中考数学一轮复习:四边形综合训练(全国通用,含答案)
- 格式:docx
- 大小:774.65 KB
- 文档页数:18
2022年人教版中考数学一轮复习:四边形综合专项练习题21.如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).2.如图1,平行四边形纸片ABCD的面积为120,AD=15.今沿两对角线将四边形ABCD剪成甲、乙.丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成一个对称图形戊,如图2所示.则图形戊的两条对角线长度之和为.3.如图,菱形ABCD的两条对角线AC,BD交于点O,BE⊥AD于点E,若AC=8,BD=6,则BE的长为.4.如图,在▱ABCD中,∠A=70°,DB=DC,CE⊥BD于E,则∠BCE=.5.如图,在菱形ABCD中,AB=BD,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点H,若CG=1,则S=.四边形BCDG6.如图,正方形瓷砖图案是四个全等且顶角为45°的等腰三角形.已知该瓷砖的面积是1m2,则中间小正方形的面积为m2.7.如图所示,在Rt△ABC外作等边△ADE,点E在AB边上,AC=5,∠ABC=30°,AD=3.将△ADE沿AB方向平移,得到△A′D′E′,连接BD′.给出下列结论:①AB=10;②四边形ADD′A′为平行四边形;③AB平分∠D′BC;④当平移的距离为4时,BD′=3.其中正确的是(填上所有正确结论的序号).8.如图,菱形ABCD的对角线AC,BD相交于点O,P为AB边上一动点(不与点A,B重合),PE⊥OA于点E,PF⊥OB于点F,若AB=4,∠BAD=60°,则EF的最小值为.9.如图,在正方形ABCD中,点E为BC边上一点,且CE=2BE,点F为对角线BD上一点,且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,若HG=2cm,则正方形ABCD 的边长为cm.10.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.11.如图,在正方形ABCD内有一点P,若AP=4,BP=7,DP=9,则∠APB的度数为.12.如图是两个边长分别为2a,a的正方形,则△ABC的面积是.13.如图,点P是正方形ABCD内一点,连接AP、BP、DP,若AP=1,PD=,∠APB=135°,则正方形ABCD的面积为.14.如图,正三角形ABC与正方形CDEF的顶点B,C,D三点共线,动点P沿着CA由C向A 运动.连接EP,若AC=10,CF=8.则EP的最小值是.15.如图,正方形ABCD中,H为CD上一动点(不含C、D),连接AH交BD于G,过点G作GE⊥AH交BC于E,过E作EF⊥BD于F,连接AE,EH.下列结论:①AG=EG;②∠EAH=45°;③BD=2GF;④GE平分∠FEC.正确的是(填序号).16.如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是.17.如图,在正方形ABCD中,点E在对角线AC上,EF⊥AB于点F,EG⊥BC于点G,连接FG,若AB=8,则FG的最小值为.18.如图,正方形ABCD的边长为2,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②=;③GH=;④AD=AH,其中正确结论的序号是.19.如图,矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,若∠DAE=3∠BAE.则的值为.20.将矩形ABCD按如图所示的方式折叠,BE、EG、FG为折痕,若顶点A、C、D都落在点O 处,且点B、O、G在同一条直线上,同时点E、O、F在另一条直线上.(1)的值为.(2)若AD=4,则四边形BEGF的面积为.参考答案1.解:①∵四边形ABCD是平行四边形,AB=AD,∴平行四边形ABCD是菱形;②∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形;③∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,因此∠ABC=∠ADC时,四边形ABCD还是平行四边形;故答案为:①.2.解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=1520,∴BC=AD=15,EF×AD=×120,∴EF=8,又BC=15,∴则图形戊中的四边形两对角线之和为20+3=23,故答案为23.3.解:∵四边形ABCD是菱形,∴AO=CO=4,BO=DO=3,AC⊥BD,∴AD===5,=AD×BE=×AC×BD,∵S菱形ABCD∴BE=,故答案为:.4.解:∵四边形ABCD是平行四边形,∴∠BCD=∠A=70°,∵DB=DC,∴∠DBC=∠BCD=70°,∵CE⊥BD,∴∠CEB=90°,∴∠BCE=20°.故答案为:20°.5.解:过点C作CM⊥GB于M,CN⊥GD,交GD的延长线于N.∵四边形ABCD为菱形,∴AB=AD=CD=BC,∵AB=BD,∴AB=BD=AD=CD=BC,∴△ABD为等边三角形,△BCD是等边三角形,∴∠A=∠BDF=60°,∠ADC=60°,在△ADE和△DBF中,,∴△ADE≌△DBF(SAS),∴∠ADE=∠DBF,∵∠FBC =60°+∠DBF ,∠NDC =180°﹣(120°﹣∠ADE )=60°+∠ADE ,∴∠NDC =∠FBC ,在△CDN 和△CBM 中,,∴△CDN ≌△CBM (AAS ),∴CM =CN ,在Rt △CBM 与Rt △CDN 中,,∴Rt △CBM ≌Rt △CDN (HL ),∴S 四边形BCDG =S 四边形CMGN .S 四边形CMGN =2S △CMG ,∵∠CGM =60°,∴GM =CG =,CM =CG =,∴S 四边形BCDG =S 四边形CMGN =2S △CMG =2×××=, 故答案为:.6.解:如图,作大正方形的对角线,作小正方形的对角线并延长交大正方形各边于中点, 设小正方形的边长为xm , 则大正方形的边长为x +x x =(1)xm , ∵瓷砖的面积是1m 2,∴大正方形的边长为1m ,即(1)x =1, 解得x =﹣1, ∴中间小正方形的面积为()2=3﹣2, 故答案为:3﹣2.7.解:∵∠ACB=90°,AC=5,∠ABC=30°,∴AB=2AC=10,故①正确;由平移的性质得:A'D'=AD,A'D'∥AD,∴四边形ADD′A′为平行四边形,故②正确;当平移的距离为4时,EE'=4,∴BE'=AB﹣AE﹣EE'=10﹣3﹣4=3,由平移的性质得:∠A'D'E'=∠A'E'D'=∠AED=60°,A'D'=D'E'=DE=AD=3,∴BE'=D'E',∴∠E'BD'=∠E'D'B=∠A'E'D'=30°,∴∠A'D'B=60°+30°=90°,∴BD'=A'D'=3,故④正确;由④得:当平移的距离为4时,∠E'BD'=∠ABC=30°,故③错误;故答案为:①②④.8.解:连接OP,∵四边形ABCD是菱形,∴AC⊥BD,∠CAB=DAB=30°,∵PE⊥OA于点E,PF⊥OB于点F,∴∠EOF=∠OEP=∠OFP=90°,∴四边形OEPF是矩形,∴EF=OP,∵当OP取最小值时,EF的值最小,∴当OP⊥AB时,OP最小,∵AB=4,∴OB=AB=2,OA=AB=2,∴S=OA•OB=AB•OP,△ABO∴OP==,∴EF的最小值为,故答案为:.9.解:如图,过F作FI⊥BC于I,连接FE,FA,∴FI∥CD,∵CE=2BE,BF=2DF,∴设BE=EI=IC=a,CE=FI=2a,AB=3a,∴则FE=FC=FA=a,∴H为AE的中点,∴AH=HE=AE=a,∴AG=AH+GH=a+2,∵四边形ABCD是正方形,∴BE∥AD,∴==,∴GE=AG=(a+2),∵GE=HE﹣GH=a﹣2,∴(a+2)=a﹣2,解得,a=,∴AB=3a=.故答案为:.10.解:设图1中分成的直角三角形的长直角边为a,短直角边为b,,得,∴图1中菱形的面积为:×4=48,故答案为48.11.解:∵四边形ABCD为正方形,∴∠ABC=90°,BA=BC,∴△BAP绕点A逆时针旋转90°可得△ADE,连接PE,由旋转的性质得,ED=BP=7,AE=AP=4,∠PBE=90°,∠AED=∠APB,∴△APE为等腰直角三角形,∴PE=AP=4,∠AEP=45°,在△PED中,∵PD=9,ED=7,PE=4,∴DE2+PE2=DP2,∴△PED为直角三角形,∠PED=90°,∴∠AED=90°+45°=135°,∴∠APB=135°,故答案为:135°.12.解:∵两个正方形的边长分别为2a,a,∴△ABC的的高为:2a+a,底边为:BC=a,∴△ABC的面积是:(2a+a)•a=a2.故答案为:a2.13.解:如图,将△APB绕点A逆时针旋转90°得到△AHD,连接PH,过点A作AE⊥DH交DH的延长线于E,∴△APB≌△AHD,∠PAH=90°,∴PB=DH,AP=AH=1,∠APB=∠AHD=135°,∴PH=AP=,∠APH=∠AHP=45°,∴∠PHD=90°,∴DH===2,∵∠AHD=135°,∴∠AHE=45°,∵AE⊥DH,∴∠AHE=∠HAE=45°,∴AE=EH,AH=AE,∴AE=EH=,∴DE=,∵AD2=AE2+DE2=13,∴正方形的面积为13,故答案为:13.14.解:如图,过点E作EP⊥AC,交FC于点G,当EP⊥AC时,EP取得最小值,∵正三角形ABC与正方形CDEF的顶点B,C,D三点共线,∴∠ACB=60°,∠FCD=90°,∴∠ACF=30°,∴∠CGP=∠EGF=60°,∵∠F=90°,∴∠FEG=30°,设PG=x,则CG=2x,∴FG=CF﹣CG=8﹣2x,∴EG=2FG=2(8﹣2x),∵FG=EF,∴8﹣2x=8×,∴x=4﹣,∴EP=EG+PG=2(8﹣2x)+x=16﹣3x=4+4.故答案为:4+4.15.解:连接GC,延长EG交AD于点L,∵四边形ABCD为正方形,∴AD∥CB,AD=CD,∠ADG=∠CDG=45°,∵DG=DG,∴△ADG≌△CDG(SAS),∴AG=GC,∠HCG=∠DAG,∵∠HCG+∠GCB=90°,∴∠DAG+∠GCB=90°,∵GE⊥AH,∴∠AGL=90°,∴∠ALG+∠LAG=90°,∵AD∥CB,∴∠ALG=∠GEC,∴∠GEC+∠LAG=90°,∴∠GEC=∠GCE,∴GE=GC,∴AG=EG,故①正确;∵GE⊥AH,∴∠AGE=90°,∵AG=EG,∴∠EAH=45°,故②正确;连接AC交BD于点O,则BD=2OA,∵∠AGF+∠FGE=∠GEF+∠EGF=90°,∴∠AGF=∠GEF,∵AG=GE,∠AOG=∠EFG=90°,∴△AOG≌△GFE(AAS),∴OA=GF,∵BD=2OA,∴BD=2GF,故③正确.过点G作MN⊥BC于点N,交AD于点M,交BC于点N,∵G是动点,∴GN的长度不确定,而FG=OA是定值,∴GE不一定平分∠FEC,故④错误;故答案为:①②③.16.解:将△ABD绕点D顺时针旋转90°,得△MCD,如图:由旋转不变性可得:CM=AB=4,AD=MD,且∠ADM=90°,∴△ADM是等腰直角三角形,∴AD=AM,AD最大,只需AM最大,而在△ACM中,AM<AC+CM,∴当且仅当A、C、M在一条直线上,即不能构成△ACM时,AM最大,且最大值为AC+CM =AC+AB=7,此时AD=AM=,故答案为:.17.解:连接BE,如图:∵四边形ABCD是正方形,∴∠ABC=90°,又EF⊥AB于点F,EG⊥BC,∴四边形FBGE是矩形,∴FG=BE,所以当BE最小时,FG就最小,根据垂线段最短,可知当BE⊥AC时,BE最小,当BE⊥AC时,在正方形ABCD中,△AEB是等腰直角三角形,在Rt△ABE中,根据勾股定理可得2BE2=AB2=64,解得BE=4,∴FG最小为4;故答案为4.18.解:∵四边形ABCD是边长为2的正方形,点E是BC的中点,∴AB=AD=BC=CD=2,BE=CE=,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE≌△DCE(SAS),∴∠CDE=∠BAE,DE=AE,∵AB=BC,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS),∴∠BAE=∠BCF,∴∠BCF=∠CDE,又∵∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF⊥DE,故①正确;∵CD=2,CE=,由勾股定理得,DE===5,=CD×CE=DE×CH,∵S△DCE∴CH=2,∵∠CHE=∠CBF,∠BCF=∠ECH,∴△ECH∽△FCB,∴=,∴=,∴CF=5,∴HF=CF﹣CH=3,∴=,故②正确;如图,过点A作AM⊥DE于点M,∵DC=2,CH=2,由勾股定理得,DH===4,∵∠CDH+∠ADM=90°,∠DAM+∠ADM=90°,∴∠CDH=∠DAM,又∵AD=CD,∠CHD=∠AMD=90°,∴△ADM≌△DCH(AAS),∴CH=DM=2,AM=DH=4,∴MH=DM=2,又∵AM⊥DH,∴AD=AH,故④正确;∵DE=5,DH=4,∴HE=1,∴ME=HE+MH=3,∵AM⊥DE,CF⊥DE,∴∠AME=∠GHE,∵∠HEG=∠MEA,∴△MEA∽△HEG,∴=,∴=,∴HG=,故③错误.综上,正确的有:①②④.故答案为:①②④.19.解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∴∠OAB=∠OBA,∵∠DAE=3∠BAE,∴∠BAE=×90°=22.5°,∵AE⊥BD,∴∠OAB=∠OBA=90°﹣22.5°=67.5°,∴∠OAE=67.5°﹣22.5°=45°,∴△AOE是等腰直角三角形,∴OA=OE,设OE=a,则OB=OA=a,∴BE=OB﹣OE=(﹣1)a,BD=2OB=2a,∴DE=BD﹣BE=2a﹣(﹣1)a=(+1)a,∴==,故答案为:.20.解:(1)由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=OB=2a,DG=OG=CG=a,BG=3a,BC=AD=2b,∵∠C=90°,在Rt△BCG中,CG2+BC2=BG2,∴a2+(2b)2=(3a)2,∴b=a,∴===,由折叠可得:∠ABE=∠EBG,∠AEB=∠BEO,∠DEG=∠GEO,∵∠AEB=∠BEO+∠DEG=∠GEO=180°,∴∠BEG=90°,∵∠A=∠BEG=90°,∠ABE=∠EBG,∴△ABE∽△EBG,∴==,故答案为:;(2)∵AD=BC=2b=4,∴b=2,a=2,∴AB=OB=4,CG=2,AE=OE=2,∴BG=6,∵∠OBF =∠CBG ,由折叠可得∠BOF =∠BCG =90°, ∴△BOF ∽△BCG , ∴=, 即=,∴OF =,∴S 四边形EBFG =S △BEG +S △BFG =×6×2+×6×=9. 故答案为:9.。
中考数学《四边形的综合题》专项练习题及答案一、单选题1.若菱形ABCD的周长是16,∠A=60° ,则对角线BD的长度为()A.2B.2√3C.4D.4√32.如图,将矩形纸片右侧部分的四边形ABCD沿线段AD翻折至四边形AB′C′D的位置.若∠DAB=56°,则∠1的度数是()A.34∘B.56∘C.58∘D.68∘3.如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═ k x(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k的值是()A.4B.8C.12D.164.如图,在∠ABC中,∠C=40 ° ,按图中虚线将∠C剪去后,∠1+∠2等于().A.140°B.210°C.220°D.320°5.如图,在∠ ABCD中,∠B是锐角,点F是AB边的中点,AE∠BC于点E,连接DF,EF.若∠EFD=90°,AD=2,AB=√6,则AE长为()A.2B.√5C.32√2D.32√36.如图,在∠ABCD中,AE平分∠BAD,交CD边于E,AD=3,EC=2,则DC的长为()A.1B.2C.3D.57.如图,在矩形ABCD中,AB=3cm,AD=4cm.若以点B为圆心,以4cm长为半径作∠B,则下列选项中的各点在∠B外的是()A.点A B.点B C.点C D.点D8.如图,在∠ABCD中,BE平分∠ABC交DC于点E,若∠A=60°,则∠DEB的大小为()A.130°B.120°C.115°D.110°9.如图,已知∠ABC与∠CDA关于点O成中心对称,过点O任作直线EF分别交AD,BC于点E,F,则下则结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD 是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤∠AOE与∠COF成中心对称.其中正确的个数为()A.2B.3C.4D.510.一个正多边形的内角和是1440°,则它的每个外角的度数是()A.30°B.36°C.45°D.60°11.如图,将边长为4、锐角为 60° 的菱形 ABCD 沿 EF 折叠,使项点B 恰好落在边 AD 的中点处,记为 B ′ ,则点E 到 BC 边所在直线的距离为( )A .7√35B .5√34C .2√33D .6√3512.如图,以正方形ABCD 的点A 为圆心,AB 为半径作BD⌢,取BD ⌢上一点F 使得DF =DC ,点E 是BD ⌢上一点(不与点D ,F 重合),则∠DEF 的值为( )A .120°B .135°C .145°D .150°二、填空题13.如图,正方形 ABCD 中,点 E 在 DC 边上 DE =2,EC =1 ,把线段 AE 绕点 A 旋转,使点E 落在直线 BC 上的F 点,则 F 、C 两点间的距离为 .14.已知正方形ABCD 中,AB =3,P 为边CD 上一点,DP =1,Q 为边BC 上一点,若∠APQ 为等腰三角形,则CQ 的长为 .15.如图所示的网格是正方形网格,A,B,C,D是网格交点,则△ABC的面积与△ABD的面积的大小关系为:S△ABC S△ABD(填“>”,“=”或“<”)16.一个多边形的每一个外角都等于72°,这个多边形的内角和是度17.如图,已知∠ACB=∠ADB=90°,且E为AB的中点,连结DE,CE,∠ABD=3∠CAB.当∠DEC= 52°,则∠CAB的度数为.18.如图,已知菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.三、综合题19.在平行四边形ABCD中,点P是AB上一点(不与A、B重合),连接DP交对角线AC于点E,连接BE.(1)如图1,若∠EBC=∠EPA,EC平分∠DEB,证明:四边形ABCD为菱形.(2)如图2,对角线AC与BD交于点O,当P是AB的中点时,请直接写出与∠ADP面积相等的三角形(其中不含以AD为边的三角形).20.如图,在四边形ABCD中,BD为一条对角线,AD∠BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,判断AC与CD的数量关系和位置关系,并说明理由. 21.如图,在平面直角坐标系xOy中,矩形ABCD的对角线AC与BD交于点P(−3,1),点A的坐标为(0,−3),BD⊥y轴于点E,反比例函数y=m+2x的图象经过点P.(1)求m的值;(2)若将矩形ABCD向下平移n个单位,使点B落在反比例函数y=m+2x的图象上,求n的值;(3)求cos∠PAD的值.22.如图,∠ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:∠BOE∠∠DOF;(2)连接DE、BF,若BD∠EF,试探究四边形EBFD的形状,并对结论给予证明.23.如图,矩形ABCD的顶点A,B在x轴的正半轴上,点B在点A的右侧,反比例函数y1=k x在第一象限内的图象与直线y2=34x交于点D,且反比例函数y1=k x交BC于点E,AD=3.(1)求D点的坐标及反比例函数的关系式;(2)若矩形的面积是24,求出∠CDE的面积.(3)直接写出当x>4时,y1的取值范围.24.如图,已知在□ABCD中,对角线AC,BD交于点O,AC∠AB,E,F分别在线段OD,OB上,且OE=OF,连结CE,AF.(1)求证:CE=AF;(2)若∠DBA=45°,AB=1,求直线AD与BC之间的距离.参考答案1.【答案】C2.【答案】D3.【答案】B4.【答案】C5.【答案】B6.【答案】D7.【答案】D8.【答案】B9.【答案】D10.【答案】B11.【答案】A12.【答案】D13.【答案】1或514.【答案】2或√6或7315.【答案】=16.【答案】54017.【答案】16°18.【答案】1319.【答案】(1)证明:∵平行四边形ABCD∴AB//CD∴∠CDP=∠APD∵∠EBC=∠EPA∴∠CDE=∠CBE∵EC平分∠DEB,∴∠DEC=∠BEC∵CE=CE∴△DEC≌△BEC(AAS)∴DC=BC∴平行四边形ABCD是菱形.(2)解:∵平行四边形ABCD,对角线AC与BD交于点O∴S△AOD=S△AOB=S△COD=S△COB=14S▱ABCD∵P 为 AB 的中点∴S △ADP =S △BDP =12S △ADB =14S ▱ABCD ∴ 与∠ADP 面积相等的三角形(其中不含以AD 为边的三角形)有:△AOB,△COD,△COB,△BDP.20.【答案】(1)证明:∵AD=2BC ,E 为AD 的中点∴DE=BC ∵AD∠BC∴四边形BCDE 是平行四边形 ∵∠ABD=90°,AE=DE ∴BE=DE∴四边形BCDE 是菱形(2)解:AC 与CD 的数量关系是AC=√3CD ,位置关系是AC∠CD.∵AD∠BC ∴∠DAC=∠BCA∵AC 平分∠BAD ,∴∠BAC=∠DAC ,∴∠BAC=∠BCA ∵AB=BC ,∵∠ABD=90°,E 为AD 的中点∴BE=AE=12AD ,由(1)得四边形BCDE 为菱形,∴BE∠CD ,BE=BC ,∴AB=BE=AE ,∴∠ABE 是等边三角形,∴∠BAD=60°,在等边∠ABE 中,∵AC 平分∠BAD ,∴AC∠BE ,∠CAD=30°,BE∠CD∴AC∠CD ,∵在Rt∠ACD 中,tan∠CAD=CDAC .∴ac=CD tan∠CAD =CD tan30°=√3CD . 21.【答案】(1) 将P(−3,1)代入y =m+2x得:m =−5 . (2) .∵P(−3,1) , A(0,−3) , BD ⊥y 轴于点 E . ∴PE =3 , EA =1−(−3)=4 . 由勾股定理,得 PA =5 ∵四边形 ABCD 是矩形 ∴PB =PA =5 .∴点 B 的横坐标为 (−3)+5=2 ∴E(2,1)由 m =−5 ,知反比例函数的解析式为 y =m+2x =−3x当 x =2 时∴下移的距离n=1−(−32)=52.(3)∵四边形ABCD是矩形∴PD=PA=5∴点D的横坐标为: (−3)−5=−8∴D(−8,1).∵A(0,−3)∴DE=8由勾股定理,得DA=4√5.∴cos∠PAD=cos∠PDA=DEDA=4√5=2√5522.【答案】(1)证明:∵四边形ABCD是平行四边形∴BO=DO,AO=CO∵AE=CF∴AO﹣AE=CO﹣FO∴EO=FO在∠BOE和∠DOF中{BO=DO∠BOE=∠DOFEO=FO∴∠BOE∠∠DOF(SAS);(2)解:四边形EBDF为菱形理由:∵BO=DO,FO=EO∴四边形BEDF是平行四边形∵BD∠EF∴四边形EBDF为菱形.23.【答案】(1)解:根据题意得:点D的纵坐标为3把y=3代入y2=34x得:34x=3解得:x=4即点D的坐标为:(4,3)把点D(4,3)代入y1=k x得:3=k4解得:k=12即反比例函数的关系式为:y1=12x(2)解:设线段AB,线段CD的长度为m根据题意得:3m=24解得:m=8∴点B,点C的横坐标为:4+8=12把x=12代入y1=12x得:y=1∴点E的坐标为:(12,1)∴CE=3-1=2∴S∠CDE=12CE×CD=12×2×8=8;(3)0<y1<324.【答案】(1)证明:在□ABCD中,OC=OA ∵OE=OF,∠DOC =∠AOB∴∠EOC∠∠FOA∴CE=AF(2)解:∵ AC∠AB ∴∠CAB=90°∵∠DBA=45°,∴∠AOB=45°∴OA=AB=1,∴ AC=2OA=2∴ BC= √12+22=√5设AD、BC之间的距离为h,则h= 1×2√5=2√55。
第五章《四边形》综合测试卷(时间:90分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 从n边形一个顶点出发,可以作条对角线. ( )A. nB. n-1C. n-2D. n-32. 一个多边形的每一个外角都是36°,则这个多边形是( )A. 正方形B. 正六边形C. 正八方形D. 正十边形3. 在平行四边形ABCD中,∠A=38°,则∠C的度数为( )A. 142°B. 148°C. 132°D. 38°4. 边长为3 cm的菱形的周长是( )A. 15 cmB. 12 cmC. 9 cmD. 3 cm5. 如图Z5-1,在平行四边形ABCD中,下列结论一定成立的是( )图Z5-1A. AC∠BDB. AB=ADC. ∠BAD≠∠BCDD. ∠ABC+∠BAD=180°6. 下列四边形中,对角线一定相等的是( )A. 菱形B. 矩形C. 平行四边形D. 梯形7. 如图Z5-2,周长为28的菱形ABCD中,对角线AC,BD交于点O,H为AD边中点,OH的长等于( )A. 3.5B. 4C. 7D. 14图Z5-28. 如图Z5-3,四边形ABCD是矩形,连接BD,∠ABD=60°,延长BC到点E使CE=BD,连接AE,则∠AEB的度数为( )图Z5-3A. 15°B. 20°C. 30°D. 60°9. 如图Z5-4,在矩形ABCD中,AB与BC的长度比为3∠4.若该矩形的周长为28,则BD的长为( )图Z5-4A. 5B. 6C. 8D. 1010. 如图Z5-5,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME∠BC 于点E,MF∠CD于点F,则EF的最小值为( )图Z5-5A. 42B. 22C. 2D. 1二、填空题(本大题7小题,每小题4分,共28分)11. 五边形从某一个顶点出发可以引条对角线.12. 如果正多边形的一个外角为40°,那么它是正边形.13. 在行四边形ABCD中,∠B+∠D=220°,则∠A=.14. 如图Z5-6,AC是菱形ABCD的对角线,AC=8,AB=5,则菱形ABCD的面积是.图Z5-615. 如图Z5-7,正方形ABCD中,以CD为边向正方形内作等边三角形DEC,则∠EAB =.图Z5-716. 如图Z5-8,在平行四边形ABCD中,对角线AC,BD交于点O,点E为BC边上一点,且CE=2BE. 若四边形ABEO的面积为3,则平行四边形的ABCD的面积为.图Z5-817.如图Z5-9,在∠ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE∠DF 交DF的延长线于点E. 已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是.图Z5-9三、解答题(一)(本大题3小题,每小题6分,共18分)18. 如图Z5-10,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.求证:四边形ABCD是平行四边形.图Z5-1019. 如图Z5-11,点E,F分别是矩形ABCD的边AB,CD上的一点,且DF=BE. 求证:AF=CE.图Z5-1120. 如图Z5-12,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.图Z5-12四、解答题(二)(本大题3小题,每小题8分,共24分)21. 如图Z5-13,平行四边形ABCD中,DF平分∠ADC,交BC于点F,BE平分∠ABC,交AD于点E.(1)求证:四边形BFDE是平行四边形;(2)若∠AEB=68°,求∠C的度数.图Z5-1322. 如图Z5-14,平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.图Z5-1423. 如图Z5-15,平行四边形ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,且AE=AF.(1)求证:平行四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求菱形ABCD的面积.图Z5-15五、解答题(三)(本大题2小题,每小题10分,共20分)24. 如图Z5-16,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC 于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说明理由.图Z5-1625. 如图Z5-17,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.(1)求证:AF-BF=EF;(2)四边形EFGH是什么四边形?并证明;(3)若AB=2,BP=1,求四边形EFGH的面积.图Z5-17第五章《四边形》综合测试卷(时间:90分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 从n边形一个顶点出发,可以作条对角线. ( D )A. nB. n-1C. n-2D. n-32. 一个多边形的每一个外角都是36°,则这个多边形是( D )A. 正方形B. 正六边形C. 正八方形D. 正十边形3. 在平行四边形ABCD中,∠A=38°,则∠C的度数为( D )A. 142°B. 148°C. 132°D. 38°4. 边长为3 cm的菱形的周长是( B )A. 15 cmB. 12 cmC. 9 cmD. 3 cm5. 如图Z5-1,在平行四边形ABCD中,下列结论一定成立的是( D )图Z5-1A. AC∠BDB. AB=ADC. ∠BAD≠∠BCDD. ∠ABC+∠BAD=180°6. 下列四边形中,对角线一定相等的是( B )A. 菱形B. 矩形C. 平行四边形D. 梯形7. 如图Z5-2,周长为28的菱形ABCD中,对角线AC,BD交于点O,H为AD边中点,OH的长等于( A )A. 3.5B. 4C. 7D. 14图Z5-28. 如图Z5-3,四边形ABCD是矩形,连接BD,∠ABD=60°,延长BC到点E使CE=BD,连接AE,则∠AEB的度数为( A )图Z5-3A. 15°B. 20°C. 30°D. 60°9. 如图Z5-4,在矩形ABCD中,AB与BC的长度比为3∠4.若该矩形的周长为28,则BD的长为( D )图Z5-4A. 5B. 6C. 8D. 1010. 如图Z5-5,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME∠BC 于点E,MF∠CD于点F,则EF的最小值为( B )图Z5-5A. 42B. 22C. 2D. 1二、填空题(本大题7小题,每小题4分,共28分)11. 五边形从某一个顶点出发可以引2条对角线.12. 如果正多边形的一个外角为40°,那么它是正九边形.13. 在平行四边形ABCD中,∠B+∠D=220°,则∠A=70°.14. 如图Z5-6,AC是菱形ABCD的对角线,AC=8,AB=5,则菱形ABCD的面积是24.图Z5-615. 如图Z5-7,正方形ABCD中,以CD为边向正方形内作等边三角形DEC,则∠EAB =15°.图Z5-716. 如图Z5-8,在平行四边形ABCD中,对角线AC,BD交于点O,点E为BC边上一点,且CE=2BE. 若四边形ABEO的面积为3,则平行四边形ABCD的面积为9.图Z5-817. 如图Z5-9,在∠ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE∠DF 交DF的延长线于点E. 已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是2 3.图Z5-9三、解答题(一)(本大题3小题,每小题6分,共18分)18. 如图Z5-10,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.求证:四边形ABCD是平行四边形.图Z5-10证明:∵O是AC的中点,∴OA=OC.∵AD∥BC,∴∠ADO=∠CBO.在△AOD和△COB中,{∠ADO=∠CBO,∠AOD=∠COB,OA=OC,∴△AOD∠△COB(AAS).∴OD=OB.∴四边形ABCD是平行四边形.19. 如图Z5-11,点E,F分别是矩形ABCD的边AB,CD上的一点,且DF=BE. 求证:AF=CE.图Z5-11证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC.在△ADF和△CBE中,{AD=CB,∠D=∠B,DF=BE,∴△ADF∠△CBE(SAS).∴AF=CE.20. 如图Z5-12,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.图Z5-12解:如答图Z5-1,过点A作AE⊥BC于点E.∵四边形ABCD是菱形,∴AB=BC=10.∵∠ABC=60°,AE⊥BC,∴∠BAE=30°.答图Z5-1∠BE =12AB =5,AE =3BE =53.∠菱形ABCD 的面积=BC×AE =50 3.四、解答题(二)(本大题3小题,每小题8分,共24分) 21. 如图Z5-13,平行四边形ABCD 中,DF 平分∠ADC ,交BC 于点F ,BE 平分∠ABC ,交AD 于点E .(1)求证:四边形BFDE 是平行四边形; (2)若∠AEB =68°,求∠C 的度数.图Z5-13(1)证明:∵在平行四边形ABCD 中,AD ∥BC , ∴∠AEB =∠CBE.又∵BE 平分∠ABC ,∴∠ABE =∠EBC.∴∠ABE =∠AEB.∴AB =AE. 同理可得CF =CD.又AB =CD ,∴CF =AE.∴BF =DE.又∵BF ∥DE ,∴四边形EBFD 是平行四边形.(2)解:∵∠AEB =68°,AD ∥BC ,∴∠EBF =∠AEB =68°. ∵BE 平分∠ABC ,∴∠ABC =2∠EBF =136°. ∴∠C =180°-∠ABC =44°.22. 如图Z5-14,平行四边形ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在CD 上,DF =BE ,连接BF ,AF .(1)求证:四边形BFDE 是矩形;(2)若AF 平分∠BAD ,且AE =3,DF =5,求矩形BFDE 的面积.图Z5-14(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD. ∵BE ∥DF ,BE =DF ,∴四边形BFDE 是平行四边形. ∵DE ⊥AB ,∴∠DEB =90°.∴四边形BFDE 是矩形. (2)解:∵AB ∥CD ,∴∠BAF =∠DFA. ∵AF 平分∠BAD ,∴∠BAF =∠DAF. ∴∠DFA =∠DAF.∴AD =DF =5. ∵DE ⊥AB ,∴∠AED =90°.由勾股定理,得DE=AD2-AE2=4.∴矩形BFDE的面积=DF×DE=5×4=20.23. 如图Z5-15,在平行四边形ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,且AE=AF.(1)求证:ABCD是菱形;(2)若∠EAF=60°,CF=2,求菱形ABCD的面积.图Z5-15(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°.又∵AE=AF,∴△AEB∠△AFD(AAS). ∴AB=AD.∴四边形ABCD是菱形.(2)解:连接AC,如答图Z5-2. ∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°.答图Z5-2∵四边形ABCD是菱形,∴∠ACF=60°.∴△ACD是等边三角形.在Rt△CFA中,AF=CF·tan∠ACF=23,AC=CFcos∠ACF=4=CD.∴菱形ABCD的面积=4×23=8 3.五、解答题(三)(本大题2小题,每小题10分,共20分)24. 如图Z5-16,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC 于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说明理由.图Z5-16(1)证明:在△ABC和△ADC中,{AB=AD,CB=CD,AC=AC,∴△ABC∠△ADC.∴∠BAC=∠DAC,即∠BAF=∠DAF.在△ABF和△ADF中{AB=AD,∠BAF=∠DAF,AF=AF,∴△ABF∠△ADF(SAS).∴∠AFB=∠AFD.∵∠CFE=∠AFB,∴∠AFD=∠CFE.∴∠BAF=∠DAF,∠AFD=∠CFE.(2)证明:∵AB∥CD,∴∠BAC=∠ACD.∵∠BAC=∠DAC,∴∠DAC=∠ACD.∴AD=CD.∵AB=AD,CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(3)解:当BE⊥CD时,点E的位置可令∠EFD=∠BCD.理由如下.∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF.∵CF=CF,∴△BCF∠△DCF(SAS).∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°.∴∠EFD=∠BCD.25. 如图Z5-17,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.(1)求证:AF-BF=EF;(2)四边形EFGH是什么四边形?并证明;(3)若AB=2,BP=1,求四边形EFGH的面积.图Z5-17(1)证明:∵DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,∴∠AFB=∠AED=∠DHC=90°.∴∠ADE+∠DAE=90°.又∵∠DAE+∠BAF=90°,∴∠ADE=∠BAF.在△AED和△BFA中,{∠AED=∠BFA,∠EDA=∠FAB,AD=AB,∴△AED∠△BFA(AAS).∴AE=BF.∴AF-AE=EF,即AF-BF=EF.(2)解:四边形EFGH是正方形.证明:∵∠AFB=∠AED=∠DHC=90°,∴四边形EFGH是矩形.∵△AED∠△BFA,同理可得△AED∠∠DHC,∠∠AED∠∠BFA∠△DHC.∴DH=AE=BF,AF=DE=CH.∴DE-DH=AF-AE.∴EF=EH.∴矩形EFGH是正方形.(3)解:∵AB=2,BP=1,∴AP= 5.∵S△ABP=12×BF×AP=12×BF×5=1×2×12,∴BF=255.∵∠BAF=∠PAB,∠AFB=∠ABP=90°,∴△ABF∠△APB.∴BFAF=BPAB=12,∴AF=455,∴EF=AF-AE=455-255=255.25 52=45.∴四边形EFGH的面积为⎝⎛⎭⎫。
专题21 多边形与平行四边形过关检测(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。
1.下面图形是用木条钉成的支架,其中不容易变形的是( )A.B.C.D.【答案】B【解答】解:含有三角形结构的支架不容易变形.故选:B.2.如果一个多边形的内角和等于720°,则它的边数为( )A.3B.4C.6D.5【答案】C【解答】解:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=6.则这个正多边形的边数是6.故选:C.3.下列条件中,能判定四边形是平行四边形的是( )A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等【答案】A【解答】解:A、对角线互相平分的四边形是平行四边形.正确.B、对角线互相垂直的四边形不一定是平行四边形.错误.C、对角线相等的四边形不一定是平行四边形.错误.D、对角线互相垂直且相等的四边形不一定是平行四边形.错误.故选:A.4.从多边形的一个顶点出发可引出7条对角线,则它是( )A.七边形B.八边形C.九边形D.十边形【答案】D【解答】解:任意n边形的一个顶点可引出的对角线的条数为(n﹣3)条.∴n﹣3=7.∴n=10.∴这个多边形是十边形.故选:D.5.如图,小明从O点出发,前进6米后向右转20°,再前进6米后又向右转20°,…,这样一直走下去,他第一次回到出发点O时一共走了( )A.72米B.108米C.144米D.120米【答案】B【解答】解:依题意可知,小陈所走路径为正多边形,设这个正多边形的边数为n,则20n=360,解得n=18,∴他第一次回到出发点O时一共走了:6×18=108(米),故选:B.6.如图,E是平行四边形ABCD边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是( )A.∠ABD=∠DCE B.DF=CF C.∠AEC=∠CBD D.∠AEB=∠BCD【答案】D【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴DE∥BC,∠ABD=∠CDB,∵∠ABD=∠DCE,∴∠DCE=∠CDB,∴BD∥CE,∴BCED为平行四边形,故A正确;∵DE∥BC,∴∠DEF=∠CBF,在△DEF与△CBF中,,∴△DEF≌△CBF(AAS),∴EF=BF,∵DF=CF,∴四边形BCED为平行四边形,故B正确;∵AE∥BC,∴∠DEC+∠BCE=∠EDB+∠DBC=180°,∵∠AEC=∠CBD,∴∠BDE=∠BCE,∴四边形BCED为平行四边形,故C正确,∵AE∥BC,∴∠AEB=∠CBF,∵∠AEB=∠BCD,∴∠CBF=∠BCD,∴CF=BF,同理,EF=DF,∴不能判定四边形BCED为平行四边形;故D错误;故选:D.7.在平行四边形ABCD中,对角线AC、BD相交于点O,AC=6,BD=12,则边AD的长度x的取值范围是( )A.2<x<6B.3<x<9C.1<x<9D.2<x<8【答案】B【解答】解:∵四边形ABCD是平行四边形,∴OA=AC=×6=3,OD=BD=×12=6,∴边AD的长度x的取值范围是:6﹣3<x<6+3,即3<x<9.故选:B.8.如图,在▱ABCD中,AD=6,点E,F分别是BD,CD的中点,则EF的长为( )A.3B.4C.5D.6【答案】A【解答】解:∵在▱ABCD中,AD=6,∴BC=AD=6,∵点E,F分别是BD,CD的中点,∴.故选:A.9.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AD,CD的中点,连接OE、OF,若OE=2,OF=3,则▱ABCD的周长为( )A.10B.14C.16D.20【答案】D【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB∥CD,AD∥BC,∵E、F分别是AB、AD的中点,∴AB=2OE=4,BC=2OF=6,∴▱ABCD的周长=2(AB+BC)=20.故选:D.10.如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD,交BC于点E,且∠ADC=60°,AD=2AB,连接OE,下列结论:①∠CAD=30°;②OD=AB;③S平行四边形ABCD =AC•CD;④S四边形OECD=S△AOD:⑤OE=AD.其中成立的个数是( )A.1个B.2个C.3个D.4个【答案】D【解答】解:∵四边形ABCD为平行四边形,∠ADC=60°,∴AD∥BC,∠ABC=∠ADC=60°,OB=OD,AO=CO,∴∠DAE=∠AEB,∠BAD=∠BCD=120°,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB∴△ABE为等边三角形,∴∠BAE=∠AEB=60°,AB=BE=AE,∵BC=AD=2AB,∴EC =AE =BE ,∴∠EAC =∠ECA =30°,∴∠CAD =30°,故①正确;∵∠BAD =120°,∠CAD =30°,∴∠BAC =90°,∴BO >AB ,∴OD >AB ,故②错误;∴S ▱ABCD =AB •AC =AC •CD ,故③正确;∵∠BAC =90°,BC =2AB ,∴E 是BC 的中点,∴S △BEO :S △BCD =1:4,∴S 四边形OECD :S △BCD =3:4,∴S 四边形OECD :S ▱ABCD =3:8,∵S △AOD :S ▱ABCD =1:4,∴S 四边形OECD =S △AOD ,故④正确.∵AO =OC ,BE =EC ,∴AB =2OE ,∵AD =2AB ,∴OE =AD ,故⑤正确,故选:D .二、填空题(本题共6题,每小题2分,共12分)。
中考数学复习《四边形综合问题》专项检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________1. (2023·湖北恩施)如图,矩形ABCD的对角线AC,BD交于点O,且DE//AC,AE//BD,连接OE.求证:OE⊥AD.2. [2022·长沙]如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.3. (2023春•无棣县期末)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.证明:四边形ACDE是平行四边形:4. (2023•李沧区一模)如图,D是△ABC的边AB的中点,DE//BC,CE//AB,AC与DE相交于点F,连接AB,CD.(1)求证:AD=CE;(2)当△ABC满足什么条件时,四边形ADCE是菱形?请说明理由.5. (2023•岳阳)如图,点E,F在▱ABCD的边BC,AD上,BE BC,FD AD,连接BF,DE.求证:四边形BEDF是平行四边形.6. (2023春•原州区期末)如图,矩形ABCD的对角线AC、BD相交于点O,△OAB是等边三角形,且AB=2,求矩形ABCD的面积.7. (2023春•福州期末)如图,▱ABCD的对角线AC,BD相交于点O,将△ABO平移到△DCE,已知AO=1,BO=2,AB=5.求证:四边形OCED是矩形.8. (2023春•南岗区校级)如图所示,BD是▱ABCD的对角线,AE⊥BD于点E,CF⊥BD于F(I)求证:四边形AECF是平行四边形;(2)若E是BF的中点,写出图中所有面积等于△ABE面积2倍的三角形.9. (2023•海陵区一模)已知:如图,BD是△ABC的角平分线,点E、F分别在AB、BC上,且ED ∥BC,EF∥AC.(1)求证:BE=DE;(2)当AB=AC时,试说明四边形EFCD为菱形.10. (2023春•南京期末)如图,在▱ABCD中,DE平分∠ADB,交AB于点E,BF平分∠CBD,交CD 于点F.(1)求证:DE=BF;(2)若AD=BD,求证:四边形DEBF是矩形.11. 3(2023春•永州期末)如图,在Rt△ABC中,∠ACB=90°,点D为斜边AB边上的中点,AE ∥DC,CE∥DA.(1)求证:四边形ADCE是菱形;(2)连接DE,若AC=3,BC=1.求证:△ADE是等边三角形.12. (2023春•南宁期末)如图,在正方形ABCD中,AE,DF相交于点O且AF=BE.(1)求证:∠BAE=∠ADF;(2)若∠BAE=30°,AF=2,求OD的长.13. (2023春•横山区期末)如图,在▱ABCD中,对角线AC,BD交于点O,点E,F分别是AB,BC的中点,连接EF交BD于G,连接OE,OF,证明:(1)四边形COEF是平行四边形;(2)线段OB与线段EF相互平分.14. (2023·四川广元中考)已知▱ABCD,O为对角线AC的中点,过O的一条直线交AD于点E,交BC于点F.(1)求证:△AOE≌△COF;(2)若AE:AD=1:2,△AOE的面积为2,求▱ABCD的面积.15. (2023•广元)已知▱ABCD,O为对角线AC的中点,过O的一条直线交AD于点E,交BC于点F.(1)求证:△AOE≌△COF;(2)若AE:AD=1:2,△AOE的面积为2,求▱ABCD的面积.16. (2022北京北理工附中)如图,在菱形ABCD中,E、F、G分别为边AB、AD、BC的中点,连接EF、FG、EG(1)求证:△EGF为直角三角形(2)连接ED,当103AD=,3tan4EFG∠=时,求ED的长.17. [2022·大庆]如图,在平行四边形ABCD中,AB=3,点E为线段AB的三等分点(靠近点A),点F为线段CD的三等分点(靠近点C),且CE⊥AB.将△BCE沿CE对折,BC边与AD边交于点G,且DC=DG.(1)证明:四边形AECF为矩形;(2)求四边形AECG的面积.18. (2023秋•沈阳月考)如图,在四边形ABCD中,AC=BD=7,点E,F,G,H分别为边AB,BC,CD,DA的中点,连接EG,HF,相交于点O,则EG2+FH2的值为( )A.32B.41C.36D.4919. (2023牡丹江)如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF 有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.20. (2022·贵州·玉屏侗族自治县教研室一模)【阅读理解】如图①,l1∥l2,△ABC的面积与△DBC的面积相等吗?为什么?【类比探究】如图②,在正方形ABCD的右侧作等腰△CDE,CE=DE,AD=4,连接AE,求△ADE 的面积.【拓展应用】如图③,在正方形ABCD的右侧作正方形CEFG,点B,C,E在同一直线上,AD=4,连接BD,BF,DF,直接写出△BDF的面积.21. (2023•兰州)已知正方形ABCD,E,F为平面内两点.【探究建模】(1)如图1,当点E在边AB上时,DE⊥DF,且B,C,F三点共线.求证:AE=CF;【类比应用】(2)如图2,当点E 在正方形ABCD 外部时,DE ⊥DF,AE ⊥EF,且E,C,F 三点共线.猜想并证明线段AE,CE,DE 之间的数量关系; 【拓展迁移】(3)如图3,当点E 在正方形ABCD 外部时,AE ⊥EC,AE ⊥AF,DE ⊥BE,且D,F,E 三点共线,DE 与AB 交于G 点.若DF =3,AE =,求CE 的长.答案一、解答题(本大题共21道小题) 1. 【详解】证明:DE//AC,AE//BD∴四边形AODE 是平行四边形,四边形ABCD 是矩形,∴OA=OD=21AC=21BD∴平行四边形AODE 是菱形,∴OE ⊥AD.2. 解:(1)证明:∵△AOB 为等边三角形 ∴∠BAO=∠ABO=60°,OA=OB ∵四边形ABCD 是平行四边形 ∴OB=OD=21BD,OA=OC=21AC∴BD=AC,∴▱ABCD 是矩形.(2)∵▱ABCD 是矩形,∴∠BAD=90° ∵∠ABO=60°,∴AD=3AB=43.3. 证明:∵四边形ABCD 是菱形,∴AB ∥CD,AC ⊥BD,∴AE ∥CD,∵DE ⊥BD ∴DE ∥AC,∴四边形ACDE 是平行四边形;4. (1)证明:DE//BC,CE//AB∴四边形BCED 是平行四边形,BC=CE,D 是△ABC 的边AB 的中点,AD=BD,AD=CE;(2)解:当△ABC 满足△ABC 是直角三角形,∠ACB=90o时,四边形ADCE 是菱形;理由如下: 由(1)得:AD//CE,AD=CE∴四边形ADCE 是平行四边形,∠ACB=90o ,D 是△ABC 的边AB 的中点,CD=12AB=AD ∴四边形ADCE 是菱形.5. 见解析。
中考数学一轮复习平行四边形复习题及答案一、选择题1.如图,在平行四边形ABCD 中,120C ∠=︒,28AD AB ==,点H 、G 分别是边AD 、BC 上的动点.连接AH 、HG ,点E 为AH 的中点,点F 为GH 的中点,连接EF .则EF 的最大值与最小值的差为( )A .2B .232-C .3D .43-2.如图,点E 在正方形ABCD 外,连接AE BE DE ,,,过点A 作AE 的垂线交DE 于F ,若210AE AF BF ===,,则下列结论不正确的是( )A .AFD AEB ∆≅∆B .点B 到直线AE 的距离为2C .EB ED ⊥ D .16AFD AFB S S ∆∆+=+3.如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形1111D C B A ,又顺次连接正方形1111D C B A 四边中点得到第二个正方形2222A B C D ,……,以此类推,则第六个正方形6666A B C D 的面积是( )A .164B .116C .132D .184.如图所示,在Rt ABC ∆中,90ABC ︒∠=,30BAC ︒∠=,分别以直角边AB 、斜边AC 为边,向外作等边ABD ∆和等边ACE ∆,F 为AC 的中点,DE 与AC 交于点O ,DF 与AB 交于点G .给出如下结论:①四边形ADFE 为菱形;②DF AB ⊥;③14AO AE =;④4CE FG =;其中正确的是( )A .①②③B .①②④C .①③④D .②③④ 5.平行四边形的一边长是12,那么这个平行四边形的两条对角线的长可以是( )A .10和34B .18和20C .14和10D .10和12 6.如图,在平面直角坐标系中,A 点坐标为(8,0),点P 从点O 出发以1个单位长度/秒的速度沿y 轴正半轴方向运动,同时,点Q 从点A 出发以1个单位长度/秒的速度沿x 轴负半轴方向运动,设点P 、Q 运动的时间为(08)t t <<秒.以PQ 为斜边,向第一象限内作等腰Rt PBQ ∆,连接OB .下列四个说法:①8OP OQ +=;②B 点坐标为(4,4);③四边形PBQO 的面积为16;④PQ OB >.其中正确的说法个数有( )A .4B .3C .2D .17.如图,直角梯形ABCD 中AD ∥BC ,∠D =90°.∠A 的平分线交DC 于E ,EF ⊥AB 于F .已知AD =3.5cm ,DC =4cm ,BC =6.5cm .那么四边形BCEF 的周长是( )A .10cmB .11cmC .11.5cmD .12cm8.如图,在一张矩形纸片ABCD 中,4AB =,8BC =,点E ,F 分别在AD , BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分DCH ∠;③线段BF 的取值范围为34BF ≤≤;④当点H 与点A 重合时,25EF =.以上结论中,你认为正确的有( )个.A .1B .2C .3D .49.如图,在菱形ABCD 中,5AB cm =,120ADC =∠︒,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1/cm s ,点F 的速度为2/cm s ,经过t 秒DEF ∆为等边三角形,则t 的值为( )A .34B .43C .32D .5310.如图,△A 1B 1C 1中,A 1B 1=4,A 1C 1=5,B 1C 1=7.点A 2、B 2、C 2分别是边B 1C 1、A 1C 1、A 1B 1的中点;点A 3、B 3、C 3分别是边B 2C 2、A 2C 2、A 2B 2的中点;……;以此类推,则第2019个三角形的周长是( )A .201412 B .201512 C .201612 D .201712二、填空题11.如图,在矩形ABCD 中,4AB =,2AD =,E 为边CD 的中点,点P 在线段AB 上运动,F 是CP 的中点,则CEF ∆的周长的最小值是____________.12.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.13.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDG FDG S S =,正确的有__________________.14.如图,在等边ABC 和等边DEF 中,FD 在直线AC 上,33,BC DE ==连接,BD BE ,则BD BE +的最小值是______.15.如图,直线1l ,2l 分别经过点(1,0)和(4,0)且平行于y 轴.OABC 的顶点A ,C 分别在直线1l 和2l 上,O 是坐标原点,则对角线OB 长的最小值为_________.16.如图,在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,以BC 为一边作正方形BDEC 设正方形的对称中心为O ,连接AO ,则AO =_____.17.菱形ABCD 的周长为24,∠ABC=60°,以AB 为腰在菱形外作底角为45°的等腰△ABE ,连结AC ,CE ,则△ACE 的面积为___________.18.已知:如图,在ABC 中,AD BC ⊥,垂足为点D ,BE AC ⊥,垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED ,设4AB =,30DAC ∠=︒则EM =______;EDM 的面积为______,19.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,E 为AC 上一点,BE 平分∠ABO ,EF ⊥BC 于点F ,∠CAD =45°,EF 交BD 于点P ,BP =5,则BC 的长为_______.20.如图所示,在四边形ABCD 中,顺次连接四边中点E 、F 、G 、H ,构成一个新的四边形,请你对四边形ABCD 添加一个条件,使四边形EFGH 成一个菱形,这个条件是__________.三、解答题21.在四边形ABCD 中,90A B C D ∠∠∠∠====,10AB CD ==,8BC AD ==.()1P 为边BC 上一点,将ABP 沿直线AP 翻折至AEP 的位置(点B 落在点E 处) ①如图1,当点E 落在CD 边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B 铅笔加粗加黑).并直接写出此时DE =______; ②如图2,若点P 为BC 边的中点,连接CE ,则CE 与AP 有何位置关系?请说明理由; ()2点Q 为射线DC 上的一个动点,将ADQ 沿AQ 翻折,点D 恰好落在直线BQ 上的点'D 处,则DQ =______;22.综合与探究 如图1,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF ,解答下列问题:(1)研究发现:如果AB AC =,90BAC ∠=︒①如图2,当点D 在线段BC 上时(与点B 不重合),线段CF 、BD 之间的数量关系为______,位置关系为_______.②如图3,当点D 在线段BC 的延长线上时,①中的结论是否仍成立并说明理由. (2)拓展发现:如果AB AC ≠,点D 在线段BC 上,点F 在ABC ∆的外部,则当ACB =∠_______时,CF BD ⊥.23.如图,平行四边形ABCD 的对角线AC BD 、交于点O ,分别过点C D 、作//,//CF BD DF AC ,连接BF 交AC 于点E .(1)求证: FCE BOE ≌;(2)当ADC ∠等于多少度时,四边形OCFD 为菱形?请说明理由.24.在矩形ABCD 中,AE ⊥BD 于点E ,点P 是边AD 上一点,PF ⊥BD 于点F ,PA =PF . (1)试判断四边形AGFP 的形状,并说明理由.(2)若AB =1,BC =2,求四边形AGFP 的周长.25.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,AE =AD ,作DF ⊥AE 于点F . (1)求证:AB =AF ;(2)连BF 并延长交DE 于G .①EG =DG ;②若EG =1,求矩形ABCD 的面积.26.如图平行四边形ABCD ,E ,F 分别是AD ,BC 上的点,且AE =CF ,EF 与AC 交于点O . (1)如图①.求证:OE =OF ;(2)如图②,将平行四边形ABCD (纸片沿直线EF 折叠,点A 落在A 1处,点B 落在点B 1处,设FB 交CD 于点G .A 1B 分别交CD ,DE 于点H ,P .请在折叠后的图形中找一条线段,使它与EP 相等,并加以证明;(3)如图③,若△ABO 是等边三角形,AB =4,点F 在BC 边上,且BF =4.则CF OF= (直接填结果).27.直线1234,,,,l l l l 是同一平面内的一组平行线.(1)如图1.正方形ABCD 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点A ,点C 分别在直线1l 和4l 上,求正方形的面积;(2)如图2,正方形ABCD 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为123h h h ,,.①求证:13h h =;②设正方形ABCD 的面积为S ,求证222211 2 2 S h h h h =++.28.已知,如图,在三角形ABC ∆中,20AB AC cm ==,BD AC ⊥于D ,且16BD cm =.点M 从点A 出发,沿AC 方向匀速运动,速度为4/cm s ;同时点P 由B 点出发,沿BA 方向匀速运动,速度为1/cm s ,过点P 的动直线//PQ AC ,交BC 于点Q ,连结PM ,设运动时间为()t s ()05t <<,解答下列问题:(1)线段AD =_________cm ;(2)求证:PB PQ =;(3)当t 为何值时,以P Q D M 、、、为顶点的四边形为平行四边形?29.如图,点A 的坐标为(6,6)-,AB x ⊥轴,垂足为B ,AC y ⊥轴,垂足为C ,点,D E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,45DAE ︒∠=.(1)如图1,当点D 在线段BO 上时,求DOE ∆的周长;(2)如图2,当点D 在线段BO 的延长线上时,设ADE ∆的面积为1S ,DOE ∆的面积为2S ,请猜想1S 与2S 之间的等量关系,并证明你的猜想.30.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。
中考数学总复习《四边形》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________一、解答题:1.如图,在▱ABCD中AB=5,AD=3√ 2,∠A=45°.(1)求出对角线BD的长;(2)尺规作图:将四边形ABCD沿着经过A点的某条直线翻折,使点B落在CD边上的点E处,请作出折痕.(不写作法,保留作图痕迹)2.如图,B是AC的中点,点D、E在AC同侧AE=BD,BE=CD.(1)求证:△ABE≌△BCD;(2)连接DE,求证:四边形BCDE为平行四边形.3.如图,在矩形ABCD中BE⊥AC,DF⊥AC垂足分别为E、F.求证:AF=CE.4.如图,点E、F、G、H分别是平行四边形ABCD各边的中点,连接AF、CE相交于点M,连接AG、CH相交于点N.(1)求证:四边形AMCN是平行四边形;(2)若▱AMCN的面积为4,求▱ABCD的面积.5.如图,在▱ABCD中,点E,F分别是边AB,CD的中点.求证:AF=CE.6.如图A、D、B、F在一条直线上,DE//CB,BC=DE,AD=BF.(1)求证:△ABC≌△FDE;(2)连接AE、CF,求证四边形AEFC为平行四边形.7.如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.8.操作:第一步:如图1,对折长方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开.第二步:如图2,再一次折叠纸片,使点A落在EF上的N处,并使折痕经过点B,得到折痕BM,同时得到线段BN.连结AN,易知△ABN的形状是______.论证:如图3,若延长MN交BC于点P,试判定△BMP的形状,请说明理由.9.如图,点E、F、G、H分别是平行四边形ABCD各边的中点,连接AF,CE相交于点M,连接AG、CH相交于点N.(1)求证:四边形AMCN是平行四边形;(2)若□AMCN的面积为4,求□ABCD的面积.10.如图,矩形ABCD是一张A4纸,其中AD=√ 2AB,小天用该A4纸玩折纸游戏.游戏1折出对角线BD,将点B翻折到BD上的点E处,折痕AF交BD于点G.展开后得到图①,发现点F恰为BC 的中点.游戏2在游戏1的基础上,将点C翻折到BD上,折痕为BP;展开后将点B沿过点F的直线翻折到BP上的点H 处;再展开并连接GH后得到图②,发现∠AGH是一个特定的角.(1)请你证明游戏1中发现的结论;(2)请你猜想游戏2中∠AGH的度数,并说明理由.11.如图,在□ABCD中,点E,F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.12.如图,在▱ABCD中BE、DG分别平分∠ABC、∠ADC,交AC于点E、G.(1)求证:BE//DG,BE=DG;(2)过点E作EF⊥AB,垂足为F.若▱ABCD的周长为56,EF=6,求△ABC的面积.13.如图,线段DE与AF分别为△ABC的中位线与中线.(1)当线段AF与BC满足怎样的数量关系时,四边形ADFE为矩形?请说明理由.14.某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1∶2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为x m(如图).(1)若矩形养殖场的总面积为36m2,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?15.如图,矩形ABCD中AB=4,AD=3点E在折线BCD上运动,将AE绕点A顺时针旋转得到AF,旋转角等于∠BAC,连接CF.(1)当点E在BC上时,作FM⊥AC,垂足为M,求证:AM=AB;(2)当AE=3√ 2时,求CF的长;(3)连接DF,点E从点B运动到点D的过程中,试探究DF的最小值.16.如图,将矩形ABCD沿对角线AC折叠,点B的对应点为点E,AE与CD交于点F.(1)求证:△DAF≌△ECF;(2)若∠FCE=40°,求∠CAB的度数.17.在四边形ABCD中,O是边BC上的一点.若△OAB≌△OCD,则点O叫做该四边形的“等形点”.(1)正方形______“等形点”(填“存在”或“不存在”);(2)如图在四边形ABCD中边BC上的点O是四边形ABCD的“等形点”.已知CD=4√ 2OA=5BC=12连接AC求AC的长;(3)在四边形EFGH中EH//FG.若边FG上的点O是四边形EFGH的“等形点”求OF的值.OG18.如图1矩形ABCD中AB=5AD=3将△ABC绕点A旋转到△AB′C′位置设AC′交直线CD于点M.(1)当点B′恰好落在DC边上时求△AB′C′与矩形ABCD重叠部分的面积;(2)如图2当点C B′C′恰好在一直线上时求DM的长度.19.操作:第一步:如图1对折长方形纸片ABCD使AD与BC重合得到折痕EF把纸片展开.第二步:如图2再一次折叠纸片使点A落在EF上的N处并使折痕经过点B得到折痕BM同时得到线段BN.连接AN(1)易知△ABN的形状是______.(2)论证:如图3若延长MN交BC于点P试判定△BMP的形状请说明理由.答案和解析1.【答案】解:(1)如图所示连接BD过D作DH⊥AB于H∵∠A=45°∠AHD=90°∴∠ADH=45°=∠A∴△ADH是等腰直角三角形又∵AD=3√ 2∴AH=DH=3∴BH=AB−AH=5−3=2∴Rt△BDH中BD=√ 32+22=√ 13;(2)如图所示AG即为所求.【解析】(1)连接BD过D作DH⊥AB于H依据等腰直角三角形以及勾股定理即可得到BD的长;(2)以A为圆心AB的长为半径画弧交CD于E;分别以B E为圆心适当的长为半径画弧两弧交于点F;作射线AF交BC于G则AG即为折痕.本题主要考查了平行四边形的性质以及轴对称变换掌握平行四边形的性质以及轴对称的性质是解决问题的关键.2.【答案】证明:(1)∵B是AC的中点∴AB=BC在△ABE与△BCD中{AE=BD BE=CD AB=BC,∴△ABE≌△BCD(SSS);(2)∵△ABE≌△BCD∴∠ABE=∠BCD∴BE//CD∵BE=CD∴四边形BCDE为平行四边形.【解析】(1)根据线段中点的定义得到AB=BC根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到∠ABE=∠BCD根据平行线的判定定理得到BE//CD根据平行四边形的判定定理即可得到结论.本题考查了全等三角形的判定和性质平行四边形的判定熟练掌握全等三角形的判定和性质定理是解题的关键.3.【答案】证明:∵四边形ABCD是矩形∴AB=CD AB//CD∴∠BAE=∠DCF.又BE⊥AC DF⊥AC∴∠AEB=∠CFD=90°.在△ABE与△CDF中{∠AEB=∠CFD ∠BAE=∠DCF AB=CD∴△ABE≌△CDF(AAS)∴AE=CF∴AE+EF=CF+EF即AF=CE.【解析】由全等三角形的判定定理AAS证得△ABE≌△CDF可得AE=CF即可解决问题.本题考查了全等三角形的判定与性质熟练掌握三角形全等的判定方法并准确识图是解题的关键.4.【答案】解:(1)∵点E F G H分别是平行四边形ABCD各边的中点∴AH//CF AH=CF∴四边形AFCH是平行四边形∴AM//CN同理可得四边形AECG是平行四边形∴AN//CM∴四边形AMCN是平行四边形;(2)如图所示连接AC∵H G分别是AD CD的中点∴点N是△ACD的重心∴CN=2HN∴S△ACN=23S△ACH又∵CH是△ACD的中线∴S△ACN=13S△ACD又∵AC是平行四边形AMCN和平行四边形ABCD的对角线∴S平行四边形AMCN =13S平行四边形ABCD又∵▱AMCN的面积为4∴▱ABCD的面积为12.【解析】(1)依据四边形AFCH是平行四边形可得AM//CN依据四边形AECG是平行四边形可得AN//CM进而得出四边形AMCN是平行四边形;(2)连接AC依据三角形重心的性质即可得到S△ACN=23S△ACH再根据CH是△ACD的中线即可得出S△ACN=13S△ACD进而得到S平行四边形AMCN=13S平行四边形ABCD依据▱AMCN的面积为4即可得出结论.本题主要考查了平行四边形的判定与性质以及三角形重心性质的运用解决问题的关键是掌握平行四边形的判定方法以及三角形重心性质.5.【答案】证明:∵四边形ABCD是平行四边形∴AB//CD AB=CD∵点E F分别是边AB CD的中点∴AE=CF又∵AE//CF∴四边形AECF是平行四边形∴AF=CE.【解析】本题考查了平行四边形的判定和性质灵活运用平行四边形的判定是解题的关键.由平行四边形的性质可得AB//CD AB=CD由中点的定义可得AE=CF即可证四边形AECF是平行四边形进而可证明AF=CE.6.【答案】证明:(1)∵AD=BF∴AD+DB=DB+BF∴AB=FD∵DE//CB∴∠ABC=∠FDE∵BC=DE∴△ABC≌△FDE(SAS)(2)如图:由(1)知△ABC≌△FDE∴∠CAB=∠EFD AC=EF∴AC//EF∴四边形ABCD为平行四边形.【解析】(1)由SAS可证△ABC≌△FDE;(2)结合(1)用一组对边平行且相等的四边形是平行四边形可解答.本题考查全等三角形判定与性质和平行四边形判定解题的关键是掌握全等三角形判定定理和平行四边形判定定理.7.【答案】证明:(1)∵四边形ABCD为平行四边形∴AB=CD AB//CD∴∠ABD=∠CDB在△ABE和△CDF中{AB=CD∠ABE=∠CDF BE=DF∴△ABE≌△CDF(SAS);(2)由(1)可知△ABE≌△CDF∴AE=CF∠AEB=∠CFD∴∠AEF=∠CFE∴AE//CF∵AE=CF AE//CF∴四边形AECF是平行四边形.【解析】本题考查的是平行四边形的判定和性质全等三角形的判定和性质掌握平行四边形的对边平行且相等一组对边平行且相等的四边形是平行四边形是解题的关键.(1)根据平行四边形的性质得到AB=CD AB//CD根据平行线的性质得到∠ABD=∠CDB利用SAS 证明△ABE≌△CDF;(2)根据全等三角形的性质得到AE=CF∠AEB=∠CFD推出∠AEF=∠CFE根据平行线的判定定理证明AE//CF再根据平行四边形的判定定理证明结论.8.【答案】解:操作:如图2∵直线EF是AB的垂直平分线∴NA=NB由折叠可知BN=AB∠NBM=∠ABM∠BAM=∠BNM=90°∴AB=BN=AN∴△ABN是等边三角形故答案为:等边三角形;论证:△BMP是等边三角形理由如下:如图3∵△ABN是等边三角形∴∠ABN=60°∴∠NBM=∠ABM=12∠ABN=30°∵∠NBP=∠ABP−∠ABN=30°∠BNP=90°∴∠BPM=∠MBP=60°∴△BMP是等边三角形.【解析】本题考查了翻折变换等边三角形的性质矩形的性质直角三角形的性质灵活运用这些性质解决问题是解题的关键.操作:由折叠的性质可得NA=NB=AB可得△ABN是等边三角形;论证:由直角三角形的性质可求∠BPM=∠MBP=60°可得△BMP是等边三角形.9.【答案】(1)证明:∵点E F G H分别是平行四边形ABCD各边的中点∴AH//CF AH=CF ∴四边形AFCH是平行四边形∴AM//CN同理可得四边形AECG是平行四边形∴AN//CM∴四边形AMCN是平行四边形;(2)解:如图所示连接AC∵H G分别是AD CD的中点∴点N是△ACD的重心∴CN=2HN∴S△ACN=23S△ACH又∵CH是△ACD的中线∴S△ACN=13S△ACD又∵AC是□AMCN和□ABCD的对角线∴S▫AMCN=13S▫ABCD又∵□AMCN的面积为4∴□ABCD的面积为12.10.【答案】(1)证明:由折叠的性质可得AF⊥BD∴∠AGB=90°∵四边形ABCD是矩形∴∠BAD=∠ABC=90°∴∠BAG=∠ADB=∠GBF∵AD=√ 2AB设AB=a则AD=√ 2a BD=√ 3a∴sin∠BAG=sin∠ADB即BGAB =ABBD∴BGa=√ 3a解得BG=√ 33a根据勾股定理可得AG=√ 63acos∠GBF=cos∠BAG即BGBF =AGAB∴√ 33aBF=√ 63aa.解得BF=√ 22a∵BC=AD=√ 2a∴BF=12BC∴点F为BC的中点.(2)解:∠AGH=120°理由如下:连接HF如图:由折叠的性质可知∠GBH=∠FBH BF=HF∴∠FBH=∠FHB∴∠GBH=∠BHF∴BD//HF∴∠DGH=∠GHF 由(1)知AF⊥BD可得AF⊥HF∴∠AGD=90°设AB=a则AD=√ 2a=BC BF=HF=√ 22a∴BG=√ 3 3a∴GF=√ 6 6a在Rt△GFH中tan∠GHF=GFHF=√ 66a√ 22a=√ 33∴∠GHF=30°∵BD//HF∴∠DGH=30°∴∠AGH=∠AGD+∠DGH=90°+30°=120°.【解析】(1)由折叠的性质可得AF⊥BD根据题意可得∠BAG=∠ADB=∠GBF再设AB=a然后表示出AD BD再由锐角三角函数求出BF即可;(2)由折叠的性质可知∠GBH=∠FBH BF=HF从而可得出∠GBH=∠BHF进而得到BD//HF∠DGH=∠GHF由(1)知AF⊥BD可得AF⊥HF在Rt△GFH中求出∠GHF的正切值即可解答.本题考查矩形的性质折叠的性质勾股定理锐角三角函数熟练掌握以上知识是解题关键.11.【答案】证明:(1)∵四边形ABCD为平行四边形∴AB=CD AB//CD∴∠ABD=∠CDB在△ABE和△CDF中{AB=CD∠ABE=∠CDF BE=DF∴△ABE≌△CDF(SAS);(2)由(1)可知△ABE≌△CDF∴AE=CF∠AEB=∠CFD∴∠AEF=∠CFE∴AE//CF∵AE=CF AE//CF∴四边形AECF是平行四边形.【解析】本题考查的是平行四边形的判定和性质全等三角形的判定和性质掌握平行四边形的对边平行且相等一组对边平行且相等的四边形是平行四边形是解题的关键.(1)根据平行四边形的性质得到AB=CD AB//CD根据平行线的性质得到∠ABD=∠CDB利用SAS 证明△ABE≌△CDF;(2)根据全等三角形的性质得到AE=CF∠AEB=∠CFD推出∠AEF=∠CFE根据平行线的判定定理证明AE//CF再根据平行四边形的判定定理证明结论.12.【答案】(1)证明:在▱ABCD中AD//BC∠ABC=∠ADC∴∠DAC=∠BCA AD=BC∵BE DG分别平分∠ABC∠ADC∴∠ADG=∠CBE∵∠DGE=∠DAC+∠ADG∠BEG=∠BCA+∠CBE∴∠DGE=∠BEG∴BE//DG;在△ADG和△CBE中{∠DAG=∠BCE AD=CB∠ADG=∠CBE,∴△ADG≌△CBE(ASA)∴BE=DG;(2)解:过E点作EH⊥BC于H∵BE平分∠ABC EF⊥AB∴EH=EF=6∵▱ABCD的周长为56∴AB+BC=28∴S△ABC=12AB⋅EF+12BC⋅EH=12EF(AB+BC)=12×6×28=84.【解析】本题主要考查平行四边形的性质角平分线的定义与性质三角形的面积全等三角形的判定与性质掌握平行四边形的性质是解题的关键.(1)根据平行四边形的性质可得∠DAC=∠BCA AD=BC由角平分线的定义及三角形外角的性质可得∠DGE=∠BEG进而可证明BE//DG;利用ASA证明△ADG≌△CBE可得BE=DG;(2)过E点作EH⊥BC于H由角平分线的性质可求解EH=EF=6根据平行四边形的性质可求解AB+ BC=28再利用三角形的面积公式计算可求解.13.【答案】(1)AF=12BC.14.【答案】【小题1】解:根据题意知较大矩形的宽为2x m 长为24−x−2x3=(8−x )m∴(x +2x)(8−x)=36 解得x 1=2 x 2=6 又∵0<3x ≤10∴0<x ≤103∴x =2.答:此时x 的值为2; 【小题2】设矩形养殖场的总面积是y m 2则y =(x +2x)(8−x)=−3(x −4)2+48 ∵−3<0 对称轴为x =4 ∴当x <4时 y 随x 的增大而增大∵0<x ≤103∴当x =103时 y 取最大值 最大值为−3×(103−4)2+48=1403. 答:当x =103时 矩形养殖场的总面积最大 最大值为1403m 2.15.【答案】(1)证明:如图1中 作FM ⊥AC 垂足为M∵四边形ABCD 是矩形∴∠B =90° ∵FM ⊥AC∴∠B=∠AMF=90°由旋转可得∠BAC=∠EAF∴∠BAE=∠MAF 在△ABE和△AMF中{∠B=∠AMF ∠BAE=∠MAF AE=AF∴△ABE≌△AMF∴AB=AM;(2)解:当点E在BC上在Rt△ABE中AB=4AE=3√ 2∴BE=√ AE2−AB2=√ (3√ 2)2−42=√ 2∵△ABE≌△AMF∴AB=AM=4FM=BE=√ 2在Rt△ABC中AB=4BC=3∴AC=√ AB2+BC2=√ 42+32=5∴CM=AC−AM=5−4=1∵∠CMF=90∘∴CF=√ CM2+FM2=√ 12+(√ 2)2=√ 3.当点E在CD上时作FH⊥AC于点H∵AE=AF=3√ 2AD=3由勾股定理易得DE=AD=AH=FH=3∵AC=5∴CH=5−3=2在Rt△CHF中CF=√ FH2+CH2=√ 32+22=√ 13.综上所述CF的值为√ 3或√ 13;(3)解:当点E在BC上时如图2中过点D作DH⊥FM于点H.∵△ABE≌△AMF∴AM=AB=4∵∠AMF=90°∴点F在射线FM上运动当点F与H重合时DF的值最小∵∠CMJ=∠ADC=90°∠MCJ=∠ACD∴△CMJ∽△CDA∴CMCD=MJAD=CJAC ∴14=MJ3=CJ5∴MJ=34CJ=54∴DJ=CD−CJ=4−54=114∵∠CMJ=∠DHJ=90°∠CJM=∠DJH ∴△CMJ∽△DHJ∴CMDH=CJDJ∴1DH=54114∴DH=11 5∴DF的最小值为115.当点E在线段CD上时如图3中将线段AD绕点A顺时针旋转旋转角为∠BAC得到线段AR连接FR过点D作DQ⊥AR于点Q DK⊥FR于点K.∵∠EAF=∠BAC∠DAR=∠BAC∴∠EAF=∠DAR∴∠DAE=∠RAF∵AE=AF AD=AR∴△ADE≌△ARF∴∠ADE=∠ARF=90°∴点F在直线RF上运动当点D与K重合时DF的值最小∵DQ⊥AR DK⊥RF∴∠R=∠DQR=∠DKR=90°∴四边形DKRQ是矩形∴DK=QR∴AQ=AD⋅cos∠BAC=3×45=125∵AR=AD=3∴DK=QR=AR−AQ=3 5∴DF的最小值为35∵35<115∴DF的最小值为35.【解析】本题属于四边形综合题考查了矩形的判定和性质旋转的性质全等三角形的判定和性质解直角三角形等知识解题的关键是学会添加常用辅助线构造全等三角形解决问题属于中考压轴题.(1)作FM⊥AC垂足为M证明△ABE≌△AMF可得结论;(2)分两种情况:当点E在BC上时利用勾股定理求出BE=√ 2利用全等三角形的性质推出AB=AM=4FM=BE=√ 2再利用勾股定理求出CF即可;当点E在CD上时作FH⊥AC于点H易得DE=AD=AH=FH=3在Rt△CHF中利用勾股定理求CF即可;(3)分两种情形:当点E在BC上时过点D作DH⊥FM于点H.证明点F在射线FM上运动当点F与H重合时DH的值最小求出DH即可;当点E在线段CD上时将线段AD绕点A顺时针旋转旋转角为∠BAC得到线段AR连接FR过点D作DQ⊥AR于点Q DK⊥FR于点K.证明△ADE≌△ARF推出∠ADE=∠ARF=90°推出点F在直线RF上运动当点D与K重合时DF的值最小可得结论.16.【答案】解:(1)证明:已知矩形ABCD沿对角线AC折叠则AD=BC=EC∠D=∠B=∠E=90°在△DAF和△ECF中{∠DFA=∠EFC ∠D=∠EDA=EC∴△DAF≌△ECF(AAS);(2)∵△DAF≌△ECF∴∠DAF=∠ECF=40°∵四边形ABCD是矩形∴∠DAB=90°∴∠EAB=∠DAB−∠DAF=90°−40°=50°∵∠EAC=∠CAB∴∠CAB=25°.【解析】本题考查矩形的性质全等三角形的判定和性质翻折变换等知识解题的关键是正确寻找全等三角形解决问题属于中考常考题型.(1)根据AAS证明三角形全等即可;(2)利用全等三角形的性质求解即可.17.【答案】解:(1)不存在;(2)作AH⊥BO于H∵边BC上的点O是四边形ABCD的“等形点”∴△OAB≌△OCD∴AB=CD=4√ 2OA=OC=5∵BC=12∴BO=7设OH=x则BH=7−x由勾股定理得(4√ 2)2−(7−x)2=52−x2解得x=3∴OH=3∴AH=4∴CH=8在Rt△CHA中AC=√ AH2+CH2=√ 42+82=4√ 5;(3)如图∵边FG上的点O是四边形EFGH的“等形点”∴△OEF≌△OGH∴∠EOF=∠HOG OE=OG∠OGH=∠OEF∵EH//FG∴∠HEO=∠EOF∠EHO=∠HOG∴∠HEO=∠EHO∴OE=OH∴OH=OG∴OE=OF∴OFOG=1.【解析】本题是新定义题主要考查了全等三角形的性质正方形的性质勾股定理平行线的性质等知识理解新定义并能熟练掌握全等三角形的性质是解题的关键.(1)根据“等形点”的定义可知△OAB≌△OCD则∠OAB=∠C=90°而O是边BC上的一点.从而得出正方形不存在“等形点”;(2)作AH⊥BO于H由△OAB≌△OCD得AB=CD=4√ 2OA=OC=5设OH=x则BH= 7−x由勾股定理得(4√ 2)2−(7−x)2=52−x2求出x的值再利用勾股定理求出AC的长即可;(3)根据“等形点”的定义可得△OEF≌△OGH则∠EOF=∠HOG OE=OG∠OGH=∠OEF再由平行线性质得OE=OH从而推出OE=OH=OG从而解决问题.18.【答案】解:(1)作C′H⊥DC于H如图:∵△ABC绕点A旋转到△AB′C′∴AB′=AB=5B′C′=BC=3∴DB′=√ AB′2−AD2=√ 52−32=4∵∠C′B′H=90°−∠DB′A=∠DAB′∠CHB′=90°=∠D∴△C′HB′∽△B′DA∴C′H DB′=B′C′AB′即C′H4=35∴C′H=125∴S△B′C′MS△AB′M=C′HAD=1253=45∵S△AB′C′=S△B′C′M+S△AB′M=12AB′⋅B′C′=152∴S△AB′M=59S△AB′C′=256;∴△AB′C′与矩形ABCD重叠部分的面积是256;(2)作CN⊥AC′如图:∵△ABC绕点A旋转到△AB′C′∴AB′=AB=5AC′=AC=√ AB2+BC2=√ 34∠AB′C′=∠B=90°=∠AB′C B′C′=BC=3∴CC′=2B′C′=6∵2S△ACC′=CC′⋅AB′=AC′⋅CN∴CN=CC′⋅AB′AC′=√ 34=√ 34∵∠CMN=∠AMD∠CNM=∠ADM=90°∴△CMN∽△AMD∴CNAD=CMAM∴CN 2AD2=CM2AM2即CN2⋅AM2=AD2⋅CM2设DM=x∴(√ 34)2×(x2+32)=32(x+5)2化简得:33x2−170x+25=0解得:x=5(舍去)或x=533答:DM的长度为533.【解析】(1)作C′H⊥DC于H证明△C′HB′∽△B′DA可得C′H4=35C′H=125即得S△B′C′MS△AB′M=C′HAD=125 3=45而S△AB′C′=12AB′⋅B′C′=152故S△AB′M=59S△AB′C′=256;(2)作CN⊥AC′由△ABC绕点A旋转到△AB′C′得AB′=AB=5AC′=AC=√ AB2+BC2=√ 34∠AB′C′=∠B=90°=∠AB′C B′C′=BC=3用面积法可得CN=CC′⋅AB′AC′=√ 34证明△CMN∽△AMD有CNAD =CMAM故C N2⋅AM2=AD2⋅CM2设DM=x故(√ 34)2×(x2+32)=32(x+5)2即可得DM的长度为533.本题考查矩形的性质涉及旋转变换相似三角形的判定与旋转解题的关键是掌握旋转的旋转能熟练应用相似三角形判定定理.19.【答案】(1)等边三角形;(2)△BMP是等边三角形理由如下:如图3∵直线EF是AB的垂直平分线∴NA=NB由折叠可知BN=AB∠NBM=∠ABM∠BAM=∠BNM=90°∴AB=BN=AN∠BNP=90°∴△ABN是等边三角形∴∠ABN=60°∴∠NBM=∠ABM=12∠ABN=30°∵∠NBP=∠ABP−∠ABN=30°∠BNP=90°∴∠BPM=∠MBP=60°∴△BMP是等边三角形.【解析】【分析】本题考查了翻折变换,等边三角形的判定,矩形的性质,直角三角形的性质,灵活运用这些性质解决问题是解题的关键.(1)操作:由折叠的性质可得NA=NB=AB,可得△ABN是等边三角形;(2)论证:由直角三角形的性质可求∠BPM=∠MBP=60°,可得△BMP是等边三角形.【解答】解:(1)△ABN是等边三角形操作:如图2∵直线EF是AB的垂直平分线∴NA=NB由折叠可知:BN=AB∴AB=BN=AN∴△ABN是等边三角形故答案为:等边三角形;(2)论证见答案.。
中考数学一轮复习《四边形》综合复习练习题(含答案)一、单选题1.一个多边形的内角和为900°,则这个多边形是( )A .七边形B .八边形C .九边形D .十边形 2.如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和的度数分别为α,β,则正确的是( )A .0αβ-=B .0αβ-<C .0αβ->D .无法比较α与β的大小3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED ′等于( )A .50°B .55°C .60°D .65°4.若一个正多边形的一个外角是60°,则这个正多边形的边数是( )A .10B .9C .8D .65.如图,四边形ABCD 是平行四边形,下列结论中正确的是( )A .当ABCD 是矩形时,90BAC ∠=︒B .当ABCD 是菱形时,AB BC ⊥ C .当ABCD 是正方形时,AC BD = D .当ABCD 是菱形时,AB AC =6.如图,在正方形ABCD 中,AE 平分BAC ∠交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE AF =,则CDF ∠的度数为( )A .45︒B .60︒C .67.5︒D .775︒.7.如图,要拧开一个边长为()=6mm a a 的正六边形,扳手张开的开口b 至少为( )A .43mmB .63mmC . 42mmD . 12mm8.如图,菱形ABCD 中,∠BAD = 60°,AB = 6,点E ,F 分别在边AB ,AD 上,将△AEF 沿EF 翻折得到△GEF ,若点G 恰好为CD 边的中点,则AE 的长为( )A .34B .214C 3154D .39.以下说法不正确的是( )A .平行四边形是抽对称图形B .矩形对角线相等C .正方形对角线互相垂直平分D .菱形四条边相等10.陈师傅应客户要求加工4个长为4cm 、宽为3cm 的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A.B.C.D.11.如图,AB是半圆O的直径,以弦AC为折痕折叠AC后,恰好经过点O,则AOC∠等于()A.120°B.125°C.130°D.145°12.如图,在平面直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数kyx=(k≠0,x>0)的图像上,点D的坐标为(﹣3,1),则k的值为()A.53B.3-C.3D.53-二、填空题13.如果一个多边形的每一个外角都是60︒,那么这个多边形的边数是_______.14.如图,在矩形ABCD中,E是AD边上一点,且2AE DE=,BD与CE相交于点F,若DEF 的面积是3,则BCF △的面积是______.15.如果正多边形的一个外角是45︒,则这个正多边形的内角和是________︒.16.巧板是我国古代劳动人民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组成.如图是利用七巧板拼成的正方形,随机向该图形内抛一枚小针,则针尖落在阴影部分的概率为 _____.17.如图,四边形ABCD 是菱形,42BD =,26AD =,点E 是CD 边上的一动点,过点E 作EF ⊥OC 于点F ,EG ⊥OD 于点G ,连接FG ,则FG 的最小值为_________.18.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点O 作OE AC ⊥交AD 于点E ,若4AB =,8BC =,则DE 的长为______.19.已知ABC 中,65A ∠=︒,将B C ∠∠、按照如图所示折叠,若35ADB '∠=︒,则123∠+∠+∠=_____︒.CE ,F 20.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,5为DE的中点.若CEF△的周长为18,则OF的长为______.三、解答题21.如图,一组正多边形,观察每个正多边形中a的变化情况,解答下列问题.(1)将表格补充完整.正多边形的边数 3 4 5 6α的度数(2)观察上面表格中α的变化规律,角α与边数n的关系为.(3)根据规律,当α=18°时,多边形边数n=.22.如图,在ABCD中,AC=BC,M、N分别是AB和CD的中点.(1)求证:四边形AMCN是矩形;(2)若∠B=60°,BC=8,求ABCD的面积.23.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.24.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.25.如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE26.如图,已知四边形ABCD为正方形,AB=2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:①CE与CG有怎样的位置关系?请说明理由.②CE+CG的值为.27.某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【现察与猜想】(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,DE⊥CF,则DECF的值为______.(2)如图2,在矩形ABCD中,AD=7,CD=4,点E是AD上的一点,连接CE,BD,且CE⊥BD,则CEBD的值______.【类比探究】(3)如图3,在四边形ABCD中,∠A=∠B=90°,点E为AB上一点,连接DE,过点C作DE 的垂线交ED的延长线于点G,交AD的延长线于点F,求证:DE•AB=CF•AD.28.在矩形ABCD中,AB=6,AD=4,点M为AB边上一个动点,连接DM,过点M作MN⊥DM,且MN=32DM,连接DN.(1)如图1,连接BD与BN,BD交MN于点E.①求证:△ABD∽△MND;②求证:∠CBN=∠DNM.(2)如图2,当AM=4BM时,求证:A,C,N三点在同一条直线上.参考答案1.A2.A3.A4.D5.C6.C7.B8.B9.A10.C11.A12.B13.614.2715.108016.381718.319.265︒20.7221.(1)正多边形每个内角的度数为180(2)n n -. 1803,603n α===; 904,452n α===; 正五边形的内角180(52)1085-=,1801085,362n α-===; 正五边形的内角180(62)1206-=,1801206,302n α-===.(2)观察(1)中结论,1803,603n == 1804,454n == 1805,365n == 1806,306n == 总结规律,则有180n α=. (3)借助(2)中公式,有180n α=,即18018n= 解得10n =.22.(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD ,∵M 、N 分别是AB 和CD 的中点, ∴AM =BM ,AM ∥CN ,AM =CN , ∴四边形AMCN 是平行四边形,又∵AC =BC ,AM =BM ,∴CM ⊥AB ,∴∠CMA =90°,∴四边形AMCN 是矩形;(2)解:∵∠B =60°,BC =8,∠BMC =90°, ∴∠BCM =30°,∴Rt △BCM 中,BM =12BC =4,CM∵AC =BC ,CM ⊥AB ,∴AB =2BM =8,∴ABCD 的面积为AB ×CM23.(1)证明:∵四边形ABCD 是平行四边形, ∴AB =CD ,AB ∥CD ,OB =OD ,OA =OC , ∴∠ABE =∠CDF ,∵点E ,F 分别为OB ,OD 的中点, ∴BE =12OB ,DF =12OD ,∴BE =DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△CDF (SAS ) .(2)当AB =12AC 时,四边形EGCF 是矩形;理由如下: 当AB =12AC 时,∵AC =2OA ,AC =2AB ,∴AB =OA ,∵E 是OB 的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.24.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)解:∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10,∴AF =8,∴DF =2,设EF =x ,则CE =x ,DE =6-x ,∵∠FDE =90°,∴22+(6-x )2=x 2,解得,x =103, ∴CE =103, ∴四边形CEFG 的面积是:CE •DF =103×2=203. 25.解:四边形ABCD 是矩形,AB DC ∴=,90BAD CDA ∠=∠=︒,AE DE =,EAD EDA ∴∠=∠,EAB BAD EAD CDA EDA EDC ∴∠=∠+∠=∠+=∠, 在ABE ∆和DCE ∆中,AE DE EAB EDC AB DC =⎧⎪∠=∠⎨⎪=⎩()ABE DCE SAS ∴∆∆≌.26.(1)如图,作EM ⊥BC 于M ,EN ⊥CD 于N ,又∠BCD =90°,∴∠MEN =90°,∵点E 是正方形ABCD 对角线上的点,∴EM =EN ,∵∠DEF =90°,∴∠DEN =∠MEF =90°﹣∠FEN ,∵∠DNE =∠FME =90°,在△DEN 和△FEM 中,DNE FME EN EMDEN FEM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DEN ≌△FEM (ASA ),∴EF =DE ,∵四边形DEFG 是矩形,∴矩形DEFG 是正方形;(2)①CE ⊥CG ,理由如下:∵正方形DEFG 和正方形ABCD ,∴DE =DG ,AD =DC ,∵∠CDG +∠CDE =∠ADE +∠CDE =90°,∴∠CDG =∠ADE ,在△ADE 和△CDG 中,AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CDG (SAS ),∴∠DAE =∠DCG ,∵∠ACD +∠CAD +∠ADC =180°,∠ADC =90°,∴∠ACG =∠ACD +∠DCG =∠ACD +∠CAD =90°, ∴CE ⊥CG ;②由①知,△ADE ≌△CDG ,∴AE =CG ,∴CE +CG =CE +AE =ACAB=2,故答案为:2.27.(1)解:设DE与CF的交点为G,∵四边形ABCD是正方形,∴∠A=∠FDC=90°,AD=CD,∵DE⊥CF,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,在△AED与△DFC中,A FDCCFD AEDAD CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AED≌△DFC(AAS),∴DE=CF,∴DECF=1,故答案为:1;(2)解:如图,设DB与CE交于点G,∵四边形ABCD是矩形,∴∠A=∠EDC=90°,∵CE⊥BD,∴∠DGC=90°,∴∠CDG +∠ECD =90°,∠ADB +∠CDG =90°,∴∠ECD =∠ADB ,∵∠CDE =∠A ,∴△DEC ∽△ABD , ∴47CE DC BD AD ==, 故答案为:47; (3)证明:如图,过点C 作CH ⊥AF 交AF 的延长线于点H ,∵CG ⊥EG ,∴∠G =∠H =∠A =∠B =90°,∴四边形ABCH 为矩形,∴AB =CH ,∠FCH +∠CFH =∠DFG +∠FDG =90°,∴∠FCH =∠FDG =∠ADE ,∠A =∠H =90°,∴△AED ∽△HFC ,∴DE AD CF CH =, ∴DE AD CF AB=, ∴DE •AB =CF •AD .28.(1)①证明:∵四边形ABCD 是矩形,DM ⊥MN ∴∠A =∠DMN =90°∵AB =6,AD =4,MN =32DM ∴23AD DM AB MN == ∴△ABD ∽△MND .②证明:∵四边形ABCD 是矩形,DM ⊥MN ∴∠ABC =∠DMN =90°∴∠ABD +∠CBD =90°由①得△ABD ∽△MND∴∠ABD =∠DNM又∵∠MEB =∠DEN∴△MBE ∽△DNE ∴ME BE DE NE = ∴ME DE BE NE= 又∠MED =∠BEN∴△DME ∽△NBE∴∠NBE =∠DME =90°∴∠CBN +∠CBD =90°又∠ABD +∠CBD =90°,∠ABD =∠DNM ∴∠CBN =∠DNM .(2) 如图②,过点N 作NF ⊥AB 于点F ,连接AC ,AN ∴∠NF A =90°∵四边形ABCD 是矩形,AD =4,AB =6 ∴∠A =∠ABC =90°,BC =AD =4∴23BC AB =,∠ADM +∠AMD =90° ∵AM =4BM ,AB =6∴42455AM AB ==又DM ⊥MN∴∠AMD +∠FMN =90° ∴∠ADM =∠FMN∴△ADM ∽△FMN ∴AD AM DM MF FN MN== 又MN =32DM ∴24425=3DM MF FN MN == ∴MF =6,FN =365∴AF =AM +MF =2454655+= ∴23NF AF = ∴NF BC AF AB = ∵∠ABC =∠AFN =90° ∴△ABC ∽△AFN∴∠BAC =∠F AN∴A ,C ,N 三点在同一条直线.。
中考数学专题复习《四边形综合题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 下列给出的条件中 不能判断四边形ABCD 是平行四边形的是( )A .,AB CD AD BC ∥∥B .,AB CD B D =∠=∠C .,AB CD AB CD =∥D .,AB CD AD BC == 2.如图 在ABCD 中E 是CD 上一点 连结AE BE 若点F 是ABE 的重心 则:AEF ABCD S S =△( )A .14B .16C .25D .1123.如图 矩形ABCD 和矩形CEFG 1AB = 2BC CG == 4CE = 点P 在边GF 上 点Q 在边CE 上 且PF CQ = 连结AC 和PQ M N 分别是,AC PQ 的中点 则MN 的长为( )A .3B .6C 37D .172 4.如图 在ABCD 中 BM 是ABC ∠的平分线 交CD 于点M 且4MC = ABCD 的周长是26 则DM 等于( )A .3B .4C .5D .65.如图 平行四边形ABCD 中 E F 、是对角线BD 上不同的两点 下列条件中 不能得出四边形AECF 一定为平行四边形的是( )A .BE EF =B .BE DF =C .DAF BCE ∠=∠D .AF CE ∥ 6.如图 点E 在正方形ABCD 的边AB 上 点F 在BC 延长线上 且AE CF = 点M 是EF 的中点 连接MC 若F α∠= 则CMF ∠的度数为( )A .60α︒-B .452α︒- C .302α︒- D .45α︒-7.在下列给出的条件中 不能判定四边形ABCD 一定是平行四边形的是( ) A .AB CD = AD BC =B .AB CD ∥ AD BC = C .AB CD ∥ AB CD =D .AB CD ∥ AD BC ∥ 8.如图 在ABCD 中E 为边BC 延长线上一点 连结AE DE .若ADE 的面积为2 则ABCD 的面积为( )A .4B .5C .3D .6二 填空题9.如图 在矩形ABCD 中 6,10,AB AD E ==为CD 的中点 若P Q 、为BC 边上的两个动点 且2PQ = 则线段AP QE +的最小值为 .10.如图 在平行四边形ABCD 中 对角线AC BD ,相交于点O 已知BOC 与AOB 的周长之差为3 平行四边形ABCD 的周长为26 则BC 的长度为 .11.如图 在ABC 和ABD △中 90ACB ADB ∠=∠=︒ ,,E F G 分别是,,AB AC BC 的中点 若1DE = 则FG = .12.如图 在平行四边形ABCD 中 10AB = 15BC = 面积为120 点P 是边AD 上一点 连接PB 将线段PB 绕着点P 旋转90︒得到线段PQ 如果点Q 恰好落在直线AD 上 那么线段AQ 的长为13.如图 平行四边形ABCD 的对角线交于点,10,22O AB AC BD =+= 则COD △的周长为 .三 解答题14.如图 在ABCD 中 O 为线段AD 的中点 延长BO 交CD 的延长线于点E 连接AE BD 、 =90BDC ∠︒.(1)求证:四边形ABDE 是矩形(2)连接OC 若2AB = BD = 求OC 的长.15.如图 点C 是BE 的中点 四边形ABCD 是平行四边形.(1)求证:四边形ACED 是平行四边形(2)若AB AE = 四边形ACED 是什么特殊的平行四边形 请说明理由.16.如图所示 ABC 中 D 是BC 边上一点 E 是AD 的中点 过点A 作BC 的平行线交CE 的延长线于F 且AF BD = 连接BF .(1)求证:D 是BC 的中点(2)若AB AC = 试判断四边形AFBD 的形状 并证明你的结论.17.如图 在ABCD 中 过AC 中点O 的直线分别交CB AD 的延长线于点EF .(1)求证:BE DF =(2)连接FC 若EF AC ⊥ 2DF = FDC △的周长为16 求ABCD 的周长.18.如图 在四边形ABCD 中 AB DC 5cm AD BC == 12cm AB = 6cm CD = 点P 从A 开始沿AB 边向B 以每秒3cm 的速度移动 点Q 从C 开始沿CD 边向D 以每秒1cm 的速度移动 如果点P Q 分别从A C 同时出发 当其中一点到达终点时运动停止.设运动时间为t 秒.(1)求证:当32t =时 四边形APQD 是平行四边形(2)PQ 是否可能平分对角线BD ?若能 求出当t 为何值时PQ 平分BD 若不能 请说明理由(3)若DPQ 是以PD 为腰的等腰三角形 求t 的值.参考答案:1.B2.B3.C4.C5.A6.D7.B8.A914510.811.112.2或1413.2114.(1)证明:∵O 为AD 的中点 ∵AO DO =∵四边形ABCD 是平行四边形∵AB CD∵BAO EDO ∠=∠又∵AOB DOE ∠=∠∵()ASA AOB DOE △△≌∵AB DE =∵四边形ABDE 是平行四边形∵=90BDC ∠︒∵90BDE ∠=︒∵平行四边形ABDE 是矩形(2)解:如图 过点O 作OF DE ⊥于点F∵四边形ABDE 是矩形∵2DE AB == 12OD AD = 12OB OE BE == AD BE =∵OD OE =∵OF DE ⊥ ∵112DF EF DE === ∵OF 为BDE △的中位线∵12OF BD ==∵四边形ABCD 是平行四边形∵2CD AB ==∵3CF CD DF =+=在Rt OCF 中 由勾股定理得:OC ==即OC15.(1)证明:∵四边形ABCD 是平行四边形 ∵AD BC ∥ 且AD BC =∵点C 是BE 的中点∵BC CE =∵AD CE =∵AD CE ∥∵四边形ACED 是平行四边形(2)解:四边形ACED 是矩形 理由如下: ∵四边形ABCD 是平行四边形∵AB DC =∵AB AE =∵DC AE =由(1)可知 四边形ACED 是平行四边形 ∵平行四边形ACED 是矩形.16.(1)证明:AF BC ∥AFE DCE ∴∠=∠点E 为AD 的中点AE DE ∴=在AEF △和DEC 中AFE DCE AEF DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DEC ∴△≌△AF CD ∴=AF BD =CD BD ∴=D ∴是BC 的中点(2)若AB AC = 则四边形AFBD 是矩形.理由如下: AEF DEC △≌△AF CD ∴=AF BD =CD BD ∴=AF BD AF BD =∴四边形AFBD 是平行四边形AB AC = BD CD =90ADB ∴∠=︒∴平行四边形AFBD 是矩形.17.(1)证明:四边形ABCD 是平行四边形 AD BC ∴∥ AO CO = AD BC = OAF OCE ∴∠=∠ E F ∠=∠在AOF 和COE 中OAF OCE F EAO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩AOF ∴∵()AAS COEAF CE ∴=AF AD CE BC ∴-=-BE DF ∴=(2)解:连接CFEF AC ⊥ AO CO =EF ∴垂直平分ACAF CF ∴= FDC △的周长为1616DF CF CD ∴++= 即2216AD CD +++= 12AD CD ∴+=∴ABCD 的周长为()224AD CD +=.18.(1)证明:12631< ∴当4t =秒时 两点停止运动 在运动过程中3AP t = CQ t = 123BP t ∴=- 6DQ t =- 当32t =时 39622DQ =-= 39322AP =⨯= AP DQ ∴= 又四边形ABCD 为等腰梯形AP DQ ∴∴四边形APQD 为平行四边形 (2)解:PQ 能平分对角线BD 当3t =秒时 PQ 平分对角线BD . 理由如下:连接BD 交PQ 于点E 如图1所示:若PQ 平分对角线BD 则DE BE = CD AB ∥第 11 页 共 11 页 12∴∠=∠ 34∠∠=在DEQ 和BEP △中3412DE BE∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS DEQ BEP ∴≌DQ BP ∴=即四边形DPBQ 为平行四边形6123t t ∴-=-解得3t = 符合题意∴当3t =秒时 PQ 平分对角线BD .(3)解:分两种情况:∵当PQ PD =时 作DN AB ⊥于N QM AB ⊥于M CE AB ⊥与E如图2所示:则DN QM = 1()32AN BE AB CD ==-= ME CQ t ==33PN AP AN t ∴=-=- 94PM BP BE ME t =--=- PQ PD =PN PM ∴=3394t t ∴-=- 解得:127t =∵当6PD DQ t ==-时 由勾股定理得:222224(94)PD DN PM t =+=+- 2224(94)(6)t t ∴+-=-整理得:21560610t t -+=解得Δ0< 方程无解综上所述:若DPQ 是以PD 为腰的等腰三角形 t 的值为127.。
中考数学总复习《四边形的综合题》练习题附带答案一、单选题1.如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b (a>b),则(a−b)等于()A.3B.4C.5D.6 2.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ABD=60°,则∠BOC的大小为()A.30°B.60°C.90°D.120°3.若一个多边形的内角和是外角和的2.5倍,则该多边形为()A.五边形B.六边形C.七边形D.八边形4.如图,矩形ABCD对角线相交于点O,∠AOB=60°,AB=4,则矩形的对角线AC 为()A.4 B.8 C.4√3D.10 5.一个长方形的周长为28厘米,长的2倍比宽的3倍多3厘米,则这个长方形的面积是()A.45平方厘米B.35平方厘米C.25平方厘米D.20平方厘米6.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE垂直平分BO,AE=√3cm,则OD=()A.1cm B.1.5cm C.2cm D.3cm 7.如图,矩形纸片ABCD中,AB=4,AD=8 ,将纸片沿EF折叠使点B与点D 重合,折痕EF与BD相交于点O,则DF的长为()A.3B.4C.5D.6 8.如图,⊙O的半径为4,点P是⊙O外的一点PO=10,点A是⊙O上的一个动点,连接PA,直线l垂直平分PA,当直线l与⊙O相切时PA的长度为()A.10B.212C.11D.434 9.已知平行四边形一边长为8,一条对角线长为6,则另一条对角线α满足()A.10<α<22B.4<α<20C.4<α<28D.2<α<1410.如图,两张等宽的纸条交又重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.a2B.5cm C.2√7cm D.6cm 11.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF,将∠BCE绕着正方形的中心O按逆时针方向旋转到∠CDF的位置,则旋转角是( )A .45°B .60°C .90°D .120°12.Rt∠ABC 两直角边的长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( ) A .10cmB .3cmC .4cmD .5cm二、填空题13.如图,点E 在边长为2的正方形ABCD 内,满足∠AEB =90°,若∠DAE =30°,则图中阴影部分的面积为 .14.把一把直尺和一块三角板如图放置,若∠1=42°,则∠2的度数为 °.15.已知 ▱ABCD 中一条对角线分 ∠A 为35°和45°,则 ∠B = 度. 16.如图,在一块长AB =26m ,宽BC =18m 的长方形草地上,修建三条宽均为3m 的长方形小路,则这块草地的绿地面积(图中空白部分)为 m 217.如图,在∠ABC 中,∠ABC =90°,E 为AC 的中点,AD∠BE 交BC 于D ,若AD=152,BE =5,则BD = .18.如图,在四边形ABCD中,∠A=90°,AB=12,AD=5.点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的最大值是.三、综合题19.如果抛物线C1:y=ax2+bx+c与抛物线C2:y=−ax2+dx+e的开口方向相反,顶点相同,我们称抛物线C2是C1的“对顶”抛物线.(1)求抛物线y=x2−4x+7的“对顶”抛物线的表达式;(2)将抛物线y=x2−4x+7的“对顶”抛物线沿其对称轴平移,使所得抛物线与原抛物线y=x2−4x+7形成两个交点M、N,记平移前后两抛物线的顶点分别为A、B,当四边形AMBN是正方形时求正方形AMBN的面积.(3)某同学在探究“对顶”抛物线时发现:如果抛物线C1与C2的顶点位于x轴上,那么系数b与d,c与e之间的关系是确定的,请写出它们之间的关系.20.解答题(1)如图1,在平行四边形ABCD 中,已知点E 在AB 上,点F 在CD 上,且AE=CF .求证:DE=BF ;(2)如图2,AB 是∠O 的直径,点C 在AB 的延长线上,CD 与∠O 相切于点D ,若∠C=20°,求∠CDA 的度数.21.如图,▱ABCD 放置在平面直角坐标系申,已知点A (-2,0)、B (-6,0)、D(0,3).点C 在反比例函数y=k x的图象上。
中考数学总复习《四边形的综合题》专项练习及答案班级:___________姓名:___________考号:____________一、单选题1.若某多边形的内角和等于外角和的3倍,则这个多边形的边数是()A.6B.8C.10D.122.如图,正方形ABCD的边长为4,点P从点A出发,沿正方形的边顺时针方向运动一周,则△APC 的面积y与点P运动的路程x间的函数关系图象大致是()A.B.C.D.3.若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是()A.5或6B.6或7C.5或6或7D.6或7或84.如图,将边长相等的正方形、正五边形和正六边形摆放在平面上,则∠1为()A.32∘B.36∘C.40∘D.42∘5.在菱形ABCD中,AC与BD相交于点O,AO=4,BO=3,则菱形的边长AB等于()A.10B.8C.6D.56.下列各组图形中,不一定相似的是()A.任意两个等腰直角三角形B.任意两个等边三角形C.任意两个矩形D.任意两个正方形7.如图,▱ABCD的对角线AC,BD交于点O,DE平分∠ADC交BC于点E,∠BCD=60°,AD=2AB,连接OE.下列结论:①S▱ABCD=AB⋅BD;②DB平分∠ADE;③AB=DE;④S△CDE=S△BOC,其中正确的有()A.1个B.2个C.3个D.4个8.如图,在Rt△ABC中,△C=90°,AC=6,BC=8,将它绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,恰好使B′C′△AB,A'C′与AB交于点E,则A′E的长为()A.3B.3.2C.3.5D.3.69.下列角度中,是多边形内角和的只有()A.270°B.560°C.630°D.1 800°10.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长为36,OE=3,则四边形EFCD的周长为()A.28B.26C.24D.2011.如图,菱形ABCD中,AC交BD于O,DE△BC于E,连接OE,若△ABC=140°,则△OED的度数为()A.15°B.20°C.25°D.30°12.如图,在平面直角坐标系内,四边形OABC是矩形,四边形ADEF是正方形,点A,D在x轴的负半轴上,点F在AB上,点B,E均在反比例函数y=kx(x<0)的图象上,若点B的坐标为(−1,6),则正方形ADEF的周长为()A.4B.6C.8D.10二、填空题13.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE△△DBC,若△APD是等腰三角形,则PE的长为数.14.如图,在一块长AB=26m,宽BC=18m的长方形草地上,修建三条宽均为3m的长方形小路,则这块草地的绿地面积(图中空白部分)为m215.如图,点E、F分别在矩形ABCD的边BC、CD上,DE与AF相交于点P.已知DF=6,AP=5√6.若将矩形ABCD沿AF折叠后,点D恰好与点E重合,则PF=;△ABE的面积为.16.如图,已知BE和CF是△ABC的两条高,△ABC=48°,△ACB=76°,则△FDE=.17.正方形的对角线长为2,则正方形的边长为cm.面积为cm2.18.如图,PA,PB分别切△ O于点A,B,若∠P=700,点C为△ O上任一动点,则∠C的大小为°.三、综合题19.如图,AB△CD,AB=CD,点E,F在BC上,且BE=CF.(1)求证:△ABE△△DCF;(2)试证明:以A,F,D,E为顶点的四边形是平行四边形.20.如图,四边形ABCD是菱形,△ABC=60°,AB=10,连接BD,点P是BC上的点,连接AP,交BD于点E,连接EC(1)求证:△ABE△△CBE;(2)求菱形ABCD的面积;(3)当点P在线段BC的延长线上时是否存在点P,使得△PEC是直角三角形?若存在,求出BP 的长;若不存在,请说明理由.21.已知,平行四边形ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF,连接AE、EC、FC、AF.(1)如图1,求证:四边形AECF 是平行四边形.(2)如图2,当EF =2BD 时在不添加任何辅助线情况下,请直接写出图2中的四个三角形,使写出的每个三角形面积都等于三角形ABD 面积的32.22.综合与实践(1)问题发现如图1,已知△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE ,求△AEB 的度数及线段AD ,BE 之间的数量关系; (2)类比探究如图2,若△ACB 和△DCE 均为等腰直角三角形,△ACB=△DCE=90°,点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE填空:①△AEB 的度数为 ;②线段CM ,AE ,BE 之间的数量关系为 . (3)拓展延伸在(2)的条件下,若BE=4,CM=3,则四边形ABEC 的面积为 .23.如图,若 △A 1B 1C 1 是由ABC 平移后得到的,且 △ABC 中任意一点 P(x,y) 经过平移后的对应点为 P 1(x −5,y +2)(1)求点小A1,B1,C1的坐标。
中考数学总复习《四边形的综合题》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图在平行四边形ABCD中,已知AC=6cm,若△ACD的周长为16cm,则平行四边形ABCD的周长为()A.26cm B.24cm C.20cm D.18cm2.一个十边形的内角和等于()A.1800°B.1660°C.1440°D.1200°3.下列命题正确的是()A.有一个角是直角的四边形是矩形;B.有三个角是直角的四边形是矩形;C.对角线相等的四边形是矩形;D.对角线互相平分的四边形是矩形;4.6张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,则按照同样的放置方式,S始终保持不变,则a,b满足()A.a=2b B.a=3b C.a=4b D.a=b5.如图,菱形ABCD中,∠ABC=150°,DH⊥AB于H,交对角线AC于E,过E作EF⊥AD于F.若△DEF的周长为3+√3,则菱形ABCD的面积为()A.18B.14+8√3C.7+4√3D.12+6√36.小明在计算某多边形的内角和时,则由于马虎漏掉了一个角,结果得到970°,则原多边形是一个()A.七边形B.八边形C.九边形D.十边形7.如图,四边形ABCD四边的中点分别为E,F,G,H,对角线AC与BD相交于点O,若四边形EFGH的周长是3,则AC+BD的长为()A.3B.6C.9D.128.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt△ABC 是“匀称三角形”,且∠C=90°,AC>BC则AC:BC:AB为()A.√3:1:2B.2:√3:√7C.2:1:√5D.无法确定9.如图,在平行四边形ABCD中,E是AB的中点,F是AD的中点,FE交AC于O点,交CB的延长线于G点,那么S△AOF:S△COG=()A.1:4B.1:9C.1:16D.1:2510.□ABCD中,△B=50°,则△C=()A.40°B.50°C.130°D.140°11.用一批完全相同的正多边形能镶嵌成一个平面图案的是()A.正五边形B.正六边形C.正七边形D.正八边形12.如图,在菱形ABCD中,AC与BD相交于点O,图中等腰三角形的个数为()A.1B.2C.3D.4二、填空题(共6题;共8分)13.如图,在矩形ABCD中AB=6,BC=9点P是矩形ABCD内一动点,且SΔABP=SΔCDP,则PC+PD的最小值为.14.如图,AD是锐角△ABC的BC边上的高,正方形EFGH的一边EF在BC上,顶点G,H分别在AC,AB上,若BC=15,AD=10,则EF的长为.15.如图,在矩形ABCD中AB=4,BC=6对角线AC的垂直平分线分别交AC,AD,BC于点.O,E,F,连结AF,CE,则AEBF=16.已知一个多边形的所有内角与它的一个外角之和是2400°,那么这个多边形的边数是,这个外角的度数是.17.如图,□ABCD绕点A逆时针旋转30°,得到□AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则△C=18.图是一张矩形纸片ABCD,点E在AB边上,把△ADE沿直线DE折叠,使点A落在BC边上的点F处,点G在BC边上,把△CDG沿直线DG折叠,使点C恰好落在线段DF上的点H处,∠EDG=°.若BF+CG=32FG ,则CGCD=.三、综合题(共6题;共65分)19.如图,在△ACB中∠ABC=90°,点D是斜边AC上的一点DA=DB,点F是AB的中点,过点C作CE//BD交FD的延长线于点E.(1)求证:四边形CBDE是平行四边形;(2)联结BE、AE,如果∠CBE=45°,求证:AB=3BC.20.如图,在平行四边形ABCD中,过点D作DE⊥AB于点E,点F F在边CD上,且FC= AE连接AF和BF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,FC=6和DF=10,求BF的长.21.已知:在△ABC中,AB=AC,AD△BC于点D,分别过点A和点C作BC、AD边的平行线交于点E.(1)求证:四边形ADCE是矩形;(2)连结BE,若cos∠ABD=12,AD= 2√3求BE的长.22.如图,在△ABC中AD⊥BC,垂足为D,与BC=12,AD=6,tanC=3 2 .(1)求sin∠ABD的值;(2)过点B作BE⊥BC,若BE=10求AE的长.23.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE△△ABF;(2)若BC=12,DE=5,求△AEF的面积.24.如图,在梯形ABCD中,AD△BC,△B=90°,AD=24cm,BC=26cm,动点P从A点开始沿边AD以每秒1cm的速度向点D移动,动点Q从C点开始沿CB以每秒3cm的速度向B移动,P、Q同时出发.(1)当运动多少秒时,则四边形PQCD是平行四边形?(2)当运动多少秒时,则四边形PQCD是直角梯形?(3)多少秒后,梯形PQCD是等腰梯形?参考答案1.【答案】C 2.【答案】C 3.【答案】B 4.【答案】A 5.【答案】B 6.【答案】B 7.【答案】A 8.【答案】B 9.【答案】B 10.【答案】C 11.【答案】B 12.【答案】D 13.【答案】3√13 14.【答案】6 15.【答案】13516.【答案】15;60° 17.【答案】105 18.【答案】45;2519.【答案】(1)证明: ∵DA =DB∴ΔADB 是等腰三角形 ∵ 点 F 是 AB 的中点 ∴DF ⊥AB ∴∠AFD =90° ∵∠ABC =90° ∴∠AFD =∠ABC ∴EF//BC ∵EC//DB∴ 四边形 CBDE 是平行四边形(2)解: ∵DF ⊥AB ,点 F 是 AB 的中点 ∴EF 垂直平分 AB∴DF =12BC∵四边形CBDE是平行四边形∴BC=DE∴EF=DF+DE=32BC∵BE平分∠ABC∴∠FBE=45°∴∠FBE=∠FEB=45°∴BF=EF∴BF=32BC∴AB=2BF=3BC 20.【答案】(1)证明:∵四边形ABCD是平行四边形∴CD//AB∵FC=AE∴CD−FC=AB−AE即DF=BE∴四边形DEBF是平行四边形又∵DE⊥AB∴∠DEB=90°∴平行四边形DEBF是矩形;(2)解:∵AF平分∠DAB∴∠DAF=∠BAF∵CD//AB∴∠DFA=∠BAF∴∠DFA=∠DAF∴AD=DF=10在Rt△AED中,AE=FC=6,由勾股定理得:DE=√AD2−AE2=√102−62=8由(1)得四边形DEBF是矩形∴BF=DE=8.21.【答案】(1)证明:∵AE // BC,CE // AD∴四边形ADCE是平行四边形∵AD △BC,AB=AC∴△ADC=90°∴平行四边形ADCE是矩形(2)解:连接DE,如图:在Rt△ABD中,△ADB =90°∵cos∠ABD=1 2∴BD AB=12∴设BD=x,AB=2x∴AD= √3x∵AD= 2√3∴x=2∴BD=2∵AB=AC,AD△BC∴BC=2BD=4∵矩形ADCE中,EC=AD= 2√3, BC=4∴在Rt△BDE中,利用勾股定理得BE= √BC2+EC2= √42+(2√3)2= 2√7 22.【答案】(1)解:在Rt△ADC中∵AD=6,tanC=3 2∴CD=4∴BD=12-4=8在Rt△ABD中,根据勾股定理可得AB=√BD2+AD2=10∴sin∠ABD=ADAB=610=35(2)解:作AF△BE于点F∵BE⊥BC∴四边形ADBF是矩形∴AF=BD=8,AD=BF=6∴EF=10-6=4在Rt△AEF中,根据勾股定理可得AB=√AF2+EF2=4√5 23.【答案】(1)解:∵四边形ABCD是正方形∴AD=AB,△D=△ABC=90°而F是CB的延长线上的点∴△ABF=90°在△ADE和△ABF中∵{AB=AD∠ABF=∠ADEBF=DE∴△ADE△△ABF(SAS)(2)解:∵BC=12,∴AD=12在Rt△ADE中,DE=5,AD=12∴AE= √AD2+DE2=13∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到∴AE=AF,△EAF=90°∴△AEF的面积= 12AE2= 12×169=84.524.【答案】(1)解:根据题意得:PA=tcm,CQ=3tcm,则PD=AD﹣PA=24﹣t(cm).∵AD△BC即PD△CQ∴当PD=CQ时,则四边形PQCD为平行四边形即24﹣t=3t解得:t=6即当t=6s时,则四边形PQCD为平行四边形(2)解:当PA=BQ时,则四边形PQCD是直角梯形∴t=26﹣3t∴t= 13 2即t= 132s时,则四边形PQCD是直角梯形(3)解:过D作DE△BC于E则四边形ABED为矩形∴BE=AD=24cm∴EC=BC﹣BE=2cm当PQ=CD时,则四边形PQCD为等腰梯形,如图所示:过点P作PF△BC于点F,过点D作DE△BC于点E则四边形PDEF是矩形∴EF=PD,PF=DE在Rt△PQF和Rt△CDE中{PF=DEPQ=CD∴Rt△PQF△Rt△CDE(HL)∴QF=CE∴QC﹣PD=QC﹣EF=QF+EC=2CE即3t﹣(24﹣t)=4解得:t=7即当t=7s时,则四边形PQCD为等腰梯形.第11页共11。
中考数学一轮复习平行四边形复习题含答案一、解答题1.在四边形ABCD 中,AD ∥BC ,AB=8cm ,AD=16cm ,BC=22cm ,∠ABC=90°.点P 从点A 出发,以1cm/s 的速度向点D 运动,点Q 从点C 同时出发,以3cm/s 的速度向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒.(1)当t= 时,四边形ABQP 成为矩形?(2)当t= 时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD 是否能成为菱形?若能,求出t 的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度.2.如图1,ABC ∆是以ACB ∠为直角的直角三角形,分别以AB ,BC 为边向外作正方形ABFG ,BCED ,连结AD ,CF ,AD 与CF 交于点M ,AB 与CF 交于点N .(1)求证:ABD FBC ∆≅∆;(2)如图2,在图1基础上连接AF 和FD ,若6AD =,求四边形ACDF 的面积.3.已知,在△ABC 中,∠BAC =90°,∠ABC =45°,D 为直线BC 上一动点(不与点B ,C 重合),以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BC 与CF 的位置关系是 ,BC 、CF 、CD 三条线段之间的数量关系为 ;(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请猜想BC 与CF 的位置关系BC,CD,CF三条线段之间的数量关系并证明;(3)如图3,当点D在线段BC的反向延长线上时,点A,F分别在直线BC的两侧,其他条件不变.若正方形ADEF的对角线AE,DF相交于点O,OC=132,DB=5,则△ABC的面积为.(直接写出答案)4.正方形ABCD中,对角线AC与BD交于点O,点P是正方形ABCD对角线BD上的一个动点(点P不与点B,O,D重合),连接CP并延长,分别过点D,B向射线作垂线,垂足分别为点M,N.(1)补全图形,并求证:DM=CN;(2)连接OM,ON,判断OMN的形状并证明.5.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH DE⊥交DG的延长线于点H,连接BH.(1)求证:GF GC=;(2)用等式表示线段BH与AE的数量关系,并证明.6.如图,在正方形ABCD中,点M是BC边上任意一点,请你仅用无刻度的直尺,用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在如图(1)的AB 边上求作一点N ,连接CN ,使CN AM =;(2)在如图(2)的AD 边上求作一点Q ,连接CQ ,使CQ AM . 7.已知在ABC 和ADE 中, 180ACB AED ∠+∠=︒,CA CB =,EA ED =,3AB =. (1)如图1,若90ACB ∠=︒,B 、A 、D 三点共线,连接CE : ①若52CE =,求BD 长度; ②如图2,若点F 是BD 中点,连接CF ,EF ,求证:2CE EF =; (2)如图3,若点D 在线段BC 上,且2CAB EAD ∠=∠,试直接写出AED 面积的最小值.8.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。
2020年中考数学复习专题练:《四边形综合 》1.如图①所示,已知正方形ABCD 和正方形AEFG ,连接DG ,BE .(1)发现:当正方形AEFG 绕点A 旋转,如图②所示.①线段DG 与BE 之间的数量关系是 ;②直线DG 与直线BE 之间的位置关系是 ;(2)探究:如图③所示,若四边形ABCD 与四边形AEFG 都为矩形,且AD =2AB ,AG =2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG 、DE ,若AE =1,AB =2,求BG 2+DE 2的值(直接写出结果).2.如图1,在正方形ABCD 中,点E 是CD 上一点(不与C ,D 两点重合),连接BE ,过点C 作CH ⊥BE 于点F ,交对角线BD 于点G ,交AD 边于点H ,连接GE ,(1)求证:△DHC ≌△CEB ;(2)如图2,若点E 是CD 的中点,当BE =8时,求线段GH 的长;(3)设正方形ABCD 的面积为S 1,四边形DEGH 的面积为S 2,当的值为时,的值为 .3.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F,记旋转角为α(0°<α<90°).(I)如图①,当α=30°时,求点D的坐标;(Ⅱ)如图②,当点E落在AC的延长线上时,求点D的坐标;(Ⅲ)当点D落在线段OC上时,求点E的坐标(直接写出结果即可).4.如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.5.(1)【探索发现】如图1,在正方形ABCD中,点M,N分别是边BC,CD上的点,∠MAN=45°,若将△DAN 绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为8,则正方形ABCD的边长为.(2)【类比延伸】如图2,在四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M,N分别在边BC,CD上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.(3)【拓展应用】如图3,在四边形ABCD中,AB=AD=2,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,AN,△ABM是等边三角形,AM⊥AD于点A,∠DAN=15°,请直接写出△CMN 的周长.6.(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE 和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.7.如图1,长方形ABCD中,∠DAB=∠B=∠DCB=∠D=90°,AD=BC=6,AB=CD=10.点E为射线DC上的一个动点,把△ADE沿直线AE翻折得△AD′E.(1)当D′点落在AB边上时,∠DAE=°;(2)如图2,当E点与C点重合时,D′C与AB交点F,①求证:AF=FC;②求AF长.(3)连接D′B,当∠AD′B=90°时,求DE的长.8.在平面直角坐标系中,点O是坐标原点,A(0,m),B(n,O),AC∥OB,且AC=OB,连接BC交x轴于点F,其中m、n满足方程+n2+8n+16=0.(1)求A、B两点坐标;(2)过A做AE⊥BC于E,延长AE交x轴于点D,动点P从点B出发以每秒2个单位的速度向x轴正半轴方向运动,设△PFD的面积为S,请用含t的式子表示S,并直接写出t的取值范围;(3)在(2)的条件下,连接PE,将△PED沿PE翻折到△PEG的位置(点D与点G对应),当四边形PDEG为菱形时,求点P和点G的坐标.9.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD.①求∠BDE的度数;②若正方形ABCD的边长是,请求出△BCG的面积.10.【综合与实践】如图①,在正方形ABCD中,点E、F分别在射线CD、BC上,且BF=CE,将线段FA绕点F顺时针旋转90°得到线段FG,连接EG,试探究线段EG和BF的数量关系和位置关系.【观察与猜想】任务一:“智慧小组”首先考虑点E、F的特殊位置如图②,当点E与点D重合,点F与点C重合时,易知:EG与BF的数量关系是,EG与BF的位置关系是.【探究与证明】任务二:“博学小组”同学认为E、F不一定必须在特殊位置,他们分两种情况,一种是点E、F分别在CD、BC边上任意位置时(如图③);一种是点E、F在CD、BC边的延长线上的任意位置时(如图④),线段EG与BF的数量关系与位置关系仍然成立.请你选择其中一种情况给出证明.【拓展与延伸】“创新小组”同学认为,若将“正方形ABCD”改为“矩形ABCD,且=k(k≠1)”,点E、F分别在射线CD、BC上任意位置时,仍将线段FA绕点F顺时针旋转90°,并适当延长得到线段FG,连接EG(如图⑤),则当线段BF、CE、AF、FG满足一个条件时,线段EG与BF的数量关系与位置关系仍然成立.(请你在横线上直接写出这个条件,无需证明)11.在平面直角坐标系xOy中,四边形OADC为正方形,点D的坐标为(4,4),动点E沿边AO从A向O以每秒1cm的速度运动,同时动点F沿边OC从O向C以同样的速度运动,连接AF、DE交于点G.(1)试探索线段AF、DE的关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图①中补全图形,并说明理由.(3)如图②当点E运动到AO中点时,点M是直线EC上任意一点,点N是平面内任意一点,是否存在点N使以O,C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.12.综合与实践动手操作:第一步:在矩形纸片ABCD的边BC,AD上分别取两点E,F,使CE=AF;第二步:分别以DE,BF为对称轴将△CDE与△ABF翻折得到△C'DE与△A'BF,且边C'E 与A'B交于点G,边A'F与C'D交于一点H.问题解决:(1)求证:△BEG≌△DFH;(2)请判断四边形A'HC'G的形状,并证明你发现的结论;(3)已知tan∠EBG=,A'G=6,C'G=1,求矩形纸片ABCD的面积.13.如图1,矩形ABCD中,∠ACB=30°,将△ACD绕C点顺时针旋转α(0°<α<360°)至△A'CD'位置.(1)如图2,若AB=2,α=30°,求S△BCD′.(2)如图3,取AA′中点O,连OB、OD′、BD′.若△OBD′存在,试判定△OBD′的形状.(3)当α=α1时,OB=OD′,则α1=°;当α=α2时,△OBD′不存在,则α2=°.14.已知矩形ABCD 中,AB =2,BC =m ,点E 是边BC 上一点,BE =1,连接AE .(1)沿AE 翻折△ABE 使点B 落在点F 处,①连接CF ,若CF ∥AE ,求m 的值;②连接DF ,若≤DF ≤,求m 的取值范围.(2)△ABE 绕点A 顺时针旋转得△AB 1E 1,点E 1落在边AD 上时旋转停止.若点B 1落在矩形对角线AC 上,且点B 1到AD 的距离小于时,求m 的取值范围.15.如图1,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接BE 、DG .(1)BE 和DG 的数量关系是 ,BE 和DG 的位置关系是 ;(2)把正方形ECGF 绕点C 旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形ABCD 的边长为4,正方形ECGF 的边长为3,正方形ECGF 绕点C 旋转过程中,若A 、C 、E 三点共线,直接写出DG 的长.16.如图,正方形ABCD的边长为a,射线AM是∠BAD外角的平分线,点E在边AB上运动(不与点A、B重合),点F在射线AM上,且AF=BE,CF与AD相交于点G,连结EC、EF、EG.(1)求证:CE=EF;(2)求△AEG的周长(用含a的代数式表示);(3)试探索:点E在边AB上运动至什么位置时,△EAF的面积最大.17.问题情境:矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别与边AB、BC所在的直线相交,交点为E、F.探究1:如图1,当PE⊥AB,PF⊥BC时,则=.探究2:如图2,在(1)的基础上,将三角板绕点P逆时针旋转,旋转角为α,(0°<α<60°),试求的值.探究3:在(2)的基础上继续旋转,当60°<α<90°时,将顶点P在AC上移动且使=时,如图3,试求的值.18.在Rt△ABC中,∠B=90°,AB=6,BC=8,点D从点B出发,以每秒3个单位的速度沿B→A→C运动,到点C停止.在点D运动的过程中,过点D作DE⊥BC,垂足为E,以DE为一边在右侧作矩形DEFG,点F在BC边上,且EF:DE=4:3,连结AG,CG,设运动时间为t(秒),矩形DEFG与△ABC重叠部分面积为S.(1)当AG=CG时,求t的值.(2)当点D在边AB上运动时,求S与t的函数关系式.(3)当△ACG的面积为6时,直接写出t的值.19.如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=32,DC=24,AD=42,动点P从点D出发,沿射线DA的方向以每秒4个单位长的速度运动,动点Q从点C出发,在线段CB 上以每秒2个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?(3)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.20.(1)【发现证明】如图1,在正方形ABCD中,点E,F分别是BC,CD边上的动点,且∠EAF=45°,求证:EF=DF+BE.小明发现,当把△ABE绕点A顺时针旋转90°至△ADG,使AB与AD重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD中,如果点E,F分别是CB,DC延长线上的动点,且∠EAF=45°,则(1)中的结论还成立吗?请写出证明过程.②如图3,如果点E,F分别是BC,CD延长线上的动点,且∠EAF=45°,则EF,BE,DF之间的数量关系是(不要求证明)(3)【联想拓展】如图1,若正方形ABCD的边长为6,AE=3,求AF的长.参考答案1.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△ADG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.2.证明(1)∵四边形ABCD是正方形,∴CD=BC,∠HDC=∠BCE=90°,∴∠DHC+∠DCH=90°,∵CH⊥BE,∴∠EFC=90°,∴∠ECF+∠BEC=90°,∴∠CHD=∠BEC,∴△DHC≌△CEB(AAS).(2)解:∵△DHC≌△CEB,∴CH=BE,DH=CE,∵CE=DE=CD,CD=CB,∴DH=BC,∵DH∥BC,∴.∴GC=2GH,设GH=x,则,则CG=2x,∴3x=8,∴x=.即GH=.(3)解:∵,∴,∵DH=CE,DC=BC,∴,∵DH∥BC,∴,∴,,设S△DGH =9a,则S△BCG=49a,S△DCG=21a,∴S△BCD=49a+21a=70a,∴S1=2S△BCD=140a,∵S△DEG :S△CEG=4:3,∴S△DEG=12a,∴S2=12a+9a=21a.∴.故答案为:.3.解:(I)过点D作DG⊥x轴于G,如图①所示:∵点A(6,0),点B(0,8).∴OA=6,OB=8,∵以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,∴AD=AO=6,α=∠OAD=30°,DE=OB=8,在Rt△ADG中,DG=AD=3,AG=DG=3,∴OG=OA﹣AG=6﹣3,∴点D的坐标为(6﹣3,3);(Ⅱ)过点D作DG⊥x轴于G,DH⊥AE于H,如图②所示:则GA=DH,HA=DG,∵DE=OB=8,∠ADE=∠AOB=90°,∴AE===10,∵AE×DH=AD×DE,∴DH===,∴OG=OA﹣GA=OA﹣DH=6﹣=,DG===,∴点D的坐标为(,);(Ⅲ)连接AE,作EG⊥x轴于G,如图③所示:由旋转的性质得:∠DAE=∠AOC,AD=AO,∴∠OAC=∠ADO,∴∠DAE=∠ADO,∴AE∥OC,∴∠GAE=∠AOD,∴∠DAE=∠GAE,在△AEG和△AED中,,∴△AEG≌△AED(AAS),∴AG=AD=6,EG=ED=8,∴OG=OA+AG=12,∴点E的坐标为(12,8).4.证明:(1)如图1,延长EG交DC的延长线于点H,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∵AB∥CD,∴∠H=GEB,且BG=CG,∠BGE=∠CGH,∴△CGH≌△BGE(AAS)∴GE=GH,∵DE⊥AB,DC∥AB,∴DC⊥DE,且GE=GH,∴DG=EG=GH;(2)如图1:∵DB⊥EG,∴∠DOE=∠DEB=90°,且∠EDB=∠EDO,∴△DEO∽△DBO,∴∴DE×DE=4×(2+4)=24,∴DE=2,∴EO===2,∵AB∥CD,∴, ∴HO =2EO =4, ∴EH =6,且EG =GH , ∴EG =3,GO =EG ﹣EO =, ∴GB ===,∴BC =2=AD , ∴AD =DE ,∴点E 与点A 重合,如图2:∵S 四边形ABCD =2S △ABD ,∴S 四边形ABCD =2××BD ×AO =6×2=12;(3)如图3,过点O 作OF ⊥BC ,∵旋转△GDO ,得到△G ′D 'O ,∴OG =OG ',且OF ⊥BC ,∴GF =G 'F ,∵OF ∥AB ,∴==,∴GF=BG=,∴GG'=2GF=,∴BG'=BG﹣GG'=,∵AB2=AO2+BO2=12,∵EG'=AG'==,=.5.解:(1)如图1中,∵△MAN≌△MAG,∴MN=GM,∵DN=BG,GM=BG+BM,∴MN=BM+DN,∵△CMN的周长为:MN+CM+CN=8,∴BM+CM+CN+DN=8,∴BC+CD=8,∴BC=CD=4,故答案为4;(2)如图2中,结论:MN=NM+DN.延长CB至E,使BE=DN,连接AE,∵∠ABC+∠D=180°,∠ABC+∠ABE=180°,∴∠D=∠ABE,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AN=AE,∠DAN=∠BAE,∵∠BAD=2∠MAN,∴∠DAN+∠BAM=∠MAN,∴∠MAN=∠EAM,在△MAN和△MAE中,,∴△MAN≌△MAE(SAS),∴MN=EM=BE+BM=BM+DN,即MN=BM+DN;(3)如图3,延长BA,CD交于G,∵∠BAM=60°,∠MAD=90°,∴∠BAD=150°,∴∠GAD=30°,∵AD=2,∴DG=1,AG=,∵∠DAN=15°,∴∠GAN=45°,∴AG=GN=,∴BG=2+,∴BC=2BG=4+2,CG=BG=2+3,∴CD=CG﹣DG=2+2,由(2)得,MN=BM+DN,∴△CMN的周长=CM+CN+MN=CN+DN+CM+BM=BC+CD=4+2+2+2=6+4.6.解:(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋转的性质得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)在AB上截取AM=AD=3,过M作MN∥BC交AC于N,把△AMN绕A逆时针旋转得△ADE,连接CE,如图所示:则MN⊥AC,DE=MN,∠DAE=∠BAC,∴∠AED=∠ANM=90°,∵AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ==,∴BC:AC:AB=3:4:5,同(2)得:△ABD∽△ACE,∴==,∵MN∥BC,∴△AMN∽△ABC,∴=,∴MN=×AM=×3=,∵∠BAC=∠ADC=θ,∴∠DAE=∠ADC=θ,∴AE∥CD,∴∠CDE+∠AED=180°,∴∠CDE=90°,∴CE===,∴BD=CE=×=.7.解:(1)由题意知△ADE≌△AD′E,∴∠DAE=∠D′AE,∵D′点落在AB边上时,∠DAE+∠D′AE=90°,∴∠DAE=∠D′AE=45°,故答案为:45;(2)①如图2,由题意知∠ACD=∠ACD′,∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠BAC,∴∠ACD′=∠BAC,∴AF=FC;②设AF=FC=x,则BF=10﹣x,在Rt△BCF中,由BF2+BC2=CF2得(10﹣x)2+62=x2,解得x=6.8,即AF=6.8;(3)如图3,∵△AD′E≌△ADE,∴∠AD′E=∠D=90°,∵∠AD′B=90°,∴B、D′、E三点共线,又∵△ABD′∽△BEC,AD′=BC,∴△ABD′≌△BEC,∴BE=AB=10,∵BD′===8,∴DE=D′E=10﹣8=2;如图4,∵∠ABD″+∠CBE=∠ABD″+∠BAD″=90°,∴∠CBE=∠BAD″,在△ABD″和△BEC中,∵,∴△ABD″≌△BEC,∴BE=AB=10,∴DE=D″E=8+10=18.综上所知,DE=2或18.8.解:(1)∵,,(n+4)2≥0,∴m﹣4=0,n+4=0,∴m=4,n=﹣4,∴A(0,4),B(﹣4,0);(2)∵AC∥OB,∴∠C=∠CBO,∠CAF=∠BOF,∵AC=OB,∴△ACF≌△OBF(ASA),∴AF=OF=2,∵OA=OB,∠OAD=∠OBF,∠BOF=∠AOD,∴△BOF≌△AOD(ASA),∴OF=OD=2,∴BD=6,①当0≤t<3时,S=PD•OF=(6﹣2t)×2=6﹣2t;②当t>3时,S=PD•OF=(2t﹣6)×2=2t﹣6;(3)①当0≤t<3,如图2,∵AO=4,OD=2,∴AD=,∵BD×OA=AD×BE,∴BE=,∴DE=,∵四边形PDEG为菱形,∴DP=DE=EG=,∵D(2,0),∴P(2﹣,0),作EH⊥BD于H,∵BE×DE=BD×EH,∴EH=,∴HD=,∴OH=,∴E(,),∵EG∥OB,∴G与E的纵坐标相同,∴G(﹣,)②当t>3时,如图3,同理求得P(2+,0),G(+,).9.(1)证明:∵四边形ABCD和四边形CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°.∴∠BCD+∠DCG=∠GCE+∠DCG,∴∠BCG=∠DCE.在△BCG和△DCE中,,∴△BCG≌△DCE(SAS).∴BG=DE;(2)解:①连接BE,如图2所示:由(1)可知:BG=DE,∵CG∥BD,∴∠DCG=∠BDC=45°,∴∠BCG=∠BCD+∠DCG=90°+45°=135°,∵∠GCE=90°,∴∠BCE=360°﹣∠BCG﹣∠GCE=360°﹣135°﹣90°=135°,∴∠BCG=∠BCE,在△BCG和△BCE中,,∴△BCG≌△BCE(SAS),∴BG=BE,∵BG=BD=DE,∴BD=BE=DE,∴△BDE为等边三角形,∴∠BDE=60°;②延长EC交BD于点H,过点G作GN⊥BC于N,如图3所示:在△BCE和△DCE中,,∴△BCE≌△BCG(SSS),∴∠BEC=∠DEC,∴EH⊥BD,BH=BD,∵BC=CD=,∴BD=BC=2,∴BE=2,BH=1,∴CH=1,在Rt△BHE中,由勾股定理得:EH===,∴CE=﹣1,∵∠BCG=135°,∴∠GCN=45°,∴△GCN是等腰直角三角形,∴GN=CG=(﹣1),=BC•GN=××(﹣1)=.∴S△BCG10.【观察与猜想】解:∵四边形ABCD是正方形,∴∠B=∠BCD=∠ADC=90°,AB=BC=CD=AD,∠ACB=∠ACD=45°,由旋转的性质得:GC=AC,∠ACG=90°,∴∠ACB=∠GCD=45°,在△ABC和△GDC中,,∴△ABC≌△GDC(SAS),∴AB=GD,∠GDC=∠B=90°,∴DG∥BC,△CDG是等腰直角三角形,∴DG=CD=BC,∵点E与点D重合,点F与点C重合,∴EG=BF,EG∥BF;故答案为:EG=BF,EG∥BF;【探究与证明】证明:点E、F分别在CD、BC边上任意位置时,如图③所示:作GM⊥BC,交BC延长线于M,则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,由旋转的性质得:GF=AF,∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,在△ABF和△FMG中,,∴△ABF≌△FMG(AAS),∴AB=FM,BF=MG,∵AB=BC,∴BF=CM,∵BF=CE,∴MG=CE,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;点E、F在CD、BC边的延长线上的任意位置时,如图④所示:作GM⊥BC,交BC延长线于M,则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,由旋转的性质得:GF=AF,∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,在△ABF和△FMG中,,∴△ABF≌△FMG(AAS),∴AB=FM,BF=MG,∵AB=BC,∴BF=CM,∵BF=CE,∴MG=CE,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;【拓展与延伸】解:==k(k≠1)时,线段EG与BF的数量关系与位置关系仍然成立;理由如下:作GM⊥BC,交BC延长线于M,如图⑤所示:则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,∠B=∠GMF,由旋转的性质得:∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,∴△ABF∽△FMG,∴==,∵==k,∴==k,==k,∴FM=BC,GM=CE,∴BF=CM,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;故答案为:==k(k≠1).11.解:(1)AF=DE.理由如下:∵四边形OADC是正方形,∴OA=AD,∠DAE=∠AOF=90°,由题意得:AE=OF,在△AOF和△DAE中,,∴△AOF≌△DAE(SAS),∴AF=DE.(2)四边形HIJK是正方形.理由如下:如图①所示:∵H、I、J、K分别是AE、EF、FD、DA的中点,∴HI=KJ=AF,HK=IJ=ED,HI∥AF,HK∥ED,∵AF=DE,∴HI=KJ=HK=IJ,∴四边形HIJK是菱形,∵△AOF≌△DAE,∴∠ADE=∠OAF,∵∠ADE+∠AED=90°,∴∠OAF+∠AED=90°,∴∠AGE=90°,∴AF⊥ED,∵HI∥AF,HK∥ED,∴HI⊥HK,∴∠KHI=90°,∴四边形HIJK是正方形.(3)存在,理由如下:∵四边形OADC为正方形,点D的坐标为(4,4),∴OA=AD=OC=4,∴C(4,0),∵点E为AO的中点,∴OE=2,E(0,2);分情况讨论:如图②所示,①当OC是以O,C、M、N为顶点的菱形的对角线时,OC与MN互相垂直平分,则M为CE 的中点,∴点M的坐标为(2,1),∵点M和N关于OC对称,∴N(2,﹣1);②当OC是以O,C、M、N为顶点的菱形的边时,若M在y轴的左侧时,∵四边形OCM'N'是菱形,∴OM'=OC=4,M'N'∥OC,∴△M'FE∽△COE,∴==2,设EF=x,则M'F=2x,OF=x+2,在Rt△OM'F中,由勾股定理得:(2x)2+(x+2)2=42,解得:x=,或x=﹣2(舍去),∴M'F=,FN=4﹣M'F=,OF=2+=,∴N'(,);若M在y轴的右侧时,作N''P⊥OC于P,∵ON''∥CM'',∴∠PON''=∠OCE,∴tan∠PON''==tan∠OCE==,设PN''=y,则OP=2y,在Rt△OPN''中,由勾股定理得:y2+(2y)2=42,解得:y=,∴PN''=,OP=,∴N''(,﹣);综上所述,存在点N使以O,C、M、N为顶点的四边形是菱形,点N的坐标为(2,﹣1)或(,)或(,﹣).12.(1)证明:∵四边形ABCD为矩形,∴BC=AD,CD=AB,∠C=∠ABC=∠A=∠ADC=90°,∵CE=AF,∴BC﹣CE=AD﹣AF,即BE=DF,在△DCE和△BAF中,,∴△DCE≌△BAF(SAS),∴∠CDE=∠ABF,∠CED=∠AFB,由折叠的性质得:∠CDE=∠C′DE,∠ABF=∠A′BF,∠CED=∠C′ED,∠AFB=∠A′FB,∵∠CDE+∠C′DE+∠HDF=90°,∠ABF+∠A′BF+∠GBE=90°,∠CED+∠C′ED+∠GEB=180°,∠AFB+∠A′FB+∠HFD=180°,∴∠HDF=∠GBE,∠GEB=∠HFD,在△BEG和△DFH中,,∴△BEG≌△DFH(ASA);(2)解:四边形A'HC'G的形状是矩形;理由如下:由折叠的性质得:∠C=∠DC′E=∠A=∠BA′F=90°,由(1)得:△BEG≌△DFH,∴∠BGE=∠DHF,∵∠BGE=∠A′GC′,∠DHF=∠A′HC′,∴∠A′GC′=∠A′HC′,∵∠DC′E+∠BA′F+∠A′GC′+∠A′HC′=90°+90°+∠A′GC′+∠A′HC′=360°,∴∠A′GC′+∠A′HC′=180°,∴∠A′GC′=∠A′HC′=90°,∴∠DC′E=∠BA′F=∠A′GC′=∠A′HC′=90°,∴四边形A'HC'G是矩形;(3)解:由(2)知:∠BGE=∠A′GC′=90°,∵tan∠EBG=,∴设EG=3x,则BG=4x,BE==5x,由折叠的性质得:CE=C′E=EG+C′G=3x+1,CD=AB=A′B=BG+A′G=4x+6,∴BC=CE+BE=3x+1+5x=8x+1,S矩形ABCD=CD•BC=4×CD•CE+2×EG•BG﹣A'G•C'G,即(4x+6)(8x+1)=4×(3x+1)(4x+6)+2×3x•4x﹣6×1,整理得:x2﹣2x=0,解得:x1=2,x2=0(不合题意舍去),∴CD=4×2+6=14,CB=8×2+1=17,∴S矩形ABCD=CD•BC=14×17=238.13.解:(1)作D'E⊥BC交BC的延长线于E,如图2所示:则∠E=90°,∵四边形ABCD是矩形,∴∠ABC=90°,AB∥CD,AD∥BC,CD=AB=2,∴∠ACD=∠BAC,∠DAC=∠ACB=30°,∵∠ACB=30°,∴BC=AB=2,∠ACD=∠BAC=60°,由旋转的性质得:CD'=CD=2,∠ACA'=30°,∴∠D'CE=180°﹣30°﹣30°﹣60°=60°,∴∠CD'E=30°,∴CE=CD'=1,D'E=CE=,∴S=BC×D'E=×2×=3;△BCD′(2)△OBD′是直角三角形,理由如下:连接OC,如图3所示:由旋转的性质得:CA'=CA,∠AD'C=∠ADC=90°,∠D'A'C=∠DAC=30°,∵O是AA′的中点,∴OC⊥AA',∴∠AOC=∠AOC=90°=∠ABC=∠AD'C,∴∠ABC+∠AOC=180°,∴A、B、C、O四点共圆,∴∠BOC=∠BAC=60°,同理;A、D'、C、O四点共圆,∴∠D'OC=∠D'A'C=30°,∴∠BOD'=90°,∴△BOD'是直角三角形;(3)若B、C、D'三点不共线,如图3所示:由(2)得:∠OBC=∠OAC,∠OD'C=∠OA'C,∠OAC=∠OA'C,∴∠OBC=∠OD'C,∵OB=OD,∴∠OBD'=∠OD'B,∴∠CBD'=∠CD'B,∴CB=CD',∵CD'=CD,∴BC=CD,这与已知相矛盾,∴B、C、D'三点共线;分两种情况:当点D'在BC的延长线上时,如图4所示:=90°;α=α1当点D'在边BC上时,如图5所示:=360°﹣90°=270°;α=α1故答案为:90°或270;时,△OBD′不存在时,分两种情况:当α=α2当O与D'重合时,如图6所示:∵CA'=CA,∠CAD'=∠CA'D'=30°,∴∠ACA'=120°,=360°﹣120°=240°;∴α=α2当O与B重合时,如图7所示:则AA'=2AB=4,∵CA=CA'=2AB=4=AA',∴△ACA'是等边三角形,∴∠A'CA=60°,=360°﹣60°=300°;∴α=α2故答案为:240°或300.14.解:(1)①如图1,∵CF∥AE ∴∠FCE=∠AEB,∠CFE=∠AEF∵△ABE翻折得到△AFE∴EF=BE=1,∠AEF=∠AEB∴∠FCE=∠CFE∴CE=EF=1∴m=BC=BE+CE=2∴m的值是2.②如图2,过点F作GH⊥AD于点G,交BC于点H ∴GH⊥BC∴∠AGF=∠FHE=90°∵四边形ABCD是矩形∴∠BAD=∠B=90°∴四边形ABHG是矩形∴GH=AB=2,AG=BH∵△ABE翻折得到△AFE∴EF=BE=1,AF=AB=2,∠AFE=∠B=90°∴∠AFG+∠EFH=∠AFG+∠FAG=90°∴∠EFH=∠FAG∴△EFH∽△FAG∴设EH=x,则AG=BH=x+1∴FG=2EH=2x∴FH=GH﹣FG=2﹣2x∴解得:x=∴AG=,FG=∵AD=BC=m∴DG=|AD﹣AG|=|m﹣|∴DF 2=DG 2+FG 2=(m ﹣)2+2≥,即可把DF 2看作关于m 的二次函数,抛物线开口向上,最小值为∵∴ ∵(m ﹣)2+2= 解得:m 1=,m 2=1 ∴根据二次函数图象可知,1≤m(2)如图3,过点B 1作MN ⊥AD 于点M ,交BC 于点N ∴MN ∥AB ,MN =AB =2∵AC =∴sin ∠ACB =∵AD ∥BC ,点B 1在AC 上∴∠MAB 1=∠ACB∴sin ∠MAB 1=∴∵点B 1到AD 的距离小于∴MB 1=解得:∵m>0 ∴m>如图4,当E1落在边AD上,且B1在AC上时,m最大,此时,∠ACB=∠B1AE1=∠BAE∴tan∠ACB=tan∠BAE∴∴m=BC=2AB=4∴m的取值范围是<m≤415.解:(1)BE=DG.BE⊥DG;理由如下:∵四边形ABCD和四边形CEFG为正方形,∴CD=BC,CE=CG,∠BCE=∠DCG=90°,在△BEC和△DGC中,,∴△BEC≌△DGC(SAS),∴BE=DG;如图1,延长GD交BE于点H,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGC+∠EBC=∠BEC+∠EBC=90°,∴∠BHG=90°,即BE⊥DG;故答案为:BE=DG,BE⊥DG.(2)成立,理由如下:如图2所示:同(1)得:△DCG≌△BCE(SAS),∴BE=DG,∠CDG=∠CBE,∵∠DME=∠BMC,∠CBE+∠BMC=90°,∴∠CDG+∠DME=90°,∴∠DOB=90°,∴BE⊥DG;(3)由(2)得:DG=EB,分两种情况:①如图3所示:∵正方形ABCD的边长为4,正方形ECGF的边长为3,∴AC⊥BD,BD=AC=AB=4,OA=OC=OB=AC=2,CE=3,∴AE=AC﹣CE=,∴OE=OA﹣AE=,在Rt△BOE中,由勾股定理得:DG=BE==;②如图4所示:OE=CE+OC=2+3=5,在Rt△BOE中,由勾股定理得:DG=BE==;综上所述,若A、C、E三点共线,DG的长为或.16.(1)证明:过点F作FH⊥AB于H,如图1所示:则∠AHF=90°,∵AM平分∠DAH,∴∠FAH=45°,∴△AFH是等腰直角三角形,∴FH=AH,AF=AH=FH,∵AF=BE,∴FH=AH=BE,∴AH+AE=BE+AE,∴HE=AB=BC,在△FEH和△ECB中,,∴△FEH≌△ECB(SAS),∴CE=EF;(2)解:∵△FEH≌△ECB,∴∠FEH=∠ECB,∵在Rt△BCE中,∠ECB+∠CEB=90°,∴∠FEH+∠CEB=90°,∴∠CEF=90°,由(1)知,CE=EF,∴△CEF是等腰直角三角形,∠ECF=∠EFC=45°,把Rt△CDG绕点C逆时针旋转90°至Rt△CBN位置,如图2所示:则∠GCN=90°,CG=CN,DG=BN,∴∠NCE=∠GCN﹣∠GCE=45°,∴∠NCE=∠GCE,在△CEG和△CEN中,,∴△CEG≌△CEN(SAS),∴GE=NE=EB+BN=EB+DG,∴△AEG的周长=AE+GE+AG=AE+EB+DG+AG=AB+AD=2a;(3)解:设AE=x,由(1)得:FH=BE=a﹣x,则△EAF的面积=AE×FH=x(a﹣x)=﹣(x﹣)2+,∴当x=,即点E在AB边中点时,△EAF的面积最大,最大值为.17.解:(1)∵矩形ABCD,∴AB⊥BC,PA=PC;∵PE⊥AB,BC⊥AB,∴PE∥BC,∴∠APE=∠PCF;∵PF⊥BC,AB⊥BC,∴PF∥AB,∴∠PAE=∠CPF.∵在△APE与△PCF中,,∴△APE≌△PCF(ASA),∴PE=CF.在Rt△PCF中,=tan30°=,∴=,故答案为:.(2)如答图1,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN.0°~30°时∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN,又∵∠PME=∠PNF=90°,∴△PME∽△PNF,∴=,由(1)知,=,∴=.同理30°~60°时,=;(3)当60°<α<90°时,将顶点P在AC上移动且使=时,如答图2,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN,PM∥BC,PN∥AB.∵PM∥BC,PN∥AB,∴∠APM=∠PCN,∠PAM=∠CPN,∴△APM∽△PCN,∴==,得CN=2PM.在Rt△PCN中,==tan30°=,∴=.∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN,又∵∠PME=∠PNF=90°,∴△PME∽△PNF,∴==.18.解:(1)∵四边形DEFG是矩形,∴DG=BF,GF=BD,∠BDG=∠BFG=90°,∴∠ADG=∠CFG=90°,由题意得:BD=3t,则AD=6﹣3t,DG=4t,CF=8﹣4t,FG=BD=3t,当AG=CG时,由勾股定理得:AG2=AD2+DG2,CG2=FG2+FC2,∴AD2+DG2=FG2+FC2,即(6﹣3t)2+(4t)2=(3t)2+(8﹣4t)2,解得:t=1,即当AG=CG时,t=1秒;(2)分两种情况:①当0<t≤1时,如图1所示:S=矩形DEFG的面积=3t×4t=12t2;即S=12t2(0<t≤1);②当1<t≤2时,如图2所示:∵∠ADH=∠B=90°,∠A=∠A,∴△ADH∽△ABC,∴=,即=,解得:DH=8﹣4t,同理得:FM=6﹣3t,∴S=×6×8﹣×2×(6﹣3t)(8﹣4t)=﹣12t2+48t﹣24;即S=﹣12t2+48t﹣24(1<t≤2);(3)分三种情况:①如图1所示:由题意得:×6×8﹣12t2﹣×4t×(6﹣3t)﹣×3t×(8﹣4t)=6,解得:t=;②如图3所示:由题意得:×4t×(6﹣3t)+×3t×(8﹣4t)+3t×4t﹣×6×8=6,解得:t=;③如图4所示:由勾股定理得:AC===10,∴CD=6+10﹣3t=16﹣3t,同(2)得:△CDE∽△CAB,∴==,即==,解得:DE=(16﹣3t),CE=(16﹣3t),由题意得EF=(16﹣3t),∴C与F重合,∴×8×(16﹣3t)=6,解得:t=;综上所述,当△ACG的面积为6时,t的值为秒或秒或秒.19.解:(1)如图1,过点P作PM⊥BC,垂足为M,则四边形PDCM为矩形.∴PM=DC=24.∵QB=32﹣t,∴S=×24×(32﹣2t)=384﹣24t(0≤t<16);(2)由图可知:CM=PD=4t,CQ=2t.以B、P、Q三点为顶点的三角形是等腰三角形,可以分三种情况:①若PQ=BQ.在Rt△PMQ中,PQ2=4t2+242,由PQ2=BQ2得4t2+242=(32﹣2t)2,解得t=;②若BP=BQ.在Rt△PMB中,BP2=(32﹣4t)2+242.由BP2=BQ2得:(32﹣4t)2+242=(32﹣2t)2即3t2﹣32t+144=0.由于△=﹣704<0,∴3t2﹣32t+144=0无解,∴PB≠BQ.③若PB=PQ.由PB2=PQ2,得4t2+242=(32﹣4t)2+242整理,得3t 2﹣64t +256=0.解得t 1=,t 2=16(舍去)综合上面的讨论可知:当t =秒或t =秒时,以B 、P 、Q 三点为顶点的三角形是等腰三角形.(3)设存在时刻t ,使得PQ ⊥BD . 如图2,过点Q 作QE ⊥AD 于E ,垂足为E .∵AD ∥BC ∴∠BQF =∠EPQ ,又∵在△BFQ 和△BCD 中∠BFQ =∠C =90°,∴∠BQF =∠BDC ,∴∠BDC =∠EPQ ,又∵∠C =∠PEQ =90°,∴Rt △BDC ∽Rt △QPE ,∴=,即=,解得t =9.所以,当t =9秒时,PQ ⊥BD .20.(1)【发现证明】证明:把△ABE 绕点A 顺时针旋转90°至△ADG ,如图1,∴∠BAE=∠DAG,AE=AG,∵∠EAF=45°,∴∠BAE+∠FAD=45°,∴∠DAG+∠FAD=45°,∴∠EAF=∠FAG,∵AF=AF,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=DF+BE;(2)【类比引申】①不成立,结论:EF=DF﹣BE;证明:如图2,将△ABE绕点A顺时针旋转90°至△ADM,∴∠EAB=∠MAD,AE=AM,∠EAM=90°,BE=DM,∴∠FAM=45°=∠EAF,∵AF=AF,∴△EAF≌△MAF(SAS),。
中考数学总复习《四边形的综合题》练习题-附答案一、单选题(共12题;共24分)1.如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别为AM,MR的中点,则EF的长随M点的运动()A.变短B.变长C.不变D.无法确定2.如图,在半径为6的⊙O中,正六边形ABCDEF与正方形AGDH都内接于⊙O,则图中阴影部分的面积为()A.27﹣9 √3B.18 √3C.54﹣18 √3D.543.如图,四边形ABCD中AC⊥BC,AD//BC ,BC=3 ,AC=4 ,AD=6 ,M是BD的中点,则CM的长为()A.32B.2C.52D.34.如图,菱形ABCD与等边⊙AEF的边长相等,且E、F分别在BC、CD,则⊙BAD的度数是()A.80°B.90°C.100°D.120°5.如图,已知矩形ABCD ,AD = 12,CD = 9 ,点R 、P 分别是DC ,BC 上的定点,点E 、F 分别是AP 、RP 的中点,若CR = 4 ,则EF =()A.12B.6.5C.9D.不能确定6.如图,平行四边形ABCD中,AD=5,AB=3,AE平分⊙BAD交BC边于点E,则EC等于()A.1B.2C.3D.47.如图,在平行四边形ABCD中,下列结论错误的是()A.⊙BDC=⊙ABD B.⊙DAB=⊙DCBC.AD=BC D.AC⊙BD8.如图,正方形ABCD的边长为6,点E是BC的中点,连接AE与对角线BD交于点G,连接CG 并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①⊙DEC=⊙AEB;②CF⊙DE;③AF=BF;④CHHF=23,其中正确结论的个数是()A.1B.2C.3D.49.从n边形的一个顶点出发作对角线,这些对角线把这个n边形分成的三角形个数为()A.(n+1)个B.n个C.(n﹣1)个D.(n﹣2)个10.如图,菱形ABCD的对角线AC、BD相交于点O,AC=10,BD=4,EF为过点O的一条直线,则图中阴影部分的面积为()A.5B.6C.8D.1211.如图,在菱形ABCD中,E,F分别是AB,AC的中点,如果EF=2,那么菱形ABCD周长是()A.4B.8C.12D.1612.如图,□ABCD的对角线AC与BD相交于点O,AE⊥BC垂足为E,且AB=√3,AC=2 ,BD=4,则AE的长为()A.√32B.32C.√217D.2√217二、填空题(共6题;共8分)13.如图,矩形ABCD中CE=CB=BE,延长BE交AD于点M,延长CE交AD于点F,过点E作EN⊥BE,交BA的延长线于点N,FE=2,AN=3则BC=.14.在平行四边形ABCD中,若⊙A=130°,则⊙B=,⊙C=,⊙D=.15.如图,正方形ABCD的边长为5,点A的坐标为(4,0),点B在y轴上,若反比例函数y=kx(k≠0)的图象过点C,则k的值为.16.如图,在四边形ABCD中AD∥BC,AD=9m,BC=6cm点P、Q分别从点A、C同时出发,点P以2cm/s的速度由点A向点D运动,点Q以1cm/s的速度由点C向点B运动设运动时间为ts.当t=.时,PQ为平行四边形的一边.17.如图,▱ABCD中,⊙BAD=120°,E、F分别在CD和BC的延长线上,AE⊙BD,EF⊙BC,EF=5√3,则AB的长是18.如图①,在四边形ABCD中,AD⊙BC,⊙C=90°,CD=6cm.动点Q从点B出发,以1cm/S的速度沿BC运动到点C停止,同时,动点P也从B点出发,沿折线B→A→D运动到点D停止,且PQ⊙BC.设运动时间为t(s),点P运动的路程为y(cm),在直角坐标系中画出y关于t的函数图象为折线段OE和EF(如图②).已知点M(4,5)在线段OE上,则图①中AB的长是cm.三、综合题(共6题;共66分)19.如图,在⊙ABC中,AD是BC边上的高线,CE是AB边上的中线,连结DE,CD=12AB.(1)求证:⊙B=2⊙DEC ;(2)已知CD=5,AD=6,求⊙CDE的面积.20.如图,四边形ABCD内接于⊙O,BC=CD,⊙C=2⊙BAD.(1)求⊙BOD的度数;(2)求证:四边形OBCD是菱形;(3)若⊙O的半径为r,⊙ODA=45°,求⊙ABD的面积(用含r的代数式表示).21.如图,在平行四边形ABCD中,过点B作BE⊙AC,在BG上取点E,连接DE交AC的延长线于点F.(1)求证:DF=EF;(2)如果AD=2,⊙ADC=60°,AC⊙DC于点C,AC=2CF,求BE的长.22.已知在平面直角坐标系中,点C(0,2),D(3,4),在x轴正半轴上有一点A,且它到原点的距离为1.(1)求过点C、A、D的抛物线的解析式;(2)设(1)中抛物线与x轴的另一个交点为B,求四边形CABD的面积;(3)把(1)中的抛物线先向左平移一个单位,再向上或向下平移多少个单位能使抛物线与直线AD只有一个交点?23.在平面直角坐标系中,直线y=kx+4(k≠0)交轴于点A(8,0),交y轴于点B.(1)k的值是;(2)点C是直线AB上的一个动点,点D和点E分别在轴和y轴上.①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求▱OCED的周长;②当CE平行于轴,CD平行于y轴时,连接DE,若ΔCDE的面积为334,请直接写出点C的坐标.24.如图,⊙ABC中,⊙BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AC=2DE,求sin⊙CDB的值.参考答案1.【答案】C 2.【答案】C 3.【答案】C 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】D 9.【答案】D 10.【答案】A 11.【答案】D 12.【答案】D 13.【答案】6+6√3 14.【答案】50°;130°;50° 15.【答案】-3 16.【答案】2或3 17.【答案】5 18.【答案】1019.【答案】(1)证明:∵AD 是⊙ABC 的高∴⊙ADB=90° ∵CE 是⊙ABC 的中线 ∴点E 是AB 的中点 ∴BE=DE=12AB∵ CD=12 AB∴BE=DE=CD∴⊙B=⊙BDE ,⊙DEC=⊙DCE ∵⊙BDE=⊙DEC+⊙DCE ∴⊙B=2⊙DEC(2)解:过点E 作EF⊙BC 于点F∵CD=12AB ,CD=5∴AB=10在Rt⊙ABD中BD=√AB2−AD2=√102−62=8∵DE是⊙ABD的中线∴S⊙DEB=12S⊙ABD=12×12×BD×AD=14×8×6=12=12×8EF解之:EF=3;∴S⊙CDE=12×5×3=7.520.【答案】(1)解:∵四边形ABCD内接于⊙O∴⊙C+⊙BAD=180°∵⊙C=2⊙BAD∴⊙C=120°,⊙BAD=60°∴⊙BOD=2⊙BAD=120°(2)解:如图1连接OC∵BC=CD∴⊙BOC=⊙DOC=60°∵OB=OC=OD∴⊙BOC和⊙DOC都是等边三角形∴OB=OC=OD=BC=DC∴四边形OBCD是菱形(3)解:如图2,连接OA,过点A作BO的垂线交BO的延长线于点N∵⊙BOD=120°,OB=OD ∴⊙ODM=30°∵⊙BOM=⊙DOM∴OM⊙BD∴OM= 12r,DM=√32r∴BD=2DM= √3r∴S⊙BOD=√34r2∵⊙ODA=45°,OA=OD∴⊙OAD=⊙ODA=45°∴⊙AOD=90°∴S⊙AOD=12r2∵⊙BOD=120°,⊙AOD=90°∴⊙AOB=150°∴⊙AON=30°∴AN= 12OA=12r∴S⊙AOB=12r2∴⊙ABD的面积为√34r2+ 12r2+ 12r2=(1+ √34)r2.21.【答案】(1)证明:连接BD交AC于点O.∵四边形ABCD是平行四边形∴OB=OD ∵BG⊙AF ∴DF=EF.(2)解:∵AC⊙DC ,⊙ADC=60°,AD=2 ∴AC= √3 .∵OF 是⊙DBE 的中位线 ∴BE=2OF. ∵OF=OC+CF ∴BE=2OC+2CF.∵四边形ABCD 是平行四边形 ∴AC=2OC. ∵AC=2CF ∴BE=2AC=2 √3 .22.【答案】(1)解:根据题意可知A 的坐标为(1,0)设过C 、A 、D 三点的抛物线的解析式为:y =ax 2+bx+c (a≠0) ∵C (0,2),A (1,0),D (3,4)∴{c =2a +b +c =09a +3b +c =4解得 { a =43b =−103c =2故过C 、A 、D 三点的抛物线的解析式为:y = 43x 2−103x +2(2)解:∵点B 为抛物线与x 轴的另一个交点,令y =0 则 43x 2−103x +2=0∴x 1=1,x 2= 32∴点B 的坐标为 (32,0)作DE⊙x 轴于点E∴S 四边形CABD =S 梯形OEDC ﹣S ⊙AOC ﹣S ⊙BDE = 12×(2+4)×3−12×2×1−12×(3−32)×4=5(3)解:把抛物线y = 43x 2−103x +2即y = 43(x −54)2−112向左平移一个单位得到的抛物线的解析式为:y = 43(x −54+1)2−112即y = 43x 2−23x 设抛物线y = 43x 2−23x 向上或向下平移|k|个单位能使抛物线与直线AD 只有一个交点 则向上或向下平移|k|个单位抛物线的解析式为:y = 43x 2−23x +k 设过A 、D 两点的解析式为y =ax+b∵A (1,0),D (3,4)代入上式得 {a +b =03a +b =4解得 {a =2b =−2∴直线AD 的解析式为:y =2x ﹣2得 {y =43x 2−23x +k y =2x −2∴4x 2﹣8x+3k+6=0∴⊙=64﹣16(3k+6)=0解得,k =﹣ 23即抛物线y = 43x 2−23x 向下平移 23个单位,与直线AD 只有一个交点.23.【答案】(1)−12(2)解:①由(1)可知直线 AB 的解析式为 y =−12x +4 . 当 x =0 时点 B 的坐标为 (0,4)∴OB =4 .点 E 为 OB 的中点∴BE =OE =12OB =2 .点 A 的坐标为 (8,0)∴OA =8 .四边形OCED是平行四边形∴CE//DABC AC=BE OE=1∴BC=AC∴CE是ΔABO的中位线∴CE=12OA=4.四边形OCED是平行四边形∴OD=CE=4,OC=DE .在RtΔDOE中∠DOE=90°,OD=4∴DE=√OD2+OE2=2√5∴C平行四边形OCED=2(OD+DE)=2(4+2√5)=8+4√5.②点C的坐标为(−3,112)或(11,−32)24.【答案】(1)证明:∵DE⊙BC,CE⊙AB ∴四边形DBCE是平行四边形.∴CE=BD又∵CD是边AB上的中线∴BD=AD∴CE=DA又∵CE⊙DA∴四边形ADCE是平行四边形.∵⊙BCA=90°,CD是斜边AB上的中线∴AD=CD∴四边形ADCE是菱形;(2)解:过点C作CF⊙AB于点F由(1)可知,BC=DE设BC=x,则AC=2x在Rt⊙ABC中,AB= √AC2+BC2= √5x.∵12AB•CF=12AC•BC∴CF= AC⋅BCAB=2√55x.∵CD= 12AB=√52x∴sin⊙CDB= CFCD=45.。
中考数学总复习《四边形的综合题》练习题附带答案一、单选题(共12题;共24分)1.如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF 的大小为A.15°B.30°C.45°D.60°2.如图,▱ABCD的对角线AC与BD相交于点O,且∠OCD=90°.若E是BC边的中点,BDD=20 ,AC=12 ,则OE的长为()A.6B.5C.4D.33.一个正方形的边长增加了3cm,面积相应增加了45cm2,则这个正方形的边长为()A.6cm B.7cm C.8cm D.9cm4.如图所示,某居民小区为了美化居住环境,要在一块三角形空地上围一个四边形花坛.已知四边形BCFE的顶点E,F分别是边AB,AC的中点,量得EF=8米,∠B=∠C=60°则四边形花坛的周长是()A.24米B.32米C.40米D.48米5.如图,五边形ABCDE中,∠B=80°,∠C=110°,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC 的外角,则∠1+∠2+∠3等于()A.90°B.190°C.210°D.180°6.在四边形ABCD中,O是对角线交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD//BC,AD=BC B.AB=DCC.OA=OC,OD=OB D.AB//DC7.如图,在□ABCD中,E为边CD上一点,将∠ADE沿AE折叠至∠AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为_______.A.36°B.52°C.48°D.30°8.如图,已知直线l1//l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l2的交点D是AB的中点,那么∠1的度数为()A.100°B.110°C.120°D.130°9.小聪在作线段AB的垂直平分线时他是这样操作的:分别以A和B为圆心,大于12AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.长方形10.如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上,则数轴上表示2017的点与正方形上的数字对应的是()A.0B.2C.4D.611.如图,菱形ABCD中,BC=5 ,对角线AC等于8,DE⊥AB则DE的长为()A.5B.6C.9.6D.4.812.如图,在矩形ABCD中,AB=4 ,BC=3 ,点E为AB上一点,连接DE,将△ADE沿DE折叠,点A落在A′处,连接A′C,若F,G分别为A′C,BC的中点,则FG的最小值为()A.2B.√72C.√5−12D.1二、填空题(共6题;共7分)13.如图,在平面直角坐标系中,A(4,0)、B(0,-3),以点B为圆心、2 为半径的∠B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为.14.某古村落为方便游客泊车,准备利用长方形晒谷场长60m一侧,规划一个停车场,已知每个停车位需确保有如长5.5m,宽2.5m的长方形AEDF供停车,如图▱ABCD是其中一个停车位,所有停车位都平行排列,∠ABD为60°,则每个体车位的面积大约为m2(结果保留整数),这个晒谷场按规划最多可容纳个停车位.(√3≈1.7)15.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.16.已知一个多边形的内角和为900°,则这个多边形的边数是17.如图,矩形ABCD中,AB=3 ,BC=4 ,CE是∠ACB的平分线与边AB的交点,则BE的长为.18.如图,在五边形ABCDE中∠A+∠B+∠E=300°,DP 、CP 分别平分∠EDC 、 ∠BCD则∠P=.三、综合题(共6题;共76分)19.如图,已知O是∠ABCD的对角线AC的中点,M是OA上任意一点(M不与O,A重合).(1)画一个与∠DAM关于点O成中心对称的∠BCN;(2)画一个与∠DCM关于点O成中心对称的图形;(3)连接DN,BM,试判断图中还有几个平行四边形.20.如图,在直角梯形ABCD中,AD//BC,∠A=∠B=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).(1)设∠DPQ的面积为S,用含有t的代数式表示S.并写出t的取值范围.(2)当∠DPQ的面积为36时求运动时间t的值.(3)当四边形PCDQ是平行四边形,求t的值.21.如图,某校准备一面利用墙,其余三面用篱笆围成一个矩形花圃ABCD,已知旧墙可利用的最大长度为13m,篱笆长为24m,设垂直于墙的AB边长为xm.(1)若围成的花圃面积为70m2时求BC的长;(2)如图,若计划将花圃中间用一道篱笆隔成两个小矩形,且花圃面积为78m2,请你判断能否围成这样的花圃?如果能,求BC的长:如果不能,请说明理由.22.如图,在矩形ABCD中,AB=6,BC=8.(1)用尺规作图法作菱形AECF,使点E、F分别在BC和AD边上;(2)求EF的长度.23.如图,已知:AB//DF,BC//ED,AC//EF(1)图中有几个平行四边形?将它们分别表示出来.(2)在(1)中选择一个进行证明.(3)证明:F是BC边上的中点.24.问题提出(1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB∠ACB (填“>”“<”“=”);(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.参考答案1.【答案】C 2.【答案】C 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】D 7.【答案】A 8.【答案】C 9.【答案】B 10.【答案】B 11.【答案】D 12.【答案】D 13.【答案】3214.【答案】17;19 15.【答案】1440° 16.【答案】7 17.【答案】4318.【答案】60°19.【答案】(1)解:如图,在OC 上截取ON=OM,连接BN,则∠BCN 与∠DAM 关于点O 成中心对称.(2)解:∠BAN 与∠DCM 关于点O 成中心对称. (3)解:如图,∠BAN 与∠DCM 关于点O 成中心对称. ∴∠BAN∠∠DCM∴BN=DM ,∠BNA=∠DMC ∴BN∠DM∴DMBN 是平行四边形》 故答案为:还有一个,即∠DMBN.20.【答案】(1)解:根据题意得:AQ=t ,∴DQ=16−t∴∠DPQ的面积S= 12×(16−t)×12=96−6t即S与t之间的函数关系式为:S=96−6t(0≤t≤10.5)(2)解:当S=6时96−6t=36解得:t=10∴t=10时∠DPQ的面积是36(3)解:∵PB=2t,∴PC=21−2t,若四边形PCDQ是平行四边形则DQ=PC∴16−t=21−2t解得:t=5,∴当t=5时四边形PCDQ是平行四边形21.【答案】(1)解:根据题意得:BC=(24-2x)m则(24-2x)x=70解得:x1=5,x2=7当x1=5时BC=14,x2=7时BC=10墙可利用的最大长度为13m,BC=14舍去.答:BC的长为10m.(2)解:不能围成这样的花圃.理由如下:依题意可知:(24-3x)x=78即x2-8x+26=0,∠=82-4×1×26=-40<0所以方程无实数根答:不能围成这样的花圃.22.【答案】(1)解:如图,连接AC,分别以A、C为圆心,大于12AC的长为半径画弧,连接两弧交点,即为线段AC的垂直平分线MN,MN与线段BC、AD分别交于点E、F,连接AE,CF,菱形AECF即为所求作.(2)解:AC交EF于点O∵四边形ABCD是矩形∴AB =CD =6,BC =AD =8,∠D =90° 由勾股定理得AC =√AD 2+CD 2=10 ∴OA =OC =5设AF =FC =x ,由勾股定理得x 2=(8−x)2+62解得x =254∵∠FOC =90°∴OF =√FC 2−OC 2=√(254)2−52=154∴EF =2OF =152∴EF 的长为152.23.【答案】(1)解:∵AB∠DF ,ED∠BC ,EF∠AC∴图中共有3个平行四边形,即 ▱AEFD 、 ▱BFDE 和 ▱CDEF ; (2)解:∵AB∠DF ,EF∠AC ∴AE∠DF ,EF∠AD∴四边形AEFD 是平行四边形.(3)证明:四边形 BFDE 和四边形 CDEF 都是平行四边形∴DE =BF DE =CF∴BF =CFF 是 BC 边上的中点.24.【答案】(1)> 问题探究(2)解:当点P 位于CD 的中点时∠APB 最大,理由如下:假设P 为CD 的中点,如图2,作∠APB 的外接圆∠O ,则此时CD 切∠O 于点P在CD 上取任意异于P 点的点E ,连接AE ,与∠O 交于点F ,连接BE ,BF ∵∠AFB 是∠EFB 的外角 ∴∠AFB >∠AEB ∵∠AFB=∠APB∴∠APB>∠AEB故点P位于CD的中点时∠APB最大:(3)解:如图3,过点E作CE∠DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ以点O为圆心,OA长为半径作圆,则∠O切CE于点G,连接OG,并延长交DF于点P,此时点P 即为小刚所站的位置由题意知DP=OQ= √OA2−AQ2∵OA=CQ=BD+QB﹣CD=BD+ 12AB﹣CD,BD=11.6米,12AB=3米,CD=EF=1.6米∴OA=11.6+3﹣1.6=13米∴DP= √132−32=4√10米即小刚与大楼AD之间的距离为4 √10米时看广告牌效果最好.。
中考数学一轮复习:四边形 综合训练一、单选题1.如图,在平行四边形OABC 中,对角线相交于点E ,OA 边在x 轴上,点O 为坐标原点,已知点()4,0A ,3,1E ,则点C 的坐标为( )A .()1,1B .()1,2C .()2,1D .()2,2 2.如图,在平行四边形ABCD 中,ABC ∠的平分线BF 分别与AC 、AD 交于点E 、F ,3AB =,2FD =,则EF FB的值为( )A .25B .38 C .37 D .353.如图,在四边形ABCD 中,点E ,F 分别是AD ,BC 的中点,G ,H 分别是BD ,AC 的中点,AB ,CD 满足什么条件时,四边形EGFH 是菱形.( )A .AB CD = B .AB //CDC .AC BD = D .AD BC = 4.如图,在锐角△ABC 中,延长BC 到点D ,过点O 作直线MN ∥BC ,MN 分别交∠ACB 、∠ACD 的平分线于E ,连接AE 、AF ,在下列结论中:①OE =OF ;②CE =CF ;③若CE =12,则OC 的长为6;④当AO =CO 时,四边形AECF 是矩形.其中正确的是( )A .①④B .①②C .①②③D .②③④ 5.如图,在正方形ABCD 中,6AB =,点M 在CD 边上,且210AM =AEM △与ADM △关于所在的直线AM 对称,将ADM △按顺时针方向绕点A 旋转90°得到ABF ,连接EF ,则线段EF 的长为( )A .213B .25C .2D .456.如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E .若BF =6,AB =5,则AE 的长为( )A 7B .27C .8D .107.如图,已知平行四边形ABCD ,CD =3cm ,依下列步骤作图,并保留作图痕迹: 步骤1:以B 为圆心,BE 长为半径画弧①,分别交AB ,BC 于点E ,F ;步骤2:以A 为圆心,以BE 长为半径画弧②,交AD 于点G ;步骤3:以G 为圆心,以EF 长为半径画弧③,弧②和弧③交于点H ,过H 作射线,交BC 于点M .则下列叙述不正确的是( )A.∠AMC=∠C B.AM=CD C.AM平分∠BAD D.△BEF≌△AGH 8.如图,正方形ABCD的边长为4,点E在边CD上,且CE=1,连结AE,点F在边AD上,连结BF,把ABF沿BF翻折,点A恰好落在AE上的点G处,下列结论:①AE=BF;S ;④GE=0.2,其中正确的是()②AD=3DF;③6ABFA.①②③④B.①③④C.①②③D.①③9.如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点,以C为圆心,2为半径作弧BD,再分别以E、F为圆心,1为半径作弧BO、弧OD,则图中阴影部分的面积为()A.π-1 B.π-2 C.π-3 D.410.在正方形ABCD中,E为BC上一点,作DF⊥AE于点F、BG⊥AE于点G连接BF,作GH∥BF交DF于点H,连接BH、AH,若AF=FG,则①∠BAG=30°;②△ABG≌△DAF;③BH=AD;④S△ABH=2)S△AFH.在上述结论中,正确的有()A .①②③B .②③④C .②③D .①②③④二、填空题 11.如图,P 是平行四边形ABCD 对角线AC 上的点,且满足PB=PC=CD ,若∠PCB=20°,则∠D 的度数是______.12.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,以AO ,AB 为邻边作平行四边形1ABC O ,1AC 交OB 于点1O ;以1AO ,AB 为邻边作平行四边形21ABC O …,若ABCD S a =矩形,则20212020ABC O S =平行四边形______.13.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,DH AB ⊥于点H ,连接OH ,25CAD ∠=︒,则DHO ∠=______.14.如图,在ABCD 中,90,BAC AB AC ∠=︒=,过点A 作边BC 的垂线AF 交DC 的延长线于点E ,点F 是垂足,连接BE DF 、,DF 交AC 于点O .则下列结论:①四边形ABEC 是正方形;②2DE BC =;③S CFD =S BEF ,正确的个数有______.(填序号)15.如图,在菱形ABCD 中,120BAD ∠=︒,4CD =,M ,N 分别是边AB ,AD 的动点,满足AM DN =,连接CM 、CN ,E 是边CM 上的动点,F 是CM 上靠近C 的四等分点,连接AE 、BE 、NF ,当CFN 面积最小时,12BE AE +的最小值为______.三、解答题16.如图,过ABC 边AC 的中点O ,作OE AC ⊥,交AB 于点E ,过点A 作AD BC ∥,与BO 的延长线交于点D ,连接CD ,CE ,若CE 平分ACB ∠,CE BO ⊥于点F .(1)求证:OC BC =.(2)四边形ABCD 是矩形.17.在正方形ABCD 中,点F 是边AB 上一点,连接DF ,点E 为DF 中点.连接BE 、CE 、AE .(1)求证:△AEB≌△DEC;(2)当EB=BC时,求∠AFD的度数.18.已知,如图,四边形ABCD是菱形,∠B是锐角,AF⊥BC于点F,CH⊥AD于点H,在AB边上取点E,使得AE=AH,在CD边上取点G,使得CG=CF.联结EF、FG、CH、HE.(1)求证:四边形EFGH是矩形.(2)若∠B=45度,求证:四边形EFGH是正方形.19.如图,已知在正方形ABCD中,点M是对角线AC上一点,连接BM,在BM左侧,以BM为边作正方形BMEF,连接AF.(1)根据题意补全图形;(2)猜想AF与CM的关系,并证明.(3)若正方形ABCD边长是4,32CM BMEF边长.20.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,△BOC ≌△CE B .(1)求证:四边形OBEC 是矩形;(2)若∠DAC =30°,AB =4,求矩形OBEC 的周长.21.我们定义:对角线垂直的凸四边形叫做“准筝形”.如图1,四边形ABCD 中,AC BD ⊥,则四边形ABCD 是“准筝形”.(1)平行四边形,矩形,菱形和正方形中是筝形的是___(2)在准筝形ABCD 中,AD AB BC ==,求证:四边形ABCD 为菱形.(3)如图2,在准筝形ABCD 中,3,2,4AD AB BC ===,求CD 的长.22.如图,AC 为矩形ABCD 的对角线,AC 的垂直平分线交AD 、BC 于点F 、E .(1)如图1,求证:四边形AECF 为菱形.(2)如图2,若5BC =,5AB 5的角.23.图,正方形ABCD 的一边在直线AM 上,点P 在对角线AC 上,点E 是射线AB 上一动点,连接PE ,射线PF PE ⊥交直线AM 于点F ,已知正方形边长为8,22CP =(1)如图1,当点E 在线段AB 上时,求证PE PF =.(2)连接CE ,当CE CA =时,请在图2中画出相应的图形,并求线段AF 的长.(3)如果EPF ∠的角平分线交射线AB 于点N ,设AE x =,NE y =,直接写出y 关于x 的函数解析式,并写出定义域.参考答案1.D2.B3.A4.A5.A6.C7.C8.B9.B10.C11.120︒12.20212a13.25°14.①②③15.3 16.(1)解:∵CE 平分ACB ∠,∴OCE BCE ∠=∠,∵BO CE ⊥,∴90∠∠==︒CFO CFB ,在OCF △与BCF △中,OCE BCECF CF CFO CFB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA OCF BCF △△≌,∴OC BC =.(2)解:∵点O 是AC 的中点,∴OA OC =,∵AD BC ∥,∴DAO BCO ∠=∠.ADO CBO ∠=∠,在OAD △与OCB 中,DAO BCOOA OC ADO CBO∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA OAD OCB △△≌,∴AD BC =,∵AD BC ∥,∴四边形ABCD 是平行四边形,∵OE AC ⊥,∴90EOC ∠=︒,在OCE △与BCE 中,CE CE OCE BEC OC BC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS OCE BCE △△≌∴90∠∠==︒EBC EOC ,∴四边形ABCD 是矩形.17.(1)证明:∵四边形ABCD 为正方形,∴AB =DC ,∠F AD =90°=∠CDA ,∵点E 为DF 中点.∴AE =FE =DE ,∴∠EAD =∠EDA ,∴∠BAE -∠EAD =∠CDA -∠EDA ,即∠BAE =∠CDE ,在△AEB 和△DEC ,AE DE EAB EDC AB DC =⎧⎪∠=∠⎨⎪=⎩,∴△AEB ≌△DEC (SAS );(2)解:∵△AEB ≌△DEC ;∴BE =CE ,∵EB =BC ,∴BC =BE =CE ,∴∠EBC =∠ECB =∠BEC =60°∴∠EBF =90°-∠EBC =90°-60°=30°,∠ECD =90°-∠ECB =90°-60°=30°, ∵CE =BC =CD ,∴∠FEB =180°-∠BEC -∠CED =180°-60°-75°=45°,∵∠AFE 为△FBE 的外角,∴∠AFE =∠FBE +∠FEB =30°+45°=75°.18(1)证明∵四边形ABCD 是菱形∴AD BC ,AB =BC =CD =AD ,∠BAD =∠BCD ,∠ABC =∠ADC ∴∠ABC +∠BAD =180°∵AF⊥BC,CH⊥AD∴∠AFC=∠AHC=90°∵AD BC∴∠F AH=180°-∠AFC=90°∴四边形AFCH为矩形,∴AH=CF∵AE=AH,CG=CF∴AH=CF=AE=CG,BF=BE=DH=DG∴△AEH≌△CFG(SAS),△BEF≌△DGH(SAS) ∴EH=FG,EF=GH∴四边形EFGH是平行四边形∵BE=BF∴△BEF是等腰三角形∴∠BEF=∠BFE=12(180°-∠ABC)=90°-12∠ABC同理可得∠AEH=1902︒-∠BAD∴∠BFE+∠AEH=11802︒-(∠ABC+∠BAD)=90°∴∠HEF=180°-(∠BFE+∠AEH)=90°∴四边形EFGH是矩形.(2)证明:如图,连结BD,FH,AC,设BD、AC、FH相交于点O.∵四边形ABCD是菱形∴AD BC,AB=BC=CD=AD,AC⊥BD∴∠ADB=∠CBD,△ABD是等腰三角形,∠BOC==90°∴∠ABD=∠ADB∴∠ABD=∠CBD=12∠ABC=22.5°∴∠BCO=180°-∠CBD-∠BOC=67.5°∵四边形AFCH为矩形∴OF=OC,∠AFC=90°∴△FOC是等腰三角形∴∠OFC =∠BCO =67.5°∴∠AFH =∠AFC -∠OFC =22.5°∵BE =BF∴△BEF 是等腰三角形∴∠BEF =∠BFE =12(180°-∠ABC )=90°-12∠ABC =67.5° ∵AF ⊥BC∴∠AFB =90°∴∠AFE =∠AFB -∠BFE =22.5°∴∠EFH =∠AFE +∠AFH =45°∵四边形EFGH 是矩形∴∠FEH =90°∴∠EHF =180-∠FEH -∠EFH =45°∴∠EFH =∠EHF∴EF =EH∴四边形EFGH 是正方形.19(1)如图:(2)猜想: AF =CM ,CM ⊥AF证明:∵四边形ABCD 与四边形BMEF 为正方形,∴ AB CB =,90ABC FBM ∠=∠=︒,BM BF =,∴MBC ABM FBA ABM ∠+∠=∠+∠,∴MBC FBA ∠=∠在三角形△MBC 与△FBA 中,BM BF MBC FBA BC BA =⎧⎪∠=∠⎨⎪=⎩∴△MBC ≌△FBA (SAS )∴AF CM =,∴90FAB BCM ∠=∠=︒, 又四边形ABCD 为正方形,∴45BAC BCA BAF ∠=∠=∠=︒ ,∴90FAC FAB BAC ∠=∠+∠=︒,∴CM ⊥AF .(3)如图2,过点F 作FG ⊥AB 交AB 于点G ,90AGF BGF ∠=∠=︒,在Rt △AGF 中,有222FG AG AF +=,∵45FAB ∠=︒,32AF CM ==∴3AG FG ==,∵4AB =,∴431BG AB AG =-=-=,在Rt △BGF 中, 222FG BG BF += , ∴22221310BF BG FG ++=即正方形BMEF 1020.(1)证明:∵△BOC ≌△CEB ,∴OB =EC ,OC =EB ,∴四边形OBEC 是平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠BOC =90°,∴平行四边形OBEC 是矩形;(2)∵四边形ABCD 是菱形,∴AD =AB ,AO =OC ,BO =DO ,∵AB =4,∴AD =4,∵∠DAC =30°,∠DOA =90°,∴DO =12AD =2,由勾股定理得:AO 22224223AD DO --即BO =DO =2,CO =AO =23∵四边形OBEC 是矩形,∴BE =CO =3EC =BO =2,∴矩形OBEC 的周长=BE +EC +CO +BO =2323=434.21.(1)解:由于菱形、正方形的对角线互相垂直,且是凸四边形,而平行四边形、矩形对角线不垂直,∴菱形和正方形一定是筝形.(2)解:如下图所示:AD AB BC ==,且AC BD ⊥,∵AB=AD ,∴∠ABO =∠ADO ,∵AC ⊥BD ,∴∠AOB =∠AOD =90°,∴△ABO ≌△ADO (AAS ),∴OB=OD ,同理可证:△ABO≌△CBO(AAS),∴OA=OC,∴四边形ABCD是平行四边形,又AB=AD,∴四边形ABCD是菱形.(3)解:如下图所示:在Rt AOB中,由勾股定理可知:222=+,AB OA OB在Rt COD中,由勾股定理可知:222=+,CD OC OD 222222∴+=+++,AB CD OA OB OC OD在Rt BOC中,由勾股定理可知:222=+,BC OB OC在Rt AOD△中,由勾股定理可知:222=+,AD OA OD 222222∴+=+++BC AD OA OB OC OD2222∴+=+,代入数据:AB CD BC AD2222∴+=+243CD221∴=CD∴21CD=负值舍去) .22(1)证明:∵四边形ABCD是矩形,∴AF∥CE,∴∠F AG=∠ECG,∵EF垂直平分AC,∴AG=CG,FE⊥AC,在△AGF 和△CGE 中,FAG ECG AG CGAGF CGE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AGE ≌△CGF (ASA ),∴EG =FG ,∴四边形AECF 为平行四边形,又∵FE ⊥AC ,∴平行四边形AECF 为菱形.(2) 5∠AEB ,∠EAF ,∠CFD ,∠FCE . 理由:设AE =x ,则CE =x ,BE =5﹣x ,在Rt △ABE 中,由勾股定理得:AB 2+BE 2=AE 2, ∴2(5)+(5﹣x )2=x 2,解得:x =3,∴BE =2,∴tan ∠AEB 5=∵AD ∥BC ,∴∠EAF =∠AEB ,∠FCE =∠CFD ,∵∠AEB =∠CFD ,∴∠AEB ,∠EAF ,∠CFD ,∠FCE 5 23(1)证明:过点P 作PG AB ⊥,PH AD ⊥,垂足为G ,H ,∵四边形ABCD 为正方形,∴90BAD ∠=︒,45BAC DAC ∠=∠=︒,∵PG AB ⊥,H AD ⊥,∴90PGA PHA ∠=∠=︒, ∴四边形PGAH 为矩形,又45PAF ∠=︒,90AHP ∠=︒, ∴45APH ∠=︒,∴AH PH =, ∴矩形PGAH 为正方形,∴PG PH =,90GPH ∠=︒,即90GPF FPH ∠+∠=︒. 又∵PE PF ⊥,∴90EPF ∠=︒, ∴90GPF EPG ∠+∠=︒,∴EPG FPH ∠=∠,在EPG △和FPH 中,PGE PHF PG PHEPG FPH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴EPG FPH ≌△△(ASA ),∴PE PF =;(2)解:过点P 作PG AB ⊥,PH AD ⊥,垂足分别为G 、H ,由(1)知PEG PFH ≌△△,∴EG FH =, ∵CA CE =,又CB AB ⊥,∴8AB BE ==, 又∵在Rt ABC 中:22AC AB BC +228882=+ ∵22CP = ∴2AP =∵90AGP ∠=︒,45GAP ∠=︒, ∴6AG PG ==,∴88610EG =+-=,∴10FH EG ==,又6AH PG ==,∴1064AF FH AH =-=-=.(3)解:如图3,联结NF ,过P 作PG AB ⊥,PH AD ⊥,垂足分别为G ,H , 由(1)知EG FH =,由(2)知:在Rt APG △中:2AP =6AG PG ==, ∴6EG AE AG x =-=-,∵PEG PFH ≌△△,∴6FH EG x ==-,∴()6612AF AH FH PG FH x x =-=-=--=-, ∵PN 平分EPN ∠,∴EPN FPN ∠=∠, 在EPN △和FPN 中,PE PF EPN FPN PN PN =⎧⎪∠=∠⎨⎪=⎩∴EPN FPN ≌△△(SAS ),∴NE NF y ==,在Rt ANF △中:222AN AF NF +=, ∴()()22212x y x y -+-=, ∴21272x x y x -+= ∴AE AG ≥,∴6x ≥,∴x 的取值范围为:6x ≥.。