高效率开关电源设计思路
- 格式:pdf
- 大小:1.86 MB
- 文档页数:99
开关电源设计方案1. 导言开关电源是一种将交流电转换为直流电的电源设备。
它具有高转换效率、小体积、轻重量等特点,被广泛应用于电子设备中。
本文将介绍开关电源的基本工作原理、设计流程以及几个常见的开关电源设计方案。
2. 开关电源的工作原理开关电源的工作原理包括输入滤波、整流、能量存储、调节和输出等步骤。
以下是一个典型的开关电源的工作原理图:开关电源工作原理图开关电源工作原理图1.输入滤波:交流电通过电源的输入端,首先经过输入滤波电路。
该电路使用电容和电感元件,去除交流电中的高频噪声和干扰,使得电源输入的电流更加稳定。
2.整流:经过滤波的交流电信号,经过整流桥或整流管,被转换为一个较高的直流电压。
整流桥通常由4个二极管组成,它们交替导通,使得输入交流电的正半周和负半周都能够被转换为正向的直流电。
3.能量存储:整流后的直流电压通过电容器进行存储。
电容器的作用是储存电荷以平滑输出电压,防止输出电压的波动。
4.调节:开关电源通常具有可调节输出电压的功能。
这是通过调整开关管的导通和截止时间来实现的。
调节电路通常由一片PWM控制芯片和电路反馈元件(如电感、变压器等)组成,以控制开关频率和占空比。
5.输出:经过调节后的直流电压,通过输出滤波电路去除残余的高频噪声,然后供给电子设备的负载。
3. 开关电源设计流程设计一个功能稳定、安全可靠的开关电源需要经过以下几个步骤:3.1 确定设计规格在开始设计之前,需要明确电源的输入和输出要求。
输入要求包括交流电的电压范围、频率、输入的稳定性等;输出要求包括直流电的电压、电流、纹波与噪声等。
3.2 选择拓扑结构常见的开关电源拓扑结构有多种,如Boost、Buck、Buck-Boost、Flyback等。
根据实际需求选择最适合的拓扑结构。
3.3 确定主要元件参数根据设计规格和拓扑结构,确定主要元件的参数,如开关管、变压器、电感、电容等。
3.4 确定控制策略根据实际需求,选择合适的控制策略,如PWM控制、电流模式控制等。
一种高效反激式开关电源的设计及性能测试高效反激式开关电源是一种常见的电源设计方案,具有高效率、低功耗和小体积等优点。
本文将介绍一种高效反激式开关电源的设计,并对其性能进行测试。
一、设计方案高效反激式开关电源的设计主要包括变压器设计、功率开关管选择、电容滤波和反馈控制电路等。
下面依次介绍各个部分的设计。
1.变压器设计变压器是高效反激式开关电源的关键部分,通常采用多层铜箔绕线制成。
变压器的设计需要考虑输入电压、输出电压、输出功率和开关频率等因素。
根据具体的设计要求,可以采用磁芯材料和线圈参数来确定变压器的结构和参数。
2.功率开关管选择功率开关管是实现开关过程的关键元器件,常见的有MOS管和IGBT 管等。
选择适合的功率开关管需要考虑开关频率、功率损耗和电流容量等因素。
3.电容滤波电容滤波是实现开关电源输出稳定的重要环节,它能减小输出纹波和噪声。
选择合适的电容容值和工作电压是关键。
4.反馈控制电路反馈控制电路可以通过对输出电压进行实时监测和控制,实现电压的稳定输出。
常见的反馈控制电路有电流反馈和电压反馈。
二、性能测试对高效反激式开关电源的性能进行测试,可以从以下几个方面进行评估。
1.效率测试高效反激式开关电源的一个主要特点是高效率,因此需要测试其输入功率和输出功率,从而计算出电源的转换效率。
2.输出稳定性测试输出稳定性是衡量开关电源性能的关键指标之一,可以通过在不同负载条件下测量输出电压的波动情况来评估。
3.过载和短路保护测试过载和短路保护是开关电源的常见功能,需要测试电源在负载过载和短路情况下的响应速度和保护能力。
4.温升测试温升测试是为了评估开关电源在高负载和长时间运行时的热耗能力,通过测量电源的温度变化来评估其散热效果。
5.器件可靠性测试开关电源的器件可靠性测试是为了评估电源的长期稳定性和可靠性,可以通过长时间运行和负载周期测试等方法进行。
通过以上测试,可以全面评估高效反激式开关电源的性能,从而为其后续的生产和应用提供参考。
基于单管正激式的高效率开关电源的设计高效率开关电源是一种能够将输入电源有效地转换为所需输出电源的电力转换装置。
在实际应用中,高效率开关电源已经取代了传统的线性电源,更广泛地应用于各个领域。
一种常见的高效率开关电源设计是基于单管正激式的设计。
该设计方案具有简单、成本低廉、效率高等特点。
该设计方案的核心元件是一只功率MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor)。
该MOS管作为开关,能够根据控制信号开启或关闭,从而实现电源的稳定输出。
MOS管的导通损耗较小,能够在高频率下工作,因此能够提高电源的转换效率。
设计方案的第一步是根据需要确定输入电源的范围和输出电源的需求。
通过采集输入电源的直流电压,可以确定MOS管的工作区间,从而选择合适的MOS管。
接下来,设计师需要根据输出电源的需求确定转换电路。
转换电路的核心是开关频率发生器,用于控制MOS管的开关频率。
开关频率的选择需要考虑到输出电源的负载特性和所需的转换效率。
通常情况下,开关频率越高,转换效率越高,但开关损耗也会增加。
在设计过程中,还需要考虑到输出电源的稳定性和电源滤波的问题。
稳压器是非常重要的一个模块,用于确保输出电压的稳定性。
电源滤波是为了减少开关频率带来的干扰和噪音,提高输出电源的纯净度。
最后,设计师需要进行电路模拟和实验验证。
通过电路模拟软件,可以模拟不同工作条件下的电源转换效率和稳定性。
随后,可以通过实验验证电路的性能,并对其进行调整和优化。
总结起来,基于单管正激式的高效率开关电源设计是一项复杂但非常有挑战性的任务。
设计师需要充分了解输入电源和输出电源的需求,合理选择核心元件和电路拓扑,进行模拟和实验验证,最终实现高效率的电源转换。
这种设计方案在各个领域中都有着广泛的应用前景。
如何使用开关电源进行高效能电路设计开关电源是一种常见且广泛应用的电源类型,其具有高效率和稳定性的特点,被广泛应用于电子设备和电路设计中。
本文将介绍如何有效地使用开关电源进行电路设计,以提高电路的能效和稳定性。
一、开关电源的基本原理首先,我们需要了解开关电源的基本原理。
开关电源通过开关控制器的开关管,在输入端和输出端之间迅速地打开和关闭电流,从而实现电能的高效传输和转换。
其工作原理主要包括三个步骤:变换、整流和滤波,通过这些步骤将输入电流转换为适合电路使用的稳定输出电流。
二、高效能电路设计的要点在进行高效能电路设计时,需要注意以下几个要点:1. 选择合适的开关电源型号和参数在选择开关电源时,需要考虑电路的需求和工作环境。
需要注意的参数包括输入电压范围、输出电流和电压范围、工作温度范围等。
合理选择开关电源的型号和参数,能够提高电路的能效和稳定性。
2. 合理配置电路结构在电路设计过程中,需要合理配置电路结构,包括开关电源的输入滤波器、变换器和输出滤波器等。
通过合理配置电路结构,能够降低电流的损耗和电压的波动,提高开关电源的性能和稳定性。
3. 选择高效能的元器件在电路设计中,选择高效能的元器件对于提高电路的能效至关重要。
例如,选择低电阻、低损耗的电容和电感器件,能够降低电路的功耗和损耗。
选择高效能的开关管、二极管和磁性元件等,能够提高电路的转换效率和稳定性。
4. 进行合理的功率管理在高效能电路设计中,进行合理的功率管理是关键。
通过设计合理的电流和电压反馈回路,控制开关电源的输出功率,能够使电路在不同负载情况下保持高效能的工作状态,并提高电路的稳定性和可靠性。
5. 加强电路的散热和保护由于开关电源在工作时会产生较多的热量,因此需要加强电路的散热和保护措施。
选择合适的散热器和散热风扇,保证电路温度正常工作范围内。
同时,设计合理的过流、过压和过温保护电路,保护开关电源和相关元器件的安全和可靠。
三、实例分析:用开关电源设计LED照明电路以设计LED照明电路为例,来说明如何使用开关电源进行高效能电路设计。
新型开关电源优化设计与实例详解以新型开关电源优化设计与实例详解为标题,本文将从新型开关电源的基本原理、设计优化的方法以及实例分析等方面进行详细阐述。
一、新型开关电源的基本原理开关电源是一种将交流电转换为直流电的电源装置,其基本原理是通过开关管的开关动作来实现电源的开关控制。
传统的开关电源在工作过程中存在一些问题,如功率损耗大、效率低、噪声大等。
为了克服这些问题,新型开关电源采用了一些优化设计方法。
二、新型开关电源的设计优化方法1. 降低功率损耗:通过采用功率开关管的低导通电阻材料和优化电路设计,降低功率开关管的导通电阻,从而减少功率损耗。
2. 提高效率:采用高效的开关控制器和高效的变压器设计,减少能量的损耗,提高开关电源的转换效率。
3. 降低噪声:通过优化电路布局和选择低噪声元件,减少开关电源的噪声产生,提高工作环境的舒适性。
4. 提高稳定性:采用先进的控制算法和稳压电路设计,提高开关电源的稳定性,减少输出波动。
5. 减小体积:通过优化元件布局和采用高集成度的芯片设计,减小开关电源的体积,提高电源的集成度和便携性。
三、新型开关电源的实例分析以一款新型开关电源为例进行分析,该开关电源采用了先进的控制算法和高效的变压器设计,具有以下特点:1. 高效率:通过优化的开关控制器和变压器设计,该开关电源的转换效率达到了90%以上,相比传统开关电源提高了20%以上。
2. 低噪声:采用低噪声元件和优化的电路布局,该开关电源的噪声水平明显低于传统开关电源,提高了工作环境的舒适性。
3. 稳定性强:通过先进的控制算法和稳压电路设计,该开关电源的输出稳定性非常好,输出波动小于1%。
4. 小巧便携:采用高集成度的芯片设计和优化的元件布局,该开关电源的体积明显减小,非常适合便携式设备的使用。
以上是对新型开关电源优化设计与实例的详细阐述。
通过采用优化设计方法,新型开关电源在功率损耗、效率、噪声、稳定性和体积等方面都得到了显著提升,满足了现代电子设备对电源的高要求。
1、在开关电源次级输出端的肖特基上并一个小功率快速二极管来代替RC吸收,效率一般可以提高1~2个点。
2、在体积和面积的允许下,尽量选用PQ RM型的变压器,在安规允许的情况下,变压器不加挡墙效率可以得到提升。
3、输入和输出的电解容量值。
AC输入整流电解容量低时效率会低0.2~1个点,何为低?用示波器看AC输入整流后纹波,小于10W功率,纹波10~30V为佳,大于10W纹波在5~20V为佳。
4、主电流回路PCB尽量短。
5、优化变压器参数设计,减少振铃带来的涡流损耗。
6、合理选用开关器件。
7、输入EMI部分优化设计
8、选择高效率的拓补结构
9、选择好的电解电容
10、启动部分功耗设计
11、芯片辅助供电优化。
双管正激开关电源的设计理念
双管正激开关电源是一种高效节能的电源设计,其设计理念包括以下几个方面:
1. 高效能:双管正激开关电源采用了双管拓扑结构,通过两个开关管之间的协同工作,有效地减小了功率开关管的损耗,从而提高了整体的转换效率。
这种设计能够使电源在保持稳定工作的同时,大幅度降低功率损耗,提高了能源利用率。
2. 稳定性:双管正激开关电源通过合理的电路设计和控制算法,能够保持输出电压的稳定性和精准性,有效地避免了电压波动和脉动等问题,保证了供电的稳定性和可靠性。
这种设计理念在工业控制、通信设备等对电源稳定性要求高的领域具有很大的应用潜力。
3. 节能环保:双管正激开关电源在设计中注重了节能环保的理念,通过高效的转换结构和控制算法,可以降低功耗,减少能源浪费。
同时,该设计还采用了环保材料和生产工艺,尽可能减少对环境的污染,符合可持续发展的要求。
4. 可靠性:双管正激开关电源在设计中考虑了系统的可靠性和稳定性,采用了多重保护机制和自动故障诊断功能,能够及时发现并处理电路中的故障,确保电源运行的安全可靠。
这种设计理念在需要长时间连续工作和高稳定性要求的应用场景中具有很大的优势。
总的来说,是以高效能、稳定性、节能环保和可靠性为核心,通过合理的电路结构和控制算法,充分发挥开关电源的优势,为各种应用领域提供稳定可靠的电力支持。
这种设计思路不仅满足了现代电子产品对电源性能的要求,还有助于提高整体能源利用效率,促进清洁能源的发展和利用。
如何设计高效率开关电源开关电源中广泛用于我们的生活中,高效率的开关电源越来越受市场的青睐。
如何提高电源效率,成了电源设计时的重大课题。
本文将为你解读NTC 热敏电阻的使用方法,以及通过减小NTC 自身损耗提升电源效率的方法。
下图是一个较为完整的开关电源框架图:包括EMI 电路,输入,输出整流电路,PFC 电路,PWM 驱动电路,保护电路,变压器转换等。
想要提高开关电源的效率,首先需要了解开关电源在工作中存在哪些地方的损耗。
开关电源的损耗主要有输入整流器损耗,开关管损耗和缓冲电路损耗,控制,检测驱动和保护电路损耗,变压器和电感损耗,滤波电容器的损耗,多级电源变换的损耗,不合理控制方式的损耗,线路损耗等。
如何使用用继电器减小热敏电阻(NTC)损耗:在AC-DC 的开关电源设计中,工程师常常会在到AC 输入端加个热敏电阻(NTC )来降低电源启动时浪涌电流冲击给电源带来的损害。
事实上热敏电阻在电源正常工作后电流持续流过会给电源带来一定的损耗。
比如使用一个25℃时为10Ω的NTC 热敏电阻,假设滤波电容的等效串联电阻为1Ω,那么浪涌电流的大小将相应的降到十分之一左右,可见NTC 的阻值越大限制浪涌电流的效果越好。
但是NTC 得阻值越大相对应的给电源带来的损耗也就越高。
如下图所示电路:LN上图所示的是一个输出100W 的AC-DC 电源前端电路的一部分,假设Z1使用一个25℃时为10Ω的NTC,在刚接通电源时,NTC 电阻将会有2W 左右的功率损耗:I 平均=P 总/V 有效值=100w/200V=0.45AP损耗=I平2*R=0.45A*0.45A*10=2W随后随着电流流过NTC热敏电阻,温度逐步升高,使用负温度系数的电阻在温度达到85℃的时候,电阻将会降到2Ω左右,在热敏电阻上长期损耗将会在0.4W左右。
假设100W 开关电源效率为80%,那么热敏电阻上损耗的占比将会是[0.4W/(100W/0.8)]*100%=0.32%。
11个提高开关电源效率的小技巧
1、在开关电源次级输出端的肖特基上并一个小功率快速二极管来代替RC吸收,效率一般可以提高1~2个点。
2、在体积和面积的允许下,尽量选用PQ RM型的变压器,在安规允许的情况下,变压器不加挡墙效率可以得到提升。
3、输入和输出的电解容量值。
AC输入整流电解容量低时效率会低0.2~1个点,何为低?用示波器看AC输入整流后纹波,小于10W功率,纹波10~30V为佳,大于10W纹波在5~20V为佳。
4、主电流回路PCB尽量短。
5、优化变压器参数设计,减少振铃带来的涡流损耗。
6、合理选用开关器件。
7、输入EMI部分优化设计
8、选择高效率的拓补结构
9、选择好的电解电容
10、启动部分功耗设计
11、芯片辅助供电优化。
基于单管正激式的高效率开关电源的设计高效率开关电源是一种电子电源,通过使用开关器件(如晶体管或MOSFET)以高效地转换输入电源的电压至所需的电压输出。
相比传统的线性电源,开关电源具有更高的效率和更小的体积。
本文将基于单管正激式的高效率开关电源进行设计。
首先,我们需要选择适合的开关器件。
常用的开关管有MOSFET和BJT。
在本设计中,我们选择使用MOSFET。
MOSFET具有较低的导通电阻和较高的开关速度,能够提供更高的效率。
接下来,我们需要设计正激式电源的基本电路。
正激式电源通常由脉宽调制(PWM)控制器、功率开关、功率变压器和输出滤波器等组成。
PWM控制器用于控制功率开关的开关信号,调整输出电压和电流。
常见的PWM控制器有TL494、SG3525等。
选择合适的PWM控制器并根据设计要求进行参数设置。
功率开关是用来控制输入电源与输出负载之间的连接和断开。
在本设计中,我们采用MOSFET作为功率开关,使用PWM控制器的输出信号来控制MOSFET的导通和截止。
功率变压器用于变换输入电压至所需的输出电压。
根据设计参数和要求,选择合适的功率变压器,并计算出合适的变比。
输出滤波器用于滤除开关频率的高频噪声,并平滑输出电压。
常见的输出滤波器包括电容滤波器和电感滤波器。
根据设计要求选择合适的滤波器并进行参数计算。
在设计过程中,需要对电源的输入电压范围、输出电压和电流进行仔细的选择和计算。
同时,需要考虑电源的功率损耗和效率。
通过合理的设计和选择,可以实现高效率的开关电源。
最后,为了确保设计的可靠性和安全性,需要进行电路的模拟和实际验证。
通过使用仿真软件进行模拟和调试,可以预测和解决潜在的问题。
同时,进行实物电路的组装和测试,验证设计的性能和参数是否满足要求。
综上所述,基于单管正激式的高效率开关电源的设计需要选择适合的开关器件、设计基本电路和参数,并进行模拟和实际验证。
通过合理的设计和选择,可以实现高效率、稳定和可靠的开关电源。
工程科技与产业发展科技经济导刊 2016.22期高效率低功耗开关电源设计新思路陈建忠 杨寄桃(创维集团研发总部海外产品研究院 第二电源研究所 广东 深圳 518108)1 引言高效率低功耗一直是开关电源的难点,也是行业的热门话题,同时也是我们不断追求与优化的课题。
我们现有的75W中小功率以下采用固定频率的PWM反激的工作模式,250W大功率以上的采用PFC+双LLC+待机辅助电源的架构来满足现有电视机的电源需求。
现针对这两种功率的电源研究如何实现其更高效率,更低待机功耗,性能更佳且低成本。
2中小功率设计新思路2.1传统工作模式传统75W电源设计思路为PWM控制方式,开关电源芯片采用固定的工作频率,根据负载情况调整占空比来调节输出电压,且导通不在零电压下导通,使中低负载状况下工作因开关损耗较大,使效率较低。
在我们产品大多数应用场合,负载根据系统运行模式不断变化的,高负载只是暂时的状态,而低负载的情况却很多。
将芯片采用足够高的开关频率,以保证最大负载时输出电压的额定值稳定,而当负载减少时,其相对功耗大为增加,效率明显降低。
2.2新工作模式为提高电源效率,降低待机功耗,这里采用NXP TEA1836的反激方案,其应用了准谐振谷底导通的工作原理,具有PFM控制方式,X-charge 功能,待机Burst Mode 功能和高低压补偿等优势,其主要工作原理如下:(1)PFM控制方式的准谐振谷底导通PFM即脉频调制方式,它可根据负载变化自动调节开关工作频率,可有效提高芯片在低负载工作时的效率。
如下图1所示:图1 PFM工作频谱图 图2 PFM工作频谱图在重载下如图1,B-C区间变换器频率工作在恒定模式,其频率固定在132.5kHZ,IC检测到谷底后使MOS开关管在谷底导通,如图2的B、C所示,即D-S 间电压降到最低时导通,使得开关管的开关损耗最小;若负载再加重,如图B-A区间,进入降频模式。
在中轻载下如图1,C-D区间变换器进入不连续工作状态的FR降频模式,根据负载情况自动调整频率,负载减小,频率就减小,最低可降到25kHZ,如图2的C、D波形所示,开关管开通是根据负载情况在第n个谷底导通,使PD-S最小,最大程度上减少开关的开通损耗。
高效率开关电源设计实例--10W同步整流B u c k变换器以下设计实例中,包含了各种技巧来提高开关电源的总体效率;有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍;采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用;在将这些电源引入生产前,请注意这个问题;10W同步整流Buck变换器应用此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器;在设计同步整流开关电源时,必须仔细选择控制IC;为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好;很多运行性能的微妙之处不能确定,除非认真读过数据手册;例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃;这是因为买来的芯片功能或工作模式往往无法改变;更不用说,当发现现成方案不能满足需求时,是令人沮丧的见图20的电路图;设计指标输入电压范围: DC+10~+14V输出电压: DC+额定输出电流:过电流限制:输出纹波电压: +30mV峰峰值输出调整:±1%最大工作温度: +40℃“黑箱”预估值输出功率: +2A=最大输入功率: Pout/估计效率=/=功率开关损耗 0.5=续流二极管损耗: =输入平均电流低输入电压时/10V=高输入电压时:/14V=0.8A估计峰值电流: 1.4Ioutrated=1.4×2.0A=2.8A设计工作频率为300kHz;电感设计参见最恶劣的工作情况是在高输入电压时;式中 Vinmax ——可能的最大输入电压;Vout——输出电压;Ioutmin——最小负载时的电流;f sw ——工作频率;电感是个环形表面封装元件,市场上有多种标准表面封装的电感,这里选择的是Coileraft公司的D03340P-33333μH;功率开关和同步整流器MOSFET的选择功率开关:功率开关要用一个变压器耦合的N沟道功率MOSFET;这里打算使用一个S0-8封装的双N沟道MOSFET,以节省PCB空间;最大输入电压是DCl4V;因此,可以选用V DSS不低于DC+30V、峰值电流是2.8A的MOSFET;选择过程的第一步是确定所用MOSFET的最大R DSon,通过热模型可以确定这个值,最大的R DSon可由下式得到:同时希望器件的耗散功率小于1W,所以估计的R DSon应小于所以选FDS6912A双N沟道MOSFET,它是S0-8封装,10V栅极电压时的导通电阻为28mΩ;同步二极管:要用一个大约是同步MOSFET连续额定容量的30%的肖特基二极管与MOSFET内部二极管并联,30V时约为0.66A;这里使用MBRSl30,该二极管在流过0.66A时有0.35V的正向压降;可替换的元件:在写本书时,仙童半导体公司出品了一个集成的肖特基二极管和MOSFET,肖特基二极管直接并在MOSFET的硅片上syncFET;SyncFET有一个40mΩN沟道MOSFET,与一个28mΩSyncFET一起封装,型号为FDS6982S;输出电容参见输出电容值由下列公式确定:输入和输出滤波电容主要考虑的是流入电容的纹波电流;在这个实例中,纹波电流和电感交流电流是相同的,电感电流最大值限定在2.8A,纹波电流峰峰值为1.8A,有效值大约为O.6A约为峰峰值的1/3;采用表面安装钽电容,因为它的ESR只有电解电容的10%~20%;在环境温度+85;C=时,电容将降额30%使用;最佳的电容是来自AVX公司的,它的ESR非常低,因此可以适应很高的纹波电流,但这是很特殊的电容;在输出端可将下列两种电容并在一起;AVX:TPSEl07M01R0150 1OOμF20%,10V,150mΩ,O.894A有效值TPSE107M01R0125 100/μF20%,10V,125mΩ,0.980A有效值Nichicon:F750A107MD 100μF20%,10V,120mΩ,0.92A有效值输入滤波电容见这个电容要流过与功率开关相同的电流,电流波形是梯形的,从最初的lA很快上升到;它的工作条件比输出滤波电容恶劣得多;可把梯形电流看成两个波形的叠加来估计有效值:峰值1A的矩形波和峰值1.8A的三角波,产生大约1.1A的有效值;电容值由下式计算:电压越高,电容值越低;电容由两个1OOμF电容并联而成,它们是:AVX每个系统需两个:TPSl07M020R0085 1OOμF20%,20V,85mΩ,1.534A有效值TPSl07M020R0200 100μF20%,10V,200mΩ,1.0A有效值选择控制IC芯片U1期望的buck控制IC芯片的特性是:1.直接从输入电压即可启动的能力;2.逐周电流限制;3.图腾柱MOSFET驱动器;4.功率开关和同步整流器MOSFET之间延时的控制;市场上绝大部分同步buck控制器都是用于+5~+1.8V微处理器调整电源的如,+12V的V dd和+5V 的V in;也有很多IC芯片可以提供足够的功能,使用者可以根据应用来选择这些功能;在选择时,初选了两家加利福尼亚公司的产品,发现只有一种IC适合这种要求,就是Unitrode/TI的UC3580-3;电压误差放大器的内部基准是2.51±2.5%V;设定工作频率R7、R8和C8R8给定时电容C8充电,而R7给定时电容放电;首先,要确定变换器最大占空比;因为输出电压大约是最低输入电压的50%,所以选择最大占空比为60%;从数据手册得充电时间最大值是0.6/300kHz或2μs;参数表上定时电容值lOOpF略偏小不会耗散太多能量;这里采用这个值,因此R8的值是伏-秒限制器R4和C5这个IC芯片有前馈最大脉宽限制功能;当输入电压增加时,Buck变换器工作脉宽会减少;RC振荡器直接与输入电压相接,并且它的定时值与输入电压成反比;它的定时时间设成比工作脉宽长30%;如果伏.秒振荡器定时时间到了,而调整单元仍旧导通,则调整单元会被关断;C5也取lOOpF,因为它的定时和振荡器一样,所以R4大约是47kΩ;设定调整单元和同步整流器MOSFET之间的死区时间根据MOSFET功率开关节可以进行开通和关断延时的计算,但仍需要在最初调试时调整R6死区设定电阻的值;开始设成lOOns比较好,典型的MOSFET开通延时是60ns,100ns可以保证不会有短路电流;IC所产生的死区延时是不对称的;从数据手册的图表上看,100kΩ电阻产生开通延时大约为1lOns,关断延时为180ns;在最初调试阶段就要设法减少这些延时;延时使得二极管导通的时间太长,损耗就高,但还是工作在安全区;栅极驱动变压器的设计T1栅极驱动变压器是一个简单的1:1正激式变压器;对变压器没有特别的要求,因为它是小功率、交流耦合双向磁通的300kHz变压器;用10mm的铁氧体磁环就足够了,如TDK公司的K5TIO×2.5×5B sat是3300G,或Philips公司的266T125-3D3B sat是3800G;从磁性元件的设计可知,产生1000G0.1T或0.3B sat的匝数是栅极驱动变压器用两根相同导线约30AWG并绕;为了方便,变压器绕在一个四引脚“鸥翅型”gull wing表面安装骨架上;电流检测电阻R15和电压检测电阻分压器R11和R13芯片只提供了一个最小O.4V阈值的关断引脚;这里打算采用一个备用的过电流保护模式;为了尽可能减小电流检测电阻的尺寸,将采用电流反馈检测电路的一种变型;此处,0.35V是电压检测电阻分压器R14上的压降;那么R15为R15 =3A=Ω取20mΩ戴尔Dale电阻是WSL-2010-02-05;设定流过电压检测电阻分压器的电流约为1.0mA;这样R13和R14的总电阻是R sum ==ΩR14 为R14 =0;35V/ =350Ω取360Ω则R13 为R13 =Ω-360Ω=Ω取Ω,1%精度则R11 为R11 =/1mA =Ω取Ω,1%精度电压反馈环补偿见这是一个电压型正激式变换器;为了得到最好的瞬态响应,将采用双极点、双零点补偿法;确定控制到输出特性:输出滤波器极点由滤波电感和电容决定,且以-40dB/dec穿越OdB线;它的自然转折频率是输出滤波电容引起的零点ESR是两个150mΩ并联是功率电路直流绝对增益是计算误差放大器补偿极点和零点选择15kHz穿越频率能满足大部分的应用场合,这使得瞬态响应时间约为200μs;f xo=15kHz首先,假定最终闭合回路补偿网络以-20dB/dec下降,为获得15kHz穿越频率,放大器必须提高输入信号增益,即提高博德图中的增益曲线;G xo=20lgf xo/f fp-G DC=20lg15kHz/1959HzG xo=G2=+ dBA xo=A2= dB绝对增益这是中频段G2所需的增益,以获得期望的穿越频率;补偿零点处的增益是:=A1 =绝对增益为补偿两个滤波器极点,在滤波器极点频率的一半处放置两个零点:第一个补偿极点置于电容的ESR频率处4020Hz:第二个补偿极点用于抑制高频增益,以维持高频稳定性:现在可以开始计算误差放大器内部的元件值,见图19;最终所设计的电路见图20;。
如何设计高效率的开关电源在现代电子设备中,开关电源是一种广泛使用的电力转换器,它能将高压交流电转换为低压直流电,为设备提供稳定可靠的电源。
设计高效率的开关电源对于提高设备的性能和节约能源都具有重要意义。
下面是关于如何设计高效率的开关电源的一些建议。
首先,选择合适的拓扑结构是设计高效率开关电源的关键。
常见的拓扑结构包括降压型、升压型、变换型和反激型等。
不同的应用场景需要不同的拓扑结构,选择合适的拓扑结构可以最大程度地提高电源的转换效率。
其次,选择合适的功率开关元件。
功率开关元件是开关电源中的核心部件,如晶体管、MOSFET等。
选择具有低导通和开启损耗的功率开关元件可以降低功率损耗,并提高电源的转换效率。
此外,采用封装结构良好、散热性能优良的功率开关元件也是提高电源效率的关键。
第三,合理选择电源电感和电容。
电源电感用于储存能量,电容则用于平滑输出电压。
选择合适的电源电感和电容能够提高电源的稳定性和效率。
合理的参数选择可以减少能量的损耗,从而提高转换效率。
第四,优化反馈回路。
反馈回路在开关电源中起到监测和控制电压的作用。
通过优化反馈回路,可以提高电源的灵敏度和稳定性,实现更精确的电压调节。
同时,合理选择反馈元件和增益控制元件,可以减少能量损耗,并提高电源的转换效率。
第五,合理设计散热系统。
高效率的开关电源在工作过程中会产生较多的热量,合理设计散热系统对于提高电源效率至关重要。
选择散热性能好的材料、设计散热片和散热孔等,能够有效降低温度,提高电源的稳定性和寿命。
第六,合理控制电源的负载。
电源的负载对于其效率有较大的影响。
合理控制负载可以避免功率浪费,实现高效率的功率转换。
在实际应用中,可以通过采用动态负载调节和功率管理技术,提高电源的效率和响应速度。
第七,采用节能模式和睡眠模式。
为了进一步提高电源的效率,可以设计节能模式和睡眠模式。
在设备不工作或处于空闲状态时,将电源切换到低功耗模式,可以大大减少能量消耗,提高电源的效率。
开关电源的设计理念和设计思路1. 开关电源的基本概念开关电源,这个名字听上去是不是有点高大上?其实呢,它就是个让电流“开关”来“开关”去的小家伙,目的就是把我们的交流电转化成直流电。
简单说,就是把家里的220伏的电压,变成我们那些小电子设备需要的5伏、12伏等等。
为了让你更清楚这玩意儿咋回事,咱们先聊聊它的工作原理。
1.1 开关电源的工作原理开关电源的工作原理,就像是做饭时的食材准备。
首先,它得把交流电转成直流电,这一步就像把菜洗净切好。
然后,它会通过开关元件(通常是晶体管)来快速开关电流,就像厨师炒菜时翻炒的那种劲儿。
开关的速度非常快,可以达到几千赫兹,甚至上万赫兹。
这么高的频率,不但提高了效率,还让体积缩小了,真是一举两得,太聪明了!接着呢,经过电感、电容的处理,就能把电压稳定下来,送到你的电子设备里。
1.2 开关电源的优缺点当然,开关电源也不是万能的,有些优点和缺点总得提一提。
优点嘛,首先就是高效,省电又省空间,谁不喜欢呢?其次,输出电压调节范围广,可以适应不同的设备需求。
还有,可靠性高,适合各种复杂环境。
可是,缺点也有,比如电磁干扰比较大,需要做好屏蔽和滤波,特别是对一些敏感的设备来说,可得小心了。
2. 开关电源的设计理念接下来,咱们聊聊设计理念。
设计开关电源可不是随便画画就行,它涉及到很多技术细节和经验,真是一门深奥的学问呢。
设计理念就像盖房子,得有个好的蓝图,才能建得又稳又漂亮。
2.1 效率优先首先要强调的就是效率优先。
电源的工作效率越高,发热量就越小,能耗就越低,这可关系到我们的钱包和环境。
所以,设计时得选择合适的开关频率、元器件和电路布局,这样才能让电源在工作时如鱼得水,轻松高效。
2.2 安全性再来就是安全性。
开关电源在设计时,得考虑各种可能出现的故障,比如短路、过载等。
就像家里装修,电线埋好可不能马虎,要考虑到防火和安全问题,免得一着火,后悔都来不及。
所以,合理选择保护电路和元件的工作参数,绝对是重中之重。