工业机器人分类本体结构及技术指标
- 格式:doc
- 大小:2.36 MB
- 文档页数:11
简述工业机器人的概念、结构及分类工业机器人是指为工业生产自动化而设计和制造的一种特殊机器人。
它具有高度灵活性、协作能力和精确控制的特点,可以代替人类在危险、繁重、重复和高精度环境下进行工作。
本文将从工业机器人的概念、结构和分类三个方面进行阐述。
一、概念工业机器人是指能够执行工业任务的自动化机械装置。
它通过接受计算机程序、传感器信号或者遥控方式,以人工智能为核心技术,完成各种需要力、速度、精度和灵活性的生产任务。
与传统机械设备相比,工业机器人拥有更大的自主性和智能化,能够灵活应对不同的生产需求。
二、结构工业机器人的结构主要由机械臂、操作系统、传感器、执行机构和控制系统组成。
1. 机械臂:机械臂是工业机器人最重要的组成部分,它类似于人类的手臂,由多个关节和驱动装置组成。
机械臂可以在空间内灵活移动,实现多维的运动和操作。
2. 操作系统:工业机器人的操作系统是通过计算机程序来控制机械臂和相关部件的。
操作系统可以实现工业机器人的路径规划、运动控制、监测和故障诊断等功能。
3. 传感器:工业机器人配备了各种传感器用于感知环境和检测目标物体,包括视觉传感器、力传感器、压力传感器等。
传感器的作用是使机器人能够感知和理解周围环境,从而更好地执行任务。
4. 执行机构:工业机器人的执行机构是负责实际执行工作的部件,例如夹具、焊枪、切割装置等。
执行机构能够根据控制系统的指令完成具体的操作任务。
5. 控制系统:工业机器人的控制系统是整个机器人的大脑,它接受操作系统的指令并控制机械臂和执行机构完成工作任务。
控制系统具有实时性要求,需要能够快速、准确地响应不同的指令和情况。
三、分类根据不同的分类标准,工业机器人可以分为多种类型。
1. 按照结构分类:(1) 平行式机器人:平行式机器人由固定基座和可平行移动的平台组成,其功能主要是进行多点定位和搬运操作。
平行式机器人具有较高的刚度和定位精度,适用于精密装配和加工等工作。
(2) 关节式机器人:关节式机器人的结构类似于人的手臂,由多个关节连接而成。
工业机器人机器人本体设计分析声明:本文内容信息来源于公开渠道,对文中内容的准确性、完整性、及时性或可靠性不作任何保证。
本文内容仅供参考与学习交流使用,不构成相关领域的建议和依据。
一、机器人结构设计机器人的结构设计是指针对特定任务和工作环境,对机器人的外形、连接方式、关节结构等进行设计和优化的过程。
合理的机器人结构设计能够提高机器人的功能性、灵活性和稳定性,从而更好地完成各种任务。
下面将从机器人的外形设计、连接方式设计以及关节结构设计三个方面详细论述机器人结构设计相关内容。
(一)外形设计1、外形尺寸设计:机器人的外形尺寸设计需要考虑到工作空间的限制以及任务的需求。
合理的外形尺寸设计可以使机器人在狭小的空间内自由移动,并且能够达到所需的工作范围。
2、外形材料选择:机器人的外形材料选择应考虑到机器人的使用环境和任务特点。
例如,在潮湿的环境中工作的机器人可以选择防水材料,而在高温环境中工作的机器人则需要选择耐高温材料。
3、外形形状设计:机器人的外形形状设计既要满足机器人的运动需求,又要符合人类对机器人的认知和接受。
因此,外形形状设计需要考虑到机器人的动态特性和人机交互的需求。
(二)连接方式设计1、运动连接方式设计:机器人的运动连接方式包括传动装置、连接结构等。
传动装置的设计应满足机器人的工作要求,如速度、精度、承载能力等。
连接结构的设计应具有稳定性和刚度,以确保机器人在高速和大力矩下不发生松动或变形。
2、电气连接方式设计:机器人的电气连接方式包括电缆布线、接插件等。
电缆布线的设计应考虑到机器人的自由度和运动范围,并保证电缆的可靠性和耐久性。
接插件的选择和布局应方便维护和更换。
3、通讯连接方式设计:机器人的通讯连接方式包括传感器和控制系统之间的通讯方式。
合理的通讯连接方式可以提高机器人的响应速度和数据传输效率,从而提高机器人的工作效率和稳定性。
(三)关节结构设计1、关节类型选择:关节是机器人身体各部分连接起来并实现运动的重要组成部分。
工业机器人分类、本体结构和技术指标“工业机器人”专项技能培训——杜宇英属哥伦比亚大学(UBC)博士大连大华中天科技有限公司CEO主要内容一、常用运动学构型二、机器人的主要技术参数三、机器人常用材料四、机器人主要结构五、机器人的控制系统一、常用运动学构形1、笛卡尔操作臂优点:很容易通过计算机控制实现,容易达到高精度。
缺点:妨碍工作, 且占地面积大, 运动速度低, 密封性不好。
①焊接、搬运、上下料、包装、码垛、拆垛、检测、探伤、分类、装配、贴标、喷码、打码、(软仿型)喷涂、目标跟随、排爆等一系列工作。
②特别适用于多品种,便批量的柔性化作业,对于稳定,提高产品质量,提高劳动生产率,改善劳动条件和产品的快速更新换代有着十分重要的作用。
2、铰链型操作臂(关节型)关节机器人的关节全都是旋转的, 类似于人的手臂,工业机器人中最常见的结构。
它的工作范围较为复杂。
①汽车零配件、模具、钣金件、塑料制品、运动器材、玻璃制品、陶瓷、航空等的快速检测及产品开发。
②车身装配、通用机械装配等制造质量控制等的三坐标测量及误差检测。
③古董、艺术品、雕塑、卡通人物造型、人像制品等的快速原型制作。
④汽车整车现场测量和检测。
⑤人体形状测量、骨骼等医疗器材制作、人体外形制作、医学整容等。
3、SCARA操作臂SCARA机器人常用于装配作业, 最显著的特点是它们在x-y平面上的运动具有较大的柔性, 而沿z轴具有很强的刚性, 所以, 它具有选择性的柔性。
这种机器人在装配作业中获得了较好的应用。
①大量用于装配印刷电路板和电子零部件②搬动和取放物件,如集成电路板等③广泛应用于塑料工业、汽车工业、电子产品工业、药品工业和食品工业等领域.④搬取零件和装配工作。
4、球面坐标型操作臂特点:中心支架附近的工作范围大,两个转动驱动装置容易密封,覆盖工作空间较大。
但该坐标复杂, 难于控制,且直线驱动装置存在密封的问题。
5、圆柱面坐标型操作臂优点:且计算简单;直线部分可采用液压驱动,可输出较大的动力;能够伸入型腔式机器内部。
工业机器人技术与应用项目三工业机器人的机械系统任务二机器人的本体结构导入●什么是机器人的本体结构?●机器人的本体结构在哪里?目录学习目标知识准备任务实施主题讨论12学习目标机器人基座、腰部结构机器人上、下臂结构知识目标机器人基座、腰部及上、下臂结构一、机器人基座、腰部结构1. 基座及腰部结构基座7是整个机器人的基础件,机器人通过基座与地基或者其它工作平台固定,同时机器人的电缆、气管等也是通过基座上的连接插座进入机器人的。
腰体6位于基座和下臂之间,可以带动下臂及以上部分在基座上回转。
腰体上凸耳,凸耳一侧通过下臂安装端面5与下臂连接,另一侧安装下臂驱动电机。
一、机器人基座、腰部结构视频:基座及腰部结构二、机器人的上、下臂结构1. 下臂结构下臂安装在腰部和上臂之间,可以带动上臂及以后部分一同摆动。
下臂断面呈U形结构,用于布置各种电缆及管线。
二、机器人的上、下臂结构视频下臂结构二、机器人的上、下臂结构2. 上臂后段结构上臂后段是连接下臂和上臂前段的中间体,可带动上臂前段及手腕部分一起,相对于下臂旋转。
上臂后段为箱体结构,上方箱体内安装R轴(J4)回转电机(对于前驱RBR 结构)。
二、机器人的上、下臂结构视频上臂后段结构二、机器人的上、下臂结构3. R 轴传动结构谐波减速器的刚轮3.1与电机1的外壳、电机座2一起,固定在上臂后段6的壳体中;谐波减速器的柔轮3.3与过渡轴5的后端面、径向轴承4的里圈连接,轴承4的外圈安装在上臂后段6的壳体中作为支撑;过渡轴5的前端与上臂前段8、CRB轴承的里圈连接,轴承外圈固定在上臂后段6的前端面上作为支撑。
电机1的输出轴与谐波减速器的谐波发生器3.2连接,动力传递给柔轮,通过柔轮带动过渡轴5旋转,进而带动上臂后段8作手腕回转运动(J4轴)。
二、机器人的上、下臂结构视频R轴传动结构任务实施学习视频,完成工作页内容主题讨论讨论问题◆基座、腰部及上、下臂由哪些部分组成?◆基座、腰部及上、下臂结构的特点?小结完成本任务学习后,掌握了机器人基座、腰部及上、下臂结构,为后续学习打下了基础。
机器人本体的五大组成
机器人本体包括:驱动系统、机械系统、传感系统、控制系统和系统接口五大部分组成,下面来分类讲一下机器人本体包括哪几部分。
1、机械系统:机器人的机械本体机构基本上分为两大类,一类是操作本体机构,它类似人的手臂和手腕,另一类为移动型本体结构,主要实现移动功能。
2、驱动系统:工业机器人驱动系统又叫伺服单元的作用是使驱动单元驱动关节并带动负载按预定的轨迹运动。
已广泛采用的驱动方式有:液压伺服驱动、电机伺服驱动,气动伺服驱动,市场上主流的伺服电机厂家有安川、三菱、松下等。
3、控制系统:各关节伺服驱动的指令值由主计算机计算后,在各采样周期给出。
机器人通常采用主计算机与关节驱动伺服计算机两级计算机控制,计算机控制系统包括电机驱动软件和轨迹控制软件。
4、传感系统:除了关节伺服驱动系统的位置传感器(称作内部传感器)外,还需要搭配视觉、力觉、触觉、接近等多种类型的传感器(称作外部传感器)。
5、输出/输入系统接口:为了与周边系统及相应操作进行联机与应答,会开放各种通信接口和人机通信装置。
一.工业机器人组成系统工业机器人由主体、驱动系统和控制系统三个基本部分组成。
主体即机座和执行机构,包括腰部、肩部、肘部和手腕部,其中手腕部有3个运动自由度。
驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作。
控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。
工业机器人按执行机构运动的控制机能,又可分点位型和连续轨迹型。
点位型只控制执行机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、装卸等作业;连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。
工业机器人按程序输入方式区分有编程输入型和示教输入型两类。
编程输入型是将计算机上已编好的作业程序文件,通过RS232串口或者以太网等通信方式传送到机器人控制柜。
示教输入型的示教方法有两种:一种是由操作者用手动控制器(示教操纵盒),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演一遍;另一种是由操作者直接领动执行机构,按要求的动作顺序和运动轨迹操演一遍。
在示教过程的同时,工作程序的信息即自动存入程序存储器中在机器人自动工作时,控制系统从程序存储器中检出相应信息,将指令信号传给驱动机构,使执行机构再现示教的各种动作。
示教输入程序的工业机器人称为示教再现型工业机器人。
几个问题:(1)巨轮机器人JLRB20KG机器人是点位型还是连续轨迹型?(2)能不能编写一个简单程序,使机器人能够的末端能够走一个圆?(3)能不能控制机器人中每一个电机的输出功率或扭矩?(4)机器人每一个关节从驱动电机到执行机构的传递效率有没有?二.工业机器人的主体机器人本体由机座、腰部、大臂、小臂、手腕、末端执行器和驱动装置组成。
共有六个自由度,依次为腰部回转、大臂俯仰、小臂俯仰、手腕回转、手腕俯仰、手腕侧摆。
机器人采用电机驱动,电机分为步进电机或直流伺服电机。
直流伺服电机能构成闭环控制、精度高、额定转速高、但价格较高,而步进电机驱动具有成本低、控制系统简单。
工业机器人分类、本体结构和技术指标“工业机器人”专项技能培训——杜宇英属哥伦比亚大学(UBC)博士大连大华中天科技有限公司CEO主要内容一、常用运动学构型二、机器人的主要技术参数三、机器人常用材料四、机器人主要结构五、机器人的控制系统一、常用运动学构形1、笛卡尔操作臂优点:很容易通过计算机控制实现,容易达到高精度。
缺点:妨碍工作, 且占地面积大, 运动速度低, 密封性不好。
①焊接、搬运、上下料、包装、码垛、拆垛、检测、探伤、分类、装配、贴标、喷码、打码、(软仿型)喷涂、目标跟随、排爆等一系列工作。
②特别适用于多品种,便批量的柔性化作业,对于稳定,提高产品质量,提高劳动生产率,改善劳动条件和产品的快速更新换代有着十分重要的作用。
2、铰链型操作臂(关节型)关节机器人的关节全都是旋转的, 类似于人的手臂,工业机器人中最常见的结构。
它的工作范围较为复杂。
①汽车零配件、模具、钣金件、塑料制品、运动器材、玻璃制品、陶瓷、航空等的快速检测及产品开发。
②车身装配、通用机械装配等制造质量控制等的三坐标测量及误差检测。
③古董、艺术品、雕塑、卡通人物造型、人像制品等的快速原型制作。
④汽车整车现场测量和检测。
⑤人体形状测量、骨骼等医疗器材制作、人体外形制作、医学整容等。
3、SCARA操作臂SCARA机器人常用于装配作业, 最显著的特点是它们在x-y平面上的运动具有较大的柔性, 而沿z轴具有很强的刚性, 所以, 它具有选择性的柔性。
这种机器人在装配作业中获得了较好的应用。
①大量用于装配印刷电路板和电子零部件②搬动和取放物件,如集成电路板等③广泛应用于塑料工业、汽车工业、电子产品工业、药品工业和食品工业等领域.④搬取零件和装配工作。
4、球面坐标型操作臂特点:中心支架附近的工作范围大,两个转动驱动装置容易密封,覆盖工作空间较大。
但该坐标复杂, 难于控制,且直线驱动装置存在密封的问题。
5、圆柱面坐标型操作臂优点:且计算简单;直线部分可采用液压驱动,可输出较大的动力;能够伸入型腔式机器内部。
缺点:它的手臂可以到达的空间受到限制, 不能到达近立柱或近地面的空间;直线驱动部分难以密封、防尘;后臂工作时, 手臂后端会碰到工作范围内的其它物体。
6、冗余机构通常空间定位需要6个自由度,利用附加的关节可以帮助机构避开奇异位形。
下图为7自由度操作臂位形7、闭环结构闭环结构可以提高机构刚度,但会减小关节运动范围,工作空间有一定减小。
①运动模拟器;②并联机床;③微操作机器人;④力传感器;⑤生物医学工程中的细胞操作机器人、可实现细胞的注射和分割;⑥微外科手术机器人;⑦大型射电天文望远镜的姿态调整装置;⑧混联装备等,如SMT公司的Tricept混联机械手模块是基于并联机构单元的模块化设计的成功典范。
工业机器人的几种常用结构形式(图)二、机器人的主要技术参数机器人的技术参数反映了机器人可胜任的工作、具有的最高操作性能等情况,是设计、应用机器人必须考虑的问题。
机器人的主要技术参数有自由度、分辨率、工作空间、工作速度、工作载荷等。
1、自由度.机器人具有的独立坐标轴运动的数目。
.机器人的自由度是指确定机器人手部在空间的位置和姿态时所需要的独立运动参数的数目。
.手指的开、合,以及手指关节的自由度一般不包括在内。
.机器人的自由度数一般等于关节数目。
.机器人常用的自由度数一般不超过5~6个。
2、关节(Joint):即运动副,允许机器人手臂各零件之间发生相对运动的机构。
3、工作空间机器人手臂或手部安装点所能达到的所有空间区域。
其形状取决于机器人的自由度数和各运动关节的类型与配置。
机器人的工作空间通常用图解法和解析法两种方法进行表示。
4、工作速度机器人在工作载荷条件下、匀速运动过程中,机械接口中心或工具中心点在单位时间内所移动的距离或转动的角度。
5、工作载荷指机器人在工作范围内任何位置上所能承受的最大负载,一般用质量、力矩、惯性矩表示。
还和运行速度和加速度大小方向有关,一般规定高速运行时所能抓取的工件重量作为承载能力指标。
6、分辨率能够实现的最小移动距离或最小转动角度7、精度重复性或重复定位精度:指机器人重复到达某一目标位置的差异程度。
或在相同的位置指令下,机器人连续重复若干次其位置的分散情况。
它是衡量一列误差值的密集程度,即重复度。
1)碳素结构钢和合金结构钢这类材料强度好,特别是合金结构钢,其强度增大了4~5倍,弹性模量E大,抗变形能力强,是应用最广泛的材料。
2)铝、铝合金及其他轻合金材料这类材料的共同特点是重量轻,弹性模量E并不大,但是材料密度小,故E/ρ之比仍可与钢材相比。
有些稀贵铝合金的品质得到了更明显的改善,例如添加3.2%(重量百分比)锂的铝合金,弹性模量增加了14%,E/ρ比增加了16%。
3)纤维增强合金这类合金如硼纤维增强铝合金、石墨纤维增强镁合金等,其E/ρ比分别达到11.4×107和8.9×107。
这种纤维增强金属材料具有非常高的E/ρ比,但价格昂贵。
4)陶瓷陶瓷材料具有良好的品质,但是脆性大,不易加工,日本已经试制了在小型高精度机器人上使用的陶瓷机器人臂样品。
5)纤维增强复合材料这类材料具有极好的E/ρ比,而且还具有十分突出的大阻尼的优点。
传统金属材料不可能具有这么大的阻尼,所以在高速机器人上应用复合材料的实例越来越多。
6)粘弹性大阻尼材料增大机器人连杆件的阻尼是改善机器人动态特性的有效方法。
目前有许多方法用来增加结构件材料的阻尼,其中最适合机器人采用的一种方法是用粘弹性大阻尼材料对原构件进行约束层阻尼处理。
㈠、机器人驱动装置概念:要使机器人运行起来, 需给各个关节即每个运动自由度安置传动装置作用:提供机器人各部位、各关节动作的原动力驱动系统:可以是液压传动、气动传动、电动传动, 或者把它们结合起来应用的综合系统; 可以是直接驱动或者是通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接驱动。
1、电动驱动装置电动驱动装置的能源简单,速度变化范围大,效率高,速度和位置精度都很高。
但它们多与减速装置相联,直接驱动比较困难。
电动驱动装置又可分为直流(DC)、交流(AC)伺服电机驱动和步进电机驱动。
直流伺服电机电刷易磨损,且易形成火花。
无刷直流电机也得到了越来越广泛的应用。
步进电机驱动多为开环控制,控制简单但功率不大,多用于低精度小功率机器人系统。
电动上电运行前要作如下检查:1)电源电压是否合适(过压很可能造成驱动模块的损坏);对于直流输入的+/-极性一定不能接错,驱动控制器上的电机型号或电流设定值是否合适(开始时不要太大);2)控制信号线接牢靠,工业现场最好要考虑屏蔽问题(如采用双绞线);3)不要开始时就把需要接的线全接上,只连成最基本的系统,运行良好后,再逐步连接。
4)一定要搞清楚接地方法,还是采用浮空不接。
5)开始运行的半小时内要密切观察电机的状态,如运动是否正常,声音和温升情况,发现问题立即停机调整。
2、液压驱动.通过高精度的缸体和活塞来完成,通过缸体和活塞杆的相对运动实现直线运动。
.优点:功率大,可省去减速装置直接与被驱动的杆件相连,结构紧凑,刚度好,响应快,伺服驱动具有较高的精度。
.缺点:需要增设液压源,易产生液体泄漏,不适合高、低温场合,故液压驱动目前多用于特大功率的机器人系统。
.选择适合的液压油。
.防止固体杂质混入液压系统.防止空气和水入侵液压系统.机械作业要柔和平顺机械作业应避免粗暴,否则必然产生冲击负荷,使机械故障频发,大大缩短使用寿命。
.要注意气蚀和溢流噪声。
作业中要时刻注意液压泵和溢流阀的声音,如果液压泵出现“气蚀”噪声,经排气后不能消除,应查明原因排除故障后才能使用。
.保持适宜的油温。
液压系统的工作温度一般控制在30~80℃之间为宜3、气压驱动.气压驱动的结构简单,清洁,动作灵敏,具有缓冲作用。
.但与液压驱动装置相比,功率较小,刚度差,噪音大,速度不易控制,所以多用于精度不高的点位控制机器人。
(1)具有速度快、系统结构简单,维修方便、价格低等特点。
适于在中、小负荷的机器人中采用。
但因难于实现伺服控制,多用于程序控制的机械人中,如在上、下料和冲压机器人中应用较多。
(2)在多数情况下是用于实现两位式的或有限点位控制的中、小机器人中的。
(3)控制装置目前多数选用可编程控制器(PLC控制器)。
在易燃、易爆场合下可采用气动逻辑元件组成控制装置。
机器人驱动装置㈡、直线传动机构。
传动装置是连接动力源和运动连杆的关键部分,根据关节形式,常用的传动机构形式有直线传动和旋转传动机构。
.直线传动方式可用于直角坐标机器人的X、Y、Z向驱动,圆柱坐标结构的径向驱动和垂直升降驱动,以及球坐标结构的径向伸缩驱动。
.直线运动可以通过齿轮齿条、丝杠螺母等传动元件将旋转运动转换成直线运动,也可以有直线驱动电机驱动,也可以直接由气缸或液压缸的活塞产生。
1、齿轮齿条装置.通常齿条是固定的。
齿轮的旋转运动转换成托板的直线运动。
.优点:结构简单。
.缺点:回差较大2、滚珠丝杠.在丝杠和螺母的螺旋槽内嵌入滚珠,并通过螺母中的导向槽使滚珠能连续循环。
.优点:摩擦力小,传动效率高,无爬行,精度高.缺点:制造成本高,结构复杂。
.自锁问题:理论上滚珠丝杠副也可以自锁,但是实际应用上没有使用这个自锁的,原因主要是:1-可靠性很差;2-加工成本很高(因为直径与导程比非常大).一般都是再加一套蜗轮蜗杆之类的自锁装置.㈢、旋转传动机构.采用旋转传动机构的目的是将电机的驱动源输出的较高转速转换成较低转速,并获得较大的力矩。
机器人中应用较多的旋转传动机构有齿轮链、同步皮带和谐波齿轮。
1、齿轮链:(1)转速关系:(2)力矩关系:2、同步皮带.同步带是具有许多型齿的皮带,它与同样具有型齿的同步皮带轮相啮合。
工作时相当于柔软的齿轮。
.优点:无滑动,柔性好,价格便宜,重复定位精度高。
.缺点:具有一定的弹性变形。
3、谐波齿轮谐波齿轮由刚性齿轮、谐波发生器和柔性齿轮三个主要零件组成,一般刚性齿轮固定,谐波发生器驱动柔性齿轮旋转。
主要特点(1)、传动比大,单级为50—300。
(2)、传动平稳,承载能力高。
(3)、传动效率高,可达70%—90%。
(4)、传动精度高,比普通齿轮传动高3—4倍。
(5)、回差小,可小于3’。
(6)、不能获得中间输出,柔轮刚度较低。
.谐波传动装置在机器人技术比较先进的国家已得到了广泛的应用。
仅就日本来说,机器人驱动装置的60%都采用了谐波传动。
.美国送到月球上的机器人,其各个关节部位都采用谐波传动装置,其中一只上臂就用了30个谐波传动机构。
.前苏联送入月球的移动式机器人“登月者”,其成对安装的8个轮子均是用密闭谐波传动机构单独驱动的。
.德国大众汽车公司研制的ROHREN、GEROT R30型机器人和法国雷诺公司研制的VERTICAL 80型机器人等都采用了谐波传动机构。