小升初重点中学新初一招生分班考试数学试卷及答案
- 格式:docx
- 大小:74.43 KB
- 文档页数:12
保密★启用前2024年小升初数学自主招生重点中学实验班分班素养测评卷二考试分数:100分;考试时间:90分钟注意事项:1.答题前,填写好自己的姓名、班级、考号等信息,请写在答题卡规定的位置上。
2.选择题、判断题必须使用2B铅笔填涂答案,非选择、判断题必须使用黑色墨迹签字笔或钢笔答题,请将答案填写在答题卡规定的位置上。
3.所有题目必须在答题卡上作答,在试卷上作答无效。
4.考试结束后将试卷和答题卡一并交回。
一、填空题(满分20分,每小题2分)1.(2分)如图,一个底面直径6厘米的圆柱体木头,沿底面虚线处垂直切成一个最大的正方体,这个正方体的表面积是平方厘米。
2.(2分)小刚和小强两人早晨跑步,小刚比小强多跑了14的路程,且小刚的速度比小强快19,则小刚和小强两人跑步的时间比是。
3.(2分)把一个长、宽、高分别是6厘米、4厘米、5厘米的长方体削成一个最大的圆柱,圆柱的体积是立方厘米。
4.(27个,维尼熊只能摘4个。
维尼熊摘了80分钟,跳跳虎摘了50分钟就累了,不摘了。
他们回来后数了一下,共摘2010个苹果,那么其中维尼熊摘的有个。
5.(2分)有一个敞口的立方体水箱,在其侧面一条高线的三等分处开两个排水孔A和B,已知两孔的排水速度相同且保持不变,现在从水箱上面匀速注水,如果打开A孔,关闭B孔,那么经过20分钟可将水箱注满,如果关闭A孔,打开B孔,则需要22分钟才能将水箱注满,那么两孔都打开,经过分钟才能将水箱注满。
6.(2分)下图是用棱长为5cm的正方体搭成的几何体,把几何体所有的表面都涂上红色。
则4个面涂上红色的有个正方体;这个几何体的体积是3cm。
试卷第2页,共5页7.(2分)某小学五、六年级参加数学竞赛的人数比是8∶7,六年级获奖人数是五年级获奖人数的37,两个年级各有50名同学未获奖,六年级有 名同学获奖。
8.(2分)一个装满水的圆柱形容器,第一次将一个圆锥形金属块浸没在水中,然后取出这个圆锥形金属块,第二次将一个圆柱形金属块浸没在水中,第一次溢出的水的体积是第二次的13,这个圆锥形金属块与这个圆柱形金属块的体积比是 。
保密★启用前2023年小升初数学(新初一)重点名校入学分班考试质量检测卷(三)答案解析一.用心思考,正确填空。
(共11小题,满分19分)1.【答案】27;28。
【分析】假设都为男生,则应该有(315)−×人,男生与女生一组就相差1人,所×人,与实际相差(52315)以用除法即可求出女生有多少组,再进一步解答即可。
【解答】解:(52315)(43)−×÷−71=÷=(组)7×=(人)4728−=(人)522827答:四(1)班男生有27人,女生有28人。
故答案为:27;28。
【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答。
2.【分析】本题中,本金是10000元,年利率是3.75%,存期是3年,根据利息=本金×利率×存期,由此代入数据求出利息,然后用利息加上本金就是可以获得的钱数.【解答】解:1000010000 3.75%3+××+10000112511125=(元)答:到期后可以获得本息和为 11125元.故答案为:11125.【点评】这种类型属于利息问题,有固定的计算方法,利息=本金×利率×存期(注意时间和利率的对应),本息=本金+利息,找清数据与问题,代入公式计算即可.3.【答案】449511000,44951.1,4。
【分析】从高位到低位,一级一级的写,哪位没有数用0占位,改写成用万作单位的数,就是在万位数的右下角点上小数点,然后把小数末尾的0去掉,再在数的后面写上“万”字;省略“亿”后面的尾数就是四舍五入到亿位,把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字。
【解答】解:四亿四千九百五十一万一千写作:449511000,44951100044951.11≈亿。
=万,4495110004故答案为:449511000,44951.1,4。
保密★启用前2023小升初重点名校入学分班考试数学试卷考试分数:100分;考试时间:90分钟注意事项:1.答题前,填写好自己的姓名、班级、考号等信息,请写在答题卡规定的位置上。
2.选择题、判断题必须使用2B铅笔填涂答案,非选择、判断题必须使用黑色墨迹签字笔或钢笔答题,请将答案填写在答题卡规定的位置上。
3.所有题目必须在答题卡上作答,在试卷上作答无效。
4.考试结束后将试卷和答题卡一并交回。
一.选择题(满分12分)1.正常运行的钟表,分针从“12”第一次走到“3”,分针就()A.沿顺时针方向旋转了45°B.沿顺时针方向旋转了90°C.沿逆时针方向旋转了45°D.沿逆时针方向旋转了90°2.一块长方形草地面积为200平方米,宽是8米。
现对这块长方形草地进行扩建,长不变,宽增加到24米,扩建后的草地面积是()平方米。
A.860 B.600 C.540 D.2433.请你给口袋里装入若干个形状、大小完全相同的各色球,使得从口袋中摸出一个红球的可能性为15。
下面方法不对的是()A.2红,1蓝,2黑,3绿,2白B.1红,5白C.1红,1蓝,1黑,2白D.a个红,3a个黑,a个绿4.六(1)班的同学正好坐成整列整行,小明坐在最后一列最后一行,用数对表示是(8,7),这个班有( )个同学。
A.15 B.56 C.64 D.495.把一个平行四边形割补成一个长方形后,()A.面积变了,周长不变B.形状变了,面积不变C.形状变了,面积变了D.形状变了,周长不变6.如图中这3个物体,从()面看到的形状相同。
A.上B.前C.左D.后7.已知553(384a b c a ×=÷=×、b 、c 均不为0),a 、b 、c 这三个数的关系是( )A .a b c >>B .c a b >>C .b c a >>D .c b a >>8.一个平行四边形相邻的两条边的长度分别为5厘米和8厘米,它的高可能是( ) A .5B .8C .9D .无法确定9.下面的算式中,与5199×的计算结果不相等的是( ) A .5110099×−B .5110051×−C .51(× 1001)−D .509999×+10.小明去书店,买了一本故事书用去他所带钱的一半还多6元,这是还剩37元,小明一共带了( )元。
小升初分班考试题数学及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个长方形的长是8厘米,宽是4厘米,它的面积是多少平方厘米?A. 24B. 32C. 12D. 16答案:A3. 一个数的3倍是45,这个数是多少?A. 15B. 30C. 45D. 5答案:A4. 以下哪个分数是最接近1的?A. 4/5B. 3/4C. 2/3D. 1/2答案:A5. 如果一个数加上5等于10,那么这个数是多少?A. 5B. 8C. 10D. 3答案:A二、填空题(每题3分,共15分)6. 一个数的5倍是25,这个数是________。
答案:57. 一个圆的直径是10厘米,那么它的周长是________厘米。
答案:31.48. 一个班级有40名学生,其中男生占60%,那么男生有________名。
答案:249. 一个数的70%是35,这个数是________。
答案:5010. 如果一个数除以4余2,那么这个数可能是________(写出一个可能的数)。
答案:6三、解答题(每题5分,共20分)11. 一个长方体的长是10厘米,宽是5厘米,高是3厘米,求它的体积是多少立方厘米?答案:150立方厘米12. 一个数的4倍加上6等于34,求这个数是多少?答案:713. 一个班级有50名学生,男生比女生多10%,求男生和女生各有多少人?答案:男生27人,女生23人14. 一个数的60%加上它的20%等于36,求这个数是多少?答案:60四、应用题(每题10分,共20分)15. 一个长方形的长是15米,宽是8米,如果它的面积增加了一倍,那么新的长方形的宽是多少米?答案:16米16. 一个工厂原来每天生产100个零件,现在提高了效率,每天能生产120个零件,产量增加了百分之几?答案:20%。
绝密★启用前2024年广东省广州市名校小升初数学(新初一)分班考试检测卷(考试时间:90分钟 试卷满分:100分)注意事项:1.答题前,务必将自己的姓名和准考证号填写在答题卡规定的位置上。
2.必须使用黑色墨水笔或黑色签字笔,将答案书写在答题卡规定的位置上。
3.所有题目必须在答题卡上作答,在试题卷上答题无效。
4.考试结束,将试题卷和答题卡一并交回。
一.心灵手巧,精准计算(共3小题,满分25分)1.(9分)解:5 4.237×= 173463÷= 151132252×= 31358972+= 415326−= 9.2 5.7 3.5−=270.09300÷= 439.88.877−−= 5525663−÷= 2.(12分)解:(1)2720128 1.6×+÷54080+620=(2)4541291297×+÷ 4547912912=×+× 457()91212=×+ 419=× 49= (3)(12.568.7) 2.54−÷÷3.86(2.54)=÷×3.8610÷0.386=(4)5115[()] 8534÷+×585[]8154=÷×5283=÷1516=(5)9.82 2.54 1.18 5.46−+−(9.82 1.18)(2.54 5.46) =+−+118=−3=(6)11572()9418×+−1157272729418 =×+×−×81820=+−2620=−6=3.(4分)解:(1)10.8::0.253x=10.80.25 3x=×10.23x=1110.2 333 x÷=÷35x=(2)22145 97918 x−×=2459918x−=24454 999189 x−+=+213918x=22132 99189x÷=÷13x=4二.认真思考,准确填空(共8小题,满分12分)4.(2分)100立方分米,15.5.(1分)1000。
2022小升初数学重点初中招生考试(分班考试)含答案参考答案参考答案与试题解析一、填空题(每题5分)1.(5分)++++++++.【分析】通过分析式中数据发现:=+,,=+,=+=+,所以可将式中的后四个分数拆分后根据加法结合律进行巧算.【解答】解:++++++++=++++++++++++,=++++++++++++,=(++)+(+)+(++)+(++)+(),=1+1+1+1+1,=5.2.(5分)小鹏同学在一个正方体盒子的每一个面上都写上一个字,分别是:我、喜、欢、数、学、课,正方体的平面展开图如右图所示,那么在该正方体盒子中,和“我”相对的面所写的字是学.【分析】如图,根据正方形展开图的11种特征,属于“1﹣3﹣2”型,折叠成正方体后,“我”与“学”相对,“喜”与“数”相对,“欢”与“课”相对.【解答】解:如图,折叠成正方体后,“我”与“学”相对,“喜”与“数”相对,“欢”与“课”相对.故答案为:学.3.(5分)1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有228 个.【分析】1到2008这2008个自然数中,3和5的倍数有个,3和7的倍数有个,5和7的倍数有个,3、5和7的倍数有个.所以,恰好是3、5、7中两个数的倍数共有133﹣19+95﹣19+57﹣19=228个.【解答】解:根据题干分析可得:1到2008这2008个自然数中,3和5的倍数有个,3和7的倍数有个,5和7的倍数有个,3、5和7的倍数有个.所以恰好是3、5、7中两个数的倍数共有133﹣19+95﹣19+57﹣19=228(个)答:恰好是3、5、7中两个数的倍数的数共有228个.故答案为:228.4.(5分)一项机械加工作业,用4台A型机床,5天可以完成;用4台A型机床和2台B型机床3天可以完成;用3台B型机床和9台C型机床,2天可以完成,若3种机床各取一台工作5天后,剩下A、C型机床继续工作,还需要 3 天可以完成作业.【分析】把这项任务看作单位“1”,根据工作量÷工作时间=工作效率,分别求出A、B、C三种机床每台每天的工作效率,再求出3种机床各取一台工作5天后,剩下的工作量,然后用剩下的工作量除以A、C两种机床的工作效率和即可.据此解答.【解答】解::设A型机床每天能完成x,B型机床每天完成y,C型机床每天完成z,则根据题目条件有以下等式:则,若3种机床各取一台工作5天后完成:()×5==,剩下A、C型机床继续工作,还需要的天数是:(1)===3(天);答:还需要3天完成任务.故答案为:3.二、填空题(每题6分)5.(6分)2008年1月,我国南方普降大雪,受灾严重.李先生拿出积蓄捐给两个受灾严重的地区,随着事态的发展,李先生决定追加捐赠资金.如果两地捐赠资金分别增加10%和5%,则总捐资额增加8%;如果两地捐赠资金分别增加15%和10%,则总捐资额增加13万元.李先生第一次捐赠了100 万元.【分析】两地捐赠资金分别增加10%和5%,则总捐资额增加8%,如果再在这个基础上两地增加第一次捐资的5%,那么两地捐赠资金分别增加到15%和10%,总量增加到8%+5%=13%,所以第一次李先生捐资13÷13%=100万.【解答】解:10%﹣5%=5%15%﹣10%=5%13÷(8%+5%)=13÷13%=100(万元)答:第一次捐了100万元.故答案为:100.6.(6分)有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这5个数中最小数的最小值为多少?【分析】设中间数是a,则它们的和为5a,中间三数的和为3a.因为5a是平方数,所以平方数的尾数一定是5或者0;再由中间三数为立方数,所以a﹣1+a+a+1=3a,所以立方数一定是3的倍数.中间的数至少是1125,那么这五个数中最小数的最小值为1123.【解答】解:设设中间数是a,五个数分别是a﹣2,a﹣1,a,a+1,a+2;明显可以得到a﹣2+a﹣1+a+a+1+a+2=5a,由于5a是平方数,所以平方数的尾数一定是5或者0,再由3a是立方数,所以a﹣1+a+a+1=3a,所以立方数一定是3的倍数.所以这个数a一定是32×53=1125,所以最小数是1125﹣2=1123.答:这5个数中最小数的最小值为1123.7.(6分)从1,2,3,…,n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为108 .【分析】被13除的同余序列当中,如余1的同余序列,1、14、27、40、53、66…,中只要取到两个相邻的,这两个数的差为13,如果没有两个相邻的数,则没有两个数的差为13,不同的同余序列当中不可能有两个数的差为13,对于任意一条长度为x的序列,都最多能取个数,即从第1个数起隔1个取1个基于以上,n个数分成13个序列,每条序列的长度为或,两个长度差为1的序列,能够被取得的数的个数也不会超过1,所以能使57个数任意两个数都不等于13,则这57个数被分配在13条序列中,当n取最小值时在每条序列被分配的数的个数差不会超过1,那么13个序列有8个分配了4个数,5个分配了5个数,这13个序列8个长度为8,5个长度为9,那么n=8×8+9×5=109,所以要使57个数必有两个数的差为13,那么n的最大值为108.【解答】解:基于以上分析,n个数分成13个序列,每条序列的长度为或,两个长度差为1的序列,能够被取得的数的个数也不会超过1,所以能使57个数任意两个数都不等于13,则这57个数被分配在13条序列中,当n取最小值时在每条序列被分配的数的个数差不会超过1,那么13个序列有8个分配了4个数,5个分配了5个数,这13个序列8个长度为8,5个长度为9,那么n=8×8+9×5=109,所以要使57个数必有两个数的差为13,那么n的最大值为108.故答案为:108.8.(6分)如图边长为10cm的正方形,则阴影表示的四边形面积为48 平方厘米.【分析】图中阴影部分的面积是正方形的面积减去4个空白三角形的面积,据此解答.【解答】解:如图所示,设左上角小长方形的长为a,右下角小长方形的长为b,四个空白三角形的面积是:[(10﹣b)(10﹣a)+(6﹣a)b+(a+4)(b+1)+(9﹣b)a]÷2=[100﹣10a﹣10b+ab+6b﹣ab+ab+a+4b+4+9a﹣ab]÷2=104÷2=52(平方厘米)阴影部分的面积是10×10﹣52=100﹣52=48(平方厘米)答:阴影部分的面积是48平方厘米.故答案为:48.9.(6分)新年联欢会上,共有90人参加了跳舞、合唱、演奏三种节目的演出.如果只参加跳舞的人数三倍于只参加合唱的人数;同时参加三种节目的人比只参加合唱的人少7人;只参加演奏的比同时参加演奏、跳舞但没有参加合唱的人多4人;50人没有参加演奏;10人同时参加了跳舞和合唱但没有参加演奏;40人参加了合唱;那么,同时参加了演奏、合唱但没有参加跳舞的有17 人.【分析】用韦恩图可以清晰的呈现各个集合之间的数量关系:设只参加合唱的有x人,那么只参加跳舞的人数为3x,由50人没有参加演奏,10人同时参加了跳舞和合唱但没有参加演奏,得到只参加合唱的和只参加跳舞的人数和为50﹣10=40,所以只参加合唱的有10人,那么只参加跳舞的人数为30人,又由“同时参加三种节目的人比只参加合唱的人少7人”,得到同时参加三项的有3人,所以参加了合唱的人中同时参加了演奏、合唱但没有参加跳舞的有:40﹣10﹣10﹣3=17人.【解答】解:只参加合唱的和只参加跳舞的人数和为:50﹣10=40(人),所以只参加合唱的有10人,那么只参加跳舞的人数为30人,所以参加了合唱的人中同时参加了演奏、合唱但没有参加跳舞的有:40﹣10﹣10﹣3=17(人),答:同时参加了演奏、合唱但没有参加跳舞的有17人.故答案为:17.三、填空题(每题6分)10.(6分)皮皮以每小时3千米的速度登山,走到途中A点,他将速度降为每小时2千米.在接下来的1小时中,他走到山顶,又立即下山,并走到A点上方200米的地方.如果他下山的速度是每小时4千米,下山比上山少用了42分钟.那么,他往返共走了11.2 千米.【分析】首先关注“在接下来的1小时中”,这一小时中,下山比上山少200米,设上山时间为x小时,则下山的时间为1﹣x小时;然后根据下山比上山少200米,可得2x﹣4(1﹣x)=0.2,解得x=0.7小时,即42分钟,这42分钟,行程1.4公里;最后根据“下山比上山少用了42分钟”,可得以每小时4千米的速度下山的时间和以每小时3千米的速度登山时间相等,所以下山距离与A点以下路程之比为3:4,所以A点以上距离是下山距离的,所以往返一共走了千米,据此解答即可.【解答】解:设速度降为每小时2千米后的1小时中,上山时间为x 小时,下山为1﹣x小时,所以2x﹣4(1﹣x)=0.2,6x﹣4=0.26x﹣4+4=0.2+46x=4.26x÷6=4.2÷6x=0.70.7小时=42分钟,因为“下山比上山少用了42分钟”,所以以每小时4千米的速度下山的时间和以每小时3千米的速度登山时间相等,所以下山距离与A点以下路程之比为3:4,所以A点以上距离是下山距离的,所以往返一共走了:0.7×2÷×2=1.4=5.6×2=11.2(千米)答:他往返共走了11.2千米.故答案为:11.2.11.在一个3×3的方格表中填有1,2,3,4,5,6,7,8,9九个数,每格中只填一个数,现将每行中放有最大数的格子染成红色,最小数的格子染成绿色.设M是红格中的最小数,m是绿格中的最大数,则M﹣m可以取到8 个不同的值.【分析】共有三行,三个红色方格中所填的数都是它们所在行中最大的数,因此它们不可能是1和2.又因为M是红格中的最小数,所以它们不可能是8和9,即M不可能是1、2、8、9.同理,m也不可能是1、2、8、9.这样M与m都介于3与7之间.因此M﹣m的差就介于3﹣7与7﹣3之间(包括﹣4与4).据此解答即可.【解答】解:三个红色方格中所填的数都是它们所在行中最大的数,因此它们不可能是1和2.又因为M是红格中的最小数,所以它们不可能是8和9,即M不可能是1、2、8、9.同理,m也不可能是1、2、8、9.这样M与m都介于3与7之间.因此M﹣m的差就介于3﹣7与7﹣3之间(包括﹣4与4).因此,考虑正负可以取到:﹣4、﹣3、﹣2、﹣1、1、2、3、4.所以,共有8种不同的值.答:M﹣m可以取到8个不同的值.故答案为:8.12.在1,2,3,…,7,8的任意排列中,使得相邻两数互质的排列方式共有1728 种.【分析】这8个数之间如果有公因数,那么无非是2或3.8个数中的4个偶数一定不能相邻,对于这类多个元素不相邻的排列问题,考虑使用“插入法”,即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入,但在偶数插入时,还要考虑3和6相邻的情况.奇数的排列一共有4!=24种,对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插,再在剩下的四个位置中插入2、4、8,一共有4×3×2=24种,一共有24×3×24=1728种.【解答】解:这8个数之间如果有公因数,那么无非是2或3.8个数中的4个偶数一定不能相邻,考虑使用“插入法”,即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入,但在偶数插入时,还要考虑3和6相邻的情况.奇数的排列一共有:4!=24(种),对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插,再在剩下的四个位置中插入2、4、8,一共有4×3×2=24(种),综上所述,一共有:24×3×24=1728(种).答:使得相邻两数互质的排列方式共有1728种.故答案为:1728.13.如果自然数a的各位数字之和等于10,则a称为“和谐数”.将所有的“和谐数”从小到大排成一列,则2008排在第119 个.【分析】本题根据自然数的排列规律及数位知识进行分析即可.一位数的和谐数个数为0,二位数的和谐数有:19、28、…91,共9个.三位数的和谐数有:(以1开头,以0、1、2…9作十位的,分别有且仅有一个和谐数,共10个)以1开头的有109、118、127、136、…、190,共10个.同理,以2开头的9个:208,217,…271.…以9开头的2个.则三位数和谐数共有:10+9+8+…+2=54个.四位和谐数:同理,以1为千位:分别讨论,对以0、1…9为百位的有10+9+8…+1=55个.综上共9+54+55=118个.2008是2开头的第一个,因此是第119个.【解答】解:一位数的和谐数个数为0,三位数和谐数共有:10+9+8+…+2=54个.1000至2000,和谐数共有10+9+8…+1=55个.综上共9+54+55=118个.2008是2开头的第一个,因此是第119个.故答案为:119.14.由0,0,1,2,3五个数码可以组成许多不同的五位数,所有这些五位数的平均数为21111 .【分析】以1为开头的5位数,后4位数一共有4×3=12种方法,其中在每一位上,2和3各出现3次,所以1为开头的5位数的和为10000×12+(2+3)×3333=136665,同样的,以2为开头的5位数的和为20000×12+(1+3)×3333=253332,以3为开头的5位数的和为30000×12+(2+1)×3333=369999,它们的和为759996,进而求出平均数.【解答】解:以1为开头的5位数,后4位数一共有4×3=12种方法,其中在每一位上,2和3各出现3次,所以1为开头的5位数的和为10000×12+(2+3)×3333=136665,同样的,以2为开头的5位数的和为20000×12+(1+3)×3333=253332,以3为开头的5位数的和为30000×12+(2+1)×3333=369999,(136665+253332+369999)÷(4×3×3)=759996÷36=21111.答:所有这些五位数的平均数为21111;故答案为:21111.四、填空题(每题10分)15.一场数学游戏在小聪和小明间展开:黑板上写着自然数2,3,4,…,2007,2008,一名裁判现在随意擦去其中的一个数,然后由小聪和小明轮流擦去其中的一个数(即小明先擦去一个数,小聪再擦去一个数,如此下去),若到最后剩下的两个数互质,则判小聪胜;否则判小明胜.问:小聪和小明谁有必胜策略?说明理由.【分析】(1)小聪采用如下策略:先擦去2008,然后将剩下的2006个自然数分为1003组,(2,3)(4,5),…(2006,2007),小明擦去哪个组的一个数,小聪接着就擦去同一组的另个数,这样最后剩下的两个数是相邻的两个数,而相邻的两个数是互质的,所以小聪必胜;(2)小明必胜的策略:①当小聪始终擦去偶数时,小明留下一对不互质的奇数,例如,3和9,而擦去其余的奇数;②当小聪从某一步开始擦去奇数时,乙可以跟着擦去奇数,这样最后给乙留下的三个数有两种情况,一种是剩下一个偶数和两个奇数3和9,此时乙擦掉那个偶数,另一种是至少两个偶数,此时已留下两个偶数就可以了.【解答】解:(1)小聪采用如下策略:先擦去2008,然后将剩下的2006个自然数分为1003组,(2,3)(4,5),…(2006,2007),小明擦去哪个组的一个数,小聪接着就擦去同一组的另个数,这样最后剩下的两个数是相邻的两个数,而相邻的两个数是互质的,所以小聪必胜;(2)小明必胜的策略:①当小聪始终擦去偶数时,小明留下一对不互质的奇数,例如,3和9,而擦去其余的奇数;②当小聪从某一步开始擦去奇数时,小明可以跟着擦去奇数,这样最后给小明留下的三个数有两种情况,一种是剩下一个偶数和两个奇数3和9,此时小明擦掉那个偶数,另一种是至少两个偶数,此时小明留下两个偶数就可以了.16.将一张正方形纸片,横着剪4刀,竖着剪6刀,裁成尽可能大的形状大小一样的35张长方形纸片.再把这样的一张长方形纸片裁成尽可能大的面积相等的小正方形纸片.如果小正方形边长为2厘米,那么长方形纸片的面积应为多少平方厘米?说明理由.【分析】大正方形纸片被横着剪四刀,坚着剪六刀,所以横着裁成5份,坚着裁成7份,所以裁成的长方形纸片的长宽比为7:5,把这样的一张长方形纸片裁成尽可能大的面积相等的小正方形纸块,则正方形纸块的边长应该为长、宽的公约数,而5,7的公约数是1,所以长方形纸片的宽是小正方形纸块的边长的5倍,2×5=10厘米,所以长方形纸片的宽是10厘米,依此可求长方形纸片的长,再根据长方形的面积公式:s=长×宽,即可求出长方形纸片的面积.【解答】解:根据题意可知:裁成的长方形纸片的长宽比为7:5,则正方形纸块的边长应该为长、宽的公约数,而5,7的公约数是1,所以长方形纸片的宽是小正方形纸块的边长的5倍,则长方形纸片的宽为:2×5=10(厘米)又因为长方形纸片的长宽比为7:5,所以长方形纸片的长是:10×7÷5=14(厘米)所以长方形纸片的面积是14×10=140(平方厘米)答:长方形纸片的面积应是140平方厘米.。
…○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………内…………○…………装…………○…………订…………○…………线…………○……………………○…………内…………○…………装…………○…………2024年小升初数学(新初一)名校分班分层考试检测卷考试分数:100分;考试时间:100分钟注意事项:1.答题前,填写好自己的姓名、班级、考号等信息,请写在答题卡规定的位置上。
2.选择题、判断题必须使用2B 铅笔填涂答案,非选择、判断题必须使用黑色墨迹签字笔或钢笔答题,请将答案填写在答题卡规定的位置上。
3.所有题目必须在答题卡上作答,在试卷上作答无效。
4.考试结束后将试卷和答题卡一并交回。
一、填空题。
(共39分)1.(本题6分)已知654565⨯=⨯=⨯a b c ,(a 、b 、c 均不为0)。
则a 、b 、c 相比较最大的是( ),最小的是( )。
【答案】 c a【分析】假设式子的值为1,利用求倒数的方法计算出a 、b 、c 的值,最后比较大小即可。
【详解】假设6541565a b c ⨯=⨯=⨯=则56a =,65b =,54c =因为54>65>56,所以c >b >aa 、b 、c 相比较最大的是( c ),最小的是( a )。
【点睛】掌握用求倒数比较大小的方法是解答题目的关键。
2.(本题3分)当x =( )时,1:3x 的比值恰好是13的倒数。
【答案】1【分析】由题意可知,13的倒数是3,1:3x =3,解方程求出未知数的值即可。
【详解】根据题意列出方程: 1:3x =3 解:13x ÷=31133x ÷⨯=3×13x =1所以,当x =( 1 )时,1:3x 的比值恰好是13的倒数。
【点睛】应用等式的性质2求出方程的解是解答题目的关键。
保密★启用前广东省2024年小升初数学(新初一)重点名校入学分班考试质量调研卷考试分数:100分;考试时间:90分钟注意事项:1.答题前,填写好自己的姓名、班级、考号等信息,请写在答题卡规定的位置上。
2.选择题、判断题必须使用2B 铅笔填涂答案,非选择、判断题必须使用黑色墨迹签字笔或钢笔答题,请将答案填写在答题卡规定的位置上。
3.所有题目必须在答题卡上作答,在试卷上作答无效。
4.考试结束后将试卷和答题卡一并交回。
一.填空题(满分21分)1.一个数由630个亿和4个万组成,这个数是 ,它的最高位是 位.2.在1985年、2008年、1900年、2100年、2016年、1680年中平年有 ,闰年有 .3.分数是8的假分数有 个,分母是8的最小假分数是 分母是8的真分数有 个.4.364=÷ 12:= = :12= % 5.某天凌晨温度是4C ︒-,中午温度比凌晨的温度上升了3C ︒,中午的温度是 C ︒.6.某商场以统一优惠价格1980元售出两台空调.虽然其中一台盈利10%,但另一台亏损10%,因此结果亏损.亏损了 元.7.小敏在操场上捡到一个身份证,号码是532101************,请问:该号码代表的人是 性,此人生于( 年 月 日).8.按规律填数1.11,1.16,1.21,1.26, , .9.一个直角三角形的两条直角边分别是6cm 和10cm ,以6cm 长的直角边为轴将这个三角形旋转一周,旋转成图形的体积是 .10.一个木箱装有4个红扣子,7个黄扣子,2个绿扣子,摸到红扣子的可能性是 ,摸到黄扣子的可能性是 .二.判断题(满分5分)11.半径的长度是直径的一半12.因为7和9是互质数,所以7和9没有公约数.13.98件产品全部合格,合格率是98%14.30比25多20%,25比30少20%. .15.小红说:“圆的半径增大,面积就增大,所以一个圆的半径和面积是成正比例的.”三.选择题(满分5分)16.下面叙述正确的是( )A .一个非零自然数不是质数就是合数B .互质的两个数不一定都是质数C .所有的质数都是奇数17.表示x 和y 成正比例关系的式子是( )A .10xy =B .0.8y x =C .4x y ÷=18.小丽有24张卡片,小芳比小丽少2张.如果用x 表示小芳的卡片张数,那么下面列的方程中正确的是( )A .242x -=B .242x -=C .224x -=19.用20倍的放大镜看10︒的角就会是( )A .200︒B .10︒C .20︒20.一根绳子剪成两段,第一段长29m ,第二段占全长的29,那么两段绳子长短比较( )A .第一段长B .第二段长C .一样长 四.计算题(满分34分)21.(10分)直接写得数.5005÷=8050⨯= 5634+= 215-= 023÷= 2.3 3.4+= 5277+= 8 4.7+= 3045⨯≈3594÷≈ 22.(18分)递等式计算,能简便计算的要简算计算。
2020小升初重点中学新生入学分班摸底数学考试测试卷及答案(一)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图是由儿个大小相同的小正方体搭成的儿何体从上面看到的图形,小正方形中的数字表示该位置上小正方体的个数,则该几何体从左面看到的形状是()A .B .C .D .2.用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是()A .圆锥B .圆柱C .球体D .以上都有可能3.下列说法,其中正确的个数为()①正数和负数统称为有理数:②一个有理数不是整数就是分数:③有最小的负数,没有最大的正数:④符号相反的两个数互为相反数:a -⑤一定在原点的左边。
A .1个B .2个C .3个D .4个4.下列运算结果为正数的是()A .()02019⨯-B .32-÷ C.()23-D .23-5.目前,中国网民已经达到731000000人,将数据731000000用科学记数法表示为()A .90.73110⨯B .87.3110⨯ C.97.3110⨯D .773.110⨯6.如图,把半径为0.5的圆放到数轴上,圆上点A 与表示1的点重合,圆沿着数轴正方向滚动一周,此时点A 表示的数是()A .πB .2πC .+1πD .1π-7.若代数2237x x ++式的值是8,则代数式24615x x ++的值是()A .2B .3C .16D .178.如果规定符号“*”的意义为:*a ba b a b⨯=+,则()2*3-的值是()A .6B .6-C .65D .65-二、填空题(每题3分,满分18分,将答案填在答题纸上)9.一个直角三角形绕其直角边旋转一周得到的几何体是.10.一个几何体由若干个大小相同的小正力体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是.11.杨梅开始采摘啦!每筐杨梅以10千克为基准,超过的干克数记为正数,不足的干克数记为负数,记录如图,则这4筐杨梅的总质量是___克.12.小明写作业时不慎将墨水滴在数轴上,墨迹盖住部分的整数共有____个.13.如果单项式22a xy +和42b x y 是同类项,则a b 、的值分别为.14.观察如图所示的组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,...按此规律,图形⑧中星星的颗数是.三、解答题(共78分.解答应写出文字说明、证明过程或演算步骤.)15.作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体()1该几何体中有___个小正方体;()2该几何体从正面看如图所示,请在方格纸中分别画出从左面看和从上面看到的图形.16.一个几何体从三个方向看到的图形如图所示(单位:cm).()1写出这个几何体的名称;()2若其从上面看为正方形,根据图中数据计算这个几何体的体积.17.如图①,把一张长10厘米、宽6厘米的长方形纸板分成两个相同的直角三角形.()1甲三角形(如图②)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?()2三角形(如图③)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?21=,3,143V r h ππ⎛⎫ ⎪⎝⎭圆锥取18.计算()1()1721-+()()2221.637.45⎛⎫-+-+-⎪⎝⎭()()130.11002-÷⨯-()()()342324÷---⎡⎤⎣⎦19.邮递员骑摩托车从邮局出发,先向东骑行2km 到达A 村,继续向东骑行3km 到达B 村,然后向西骑行9km 到C 村,最后回到邮局.()1以邮局为原点,以向东方向为正方向,用1个单位长度表示1km ,请你在数轴上表示出,A B C ,三个村庄的位置;()2C 村离A 村有多远?()3若摩托车每1km 耗油0.03升,这趟路共耗油多少升?20.已知,a b 互为相反数,,c d 互为倒数,c 的绝对值为3,试求()822019[()1]02a b c cd ++---÷的值.21.在某地,人们发现在一定温度下某种蟋蟀叫的次数与温度之间有如下的近似关系,用蟋蟀1min 叫的次数除以7.然后再加上3.就近似地得到该地当时的温度()C()1用代数式表示该地当时的温度;()2当蟋蟀1min 叫的次数分别是84,105和126时,该地当时的温度的是多少?22.先化简,再求值:()()22226612243a ab b a b ----,其中1,82a b =-=-.23.如图是小明家的住房结构平面图(单位:米),他打算把卧室以外的部分都铺上地砖.()1若铺地砖的价格为80元平方米,那么购买地砖需要花多少钱(用代数式表示)?()2已知房屋的高为3米,现需要在客厅和卧室的墙壁上贴壁纸,那么需要多少平方米的壁纸(计算时不扣除门、窗所占的面积)(用代数式表示)?24.问题:你能比较两个数20192018与20182019的大小吗?为了解决这个问题,我们先把它抽象成这样的问题:写成它的一般形式,即比较1n n +和()1nn +的大小(n 是非零自然数).然后,我们分析1,2,3n n n ===...这些简单情形入手,从而发现规律,经过归纳,猜想出结论.()1通过计算,比较下列各组中两个数的大小21①___12;32②___23;43③___3454④______45;65⑤___56;76⑥___67()2从第()1题的结果经过归纳,可以猜想1n n +和的()1n n +大小关系;()3根据上面归纳猜想得到的-般结论,试比较下列两个数的大小:2019201820182019参考答案一、选择题(每小题3分,共24分)1、D2、B3、A4、C5、B6、C7、D8、A二、填空题(每小题3分,共18分)9.圆锥10.511.40.112.713.2,214.51三、计算题(共78分)15.解:(1)2×5+1=11(块).故图1中有11块小正方体;(2)如图所示:16.解:(1)长方体(2)由题可知,长方体的底面是边长为3cm 的正方形,高是4cm,则这个几何体的体积是3×3×4=36(cm 3).答:这个几何体的体积是36cm 3.17.解:(1)甲三角形旋转一周可以形成一个圆锥体,它的体积是13×3.14×62×10=376.8(立方厘米).(2)乙三角形旋转一周可以形成一个空心的圆柱,它的体积是3.14×62×10-13×3.14×62×10=753.6(立方厘米).18.(1)(-17)+21=-4(2)(-21.6)+3-7.4+(-25)=-21.6-7.4-25+3=-2625(3)-0.1÷12×(-100)=110×2×100=20(4)23÷[(-2)3-(-4)]=23÷[(-8)-(-4)]=23÷(-4)=-35419.解:(1)依题意,得数轴为(2)依数轴,得点C 与点A 的距离为2+4=6(km).(3)依题意,得邮递员骑了2+3+9+4=18(km),共耗油量18×0.03=0.54(升).答:这趟路共耗油0.54升.20.解:因为a,b 互为相反数,c,d 互为倒数,e 的绝对值为3,所以a+b=0,cd=1,e=±3.所以原式=0÷108-(±3)2÷[(-1)2019-2]=(-9)÷(-1-2)=(-9)÷(-3)=3.21.解:(1)设蟋蟀1min 叫的次数用x 表示,则该地当时的温度可以表示为:(7x +3)0C (2)当蟋蟀1min 叫的次数是84时:7x +3=847+3=12+3=150C 当蟋蟀1min 叫的次数是105时:7x +3=1057+3=15+3=180C 当蟋蟀1min 叫的次数是126时:7x +3=1267+3=18+3=210C 22.解:原式=6a 2-6ab-12b 2-6a 2+12b 2=-6ab.当a=-12,b=-8时,原式=-6×(12)×(-8)=-24.23.解:(1)铺地砖的面积为2x·4y+x·2y+xy=11xy(平方米).则购买地砖需要花80×11xy=880xy(元).[2(2x+4y)+2(2x+2y)]×3=(24x+36y)(平方米).即需要(24x+36y)平方米的壁纸.24.解:(1)①∵12=1,21=2,∴12<21;②∵23=8,32=9,∴23<32;③∵34=81,43=64,∴34>43;④∵45=1024,54=625,∴45>54;⑤∵56=15625,65=7776,∴56>65;⑥∵67=279936,76=117649,∴67>76;(2)n<3时,n n+1<(n+1)n,n≥3时,n n+1>(n+1)n;(3)∵2018>3,∴20182019>20192018.(本试卷满分为100分,考试时间为60分钟)一、认真读题,谨慎填空(每小题2分,共20分)1、宏伟的上海世博场馆框架共用了焊接口149500000个,改成用“万”作单位的数是()万个,用“亿”作单位并保留两位小数约是()亿个.2、小明上楼梯,他从一楼上到四楼需要30秒,那么他从四楼上到九楼,需要()秒.3、3.25小时=()分;7公顷8平方米=()小时()平方米.613)%.4、()=52=(5、把一根5米的绳子平均分成8段,最后一段长()、两段占全长的().17、x ÷y =1.8,x +y =28(x 、y 为自然数),那么x =(),y =().8、小张打一份稿件从5小时缩短了2小时后,工作效率提高了((精确到0.1%))%.9、一个三角形的三个内角度数的比是3∶2∶1,这个三角形中最大的一个内角是()度,它是一个()三角形.10、一个圆柱的底面半径和高相等,它的表面积是50.24平方厘米,这个圆柱的体积是()立方厘米.二、仔细推敲,认真辨析(每小题2分,共10分)1、在6.8的末尾添上一个零后,计数单位是()十分位)统计图.折线①0.1②0.01③④百分位2、反映儿童牛奶中各种营养成份的含量选用(①扇形②条形③36、把33.3%、、、π、0.332按从小到大排列起来:310.2020小升初重点中学新生入学分班摸底数学考试测试卷及答案(二)303×99+3033、在含糖率为10%的糖水中,加入2克糖和8克水,这时糖水的含糖率()①大于10%②小于10%③等于10%334、甲÷5=乙×(1-8),那么甲比乙()①大②小③相等5、在比例尺10∶1中,实际距离是8毫米的物体,它的图上距离是().①8厘米②8分米③8毫米三、认真思考,慎重判断.(对的打“√”,错的打“×”,本题5分)1、永不相交的两条直线叫做平行线.----------------------------------(2、若3a -b =0(a 不等于0),则a 和b 成正比例.----------------------(3、两个完全一样的正方体合并成一个长方体后的表面积是原来总表面积5的6.---------------------------------------------------------(4、一种商品先降价20%,后又提价25%,所以又回到了原价.-------------())))115、冰化成水体积减少,那么水结成冰体积增加.---------------------()10四、一丝不苟,巧妙计算(共29分)111、直接写出得数.(每小题1分,共8分)1+1=374-198=4÷0.22=9.03+7%=34(估算)2÷3+1=53.92÷5.9≈7-1.3-2.7=62⨯0.3÷2⨯0.3=2、用递等式计算(能简算的要简算).(每小题3分,共15分)6429912⨯(1+3-1)10÷5+5⨯4100-40÷17⨯1713-⎛4-3⎫+458⎪258⎝⎭53、求未知数x.(每小题3分,共6分)5:37.2⨯3=8:x-7x=0.6 448五、图形操作,解决问题.(共5分)1、作三角形AB边上的高.(2分)2、右图长方形的面积是18平方厘米,求圆的面积.(3分)六、活用知识,解决问题.(共32分)1、只列式不计算(每小题2分,共8分)(1)一种优质大米的出米率为78%,要碾出117千克大米,需要谷子多少千克?(2)学校刚竣工的学生宿舍楼投资了70万元,比计划节约了10万元,节约了百分之几?1(3)小明3天看了这本的4,照这们计算,还要多少天才能看完?(4)小王在今年的二月下旬加工一批零件,前3天共加工零件210个,在剩下的几天里平均每天加工55个,这个下旬平均每天加工零件多少个?2、专业组平整工地,原计划每天平整0.4公顷,15天可以完成任务;实际提前4天完成任务,实际每天平整多少公顷?(4分)3、去年年底我国南方遭受特大雪灾,姐弟俩积极捐款支援灾区,弟弟捐了40元,比姐5姐捐的少5元,姐弟俩共捐了多少元?(4分)84、在一个底面半径为8厘米,高为12厘米的圆柱体容器中装满水,现将两个底面半径都为3厘米,高为6厘米的圆锥完全放入水中,把它们取出后容器的水低了多少厘米?(5分)6、甲、乙两车分别从A 、B 两地出发相向而行,相遇前,甲、乙两车的速度比是5∶4,相遇后,甲车的速度减少20%,乙车的速度不变,这样甲车到达离B 地还差全长的9时,乙车离A 地还有40千米,那么A 、B 两地相距多少千米?(6分)15、甲、乙两队共有职工100人,如果抽调甲队的4到乙队,乙队人数就比甲队人数2多,甲队原有多少人?(5分)195999答案一.1、14950,1.502、505、0.625米,148、66.7%3、3,15,700083<0.332<33.3%<1<π4、24,256、1037、18,1010、25.12二.②①①②①三.×√√√×9、90,直角四.1、176,,9.1,100,9,3,,0.09622、30300,5,20,98.4,293、x =4.8,x =0.3五.1、作图略2、28.26平方厘米(2)10÷(70+10)⨯100%(4)⎡⎣210+55(8-3)⎤⎦÷8六.1、(1)117÷78%1(3)3÷-346112、3、1124、2⨯1⨯3.14⨯32⨯6=113.04,113.04÷(3.14⨯82)=0.5625(厘米)35、100÷⎛1+1+2⎫÷⎛1-1⎫=60(人) 9⎪ 4⎪⎝⎭⎝⎭6、因为相遇前,甲、乙两车的速度比是5∶4;5445所以相遇时,甲走了全程的,还剩,乙走了全程的,还剩;9999413相遇后甲走了全程的-=999因为相遇后两人的速度相同,3532所以相遇后乙也走了全程的,还剩下-=,71292所以全程为40÷=180(千米)92020小升初重点中学新生入学分班摸底数学考试测试卷及答案(三)一、填空题:2.123×5.67+8.77×567=______.3.如图,有三个同心半圆,它们的直径分别为2,6,10,用线段分割成9块,如果每块字母代表这一块的面积并且相同的字母代表相同的面积,那么(A+B):C=______.等于______.5.小刚,小强两人骑车的速度之比是15∶13,如果小刚,小强分别由甲、乙两地同时出发,相向而行,半小时后相遇;如果他们同向而行,那么小刚追上小强需要_______小时.6.5个正方体的六个面上分别写着1、2、3、4、5、6六个数,并且它们任意两个相对的面上所写的两个数的和都等于7.现在把五个这样的正方体一个挨着一个地连接起来(如图),在紧挨着的两个面上的两个数之和都等于8,那么,图中打“?”的这个面上所写的数是______.7.先任意指定7个整数,然后将它们按任意顺序填入2×7方格表第一行的七个方格中,再将它们按任意顺序填入方格表第二行的方格中,最后,将所有同一列的两个数之和相乘.那么,积是______数(填奇或偶).8.有两组数,第一组数的平均数是13.6,第二组数的平均数是10.8,而这两组数总的平均数是12.4,那么,第一组数的个数与第二组数的个数的比值是______.9.有四个数,每次选取其中三个数,算出它们的平均数,再加上另外一个数,用这种方法计算了四次,分别得到以下四个数:72,98,136,142,那么,原来四个数的平均数是______.10.体育组有一筐球,其中足球占45%,如果再放入5个篮球,足球就只占36%,那么,这筐球中,足球有______个.二、解答题:1.松鼠妈妈采松籽,晴天每天可以采20个,有雨的天每天只能采12个.它一连几天采了112个松籽,平均每天采14个.那么,这几天中有几天有雨?2.有6块岩石标本,它们的重量分别是8.5千克、6千克、4千克、4千克、3千克、2千克,要把它们分别装在3个背包里,要求最重的一个背包尽可能轻一些.请写出最重的背包里装的岩石标本是多少千克?3.上午8时8分,小明骑自行车从家里出发,8分后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立刻回家.到家后又立刻回头去追小明,再追上他的时候,离家恰好是8千米,问这时是几时几分?4.70个数排成一行,除了两头的两个数以外,每个数的三倍都恰好等于它两边两个数的和,这一行最左边的几个数是这样的:0,l,3,8,21,….问最右边一个数被6除余几?参考答案一、填空题:2.56703.55∶485.7设小刚的速度是15份,小强的速度是13份.相向而行,甲、乙距离=(15+13)×0.5同向而行,甲、乙距离=(15—13)×追及时间,所以,(15即:小刚追上小强需要7小时.6.4前面2的对面是5,5紧挨着3,3的对面是4,4紧挨着4,4的对面是3,上面的2的对面是5,所以,拐弯那块正方体已知四面数字:上面是2,下面是5,前面是4,后面是3,因此,左、右两面只能是1、6,假设右面是1,1紧挨着7才能使和是8,但六个数字:1至6中没有7,所以右面不能是1,故,右面只能是6,6紧挨着2,2的对面是5,5紧挨着3,3的对面是4,所以打“?”的这个面所写的数字是4.7.偶7个整数中,奇、偶数的个数必不相等,因此,每一列的两个数不可能奇、偶性都不同,即:至少有一列的两数之和是偶数.第一组数平均每个数比总平均数多13.6-12.4=1.2总共多1.2×第一组数的个数;第二组数平均每个数比总平均数少12.4-10.8=1.6总共少了1.6×第二组数的个数;一多一少,两者抵消,因此,1.2×第一组的个数=1.6×第二组的个数即:9.56了它本身,即四次计算中,每个数相当于被取到过两次,因此,上面四个数的和就是原来四个数的和的2倍,那么,原来四个数的平均数是:(72+98+136+142)÷2÷4=56.10.9原来足球与其它球的比是:45%∶(1-45%)=9∶11设足球有9份,其它球有11份,现在足球与其它球之比是:36%∶(1-36%)=9∶16也就是:11+5=16(份),即:五个篮球=5份,所以1份=1个球,于是,有足球9个.二、解答题:1.6天[20×(112÷14)-112]÷(20-12)=(160-112)÷8=6(雨天数)112÷14-6=2(晴天数).2.10千克因为三个包的平均重量是9千克多一点,所以,最轻的包只能装8.5千克那一块,其余分为两包,要使最重的包尽量的轻,当然只能是6+4=10(千克).3.8时32分爸爸第一次追上小明时,小明走了4千米,爸爸也走了4千米,但小明多用了8分,从第一次追上到第二次追上时,小明走了第2个4千米,爸爸走了12千米.这说明,相同的时间里爸爸可以走12千米,也可以走4千米休息8分,也就是说爸爸在8分里能走12—4=8千米,爸爸的速度是每分钟8÷8=1(千米),实际上爸爸共走了4+12=16(千米),要用16分的时间,所以第2次追上时是8时32分.4.被6除余4用2去除最左边的几个数,余数分别是:0,1,1,0,1,…,每三个数一循环,用3去除最左边的几个数余数分别是0,1,0,2,0…,每四个数一循环.因为70÷3,余数是1,说明第70个数是偶数;70÷4余2,说明第70个数被3除余1,因为被3除余1的偶数被6除余4,所以。
2024年郑州市第八中学小升初入学分班考试数学试卷(时间:60分钟;分值:100分)一、选择题(每小题3分,共24分)1.0.0…0(11个0)625÷0.0…0(12个0)25=(▲)。
A.25B.125C.1250D.2502.乐乐在计算25×(□+2)时,把算式抄成25×□+2,这样计算的结果与原来的正确答案相差(▲)。
A.50B.48C.25D.233.已知a=(1-12)-13,b=1-(12-13),c=1-12-13,则(▲)。
A.a=c ,b=cB.a ≠c ,b=cC.a=c ,b ≠cD.a ≠c ,b ≠c4.下面4个数都是六位数,其中N 是比10小的自然数,S 是0,那么一定是3和5的倍数的是(▲)。
A.NNNSNNB.NSNSNSC.NSSNSSD.NSSNSN5.如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为(▲)。
A.4B.6C.8D.126.把一些规格相同的杯子叠起来(如图),4个杯子叠起来高20厘米,6个杯子叠起来高26厘米。
n 个杯子叠起来的高度可以用下面(▲)的关系式来表示。
A.6n-10B.3n+11C.6n-4D.3n+87.某商品原先的利润率为30%,为了促销,现降价30元销售,此时利润率下降为15%,那么这种商品的进价是(▲)。
A.300元B.200元C.150元D.130元8.现有若干防疫口罩,疫情防控人员计划将这些口罩分为两批,分别在两周内分发完毕。
第一周将第一批口罩数量按照1︰3︰4的比例分发给A,B,C三个小区且全部分完。
第二周先拿出第二批口罩数量的20%分发给社区工作人员,再将剩余口罩的1分发给A小区,则A小区两周收到的口罩数量与三个小区两周收到的口罩数量之和4的比为2︰9。
若B,C小区两周收到的口罩数量之比为3︰4,则B小区第二周收到的口罩数量与口罩总数量之比为(▲)。
A.8︰41B.9︰43C.8︰43D.9︰41二、填空题(每小题3分,共24分)9.在一本科幻书上,玛格内行星的人们使用migs,mags及mogs作为钱币单位,1mags=8migs,1mogs=6mags,则10mogs+6mags=_____migs。
小升初重点中学新初一招生分班考试数学试卷及答案一、选择题1、两个数的最大公因数是9,最小公倍数是135,其中的一个数是27,另一个数是()A.15 B.45 C.122、要使三位数“56□”能被3整除,“□”里最大能填()A.7 B.8 C.93、今年玉米产量比去年增产,就是( )。
A.今年玉米产量是去年的102%B.去年产量比今年少20%C.今年玉米产量是去年的120%4、一盒有净含量为750毫升的长方体盒装酸奶,量得外包装长8厘米,宽5厘米,高15厘米,根据以上数据,你认为净含量的标准是()A.真实 B.虚假 C.无法确定5、下面的平面图中,()号不能折成正方体.A. B. C.二、填空题6、□34÷4,要使商是三位数,□里可以填(),要使商是二位数,□里可以填()。
7、把一根长6米的长方体木料锯成三段,锯开后两段木料的表面积之和比原来木料的表面积增加了60平方厘米.原来这根木料的体积是()立方厘米。
8、订《少年智力开发报》的份数和钱数成()比例;三角形的面积一定,它的底和高成()比例。
9、A=2×3×5,B=3×5×5,A和B的最大公约数是(),最小公倍数是()。
10、把、0.6、66.7%、按照从小到大的顺序排列()。
11、下图中有一个长方形和一个三角形,如果这两个图形分别绕各自3 cm的边旋转一周,可以形成一个圆柱和一个圆锥。
形成的圆锥的体积是圆柱的。
它们的体积相差()cm3。
12、甲、乙两个数的和是93.5,如果把甲数的小数点向右移动一位后,就与乙数相等。
甲数是(),乙数是()。
13、全国第六次人口普査结果显示,全国总人数为十三亿七千零五十三万六千八百七十五人,这个数写作(),省略亿位后面的尾数约是( )。
14、在3: 4中,如果比的后项增加8,要使比值不变,前项应增加()。
15、把底面积是18平方厘米,髙是2厘米的圆柱形零件削成最大的圆锥,削成的圆锥体积是()。
三、判断题16、一个木头,要把它平均分成8段,每锯一段要用4分钟,锯完一共要用32分钟。
()17、3米的与1米的相等。
()18、把一个三角形按2∶1放大后,其中30度的内角就变成了60度。
()19、5名工人5小时加工了5个零件,则1名工人1小时加工1个零件。
()20、近似数是5.28的三位小数不止一个。
()四、计算题21、未知数x1x+8×0.5=16 =1:422、求阴影部分面积,单位cm。
五、作图题23、画出绕点O顺时针旋转90°的图形.24、(1)小月离学校有多远?(2)电影院在学校正西900米处,汽车站在学校正南750米处,请你在图中标出电影院和汽车站的位置。
(3)你再提一个问题并解答。
六、解答题25、有一个周长是94.2米的圆形草坪,准备给它安装自动旋转喷灌装置进行喷灌,现有射程为20米、15米、10米的三种喷灌装置。
你认为应选哪种比较合适?安装在什么地方?装好后最多可喷灌多大面积的草坪?26、一个圆柱形水池,底面半径是2米,往水池注入水37.68立方米,正好占水池容积的60%。
①水池的占地面积是多少?②水池深多少米?27、一些贝壳,4个4个地数,最后多1个;5个5个地数,最后多2个;6个6个数,最后多3个.这些贝壳至少有多少个?28、一个果园的总面积是公顷,其中梨占,苹果占,其余的地种了其它的果木.其它果木占几分之几?参考答案(后附答案解析)1、B2、A3、C4、B5、A6、4、5、6、7、8、9;1、2、3.7、9000.8、正反9、15,150.10、0.6<<66.7%<.11、 100.4812、8.5 8513、1370536875 14 亿14、615、A16、×17、√18、×19、错误20、√21、9;522、15.44平方厘米.23、24、1200米;电影院在学校西3厘米处;25、94.2÷3.14÷2=15(米)15×15×3.14=706.5(平方米)答:应选射程为15米的喷灌装置,安装在草坪的中心。
装好后最多可喷灌706.5平方米的草坪。
26、占地面积是12.56平方米。
水池深5米.27、57个28、【解析】1、试题分析:求最大公因数也就是这几个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连乘积,此题是求最大公因数和最小公倍数的逆运算,首先用135除以27得到另一个数的独有因数,然后用最大公因数9乘另一个数的独有因数,即可得解.解:135÷27=59×5=45答:另一个数是45.故选:B.【点评】已知两个数的最大公因数和最小公倍数,又知道其中一个数,求另一个数,可以先求出这个数的独有因数,用两个数的最小公倍数÷已知的一个数,然后独有因数乘最大公因数,即为所要求的另一个数.2、试题分析:根据能被3整除的数的特征:即该数各个数位上数的和能被3整除;进行解答即可.解:要使三位数“56□”能被3整除,因为5+6=11,11+1=12,11+4=15,11+7=18;12、15和18都能被3整除,所以“□”里可以填1,4,7;最大为7;故选:A.【点评】解答此题的关键是:根据能被3整除的数的特征,进行解答.3、今年玉米产量比去年增产,=20%,所以今年的产量=去年的产量×(1+)=去年的产量×(1+20%)=去年的产量×120%4、试题分析:长方体盒子的容积一定小于它的体积,根据长方体的体积公式:v=abh,把数据代入公式求出它的体积,然后与它的容积进行比较即可.解:750毫升=750立方厘米,8×5×15=600(立方厘米),因为长方体盒子的容积一定小于它的体积,所以净含量的标准是虚假的.故选:B.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是明白:长方体盒子的容积一定小于它的体积.5、试题分析:根据正方体展开图的11种特征,选项A不属于正方体展开图,不能折成正方体;选项B和选项C都属于正方体展开图的“1﹣4﹣1”型,能折成正方体.解:根据正方体展开图的特征,选项A不能折成正方体;选项B和选项C都能折成正方体.故选:A.【点评】正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.6、试题分析:□34÷4,要使商是三位数,被除数最高位上是数大于或等于除数;要使商是二位数,被除数最高位上是数小于除数,然后再进一步解答.解:□34÷4,要使商是三位数,□≥4,那么□里面可以填4、5、6、7、8、9;要使商是二位数,□<4,那么□里面可以填1、2、3.故答案为:4、5、6、7、8、9;1、2、3.【点评】三位数除以一位数,被除数最高位上的数大于或等于除数,所得的商是三位数,否则是两位数.7、试题分析:根据“把6米长的长方体木料锯成三段”,知道表面积比原来增加了4个底面的面积,再根据表面积比原来增加了60平方厘米,那长方体底面积即可求出,最后根据长方体的体积公式(V=sh),列式解答即可.解:6米=600厘米,60÷4×600=15×600=9000(立方厘米),答:原来这根木料的体积是 9000立方厘米.故答案为:9000.【点评】解答此题的关键是,知道将长方体木料锯成三段,表面积比原来增加了4个底面的面积,再根据长方体的体积公式,即可求出答案.8、略9、试题分析:求几个数的最大公因数的方法是:这几个数的公有的质因数的乘积就是这几个数的最大公因数;求几个数的最小公倍数的方法:这几个数的公有的因数和它们独有的质因数的连乘积就是它们的最小公倍数;由此可以解得.解:A=2×3×5,B=3×5×5,所以A和B的最大公约数是:3×5=15,A和B的最小公倍数是:2×3×5×5=150;故答案为:15,150.【点评】此题考查了求最大公约数和最小公倍数的方法.10、试题分析:先将分数和百分数化成小数,再按照小数大小比较的方法比较.解:=,66.7%=0.667,0.6<0.666…<0.667<.所以0.6<<66.7%<.故答案为:0.6<<66.7%<.【点评】解决有关小数、百分数、分数之间的大小比较,一般都把分数、百分数化为小数再进行比较,从而解决问题.11、思路分析:长方形绕3厘米的边旋转一周,得到一个圆柱,三角形绕3厘米的边旋转一周得到一个圆锥,得到的圆锥体积是得到的圆柱体积的三分之一。
名师详解:得到的圆柱与圆锥它们等底等高,所以得到的圆锥体积是圆柱体积的三分之一,它们的体积相差,列式为:3.14×(4×4)×3×=3.14×16×2=50.24×2=100.48(立方厘米)易错提示:注意的是,长方形绕3厘米的边旋转一周,得到一个圆柱,三角形绕3厘米的边旋转一周得到一个圆锥,得到的圆锥体积是得到的圆柱体积的三分之一。
得到的圆柱的半径是4厘米,高是3厘米,得到的圆锥的半径是4厘米,高是3厘米。
12、略13、思路分析:这是一道写数和求近似值的题,省略亿位后面的尾数是难点。
名师详解:全国第六次人口普査结果显示,全国总人数为十三亿七千零五十三万六千八百七十五人,这个数写作(1370536875),省略亿位后面的尾数约是( 14亿 )。
易错提示:出错的原因就是,省略亿位后面的尾数,有的学生知识点没有掌握好。
省略亿位后面的尾数就要看千万位上的数,千万位上是7,向亿位上进1,就是14亿。
14、思路分析:这道题考查的是比的基本性质的知识,首先要掌握比的基本性质的内容,即:比的前项和后项同时乘(或除以)一个相同的数,比值不变。
名师详解:比的后项增加8,变成12,相当于把后项乘3,要是比值不变,前项也乘3,变成9,就相当于增加了6.易错提示:如果对比的基本性质理解不透就会造成错误。
15、思路分析:本题考查圆锥的体积公式,及从圆柱如何削成最大的圆锥,当底面与圆柱底面相等,高与圆柱高相等时圆锥体积最大。
名师解析:V=×18×2=12(立方厘米)易错提示:圆锥的体积容易忘记乘三分之一。
16、略17、试题分析:先把3米看成单位“1”,用乘法求出3米的是多少米;再把1米看成单位“1”,用乘法求出它的是多少米,然后比较即可求解.解:3×=(米)1×=(米)=,所以原题叙述是正确的.故答案为:√.【点评】本题根据分数乘法的意义:求一个数的几分之几是多少,分别求出再比较即可.18、把一个图形扩大或缩小后,它的形状不变,只是大小发生了改变,角的大小不发生变化,根据此判断即可。