当前位置:文档之家› 镁冶炼渣的处理研究进展和展望 (3)

镁冶炼渣的处理研究进展和展望 (3)

镁冶炼渣的处理研究进展和展望 (3)
镁冶炼渣的处理研究进展和展望 (3)

湖南化工职业技术学院毕业论文

题目:镁冶炼渣的处理研究进展和展望

院系名称:应用化学系

专业班级:工业分析与检验

学生姓名: 何坤

学号:201101011133

指导老师:曹慧君

2013年 11 月 11 日

摘要

近年来,我国镁冶炼行业快速发展,随着原镁和镁合金年产量的逐年增高,排放出来的镁渣也越来越多,如何有效合理地处理、开发利用镁渣,达到节约能源、节约资源、变废为宝和变害为利的目的,是当前迫切需要解决的问题。本论文对近年来我国有关镁渣的研究应用情况进行全面的总结。如:利用镁渣制作新型墙体材料、利用金属镁渣制作矿化剂、利用镁渣生产建筑水泥、利用镁渣做脱硫剂、利用金属镁渣和粉煤灰为主要原料生产加气混凝土、镁渣应用于混凝土膨胀剂、利用镁渣研制环保陶瓷滤料、镁渣作为路用才料、利用镁渣改善沥青粘结性等。

关键词:镁渣;回收利用;资源节约;能源

Title:Research progress and Prospect of treatment of magnesium smelting slag

Abstract

In recent years, the rapid development of China's magnesium smelting industry, along with the increase of the original magnesium and magnesium alloy production, emission of magnesium slag is also growing, processing, how to effectively and reasonably development and utilization of magnesium slag, energy and resource saving, waste to treasure and change for good purposes, is the urgent need to resolve the problem. In recent years, research and application of China's magnesium slag are summarized comprehensively. Such as: Production of new wall material using magnesium slag, Making use of metal magnesium slag as mineralizer, The production of magnesium slag cement, As the sorbent utilization of magnesium slag,As the main raw material for the production of aerated concrete, magnesium slag used in concrete expansive agent, using magnesium slag to produce environmental ceramic filter using metal magnesium slag and fly ash,Magnesium slag as road material, asphalt adhesion utilization of magnesium slag.

Key words Magnesium slag; recycling; energy resources;

目录

1 引言 (5)

2镁渣的生成及特性 (6)

2.1镁渣的生成 (6)

2.2镁渣的特性 (6)

3 镁渣再利用的研究应用现状及存在问题 (9)

3.1利用镁渣制作新型墙体材料 (9)

3.2利用金属镁渣制作矿化剂 (9)

3.3利用镁渣生产建筑水泥 (9)

3.4利用镁渣做脱硫剂 (10)

3.5利用金属镁渣和粉煤灰为主要原料生产加气混凝土 (10)

3.6镁渣应用于混凝土膨胀剂 (11)

3.7利用镁渣研制环保陶瓷滤料 (11)

3.8镁渣作为路用材料 (12)

3.9利用镁渣改善沥青粘结性 (12)

4 镁渣在国内的研究状况 (13)

4.1国内对镁渣的研究 (13)

4.2镁渣做水泥混合材的研究 (13)

4.3镁渣配料做硅酸盐水泥熟料的研究 (13)

4.4镁渣作为墙体材料的研究 (13)

4.5国外镁渣的研究情况 (14)

结论 (15)

致谢 (16)

参考文献 (17)

1 引言

随着金属材料消耗急剧上升,地球表壳的资源日趋贫化,很多传统金属矿产趋于枯竭,加速开发镁金属材料是社会可持续发展的重要措施之一。由于金属镁密度小,能与铝铜锌等金属构成高强度合金;镁合金密度轻、导热导电性好、具有良好的阻尼减震和电磁屏蔽功能,而且易于加工成型和废料回收。镁和镁合金正成为现代汽车、电子、通信等行业的首选材料,被誉为“21世纪的绿色工程材料”[1]。随着世界金属镁消费需求的逐年增长,一些国家和地区甚至将金属镁作为战略物资加以储备的形势下,由于环境和成本问题导致国外大量原镁生产企业关闭,这对全球镁生产格局产生了很大的变化。据中国有色金属协会镁业分会统计,截止2007年底,世界原镁产量77.43万t,中国的产量为65.93万t,2009年受国际金融危机冲击的影响,是中国镁行业经济运行状况最为困难的一年,其原镁产量为50.18万t。然而,金属镁产业在我国高速发展的同时,也带来了一系列的环境问题。在我国生产金属镁时排出的工业废渣,很多镁厂都是作为废物丢掉,尤其是一些规模较小的生产企业。随着镁渣的大量排放堆积,不但占用了大量的土地资源,而且镁渣随着雨水的冲淋汇入江河湖泊对农作物和周围环境造成了极大的影响,严重危及到人类的身体健康及农作物的生长。每生产1t金属镁大约排出8~10t左右的镁渣,以2009年我国原镁产量50.18万t为例,共生产工业镁渣500万的吨左右,相当于两个日产8000t水泥厂一年水泥的产量。我国镁产业普遍存在生产规模小、高污染、高能耗、技术装备水平低及技术创新能力低等特点,如何充分利用镁渣成为制约我国镁产业发展的的一大主题。由于能源、资源、环境保护三方面的迫切需要,工业废渣再利用的研究成为可持续发展的战略目标之一[2],也是业内专家学者的研究热点之一。目前对镁渣再利用的研究主要集中在利用镁渣配料烧制水泥熟料和作为水泥活性混合材使用。但镁渣是一种具有潜在活性的工业废渣,掺入生料中煅烧水泥熟料并不能高效地利用,二次煅烧实属能源浪费[3];镁渣当作混合材使用并不能象矿渣那样规模化、产业化利用,而且在量和质上都无法和矿渣相比较。本文对如何合理利用镁渣的优势,使其变废为宝进行了较系统的研究,提出了多途径、零排放和可操作性强的利用方案,为镁渣的再利用提供了技术保障。

2 镁渣的生成及特性

2.1 镁渣的生成

镁渣是金属镁厂在炼镁过程中排放的固体废弃物。生产金属镁的工艺大致如下[4]:将白云石(MgCO3·CaCO3)在回转窑中锻烧(煅烧温度为1150~1250℃),然后经研磨成粉后与硅铁粉(含硅75%)和萤石粉(含氟化钙95%)混合、制球(制球压力9.8~29.4MPa,送入耐热钢还原罐内,在还原炉中以1190~1210℃的温度及1.33~10Pa真空条件下还原制取粗镁,再经过熔剂精炼、铸锭、表面处理,即得到金属镁锭,剩余的残渣即为镁渣。主要反应方程式为:

MgCO3·CaCO3→MgO+CaO+CO2↑

MgO+CaO+Si(Fe)→CaO·SiO2+Mg

从上面反应方程式可以看出,镁渣的主要成分是CaO,SiO2,此外还有未还原的MgO等。由于各镁厂生产条件及工艺差别,镁渣的成分并不是固定的,而是有一个波动范围。镁渣成分波动的范围:CaO为40%~50%;SiO2为20%~30%;A12O3为2%~5%:MgO为6%~10%;Fe2O3约9%[2]。而硅酸盐水泥熟料组成的范围:CaO为62%~68%;SiO2为20%~24%;A12O3为4%~7%;MgO<5%;Fe2O3为2.5%~6.5%。

2.2 镁渣的特性

2.2.1 镁渣的胶凝特性

渣的成分与硅酸盐水泥熟料组成的范围:CaO为62%~68%;SiO220%~24%;A12O3为4%~7%;MgO<5%;Fe2O3为2.5%~6.5%较相似。肖力光[2]等认为镁渣完全可以作为胶凝材料使用。水泥熟料矿物的水化活性,决定于其结构的不稳定性,这种结构的不稳定性,或者是由于它是介稳的高温型结构;或者是由于在矿物中形成了有限的固溶体;或者是由于微量元素的掺杂使晶格排列的规律性受到某种程度的影响;或者上述几种原因兼而有之。

由于上述原因,使结晶结构的有序度降低,因而使其稳定性降低,水化反应

能力增大。水泥熟料矿物具有水化活性的的另一个结构特征,是在晶体结构中存在着活性阳离子。结构中存在活性阳离子的原因或是由于不规则的配位和配位数的降低,或者是由于结构的变形,或者是由于它们在结构中电场分布的不均匀性,或者是上述原因兼而有之。因此阳离子处于活性状态,即价键不饱和状态[5]。镁渣是生产金属镁时排出的工业废渣,废渣产生后经过了急速冷却的过程,所以,镁渣内矿物是属于介稳的高温型结构,结构中存在活性的阳离子,所以镁渣本身具有很高的水化活性,可最后生成水化硅酸钙凝胶。镁渣的水化反应如下:CaO+H2O→Ca(OH)2

Ca(OH)2+CO2→CaCO3+H2O

xCa(OH)2+SiO2+mH2O→xCaO·SiO2·nH2O

碱胶凝材料在其水化过程及形成胶凝性的硬化体,是原料中铝硅酸盐玻璃体中高聚合度的A1-O-Si,Si-O-Si,A1-O-A1等共价键受OH-离子作用而断裂,产生了聚合度较小的离子团或是单离子团,在一定的pH值条件下,它们又将聚合成与原料的铝硅酸盐结构不同的新结构产物,碱胶凝材料具有胶凝性和固化性,并有特殊性能。水泥石结构大体是由未水化的水泥颗粒、水泥水化产物和孔隙三部分组成。水泥石结构中各组分是以分子键结合,这使得水泥石的各项性能受到了相应的影响,如抗冻性、抗裂性、抗渗性等。若能改变水泥石中各成分之间的结合形式,则能大大改善水泥石各项性能,如在水泥石中加入有机材料,制成有机无机复合材料,国内外已有诸多学者在这方面进行了相应的研究.再者就是寻求一种新的无机材料,在内部结构上能够与水泥有所不同,弥补水泥石在组成结构上的不足。碱胶凝材料就是一种能够很好弥补水泥石在结构组成上不足的材料。

杨南如[6]等人的研究可知,水泥石三组成中对性能起作用的主要是水化物,而水化物恰恰是凝胶体和晶体所组成,只是后者是多种晶体,结构多样化。水泥石中C-S-H凝胶虽是链状结构有一定的韧性,但它的链长并不确定,甚至有的只有几个[SiO4]4-四面体的结合,多数可能是聚合度较高的[SiO4]4-,然而总不及高分子链长。一般认为,水泥石组分是以分子键为主结合在一起,也就是水泥石中C-S-H凝胶链的两端和边缘的离子及晶体不是以化学键相结合,或者至少多数不

是以化学键相结合,如果设想碱凝胶材料浆体结构具有类似于有机一无机杂化物的结构,就可以获得较好的性能.已有的报导都说明,在碱矿渣水泥、碱矿渣-粉煤灰(赤泥)水泥中都含有C-S-H凝胶,而且Ca/Si比较小,就是说它的链较长([SiO4]4-四面体聚合度较大),硬化的浆体中也有一定的晶体,是铝硅酸盐类。另一方面,如果碱激发胶凝材料中不存在C-S-H 凝胶,而可以形成另外的凝胶,上述理想的结构也可以形成。

2.2.2镁渣的膨胀特性

崔自治[7]等的研究结果表明:粒状渣中MgO冷却慢,晶粒大,水化慢;CaO 含量高,处于颗粒表层的CaO首先熟化结晶,β-C2S也在表面发生水化反应,生成硅酸凝胶,这些生成物阻止水向颗粒内部渗透,可见颗粒粗是产生膨胀性危害和膨胀滞后性的一个重要原因。粉状渣,颗粒细,吸水性大,体积变化大,镁渣与水作用生成氨气,产生膨胀压力,引起体积膨胀。

3 镁渣再利用的研究应用现状及存在问题

3.1利用镁渣制作新型墙体材料

在国内,已有研究报道将镁渣直接与磨细的矿渣,按照一定比例混合[8],添加复合激发剂,配制胶结料。研究表明,这种利用镁渣生产墙体材料的工艺简单,成本低廉,节省能源,并且这种金属镁渣生产出的胶结材具有良好的胶凝性能,制成的墙体材料密度小、强度高、耐久性好,产品质量符合相关标准。大部分企业只是单一地应用镁渣材料制砖,其实还可以在镁渣中掺入一定量的轻骨料,制作轻质保温、隔热墙体材料或制成屋面材料。

山西省也进行了新型材料产业调整和振兴规划,引导企业发展符合国家产业政策的新型墙体材料,充分结合地区自然资源和固体废弃物特点。到2011年,山西省新型墙体材料比例达到50%以上。

3.2 利用金属镁渣制作矿化剂

矿化剂是能促进或控制结晶化合物的形成或反应而加入配料中的物质。在水泥行业中,能加速结晶化合物的形成,使水泥生料易烧的少量外加剂。加入的矿化剂可以通过与反应物作用而使晶格活化,从而增强反应能力,加速固相反应。

镁渣是近年来开发的新型矿化剂,经过1200℃左右的高温煅烧后的镁渣,具有一定的化学活性,能够降低晶体的成核势能,诱导晶体,加速矿物的转化及形成,减少了从生料到熟料的热耗[9]。因此,可以试烧不同镁渣配比下的生料,研究熟料抗拉、抗压强度较高的配方。有研究表明:生料中加入10%左右的镁渣,煅烧时可以起到良好的矿化效果。镁渣与萤石价格悬殊,利用镁渣代替部分萤石作矿化剂对降低生产成本,提高经济效益是十分显著的。

3.3 利用镁渣生产建筑水泥

镁渣可以替代部分矿渣生产混合水泥混合材[10],生产出的水泥质量较稳定,但是随着镁渣掺入量的增加,水泥早期强度有降低的趋势,凝结时间延长。因此当镁渣用作水泥生产的混合材时,应该满足国家标准的相关技术要求。

3.3.1生产砌筑水泥

砌筑水泥是由一种或一种以上的活性混合材料或具有水硬性的工业废料为主要原料,加入适量的硅酸盐水泥熟料和石膏,经磨细制成的水硬性胶凝材料。这种水泥强度较低,不能用于钢筋混凝土或结构混凝土,主要用于工业与民用建筑的砌筑和抹面砂浆、垫层混凝土等。研究表明:镁渣的活性高于矿渣,易磨性比矿渣和熟料要好,利用炼镁废渣生产砌筑水泥,可以明显地提高水泥的活性,增加产量,降低水泥的生产能耗。

3.3.2 生产复合硅酸盐水泥

复合硅酸盐水泥是由硅酸盐水泥熟料、两种或两种以上规定的混合材料、适量石膏磨细制成的水硬性胶凝材料,称为复合硅酸盐水泥。水泥中混合材料总掺加量按质量百分比应大于20%,不超过50%。

利用镁渣生产复合硅酸盐水泥的原理是在水泥生料中加入炼镁废渣,煅烧成硅酸盐水泥熟料后,再加入适量镁渣等掺料,磨细制得复合水泥(MgO质量分数约为4.0%)[11]。需要注意的是利用镁渣生产复合硅酸盐水泥,掺量范围应满足水泥中方镁石含量的限制要求。

3.4 利用镁渣做脱硫剂

由于循环流化床锅炉脱硫技术主要是利用氧化钙进行脱硫,而镁渣中氧化钙的质量分数在50%左右,所以对镁渣进行脱硫性能的研究是有意义的。有研究表明:脱硫剂按25.5%计,Ca/S摩尔比为3,则在相当条件下(粒径小于0.105 mm,900℃,φ(O2)为5%,φ(SO2)为0.2%,N2作为平衡气),预计脱硫效率可达76.5%[12]。分析结果得出脱硫效果主要与镁渣的粒径、孔隙率、脱硫温度等因素有关。粒径越小,孔隙率越高的镁渣,在适当的空气过量系数和温度下,可提高镁渣的脱硫效率。

3.5 利用金属镁渣和粉煤灰为主要原料生产加气混凝土

镁渣属钙质材料,粉煤灰属硅质材料,都属于固体工业废渣,性能互补,在水热合成和激发的条件下,它们的活性可以激发出来,用以生产硅酸盐混凝土,在水化过程中可以抵消部分体积不稳定引起的变形。因此加气混凝土生产工艺和

还原渣综合治理结合是镁生产厂家处理工业废渣、改善环境的理想方案之一。

加气混凝土生产所用原材料为粉煤灰、还原渣、硫酸钙、铝粉和气泡稳定剂等,经大量实验分析,CaO/SiO2

质量比、硫酸钙的掺量是主要方面,配合比范围为粉煤灰60%~71%;还原渣25%~35%;硫酸钙2%~5%;铝粉0.04%~0.06%;气泡稳定剂0.01%~0.2%[13]。

3.6 镁渣应用于混凝土膨胀剂

崔自治等[7]通过镁渣形成过程、组成、粉化、颗粒分析和安定性试验找出了镁渣体积膨胀性和膨胀滞后性的机理,镁渣颗粒粗以及CaO和MgO含量高是产生膨胀性危害和膨胀滞后性的主要原因;实际生产应用中可以通过磨细粒状渣、掺加其他活性掺合料、充分陈伏、添加引气剂、加快出罐冷却速度等方法来减轻镁渣膨胀带来的危害。南峰等[14]采用镁渣及其激发剂配制混凝土膨胀剂,并按照混凝土膨胀剂标准测试限制膨胀率及胶砂试件强度,结果表明,单独使用镁渣制备混凝土膨胀剂,水中养护7天限制膨胀率达不到JC476-2001标准0.025%的要求,添加激发剂后可以显著提高镁渣的早期膨胀性能,并且各龄期的限制膨胀率及强度均符合混凝土膨胀剂的标准要求。

3.7 利用镁渣研制环保陶瓷滤料

徐晓虹等[15]对利用镁渣研制新型环保陶瓷滤料进行了研究,将镁渣直接磨细与一定比例的磨细成孔剂及天然抗物烧结助剂混合,然后经过成球、干燥,并在隧道窑或梭式窑中于1050~1150℃烧成,得到环保陶瓷滤料。此方法的镁渣利用效率高,且所烧成的陶瓷滤料抗压强度达20MPa,气孔率为37%,耐酸性为99.4%,耐碱性为99.9%,是一种具有广泛应用价值的高品质滤料,把该镁渣陶瓷滤料用于某油田含油废水处理,其水处理结果达到《碎屑岩油藏注水质推荐指标及分析方法SY5329-94》规定的A1标准,见表1镁渣为原料做环保陶瓷滤料,能以废治废,既节省了镁渣的处理费用,又能对各种废水进行有效处理,是一种较佳的镁渣再生利用方案。

表 1 镁渣陶瓷滤料纸处理某油田含油废水的实验结果项目原水指标出水指标去除率/% Al标准

悬浮物含量/mg·L320.17 0.85 95.8 < 1

粒径中值/μm 3.68 0.97 73.6 < 1

含油量/mg·L 21.97 0.61 97.2 < 5

含铁量/mg·L 5.0 0.50 90.0 <0.5 PH值7.78 7.70 - 6.5~7.5

3.8 镁渣作为路用材料

张习贤等[16]对镁渣作为路用材料进行了室内试验,得出镁矿渣掺加5%石灰或2%水泥稳定土,完全可以用做高级或者次高级路面的基层,镁矿渣经过球磨机或其他工艺磨碎后,其路用效果会更好,细度应小于0.9mm为宜,在随后进一步铺筑试验路的检验中,证明镁矿渣稳定土有很好的路用技术性能。镁渣可作为良好的路用材料在于镁矿渣中钙镁的含量很高,且具有比较高的活性,在基层中与土反应,生成不溶性含水硅酸钙与含水铝酸钙,呈凝胶状态或纤维状结晶体,使混合料颗粒之间的联结和粘结力加强,随着龄期的增长,这些水化物日益增多,使镁矿渣混合料基层获得越来越大的抵抗荷载作用的能力。

3.9 利用镁渣改善沥青粘结性

杜强等[17]研究了镁渣对沥青常规指标的影响,结果表明,粉胶比对改性沥青性能的影响最显著,其次是镁渣取代率,最后是细度。崔永成等[18]运用直剪试验方法,将镁渣与水泥、粉煤灰分别复合,分析研究复合比对沥青粘结性的影响规律,探讨相互作用机理,通过试验研究发现,镁渣与粉煤灰复合可以提高沥青的温度稳定性,沥青的粘性略有降低,总体上抵抗剪切变形和剪切破坏的能力提高;镁渣与水泥复合沥青胶浆的粘聚力减小,适当的水泥可以改善沥青胶浆的高温性质,而水泥过多则不利。

4 镁渣在国内外的研究状况

4.1国内对镁渣的研究

目前,我国已有武汉理工大学、西南工学院、合肥水泥研究院、山西建筑科学研究院、武汉理工大学和吉林建筑工程学院等单位对镁渣进行了研究。

4.2 镁渣做水泥混合材的研究

对镁渣做水泥混合材进行了研究,并提出了相关见解n,研究指出,镁渣是一种活性水泥混合材料,其活性高于矿渣.镁渣的易磨性比矿渣和熟料好,以镁渣作水泥混合材,可以提高水泥的产量,降低水泥的生产电耗。以镁渣做水泥混合材,在其掺量≤30%(水泥中MgO含量≤6%),采用52.5等级熟料,能够生产安定性合格的42.5R型镁渣水泥。在混合材掺量一定的情况下,镁渣与矿渣混掺比单掺镁渣或矿渣好,此实验的混合材最佳掺量为10%镁渣、20%矿渣,采用此比例和52.5等级熟料,可以生产出安定性合格的42,R型复合水泥。

4.3镁渣配料做硅酸盐水泥熟料的研究

对镁渣配料煅烧硅酸盐水泥熟料进行了研究,其研究的结果表明,镁渣中的主要矿物组成为7一C2S,C2S,MgO,CF,C2F,FeO,AF2等。镁渣配料煅烧硅酸盐水泥熟料可降低熟料形成反应表观活化能,降低反应温度,加快熟料矿物的形成,提高熟料的强度.利用镁渣配料煅烧硅酸盐水泥熟料,为镁渣的资源化、综合利用开辟了一条行之有效的途径,具有重要的社会效益、环境效益和经济效益。对利用镁渣制备高性能硅酸盐水泥熟料,以及对镁渣替代石灰石配料烧制硅酸盐水泥熟料进行了研究[7],其研究结果表明,由于镁渣中含有C4S,CF等初级矿物,这些矿物在熟料烧成过程中降低了晶体的成核势能,起到诱导结晶的过程,因此,镁渣起到了改善生料易烧性的作用。在生料中掺加HBZ和HPZ后,促进了CO的吸收能,大幅度改善生料的易烧性.在同时掺有外加剂1%HBZ和1.5%HBZ 时,熟料3天和28天抗压强度比空白样分别提高38.3%和12.2%。用镁渣替代20%石灰石,烧成的硅酸盐水泥熟料3天28天强度分别可以达到40.8MPa和65.2 Mpa。

4.4 镁渣作为墙体材料的研究

对利用镁渣研制新型墙体材料进行了研究【14J】,将镁渣直接磨细与一定比例的磨细矿渣混合,在复合激发剂作用下,配制胶结料生产各种新型墙体材料。研究表明,用这种方法进行镁渣的再生利用,工艺简单,节省能源,制成的墙体材料密度小、强度高、耐久性好。

4.5国外镁渣的研究情况

国外对镁渣这种工业废料的研究很少,可以说直到现在相关这种废渣材料应用的研究寥寥无几.巴西联邦大学的CarlosA.S.Oliveira,AdrianaG.Gumieri,AbdiasM.Comes和WanderL.Vasconcelos等学者对这种工业废料做了初步的研究【1】.研究表明,镁渣材料化学成分大体由CaO和SiO2,MgO和Fe203组成,这些化学成分之间相互作用可以生成CaSiO4,CaMgSiO4,MgO和Ca(OH)2等结晶产物.镁渣掺入到砂浆中后与硅酸盐水泥相比,试样中所含的碱性氧化物成分(K2O 和Na20)极低,可以提高砂浆的耐久性。

结论

镁渣是生产金属镁时排放的工业废渣,产量大、污染环境,我们应开展镁渣的资源综合利用技术研究[19]。镁渣自身具有很高的水化活性,可生成水化硅酸钙凝胶。因此,我们不仅可以利用镁渣作为胶凝材料,也可用于制备矿化剂、墙体材料、脱硫剂等产品,代替部分矿渣生产水泥,研究生产农业肥料等。同时开展清洁镁合金生产技术及产业化开发;智能化控制和管理镁生产过程,对炼镁过程中的废焦炉煤气集中处理和使用,从而降低镁工业的环境负荷,使镁工业环境协调发展。

(1)镁渣是生产金属镁时排除的工业废渣,废渣产生后经过了急速冷却的过程,所以,镁渣内矿物是属于介稳的高温型结构,结构中存在活性的阳离子,而且,镁渣本身具有很高的水化活性,可最后生成水化硅酸钙凝胶,因此镁渣作为胶凝材料是可行的.

(2)镁渣作为碱胶凝材料是可行的,因为镁渣的Ca/Si要大于矿渣中Ca/Si,所以,镁渣中的[SiO4]4-一更易丢失,链断裂,形成类似于有机一无机杂化物的结构,但建议在镁渣中掺人一定的硅酸盐水泥或磨细硅酸盐水泥熟料和磨细矿渣,以提高镁渣胶凝材料的耐久性.

(3)由于镁渣中MgO含量与硅酸盐水泥相比是比较高的,所以,应用镁渣作为砂浆的胶结材料是非常理想的,镁渣不但可以提高砂浆的和易性,而且还可以提高砂浆的强度和耐久性,因为MgO具有一定的膨胀作用,这种膨胀作用可以弥补胶凝材料水化和硬化过程中产生的自收缩,减少开裂,从而提高其强度和耐久性.

(4)可以在镁渣中掺人一定量的轻骨料,制作轻质保温墙体材料或制成屋面材料,应用镁渣制作墙体材料具有巨大的市场前景.

致谢

三年的大学生活在此即将画上个句号,我的学校生活也随着画了个句号,开始着我下一段路程,三年的求学生涯在师长、亲友的大力支持下,走得辛苦却也收获满囊,在即将付梓之际,思绪万千。

首先在这跟我的指导老师曹慧君,以及实验室老师说声“谢谢,老师辛苦了”您们严谨的治学态度,开阔的思维,循循善诱的指导一直给我很大的帮助。当我对论文的思路感到迷茫时,您为我理清思路,指导我往一条比较清晰的思路上进行修改。在论文的不断修改中,我也努力做到及时积极地跟曹老师交流,因为我觉得这样可以使得我的论文更加完善。在不断完善和修改的过程中,也让我更加懂得“一分耕耘才有一分收获”的道理。再次对您表示感谢,师恩伟大,无以回报。然后,还要感谢所有在大学期间传授我知识的老师,每一位老师的悉心教导都是我完成这篇论文的基础。感谢和我一起生活两年半的室友,是你们让我们的寝室充满快乐与温馨,让我的脑海充满着美好的回忆。感谢我的朋友,感谢你们在我失意时给我鼓励,在失落时给我支持,感谢你们和我一路走来,让我在此过程中倍感温暖!

最后,感谢我的的家里人,谢谢您们一直以来对我的关心与支持,一直以来您们对我的默默付出我铭记在心,我爱您们,您们永远健康快乐是我最大的心愿。

在论文即将完成之际,我心情是矛盾的,从开始进入课题到论文的顺利完成,一直以来离不开可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚谢意!同时也感谢学院为我提供良好的做毕业设计的环境。

最后再一次感谢所有在毕业设计中曾经帮助过我的良师益友和同学,以及在设计中被我引用或参考的论著的作者。

随着这篇毕业论文的最后落笔,我三年的大学生活也即将划上一个圆满的句号。回忆这三年生活的点点滴滴,从入学时对大学生活的无限憧憬到课堂上对各位老师学术学识的深沉沉湎,从奔波于教室图书馆的来去匆匆到业余生活的五彩缤纷,一切中的一切都是历历在目,让人倍感留恋,倍感珍惜。

参考文献

[1] 武小娟,王志宏,杜文博,等.镁工业的环境协调性发展[J].中国建材科技,2007(5):46~48.代做毕业设计

[2] 肖力光,王思宇,雒锋.镁渣等工业废渣应用现状的研究及前景分析[J].吉林建筑工程学院学报,2008,25(1):1~7.

[3] 肖力光,雒锋,黄秀霞.利用镁渣配制胶凝材料的机理分析[J].吉林建筑工程学院学报,2009,26(5):1~5.

[4] 李经宽.镁渣脱硫剂活化性能的试验研究[D].太原:太原理工大学,2008.

[5] 袁润章.胶凝材料学[M].武汉:武汉工业大学出版社,1996.

[6] 杨南如,曾燕伟.研究和开发化学激发胶凝材料的必要性和可行性[J].建材发展导向,2006(2):42~46.

[7] 崔自治,倪晓,孟秀莉.镁渣膨胀性机理试验研究[J].粉煤灰综合利用,2006(2):8~10.

[8] 赵爱琴. 利用镁渣研制新型墙体材料[J]. 山西建筑,2003(17):48~49.

[9] 王羡德.对镁渣使用效果的探讨[J].四川水泥,1997(6):30~31.

[10] 郭春军.用金属镁渣替代部分矿渣生产水泥[J].水泥,2005(6):24~25.

[11] 黄从运,柯劲松,张明飞.镁渣替代石灰石配料烧制硅酸盐水泥熟料[J].新世纪水泥导报,2005(5):27~28.

[12] 乔晓磊,金燕.金属镁冶炼还原渣脱硫性能的实验研究[J].科技情报开发与经济,2007,17(7):185~188.

[13] 陈恩清,吴连平.镁还原渣和粉煤灰生产加气混凝土工艺研究[J].三峡大学学报,2006,12(6):522~525.

[14] 南峰,伍永华,李国新,等.利用镁渣制备混凝土膨胀剂[J].混凝土世界,2010,13:52~54.

[15] 徐晓虹.利用镁渣制备环保陶瓷滤料的方法[P].中国专利:101428187A,2009- 05- 13.

[16] 张习贤,梁全富.工业废料镁矿渣的路用研究[J].中南公路工程,1997,

2(22):35~40.

[17] 杜强,崔自治,赵伟,等.镁渣改性沥青性能的试验研究[J].新型建筑材料,2010(2):58~ 60,74.

[18] 崔永成,崔自治,崔彬等.镁渣与水泥、粉煤灰复合改善沥青粘结性研究[J].粉煤灰综合利用,2009(5):11~13.

[19] 邵曰剑,贾志琦,陈健.山西省镁工业固体废弃物的开发利用[J].中国金属通报,2008(9):6~8.

[1] 郭守铭,苏峥.充分利用工业废渣提高社会经济效益[J].房材与应用,2000(1):34~36

[2] 王智.流化床燃煤固硫渣特性及其建材资源化研究[D].重庆大学博士学位论

文,2002

[3] 彭敏.粉煤灰的形貌、组成分析及其应用[D].湘潭大学硕士学位论文,2004.

[4] 李醒.粉煤灰资源化现状[J].安徽化工,2002,191(5):37~39.

[5]王志芹.粉煤灰在陶瓷制品上的应用[J].中国蹿瓷,2002,2(34):28~31.

[6] 徐红.粉煤灰的矿物相态和颗粒组成分析[J].电力环境保护,1999,15(4):24~26.

[7] 陈鹏.高炉矿渣的水硬活性及其评定方法[J].钻井液与完井液,1999,16(1):19~21.

炼镁还原罐生产工艺设备

6.3 工艺技术方案 6.3.1 项目工艺选择 还原罐生产工艺过程按专业分为:炼钢-离心浇铸两部分完成。我国还原罐生产炼钢有中频感应炉、电弧炉、有衬电渣炉三种方法。三种炼钢方法在同等浇铸工艺下生产还原罐,其同样使用条件下,而还原罐的寿命却有较大差异,其最主要原因是生产还原罐时炼钢方法有所不同所致。 经过多方考虑,本次设计采用电弧炉熔炼,电弧炉熔炼对电网波动影响不大,不会影响电力部门电网技术指标;电弧炉对元素烧损极小,生产成本相对较低,离心机采用强度钢性高的离心铸造机和金属模铸造,提高了铸件质密度,保证了产品质量。同时电弧炉工艺经济合理、工艺成熟成靠、性能价格比高、低能耗、占地面积小、污染小的还原罐生产工艺;使本项目的工艺、设备、环保、节能、控制与管理达到国内先进水平。6.3.2 炼镁还原罐生产工艺流程 炼镁还原罐生产工艺流程有配料、熔炼、离心浇铸、后处理及帽头焊接、产品编号入库。 1. 配料 对收购回来的不锈钢废料进行分类,项目不锈钢废料主要有两大部分,一部分是回收炼镁厂的废旧炼镁还原罐,另一部分是市场采购回收的废不锈钢,主要是不锈钢边角料等。对废旧不锈钢进行成分检测,并根据成分进一步细分归类,并对废旧炼镁还原罐进行分割切块。 入炉熔融前对入炉废料按照成分比例进行配料,并配入一定的合金添加剂,合金添加剂主要成分为铬镍合金,用于增加产品中铬镍含量。

2. 熔炼 将配好的废料加入电弧炉中进行熔炼。冶炼耐热钢时,加料顺序、冶炼时间、脱氧剂加入时间及钢水包内孕育都直接影响离心件的结晶质量,所以,应严格按照冶炼工艺进行。 3. 离心浇铸 1)还原罐的离心铸造 浇包、浇杯流槽使用前需充分烘烤至近1000℃,型筒使用前应预热到200℃~250℃,然后挂砂和布砂,以形成与钢液隔离开的砂层(厚 3 mm~5 mm)。离心浇注工艺为:出钢并在包中进一步净化和孕育钢液→启动离心机,调速至型简转数逐渐达到700 r.min-1→调整并固定好浇杯及浇嘴→迅速浇注,浇完后撤出浇杯及流槽→约5 min后,钢液凝固并降温至约900℃时停机,吊下型筒→用拉拔器和天车从型筒中拔出还原罐离心件→铸件空冷至常温,进行检验。 2)帽头的砂型铸造 帽头的铸造采用水玻璃砂型,可采用一箱四模造型,使用一块模板以固定4个模样,造型时用风动捣固机捣砂。砂型造好后应烘干、硬化,而后刷一层锆英醇基涂料并点燃后合型即可浇注。耐热钢冷却快并易氧化形成氧化铬膜,所以应快浇,并于开浇完后在浇冒口处覆盖一层珍珠岩保温,以充分发挥冒口的补缩作用,浇注后约1 h打箱清理。采用水爆清砂,可使帽头铸件表面光洁不粘砂。 4. 后处理及帽头焊接 铸造的还原罐筒因两端断面不平整不便于后续加工,需对还原罐筒两

镁的冶炼方法主要分为两种

镁的冶炼方法主要分为两种:一是硅热还原法;二是电解法。目前国内的原镁厂家大都采用硅热还原法中的皮江法,以下就比较成熟的皮江法作简单的介绍。 皮江法生产金属镁是以煅烧白云石或菱镁矿石为原料、硅铁为还原剂、萤石为催化剂,进行计量配料。粉磨后压制成球,称为球团。将球团装入还原罐中,加热到1200℃,内部抽真空至13.3Pa或更高,则产生镁蒸气。镁蒸气在还原罐前端的冷凝器中形成结晶镁,亦称粗镁。再经加熔剂精炼,产出商品镁锭,即精镁。 皮江法炼镁生产工序: (1)白云石煅烧:将白云石在回转窑或竖窑中加热至1100~1200℃,烧成煅白(MgOCaO)。 (2)配料制球:将煅白、硅铁粉和萤石粉计量配料、粉磨,然后压制成球。 (3)还原:将料球在还原罐中加热至(1200+10)℃,在13.3Pa或更高真空条件下,保持8~10小时,氧化镁还原成镁蒸气,冷凝后成为粗镁。 (4)精炼铸锭:将粗镁加热熔化,在约710℃高温下,用熔剂精炼后,铸成镁锭,亦称精镁。 (5)酸洗:将镁锭用硫酸或硝酸清洗表面,除去表面夹杂,使表面美观。 镁合金的冶炼技术 镁合金熔炼工艺的关键是阻燃保护,其次是必须进行精炼处理以去除镁合金熔体中的金属杂质和非金属杂质夹渣及有害气体。 (1)准备工作 备齐工具,检查坩埚,清理炉膛内渣子等杂物,检修电阻丝,保证测温热电偶处在正常位置,使电气控制和自动控温正常,灵敏准确; (2)坩埚、炉料预热 炉料预热去除水分,防止爆炸等安全事故,同时减少炉料中水分带入合金液中的气体含量增加。 (3)装料熔化 在已预热的坩埚中加入预热的炉料,升温熔化。 (4)合金化和精炼 待温度升到熔化温度以上镁锭熔化后加入中间合金,并充分搅 拌使之均匀,再升温至适当的温度,向熔液中撒入精炼剂精炼。此过程关键是要控制好合金加入量和精炼的温度,这是由不同种类的合金决定的。 5)静置

煅烧金属镁回转窑优势及工艺流程介绍

金属镁回转窑是专业煅烧金属镁的设备。设备由回转筒体、支承装置、带挡轮支承装置和窑头、窑尾密封装置、喷煤管装置等部分组成。金属镁回转窑窑体与水平呈一定的斜度,整个窑体由托轮装置支承,并有控制窑体上下窜动的挡轮装置。传动部分除设置主传动外,还设置了为保证在主传动电源中断时仍能使窑体慢速转动、防止窑体变形的辅助传动装置。窑头采用壳罩式密封,窑尾装有轴向接触式密封装置,保证了密封的可靠性。

金属镁回转窑的优势: 1、金属镁回转窑窑头处配置竖立冷却器不仅可使高温物料骤冷,提高产品活性度,也便于运输、储存。同时还能得到较高温度的入窑二次风。能有效地提高窑内烧成温度,降低燃料消耗。 2、金属镁回转窑的产量高。非常适合大型活性石灰生产线。 3、金属镁回转窑物料利用率极高,融入低碳环保新元素。

4、金属镁回转窑在窑尾配置竖立预热器可充分利用回转窑内煅烧产生的高温烟气,将得物料从常温预热到初始分解温度状态。这不仅能大大提高回转窑的产量,还能降低单位产品热耗。 金属镁回转窑工艺流程简述 (1)将原料(白云石)由破碎机破碎至合格的物料(30-40mm)。 (2)经由回转窑烧结,煅烧成煅白。 (3)经冷却机冷却。

(4)再经过球磨机磨成粉。 (5)再经压球机压成球。 (6)经破碎后与硅铁粉和萤石粉混合均匀制团。 (7)装入耐热不锈钢还原罐内,置于还原炉中,在1200-1250℃及真空的1.33Pa真空度下还原制取粗镁。 (8)经过熔剂精制、铸锭、表面处理得到成品镁锭。 各种型号回转窑设备,设备加工定做服务来豫晖。设备采

用先进技术和安装调试方法,精心施工,从安装到调试,再到试生产,实行全方位的质量管理,深受广大用户的信赖和好评!(YHzp)

冶炼金属的方法归纳

冶炼金属的方法归纳 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

冶炼金属的方法归纳 王志荣 冶炼金属是从矿石中提取金属单质的过程,除物理方法外,金属的冶炼都是使金属从化合态转化为游离态的化学过程。根据金属的化学活动性不同,工业上冶炼金属一般有以下几种方法: 一. 物理方法 用于提取最不活泼的金属。Au、Pt等金属在自然界中主要以单质形式存在,可用物理方法分离得到。如“沙土淘金”就是利用水冲洗沙子,将沙土冲走,剩下密度很大的金砂,再进一步分离便可得到金属金(Au)。 二. 化学方法 绝大多数金属均用化学法提取。这些金属冶炼的本质是用还原剂使矿石发生还原反应(或加热使金属元素还原),具体有以下三种: 1. 电解法 该法适合冶炼金属活动性很强的金属,因为这类金属不能用一般的还原剂使其从化合物中还原出来,只能用通电分解其熔融盐或氧化物的方法来冶炼。 对于某些不活泼金属,如铜、银等,也常用电解其盐溶液的方法进行精炼。 如电解精炼铜,用硫酸铜(或氯化铜)溶液作为电解液,粗铜(含锌、铁、镍、银、金等杂质)铜板作为阳极,用纯铜薄钢板作为阴极。 总反应: 2. 热还原法 该法可冶炼较活泼的金属,碳、一氧化碳、氢气、活泼金属等是常用的还原剂。 (1)用碳作还原剂(火法冶金)(缺点:易混入杂质,污染大)

(2)氢气作还原剂(优点:得到的金属较纯,污染小,但价格较贵) (3)用一氧化碳作还原剂(缺点:有污染) (4)用比较活泼的金属作还原剂(缺点:易形成合金) (铝热反应) 3. 热分解法 有些金属仅用加热的方法就可以从矿石中得到,用该法可冶炼某些不活泼金属。 如工业上用焙烧辰砂矿(HgS)的方法制取汞: 受热分解均可得到Hg和Ag: 从矿石中提炼金属一般要经过三个步骤:(1)矿石的富集;(2)冶炼;(3)精炼。金属冶炼的方法与金属的活动性顺序有相关性,即:

金属镁还原罐介绍

金属镁还原罐介绍 在皮江法炼镁技术的工艺装备中,还原罐是最重要的装备单元,属易消耗部件。其典型结构由半球型封头、直筒罐体和冷却水套等三部分组成。还原罐工作条件恶劣,一般是在1180℃~1200℃的高温及罐内抽真空的条件下长期工作,所以要求还原罐具有良好的高温抗氧化、抗腐蚀性能,以及足够的高温强度和综合机械性能。宁夏奥特龙金还原罐的制造技术炼镁还原罐罐体由罐身和帽头焊接而成。目前,罐身一般采用离心铸造工艺,帽头采用砂型铸造,半球端底和筒体的连接采用焊接工艺,冷却水套采用铆焊件。 其生产工艺主要包括: (1)型筒转速的确定在离心铸造过程中,熔融的钢水在旋转的铸型里,在离心力的作用下,钢水布满铸型内表面且随之转动,最后形成铸管。其优点为:金属组织致密,晶粒细化;力学性能高,可达到锻件的性能指标;尺寸精度高,成品率也高。 (2)耐热不锈钢冶炼工艺(3)还原罐的离心铸造工艺(4)帽头的砂型铸造工艺(5)罐身与帽头的焊接工艺(6)试压还原罐罐身与帽头焊接完毕后,罐内通入0.5MPa压缩空气放在水槽中进行打压试验,持续8分钟若无气泡排出即为合格品。 还原罐生产中易产生的缺陷主要有: 裂纹,解决方法为采取措施使型筒各部位温度、涂料层厚度均匀一致,提高铸型精度,定时修整铸型,提高铸管机的平稳性。 冷隔、铁豆、凸凹不平,解决办法为调整浇注槽的位置,提高钢水的浇注温度,提高涂料的强度。 罐身内表面有夹渣、气孔,解决方法为提高钢水的浇注温度及罐身平稳性,以利于钢水中的杂质和气体顺利地浮出罐身的自由表面;提高钢水的质量,减少钢水中的杂质,提高涂料的高温强度,降低有机物的含量,减少其发气量。 还原罐的材质选择长期以来,人们以延长使用寿命、降低生产成本为目标,对还原罐制造技术进行了多方面的广泛研究;比较而言,关于皮江法炼镁的工艺及设备的研究不多,至今在工艺与设备方面没有实质性的改变。还原罐按材质可分为金属材料、金属与金属/非金属复合材料和非金属材料三类。 (1)金属还原罐耐热钢是使用最广泛、制造技术相对最成熟的还原罐制造材料。长期以来,人们对耐热钢还原罐的制造技术进行了大量的研究,通过合金化、调整成分、优化配料、控制冶炼、铸造工艺以及改善罐体结构等等手段,不同程度地改善和提高了还原罐的质量,延长了其使用寿命。但由于材料本身性质的限制,耐热钢材质的还原罐使用寿命不可能有大幅度的提高。 (2)复合材料还原罐从上世纪60年代开始以碳素钢或无镍、低镍耐热钢等金属材料为基体,在表面覆以各种涂层作为防护层,制造具有复合结构还原罐的研究,开创了复合材料技术制造炼镁还原罐的历史。近年来采用复合方式制造还原罐方面的技术发明活动相当活跃,复合材料还原罐的前景大有希望。 (3)非金属材料还原罐使用非金属材料的主要出发点是抵抗高温氧化与腐蚀,对还原罐的强度、气密性、热效率等相关问题缺乏必要的考虑。目前尚未见到实际使用的可靠技术数据与成功应用的权威报道。非金属材料应用于制造还原罐的前景尚不明朗。 还原罐的使用寿命目前还原罐基本上是用高铬镍合金钢铸造成的,使用寿命较短,一般不超过2~3个月,由此导致还原罐生产成本居高不下一直是炼镁厂家关切的问题。 炉内烟气的氧化性气氛的强弱是影响罐使用寿命的主要因素。目前,国内可供制作还原罐的合金钢较少。合金钢的最高抗氧化临界温度仅为1200℃。由于合金钢罐长期在抗氧化临界温度的上限使用,表面氧化,产生起皮、氧化层剥落、再起皮、再氧化等现象,罐壁逐渐

稀贵金属冶炼废水处理新工艺

稀贵金属冶炼废水处理新工艺 在稀贵金属冶炼废水中常用的处理工艺有过氧化氢法、臭氧氧化法、活性炭吸附氧化法、电化学法、硫酸亚铁法、微生物讲解法、水解法等。这些传统的稀贵金属冶炼废水处理工工艺,存在很多的局限性和缺点,稀贵金属回收率比较低,造成大量浪费。急需研究出一种全新的稀贵金属冶炼废水处理工艺,才能满足实际要求,提升稀贵金属回收率,获得更大的经济效益。基于此,开展稀贵金属冶炼废水处理新工艺的应用探讨就显得尤为必要。 一、探讨稀贵金属冶炼废水处理新工艺的必要性 稀贵金属不断具有很强的应用价值,而且还具有极强的稀缺性。在我国社会经济持续发展的背景下,稀贵金属需求量不断提升,稀贵金属矿产资源储量逐年减少,加强对稀贵金属冶炼废水处理新工艺的研究,有利于回收废水中的稀贵金属,减少能耗,保证我国矿产资源事业持续发展。基于此,立足稀贵金属冶炼废水的特性,研究与之相适的处理药剂和技术,降低废水处理成本,提升稀贵金属的综合回收研究,就显得尤为必要。 二、传统废水处理工艺的优缺点 (1)过氧化氢法。过氧化氢法处理稀贵金属冶炼废水的主要原理是:创造一种碱性条件,然后通过甲醛、铜离子等作为催化剂,促使稀贵金属冶炼废水中的一些有毒有害物质转变为无毒无害的物质。此方法的主要优点为处理设备结构比较简单,处理过程比较安全,稀贵金属冶炼废水净化效果有保证。缺点是只适用于低浓度废水处理中,比较甲醛、铜离子等催化剂使用量比较大,处理成本比较高。 (2)臭氧氧化法。臭氧氧化法治理稀贵金属冶炼废水的主要机理为:通过臭氧将稀贵金属冶炼废水中氰化物、氰酸盐等物质,水解成氨离子、碳酸根离子等,形成无毒无害的溶液。此方法的主要优点为:臭氧来源广好,获取方便,处理操作过程是比较简单,稀贵金属冶炼废水净化效果比较好,几乎不会形成二次污染。但缺点也比较明显,如:投资成本大、耗电量比较高、无法有效去除废水中的亚铁和铁氰化合物。 (3)活性炭吸收氧化法。活性炭具有很强的吸附性,在活性炭上经过过氧化氢氧化吸的化学反应,来处理稀贵金属冶炼废水。此种处理方法的主要优点是处理工艺比较简单,可有效去除掉稀贵金属冶炼废水中的重金属。但此种方法只能处理稀贵金属冶炼废水的澄清水,活性炭只能使用1次~2次,需要频繁更换。 (4)电化学法。将稀贵金属冶炼废水中的电解氧化反应和金属电解的还原相互结合,提升废水处理效果。此种处理方法的优势为:可有效处理高浓度稀贵金属冶炼废水,操作过程也比较简单,同时也可以有效除去废水中的一些重金属。但稀贵金属冶炼废水处理能耗非常大,成本也比较高。 (5)硫酸亚铁法。此种处理方法的主要机理为:将硫酸亚铁按照一定的比例加入到稀贵金属冶炼废水中,通过一系列化学反应,形成亚铁络合物,从而达到净化废水的目的[2]。此种处理方法的主要优点是操作比较简单,且成本较低。但处理效率比较低,处理之后稀贵金属冶炼废水仍然无法达到排放标准。 (6)微生物降解法。微生物讲解法的主要机理为:通过微生物自身的生物化学反应对稀贵金属冶炼废水金属污染物进行分解,形成氨、二氧化碳、硫酸盐等物质。此种方法的主要优势是可有效去除稀贵金属冶炼废水中的氰化物及氰络合物。但只能应用在低浓度处理中,可承受的处理负荷也比较小。 (7)水解法。水解法是过去稀贵金属冶炼废水处理中常用的方法之一,主要机理为在碱性条件下,对密封金属冶炼废水进行加温、加压材料,促使污染物不断水解,形成无毒无害的有机酸和氨。优点为可彻底处理废水,不会形成二次污染,适用性较强。但水解温度比较高,过程较长,会增加稀成本。

硅锰合金的冶炼

硅锰合金的冶炼
关于硅锰合金的冶炼方式和方法 邓绍鑫、邓元华 内容摘要:硅锰合金是炼钢中常用的复合脱氧剂,因此,世界上对于硅锰合金的 冶炼都十分的重视。本文通过对硅锰合金的冶炼过程进行剖析阐述,客观上总结了国 内外硅锰合金冶炼的技术手段和方法。b5E2RGbCAP 关键词:硅锰合金 复合脱氧剂 冶炼
硅锰合金是炼钢常用的复合脱氧剂,又是生产中,低碳锰铁和电硅热法生产金属 锰的还原剂。 硅锰合金可在大中小型矿热炉内采取连续式操作进行冶炼。目前,世界上硅锰合 金电炉正向大型化、全封闭的方向发展,南非 1975 年投产了一台 88000KVA 的大型硅 锰合金电炉。p1EanqFDPw 生产硅锰合金的原料有锰矿、富锰渣、硅石、焦炭。 生产硅锰合金可使用一种锰 矿或几种锰矿(包括富锰渣)的混合矿。为保证炼出合格产品,矿石中的锰铁比和锰
DXDiTa9E3d
磷比应满足一定要求,见表 1-2 所示。所用的锰矿含锰越高, 表 1-2 各项指标越好,图 1-1 为锰矿品位对硅锰合金技术经 济指标的影响。锰矿中二氧 化硅含量通常不受限制。采用含二氧化硅较高的锰矿 (30~40%SiO2)来冶炼硅锰合金在技术上是允许的,在资源利用上是合理的。
1 / 11

图 1-1 锰矿中的杂质 P 2O 5 要低,P 2O 5 使合金中磷含量升高。锰矿粒度一般为 10~80mm,小于 10mm 不超过总量的 10%。RTCrpUDGiT 对于硅石的要求,SiO 2≥97%,P 2O 5<0.02,粒度 10~40mm,不带泥土及杂物。 对于焦炭的要求,固定碳≥84%,灰分≤14%,焦炭粒度,一般中小电炉使用 3~13mm,大电炉使用 5~25mm。5PCzVD7HxA 对于石灰的要求与碳素锰铁对石灰的要求相同。 为了改善硅的还原,炉料中必须有足够的 SiO 2 使在酸性渣中进行冶炼,渣中 SiO 2 过高,会使排渣困难,通常冶炼硅锰合金的炉渣成分:jLBHrnAILg CaO+MgO (SiO 2)=34~42%,=0.6~0.8 SiO 2 锰的高价氧化物不稳定,受热后容易分解和被 CO 还原成低价的氧化物 MnO ,在 1373K~1473K 的温度区间,锰的高价氧化物已经分解或还原成 MnO 。MnO 较稳定,只 能用碳直接还原,由于炉料中 SiO 2 较高,MnO 在没开始还原时就与它反应成硅酸盐, 富锰渣中的硅锰也是硅酸盐的形式存在,因此从 MnO 中还原锰的反应,实际上是液态 炉渣的硅酸盐中进行还原的。xHAQX74J0X 由于锰与碳组成稳定的化合物 Mn 3C ,用碳还原 MnO 得到的不是纯锰,而是锰的 化合物 Mn 3C 。 MnO·SiO24 3 C= 1 3
2 / 11
Mn<8%

金属镁冶炼工艺比较

金属镁冶炼工艺比较 李晓波 (山西阳煤丰喜股份责任有限公司闻喜复肥分公司闻喜礼元镇PC043802) 摘要:阐述了皮江法炼镁的存在的问题,提出了解决措施,指明了冶炼金属镁的最佳工艺是渣炼镁。 关键词:电解镁皮江法炼镁回转窑无渣炼镁硅铁Magnesium metal smelting process is compared Li Xiao-bo (Shanxi YangMei FengXi wenxi compound branch shares responsibility co., LTD Wenxi li yuan town pc043802) Abstract: expounds the existing problems of smelting magnesium was numerically simulated, and the solution measures are put forward, pointed out the best technology of smelting magnesium metal magnesium smelting slag. Key words: Electrolytic magnesium Pidgeon magnesium smelting Rotary kiln No slag smelting magnesiumFerrosilicon 2000年到今天, 中国金属镁企业均向万吨级转向,其总生产能力已超过80万吨/年,而全世界金属镁的使用量在60万吨/年以上,也就是说供大于求已是不争之实事,如何解决此矛盾,使企业走出困境,重点分析硅热法(皮江法)炼镁及碳热法炼镁。

金属镁还原炉———传统还原炉

书山有路勤为径,学海无涯苦作舟 金属镁还原炉———传统还原炉 金属镁还原炉是镁生产的核心设备,国内外普遍采用的是外加热卧式还原罐还原炉。目前,国内应用的金属镁还原炉的炉型较多,根据所用燃料的不同, 大体上可分为两类:用煤气或重油加热的还原炉与以煤为燃料的还原炉。 用煤气或者重油为燃料的还原炉用煤气或者重油作为燃料的还原炉,通常 是16 个横罐的还原炉,其规格为10.54 乘以3.59 乘以2.94(m)。这种还原炉为矩形炉膛,还原罐间中心距约为600mm,罐呈单面单排排列,炉子背面一般分布有多支低压烧嘴。火焰从燃烧室进入炉膛空间,绕过还原罐周边,靠烟囱抽力将燃烧 后的烟气抽入炉底部支烟道,经烟道与烟道闸门后进入烟囱。二次风由二次风管再通过炉底第二层二次风道送入炉内。 还原炉底部两个还原罐中间设有燃烧室或烟室。还原炉既是一个倒焰炉 又是一个贮热炉。炉膛内一般装有16 支镍铬合金钢制的还原罐。16 个还原罐分成四组,即4 个还原罐组成一组,与一个真空机组相连接(真空机组由滑阀泵和罗茨泵组成),每台还原炉还设有一个备用真空机组,因此一台还原炉一般有5 个真空机组,每台还原炉设有一个水环泵作为预抽泵。 以煤为燃料的还原炉在我国,金属镁还原炉以燃煤为主,随着镁冶炼工艺 的不断发展与进步,出现过多种燃煤还原炉,典型的有下面几种。 1.单火室单面单排罐还原炉该炉型与燃煤气、重油还原炉炉型相似,单面 单排布置还原罐。燃烧室设置在后面,炉内装有14~16 支还原罐,在两支还原罐 中间设置一过火孔。该炉型由于只有单排罐,又是单面布置,故操作十分方便,车 间布置便于机械化,但其产量和热效率都低。该炉型属于矩形倒焰窑,火焰从燃 烧室通过挡火板反射至炉顶,受烟囱抽力火焰向下,使还原罐受热,再经过火孔,支烟道至主烟道排出。

冶炼金属的方法归纳

冶炼金属的方法归纳 王志荣 冶炼金属是从矿石中提取金属单质的过程,除物理方法外,金属的冶炼都是使金属从化合态转化为游离态的化学过程。根据金属的化学活动性不同,工业上冶炼金属一般有以下几种方法: 一.物理方法 用于提取最不活泼的金属。Au、Pt等金属在自然界中主要以单质形式存在,可用物理方法分离得到。如“沙土淘金”就是利用水冲洗沙子,将沙土冲走,剩下密度很大的金砂,再进一步分离便可得到金属金(Au)。 二.化学方法 绝大多数金属均用化学法提取。这些金属冶炼的本质是用还原剂使矿石发生还原反应(或加热使金属元素还原),具体有以下三种: 1.电解法 该法适合冶炼金属活动性很强的金属,因为这类金属不能用一般的还原剂使其从化合物中还原出来,只能用通电分解其熔融盐或氧化物的方法来冶炼。 对于某些不活泼金属,如铜、银等,也常用电解其盐溶液的方法进行精炼。 如电解精炼铜,用硫酸铜(或氯化铜)溶液作为电解液,粗铜(含锌、铁、镍、银、金等杂质)铜板作为阳极,用纯铜薄钢板作为阴极。 总反应:

2.热还原法 该法可冶炼较活泼的金属,碳、一氧化碳、氢气、活泼金属等是常用的还原剂。 (1)用碳作还原剂(火法冶金)(缺点:易混入杂质,污染大) (2)氢气作还原剂(优点:得到的金属较纯,污染小,但价格较贵) (3)用一氧化碳作还原剂(缺点:有污染) (4)用比较活泼的金属作还原剂(缺点:易形成合金) (铝热反应) 3.热分解法 有些金属仅用加热的方法就可以从矿石中得到,用该法可冶炼某些不活泼金属。 如工业上用焙烧辰砂矿(HgS)的方法制取汞:受热分解均可得到Hg和Ag: 从矿石中提炼金属一般要经过三个步骤:(1)矿石的富集;(2)冶炼;(3)精炼。 金属冶炼的方法与金属的活动性顺序有相关性,即:

还原罐项目

金属用还原罐项目 1.建设内容与规模 炼镁用还原罐生产线,年产400000支(分三期进行)其中一期年产100000支还原罐。 2. 原料来源 本项目所需生产原料主要有废钢、镍板、硅铁、锰铁、铬铁、氮化铬铁、硅钙、稀土硅铁、铝锭等。废钢可从当地的厂矿收购,也可从金属镁厂回收废旧还原罐作为生产原料;镍板可从西安和兰州采购;硅铁、锰铁、铬铁、硅钙、稀土硅铁等可从包头购入。 3.生产方法 硅热法炼镁一般还原炉炉温控制在1200-1220℃,还原周期10-12小时、真空度5-10Pa。炼镁还原罐在高温、高真空度下较长期使用。因此,要求还原罐材质必须具有高温强度、良好的抗氧化性、抗热腐蚀性、抗高温蠕变能力、高气密性、还具有良好的焊接和机械加工性能。还原罐的使用寿命不仅制约皮江法炼镁的产量,而且影响炼镁的能耗、成本;如果出现还原罐微漏还会降低粗镁.精镁质量。 还原罐生产工艺过程按专业分为:炼钢---离心浇铸两部分完成。我国还原罐生产炼钢有中频感应炉、电弧炉、有衬电渣炉三种方法。三种炼钢方法在同等浇铸工艺下生产还原罐,其同样使用条件下,而还原罐的寿命却有较大差异,其最主要

原因是生产还原罐时炼钢方法有所不同所致。 中频感应电炉.有衬电渣炉熔炼合金钢;采用离心铸造法铸造还原罐。本项目选择了技术先进、经济合理、工艺成熟成靠、性能价格比高、低能耗、占地面积小、污染小的还原罐生产工艺;使本项目的工艺、设备、环保、节能、控制与管理达到国内先进水平。 4.项目建设的必要性和条件 园区镁产业发展的需要 镁合金工业生产链的第一个环节是生产金属镁。,在我国大都是采用皮江法生产金属镁。由于用皮江法生产金属镁具有投资少、建设周期短、见效快等优点,近年来,在我国建起了上百家皮江法金属镁厂,推动了我国金属镁行业的发展壮大,也为当地经济发展做出了贡献。但由于金属镁是初级产品,市场竟争激烈,产品价格波动很大,造成不少企业经营困难、效益低下。还有一个重要原因就是生产金属镁所用还原罐供不应求,而且质量低劣、价格偏高、工作寿命不长,制约了我国金属镁行业的发展。 目前,我国金属镁行业进入新一轮升级改造和整合阶段,那些生产规模偏小、环境污染严重的金属镁厂将被关停,新建和改造后的金属镁企业其生产规模将会加大,而且生产设备先进、生产工艺更趋合理、环境污染情况也会大为改善。同时为提高产品性能、降低生产成本,对金属镁生产中的重要消耗材

冶金工业废水处理技术

冶金工业废水处理技术 冶金工业产品繁多,生产流程各成系列,排放出大量废水,是污染环境的主要废水之一。冶金废水的主要特点是水量大、种类多、水质复杂多变。按废水来源和特点分类,主要有:冷却水,酸洗废水,除尘和煤气、烟气洗涤废水,冲渣废水以及由生产工艺中凝结、分离或溢出的废水等。 冷却水的处理 冷却水在冶金废水中所占的比例最大。钢铁厂的冷却水约占全部废水的70%。冷却水分间接冷却水和直接冷却水。间接冷却水,如高炉炉体、热风炉、热风阀、炼钢平炉、转炉和其他冶金炉炉套的冷却水,使用后水温升高,未受其他污染,冷却后,可循环使用。若采用汽化冷却工艺,则用水量可显著减少,部分热能可回收利用。直接冷却水,如轧钢机轧辊和辊道冷却水、金属铸锭冷却水等,因与产品接触,使用后不仅水温升高,水中还含有油、氧化铁皮和其他物质,如果外排,会对水体造成淤积和热污染,浮油会危害水生生物。处理方法是先经粗颗粒沉淀池或水力旋流器,除去粒度在100微米以上的颗粒,然后把废水送入沉淀,除去悬浮颗粒;为提高沉淀效果,可投加混凝剂和助凝剂;水中浮油可用刮板清除。废水经净化和降温后可循环使用。冷轧车间的直接冷却水,含有乳化油,必须先用化学混凝法、加热法或调节pH值等方法,破坏乳化油,然后进行上浮分离,或直接用超过滤法分离。所收集的废油可以再生,作燃料用。 酸洗废水的处理 轧钢等金属加工厂都产生酸洗废水,包括废酸和工件冲洗水。酸洗每吨钢材要排出1~2米废水,其中含有游离酸和金属离子等。如钢铁酸洗废水含大量铁离子和少量锌、铬、铅等金属离子。少量酸洗废水,可进行中和处理并回收铁盐;较大量的则可用冷冻法、喷雾燃烧法、隔膜渗析法等方法回收酸和铁盐或分离回收氧化铁。若采用中性电解工艺除氧化铁皮,就不会出酸洗废水。但电解液须经过滤或磁分离法处理,才能循环使用。 洗涤水的处理 冶金工厂的除尘废水和煤气、烟气洗涤水,主要是高炉煤气洗涤水、平炉和转炉烟气洗涤水、

金属镁市场分析

宁夏金属镁市场前景分析中国科学院院士和中国工程院院士师昌绪在“中国镁业发展高层论坛”上指出:“镁是包括海洋在内地球表层最为丰富的金属元素,在诸多金属趋于枯竭的今天,大力开发金属镁材料是实现可持续发展的重要保证”。我区在经济社会“十一五”发展规划中,将金属镁列入新材料工业的重要发展内容之一。那么我区金属镁的发展前景究竟如何呢?下面做些粗浅分析,以供参考。 一、金属镁的应用前景十分广阔 镁是常用金属中最轻的一种,密度为1.74g/cm3,比刚度(刚度与质量之比)接近铝合金和钢。就目前而言,镁的应用主要集中在铝合金生产、压铸生产、炼钢脱硫三大领域,分别占消费总量的43%、35%和13%。同时还用在稀土合金、阴极保护材料、金属还原剂和化工行业等广泛领域。其中镁合金的应用前景最为广阔,由于镁合金具有较好的加工性能、重量轻、韧性大、屏蔽性良好以及较强的抗震减噪性能,被广泛应用于航空航天、汽车零部件、3C产品等军用工业、民用工业的各个领域。世界镁的消费区域主要集中在北美和欧洲地区,其消费量约占全球总消费量的3/4。 同时,由于镁合金具有极强的可再回收利用特性,以及其生产利用过程具有“一次污染、终身清洁”优点,越来越多的受到人们的青睐,应用范围正在迅速拓展,用量也在急剧增加。据预测,通用汽车和福特汽车公司预计在今后的20年内每辆汽车的镁合金用量将从目前的3公斤提高到100公斤。另外镁合金在电器和家电, 尤其是3C (指计算机Computer、通讯Commu-nication和消费电子产品Cons

umerElectronic的简称)以及航空航天领域的应用量也将呈现出大幅度增长的势头,具有广阔的市场发展前景。 二、世界金属镁生产及消费概况 镁的生产方法有两大类,即氯化熔盐电解法和热还原法(皮江法等)。当前,西方发达国家已基本不进行对环境影响较大的原镁生产,而进行具有优良特性的镁合金的研究与开发。世界产量目前50-60万吨,正处于迅速增长阶段。国际上原镁生产以中国、加拿大、澳大利亚、独联体国家为主。以2002年为例,世界原镁产量分布:中国27万吨,加拿大11.7万吨,美国4.5万吨,挪威4.2万吨,俄罗斯4万吨,以色列2.75万吨,法国1.7万吨,乌克兰1.5万吨,巴西1. 2万吨,哈萨克斯坦1万吨,塞尔维亚0.5万吨,印度900吨。 我国具有丰富的镁资源,原镁产能、产量和出口均居世界首位。已探明菱镁矿储量约27亿吨,白云石储量40亿吨以上,青海柴达木盆地的33个盐湖中共含镁盐约31.5亿吨。青海盐湖钾镁资源的开发利用已被列入西部大开发的重大产业项目,计划建成年产5万吨镁合金的工厂。2005年全国原镁产量为47万吨,其中山西省生产30万吨,占全国总产量的64%;宁夏2.2万吨,约占全国总产量的5%。 三、宁夏金属镁发展现状及竞争力分析 资源存量方面,宁夏冶镁白云岩基础储量达到13576万吨(宁夏“十一五”特色优势产业重点项目规划研究专题报告之一《特色优势材料产业重点项目规划研究》第13页),主要分布于宁夏吴忠市、石嘴山市,而且镁含量比较高,如吴忠市太阳山镇的冶镁白云岩含镁

(完整版)金属常见冶炼方法

金属常见冶炼方法 一、电解法 金属活动顺序表中金属的冶炼如: (熔融) (熔融) [生成的O2与阳极炭棒反应生成CO、CO2,所以应不断补充阳极炭棒,冰晶石()为助熔剂。] 二、热还原法 金属活动顺序表中金属的冶炼。 (1)用作还原剂 (制很纯的还原性铁粉,这种铁粉具有很高的反应活性,在空中受撞击或受热时会燃烧,所以俗称“引火球”。) (2)用C(焦炭、木炭)、CO作还原剂。如: (我国是世界上冶炼锌最早的国家,明朝宋应星在《天工开物》一书中有记载) (3)作还原剂(铝热剂)冶炼难熔的金属

(4)用等活泼金属为还原剂冶炼Ti等现代的有色金属。 (熔融) (熔融) 钛是银白色金属,质轻和机械性能良好,耐腐蚀性强,广泛应用于化学工业、石油工业、近代航空、宇航、以及水艇制造中,被称为“空中金属”、“海洋金属”、“陆地金属”。医学上利用它的亲生物性和人骨的密度相近,用钛板、钛螺丝钉制作人工关节、人工骨,很容易和人体肌肉长在一起。所以又被称为“亲生物金属”。钛的合金(如钛镍合金)具有“记忆”能力,可记住某个特定温度下的形状,只要复回这个温度,就会恢复到这个温度下的形状,又被称为“记忆金属”。此外,钛还可制取超导材料,美国生产的超导材料中的90%是用钛铌合金制造的。由于钛在未来科技发展中的前景广阔,又有“未来金属”之称。 三、加热法 等不活泼金属的冶炼,可用加热其氧化物或锻烧其硫化物的方法。如: 唐代李白的秋浦歌:炉火照天地,红星乱紫烟。郝郎明月夜,歌曲动川寒。秋浦:在今安徽省池洲市西,当时产银、铜。郝郎指冶炼工人。

四、物理提取——富集 在自然界中存在,其密度很大,用多次淘洗法去掉矿粒、泥沙等杂质, 便可得。刘禹锡的浪淘沙:日照澄洲江雾开,淘金女伴满江隈。美人首饰侯王印,尽是沙中浪底来。(隈:水转弯的地方) 五、湿法冶金 即利用溶液中发生的化学反应(如置换、氧化还原、中和、水解等),对原料中的金属进行提取和分离的冶金过程。如金、银的工业冶炼: 六、金属冶炼方法记忆(按金属活动性顺序) K Ca Na Mg Al Zn Fe Sn Pb (H)Cu Hg Ag Pt Au 电解熔融的化合物用碳、氢气等还原加热法游离态,物理提取

硅锰合金生产工艺

锰系产品 一、锰系产业链及我司操作相关产品在产业链中位置(红色) 从图上看到不管锰矿还是中间任何的其它产品最终是以钢材为最终产品,钢材产品的价格直接影响相关其它产品的介个走势。其中电价是按季节变动的,在每年夏季的丰水期价格相应都会下调部分。 锰矿:储量主要集中在南非、莫桑比克、澳大利亚、俄罗斯、缅甸、加蓬等国,我国的锰矿产地是辽宁、湖南、四川、广西等地区,但是因为品位低,所以每年需要从国外进口大量高品位锰矿搭配使用。: 二、硅锰生产所需主原料: 锰、焦炭、硅、电

据不完全统计,锰矿品位每降低1%,硅锰合金电耗升高135KWh。尽可能提高入炉锰矿石的品位,是提高锰回收率、降低电耗,改善其他各项指标的重要手段。对于硅石的要求:SiO2>97%,P2O5<0.02%,粒度10-40mm,不带泥土及杂物。对于焦炭的要求:固定碳>84%,灰分<;14%,焦炭粒度,一般中小电炉使用3-13mm,大电炉使用5-25mm。 三、生产工艺: 锰矿石、硅石、碳质还原剂(焦炭)等,在配料站按冶炼工艺要求进行称量配料,混匀后,通过上料系统、布料系统及下料管加到电炉内,供电冶炼。电炉为连续还原冶炼,定时间歇出铁出渣。出炉的铁水铸锭成形,经精整破碎加工后,产品散装或包装出厂,大量的炉渣需进行水淬处理。 还原电炉是铁合金的主要冶炼设备,主要原料是矿石和炭质还原剂。含硅、锰的矿石和炭质原料在电炉中靠电弧放电作用发生还原反应,加热熔炼物料及反应所需的能量为电能。原料入炉后,在电炉炉温高达摄氏2000多度的高温下,发生还原反应,得到产品。 四、硅锰行业标准 锰硅合金GB/T4008-1996 表1 化学成分

金属镁工艺操作规程

第1 页共50 页

第 2 页 共 50 页 金属镁工艺操作规程 金属镁是当前一种新型工业材料,而冶炼镁业是一项高温、高压、 高转速,易燃、易爆、易中毒的行业,了解与掌握炼镁工艺规程,规 范操作、熟练操作是冶炼镁业的关键所在。冶炼镁业由白云石经煅白、 配料压球、还原、精炼最后成为镁块,其每一环节都关系到镁的产出 率。 从第一环节煅白开始,煅烧温度过高,煅白会过烧,虽然煅白的 灼减量低,但其水化活性度也低。煅烧温度偏低,煅白残留的CO 2量 大,即碳酸盐未分解彻底,灼减量就高。对于耐磨指大,热强低的白 云石其煅烧时间相应缩短,否则煅烧出的白云石不是过烧就是生烧。 因此灵活调节温度,根据石质把握煅烧时间非常重要。 煅烧白云石的吸湿和二氧化碳(CO 2)全相同,而且时间越长, 吸湿越大,氢氧化钙[Ca (OH )2]和碳酸钙[CaCO 3]不仅能氧化还原析 出的镁,生成氧化镁和氧化钙,而且还能氧化还原剂硅铁中的硅(Si ), 同时吸湿后的煅烧白云石在真空和比较低的温度一并发生离解,使反 应区的剩余压力增大,减慢镁的升华速度。因此,煅烧白云石不宜长 期存放,应尽快投入到下一道工序。 竖窑要求白云石粒度较小(50—200MM ),炉料要均匀,竖窑操作 简单,煅烧活性度高,灼减量低,并且无论白云石是何种结构,只要 控制好工艺条件,料满预热好,其煅烧效果均很好,因此,煅烧出口 的煅白温度控制在300—400℃之间,有利于还原反应。

第 3 页 共 50 页 硅热法炼镁采用的还原剂应具有足够的还原能力,钙、硅、碳化 钙及炭质材料等均能将镁从氧化镁[MgO]中还原出来,还原剂的还原 能力按AL 、Si 、CaC 2的顺序递减的,从经验观点出发,在硅热法炼 镁中,通常是用硅铁作还原剂。 硅铁还原剂对于硅热法炼镁的还原过程是十分重要的,硅铁的反 应性与硅铁中的Si 、 Fe 、SiO 2、 FeSi 等组分有关,还原性能最好 的是Si ,其它的Fe —Si 化合物反应速度较小,而且随着铁含量的增 加,还原反应不易进行,含硅量高的硅铁脆而硬,易碎,易氧化。在 硅铁中含硅量85%以上的硅铁几乎全是Si 存在,含硅量75%的硅铁, 由Si 和Fe 、 SiO 2组成,其硅铁不适合硅热法炼镁,先用含硅量最高 的硅铁作还原剂,不仅其反应好,而且硅的利用率也高,但是工业生 产中,仍选用75%Si 的SiFe ,故常用Si 量75%的Si 作业硅热法的还 原剂。 硅热法炼镁的还原过程属于固相反应过程。对固相反应来说,要 求炉料有较细的粒度,并具有较大的比表面,即炉料越细越好,但是 炉料太细,压形时压缩比小,又难于成形,故炉料的细度必须控制在 一定的范围内,炉料的细度对镁的还原效率,硅的利用率有较大的影 响,炉料的粒度比不恰当,不仅影响还原效率,还影响团块的抗压强 度,所以炉料中的粒度比是非常重要的。 煅白的强度不大,一般比较易磨,白云石矿物结构不同,所以锻 白也呈现不同性质,网状结构的白云石其煅白成六方菱形结构的块

镁还原炉工艺与操作说明

精心整理 蓄热式还原炉安全技术操作规程 沃克能源科技有限公司 2009年12月 蓄热式技术简介: 蓄热式高温燃烧技术是当今国际上先进的燃烧技术,在国际上也被称为高温燃烧技术(HTAC )。 200℃以下。 1.233.13.1.1检查炉前及两侧炉墙的煤气阀是否关闭。如未关闭,要进行关闭操作。 3.1.2检查引风机、鼓风机安装有无松动现象,风机安装是否坚实可靠,皮带松紧度是否合适。 3.1.3检查引风机的调风门是否关闭。如未关闭,要进行关闭操作。 3.1.4检查三通换向阀门工作是否良好,有无封闭不严的现象。 3.1.5检查控制系统是否运行正常,也就是在冷态调试是否合格。 3.1.6检查压缩空气源的压力是否大于0.3MPa 。如气源压力不足,要检查原因并排除故障。

3.1.7检查气动系统有无漏气现象,把气动元件的三联件压力调整到0.5MPa。检查三联件加装的润 滑油是否合适。 3.2点火前煤管道的吹扫、送气和放散 煤气管道上的任何作业必须遵循GB222-86《工业企业煤气安全规程》。用氮气作吹扫介质对煤气管道进行吹扫。 3.2.1吹扫、放散和送气工作开始前,首先必须确认已准备好如下事项: (1)确认煤气已送到炉区煤气总管的密闭阀前,并确认密闭阀完全关闭; (2 (3 (4 3.2.2 (1) (2) (3) 3.2.3 (1) (2) (3)各取样 (4) 3.3 3.3.1炉子点火必须具备的条件 (1)仪表系统已经进入工作状态,各控制回路置于“手动”状态; (2)换向阀电控系统已处于待机状态; (3)压缩空气系统已供气,压力指示大于0.3MPa。 3.3.2点火升温操作 (1)烘炉曲线 烘炉曲由耐火材料供货厂家提供,一般应有150℃、300℃、600℃、900℃几个保温台阶;

金属常见冶炼方法

金属常见冶炼方法文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

金属常见冶炼方法 一、电解法 金属活动顺序表中金属的冶炼如: (熔融) (熔融) [生成的O2与阳极炭棒反应生成CO、CO2,所以应不断补充阳极炭棒,冰晶石 ()为助熔剂。] 二、热还原法 金属活动顺序表中金属的冶炼。 (1)用作还原剂 (制很纯的还原性铁粉,这种铁粉具有很高的反应活性,在空中受撞击或受热时会燃烧,所以俗称“引火球”。) (2)用C(焦炭、木炭)、CO作还原剂。如: (我国是世界上冶炼锌最早的国家,明朝宋应星在《天工开物》一书中有记载) (3)作还原剂(铝热剂)冶炼难熔的金属

(4)用等活泼金属为还原剂冶炼Ti等现代的有色金属。 (熔融) (熔融) 钛是银白色金属,质轻和机械性能良好,耐腐蚀性强,广泛应用于化学工业、石油工业、近代航空、宇航、以及水艇制造中,被称为“空中金属”、“海洋金属”、“陆地金属”。医学上利用它的亲生物性和人骨的密度相近,用钛板、钛螺丝钉制作人工关节、人工骨,很容易和人体肌肉长在一起。所以又被称为“亲生物金属”。钛的合金(如钛镍合金)具有“记忆”能力,可记住某个特定温度下的形状,只要复回这个温度,就会恢复到这个温度下的形状,又被称为“记忆金属”。此外,钛还可制取超导材料,美国生产的超导材料中的90%是用钛铌合金制造的。由于钛在未来科技发展中的前景广阔,又有“未来金属”之称。 三、加热法 等不活泼金属的冶炼,可用加热其氧化物或锻烧其硫化物的方法。如: 唐代李白的秋浦歌:炉火照天地,红星乱紫烟。郝郎明月夜,歌曲动川寒。秋浦:在今安徽省池洲市西,当时产银、铜。郝郎指冶炼工人。 四、物理提取——富集

矿山废水处理方案

矿业废水水处理技术方案 武汉环境工程有限公司 2014-5-6

目录 第一章概述 (5) 1.1工程背景 (5) 1.2设计单位 (5) 1.3设计原则 (5) 1.4排放标准 (5) 1.5设计依据 (5) 1.6设计及施工范围 (6) 第二章设计规模与标准 (6) 2.1设计规模 (6) 2.2设计进水水质 (6) 2.3设计排放标准 (7) 第三章污水处理方法的比较和选择 (7) 3.1该类污水特点和对处理的要求 (7) 3.2工艺方案的选择 (7) 3.3工艺流程及说明 (8) 3.4工艺原理及优势 (9) 3.5主要污染物预期处理效果 (10) 第四章工艺技术方案 (10) 4.1各单元设计描述及主要关键技术参数 (10) 4.2电气设计 (11)

4.3结构、建筑设计 (14) 4.4消防、安全卫生及应急措施 (14) 4.5工程进度计划 (15) 第五章主要构筑物、设备一览表 (16) 5.1主要构筑物一览表 (16) 5.2主要设备一览表 (16) 第六章质量保证、保修和售后服务 (17) 6.1质量保证 (17) 6.2保修范围 (18) 6.3保修期限 (18) 6.4质量回访 (19) 6.5回访人员组成及处理措施 (19) 6.6维修程序 (19) 6.7人员培训 (20) 第七章工程投资估算 (20) 7.1估算依据 (20) 7.2工程总投资估算表 (20) 第八章运行成本及经济效益分析 (23) 8.1分析依据 (23) 8.2电费 (23) 8.3吨水处理费用 (24)

第九章附件................................................................. 错误!未定义书签。 9.1平面布臵图 (24) 9.2工艺流程图 (24)

相关主题
文本预览
相关文档 最新文档