”priorlist.append(X_Index_c.shape[0] / self._X_train.shape[0]) # 计算类别的先验概率X_index_c_mean = np.mean(X_Index_c, axis=0, keepdims=True) # 计算该类别下每个特征的均值,结果保持⼆维状态[[3 4 6 2 1]]X_index_c_var = np.var(X_Index_c, axis=0, keepdims=True) # ⽅差meanmat0 = np.append(meanmat0, X_index_c_mean, axis=0) # 各个类别下的特征均值矩阵罗成新的矩阵,每⾏代表⼀个类别。
bayes 分类器设置实验总结Bayes 分类器设置实验总结在机器学习领域中,分类算法是一个常见的任务之一。
Bayes 分类器是一种基于概率统计的分类算法,它基于贝叶斯定理对样本进行分类。
在本次实验中,我们将对Bayes 分类器的设置进行实验,并总结实验结果。
一、实验目的Bayes 分类器是一种简单但有效的分类算法,通过实验设置我们的目的是验证Bayes 分类器在不同参数下的分类效果,并探索如何对其进行优化。
我们希望通过实验的设计和分析,能够决定最佳的参数设置,并对Bayes 分类器的性能有更深入的了解。
二、数据集选择在进行实验之前,我们需要选择一个合适的数据集作为实验对象。
数据集应具备以下特点:1. 包含有标签的样本数据:由于Bayes 分类器是一种监督学习算法,我们需要有样本的标签信息来进行分类。
2. 具备多类别分类的情况:我们希望能够测试Bayes 分类器在多类别分类问题上的表现,以便更全面地评估其性能。
三、实验设置1. 数据预处理:根据所选数据集的特点,我们需要对数据进行适当的预处理。
可能的预处理步骤包括特征选择、特征缩放、处理缺失值等。
2. 分类器参数设置:Bayes 分类器的性能会受到不同参数的影响,我们希望通过实验找到最佳的参数设置。
例如,在朴素贝叶斯分类器中,我们可以选择不同的先验概率分布,或者使用不同的平滑技术来处理零概率问题。
3. 评价指标选择:为了评估分类器的性能,我们需要选择合适的评价指标。
常见的评价指标包括准确率、召回率、精确率和F1 分数等。
四、实验结果在实验完成后,我们将根据所选的评价指标对实验结果进行分析和总结。
我们可以比较不同参数设置下的分类器性能,并选择最佳的参数设置。
此外,我们还可以考虑其他因素对分类器性能的影响,如数据预处理方法和样本量等。
五、实验总结在本次实验中,我们通过对Bayes 分类器的设置进行实验,得到了一些有价值的结果和经验。
根据实验结果,我们可以总结以下几点:1. 参数设置的重要性:Bayes 分类器的性能受到参数设置的影响。
基于机器学习的文本分类方法及实用性评估在当今信息爆炸的时代,大量的文本数据使得人们面临一个重要的挑战:如何高效地对海量文本进行分类和分析。
机器学习作为一种能够自动从数据中学习并提取知识的方法,被广泛应用于文本分类任务中。
本文将介绍基于机器学习的文本分类方法以及其在实际应用中的评估。
一、基于机器学习的文本分类方法1. 文本特征表示方法在进行文本分类之前,首先需要将文本数据转化为机器学习算法可以处理的特征向量。
常用的文本特征表示方法有以下几种:(1) 词袋模型 (Bag-of-Words Model): 该模型将文本看作是一组无序的词汇集合,忽略了词语之间的顺序和语法结构,只关注每个词出现的频率。
通过统计每个词在文本中出现的次数或者使用TF-IDF进行权重计算,可以将文本转化为高维稀疏的向量表示。
(2) Word2Vec: Word2Vec是一种基于神经网络的词向量表示方法,通过预训练的神经网络模型将每个词映射到一个固定长度的稠密向量。
Word2Vec考虑了词语的语义信息,可以更好地捕捉词语之间的关系。
(3) 文本主题模型 (Topic Models): 主题模型是一种能够自动发现文本中的主题信息的方法。
通过对文本进行主题建模,可以将文本表示为一个主题分布的向量。
2. 文本分类算法基于机器学习的文本分类算法可以分为有监督和无监督学习算法。
有监督学习算法通过已标注的训练数据学习分类模型,而无监督学习算法则从未标注的数据中自动学习分类规则。
(1) 朴素贝叶斯分类器 (Naive Bayes Classifier): 朴素贝叶斯分类器是一种基于概率的分类方法,假设特征之间相互独立。
该算法通过计算给定特征条件下的类别概率,来预测文本的类别。
(2) 支持向量机 (Support Vector Machine, SVM): SVM是一种二分类模型,通过在特征空间中建立一个最优超平面来进行分类。
其核函数的选取可以应用于非线性文本分类任务。
Bayes分类器原理分析以及实现编程环境:python 3.7jupyter notebook⽂章说明:这⾥只是贝叶斯分类器的原理进⾏分析以及实现,重点关注其中的数学原理和逻辑步骤,在测试等阶段直接调⽤了python机器学习的库。
基本步骤:输⼊类数,特征数,待分样本数输⼊训练样本数和训练样本集计算先验概率计算各类条件概率密度计算各类的后验概率若按最⼩错误率原则分类,则根据后验概率判定若按最⼩风险原则分类,则计算各样本属于各类时的风险并判定# 导⼊基本库import pandas as pdimport numpy as npimport mathimport matplotlib.pyplot as plt%matplotlib inline%config InlineBackend.figure_format = 'png'数据预处理colume_names = ['','gender','height','weight','size']df= pd.read_excel('data/gender.xlsx',index_col=0,names=colume_names)df.head(5)gender height weight size1⼥163.062.036.02⼥158.042.036.03男168.067.042.04男180.067.041.05男180.075.046.0df.shape(571, 4)这⾥可以看到数据有4个维度,分别为性别、⾝⾼、体重、鞋码,共有571条记录。
下⾯做⼀些简单的处理:# 性别数据转换df.replace('男',1,inplace=True)df.replace('⼥',2,inplace=True)df.head(5)gender height weight size12163.062.036.022158.042.036.031168.067.042.041180.067.041.0gender height weight size 51180.075.046.0# 男⽣⼥⽣数据分开male_df = df.loc[df['gender']==1]female_df = df.loc[df['gender']==2]female_df.head(5)gender height weight size 12163.062.036.022158.042.036.092160.045.036.0102163.048.037.0112161.045.036.01、单个特征——⾝⾼为了更加深⼊得理解贝叶斯分类器原理,我们从简单的⼀维特征开始。
详解贝叶斯分类器1.贝叶斯决策论贝叶斯分类器是一类分类算法的总称,贝叶斯定理是这类算法的核心,因此统称为贝叶斯分类。
贝叶斯决策论通过相关概率已知的情况下利用误判损失来选择最优的类别分类。
“风险”(误判损失)= 原本为cj的样本误分类成ci产生的期望损失,期望损失可通过下式计算:为了最小化总体风险,只需在每个样本上选择能够使条件风险R(c|x)最小的类别标记。
最小化分类错误率的贝叶斯最优分类器为:即对每个样本x,选择能使后验概率P(c|x)最大的类别标记。
利用贝叶斯判定准则来最小化决策风险,首先要获得后验概率P(c|x),机器学习要实现的是基于有限的训练样本集尽可能准确的估计出后验概率P(c|x)。
主要有两种模型:一是“判别式模型”:通过直接建模P(c|x)来预测,其中决策树,BP神经网络,支持向量机都属于判别式模型。
另外一种是“生成式模型”:通过对联合概率模型P(x,c)进行建模,然后再获得P(c|x)。
对于生成模型来说:基于贝叶斯定理,可写为下式(1)通俗的理解:P(c)是类“先验”概率,P(x|c)是样本x相对于类标记c的类条件概率,或称似然。
p(x)是用于归一化的“证据”因子,对于给定样本x,证据因子p(x)与类标记无关。
于是,估计p(c|x)的问题变为基于训练数据来估计p(c)和p(x|c),对于条件概率p(x|c)来说,它涉及x所有属性的联合概率。
2.极大似然估计假设p(x|c))具有确定的形式并且被参数向量唯一确定,则我们的任务是利用训练集估计参数θc,将P(x|c)记为P(x|θc)。
令Dc表示训练集D第c类样本的集合,假设样本独立同分布,则参数θc对于数据集Dc的似然是对进行极大似然估计,就是去寻找能最大化P(Dc|θc)的参数值。
直观上看,极大似然估计是试图在θc所有可能的取值中,找到一个能使数据出现的“可能性”最大的值。
上式的连乘操作易造成下溢,通常使用对数似然:此时参数θc的极大似然估计为在连续属性情形下,假设概率密度函数,则参数和的极大似然估计为:也就是说,通过极大似然法得到的正态分布均值就是样本均值,方差就是的均值,在离散情况下,也可通过类似的方式估计类条件概率。
一、实验意义及目的1、掌握贝叶斯判别定理2、能利用matlab编程实现贝叶斯分类器设计3、熟悉基于matlab的算法处理函数,并能够利用算法解决简单问题二、算法原理贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。
其中P(A|B)是在B发生的情况下A发生的可能性公式为:贝叶斯法则:当分析样本大到接近总体数时,样本中事件发生的概率将接近于总体中事件发生的概率。
内容:(1)两类w服从正态分布,设计基于最小错误率的贝叶斯分类器,对数据进行分类。
(2)使用matlab进行Bayes判别的相关函数,实现上述要求。
(3)针对(1)中的数据,自由给出损失表,并对数据实现基于最小风险的贝叶斯分类。
三、实验内容(1)尝两类w服从正态分布,设计基于最小错误率的贝叶斯分类器,对数据进行分类。
代码清单:clc;clear all;meas=[0 0;2 0;2 2;0 2;4 4;6 4;6 6;4 6];%8x2矩阵这里一行一行2个特征[N n]=size(meas);species={'one';'one';'one';'one';'two';'two';'two';'two'};%这里也对应一行一行的sta=tabulate(species)[c k]=size(sta);priorp=zeros(c,1);for i=1:cpriorp(i)=cell2mat(sta(i,k))/100;%计算概率end%cell2mat(sta(:,2:3)) 提取数组中的数据本来sta数组中数据为矩阵不能直接用%估算类条件概率参数cpmean=zeros(c,n);cpcov=zeros(n,n,c);for i=1:ccpmean(i,:)=mean(meas(strmatch(char(sta(i,1)),species,'exact'),:));%exact精确查找cpmean放的每一类的均值点几类就几行cpcov(:,:,i)=cov(meas(strmatch(char(sta(i,1)),species,'exact'),:))*(N*priorp(i)-1)/(N*priorp(i));end%求(3 1)的后验概率x=[3 1];postp=zeros(c,1);for i=1:cpostp(i)=priorp(i)*exp(-(x-cpmean(i,:))*inv(cpcov(:,:,i))*(x-cpmean(i,:))'/2)/((2*pi)^(n/2)*det(cpcov(:,:,i)));endif postp(1)>postp(2)disp('第一类');elsedisp('第二类');end运行结果:(2)使用matlab进行Bayes判别的相关函数,实现上述要求。
贝叶斯分类器应用实例贝叶斯分类器是一种常用的机器学习算法,其基本原理是根据已有的训练数据,通过统计学方法预测新数据的类别。
贝叶斯分类器的应用非常广泛,其中包括垃圾邮件过滤、情感分析、文本分类等。
在本文中,我将详细介绍贝叶斯分类器在垃圾邮件过滤和情感分析上的应用实例,并介绍其原理和实现步骤。
一、垃圾邮件过滤垃圾邮件过滤是贝叶斯分类器的经典应用之一。
在垃圾邮件过滤中,贝叶斯分类器被用来预测一封邮件是垃圾邮件还是正常邮件。
其原理是根据已有的标记为垃圾邮件或正常邮件的训练数据,计算出某个词语在垃圾邮件和正常邮件中出现的概率,并据此预测新邮件的类别。
具体实现步骤如下:1.收集和准备数据集:需要收集足够数量的已标记为垃圾邮件和正常邮件的数据集,并对其进行预处理,如去除停用词、标点符号等。
2.计算词频:统计每个词语在垃圾邮件和正常邮件中的出现次数,并计算其在两类邮件中的概率。
3.计算条件概率:根据已有的训练数据,计算每个词语在垃圾邮件和正常邮件中的条件概率。
4.计算先验概率:根据已有的训练数据,计算垃圾邮件和正常邮件的先验概率。
5.计算后验概率:根据贝叶斯公式,计算新邮件在垃圾邮件和正常邮件中的后验概率。
6.预测结果:将新邮件归类为垃圾邮件或正常邮件,取后验概率较高的类别。
通过以上步骤,我们可以实现一个简单的垃圾邮件过滤器。
在实际应用中,可以根据需要进行改进,如考虑词语的权重、使用更复杂的模型等。
二、情感分析情感分析是另一个贝叶斯分类器常用的应用领域。
在情感分析中,贝叶斯分类器被用来预测文本的情感倾向,如正面、负面或中性。
具体实现步骤如下:1.收集和准备数据集:需要收集足够数量的已标记为正面、负面或中性的文本数据集,并对其进行预处理,如分词、去除停用词等。
2.计算词频:统计每个词语在正面、负面和中性文本中的出现次数,并计算其在三类文本中的概率。
3.计算条件概率:根据已有的训练数据,计算每个词语在正面、负面和中性文本中的条件概率。