天津市南开区2017届九年级数学第二次模拟试题
- 格式:doc
- 大小:453.50 KB
- 文档页数:11
2017年中考数学模拟题一、选择题:1.计算(-3)-(-6)的结果等于()A.3B.-3C.9D.182.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AmB上的一点,则cos∠APB的值是()A.45°B.1C.D.无法确定3.下列图形既是轴对称图形又是中心对称图形的是( )4.2016年2月19日,经国务院批准,设立无锡市新吴区,将无锡市原新区的鸿山、旺庄、硕放、梅村、新安街道划和滨湖区的江溪街道归新吴区管辖.新吴区现有总人口322819人,这个数据用科学记数法(精确到千位)可表示为()A.323×103B.3.22×105C.3.23×105D.0.323×1065.下列几何体的主视图与其他三个不同的是()6.16的算术平方根和25平方根的和是()A.9B.-1C.9或-1D.-9或17.计算的正确结果是()A.0B.C.D.8.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是( )A.2 018B.2 008C.2 014D.2 0129.当实数 x 的取值使得有意义时,函数 y=x+1 中 y 的取值范围是()A.y≥﹣3B.y≥﹣1C.y>﹣1D.y≤﹣310.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形11.已知反比例函数,当1<x<2时,y的取值范围是( )A.0<y<5B.1<y<2C.5<y<10D.y>1012.二次函数y=ax2+bx+c的图象如图,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()二、填空题:13.分解因式:x3﹣6x2+9x= .14.函数y=的自变量的取值范围是15.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是.16.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.5元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.15元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.17.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ= .18.如图,锐角三角形ABC的边AB,AC上的高线EC,BF相交于点D,请写出图中的两对相似三角形____________(用相似符号连接).三、解答题:19.解不等式组:,并在数轴上表示不等式组的解集.20.有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.21.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.22.如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.(1)求出此时点A到岛礁C的距离;(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)23.小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?24.在△ABC中,AB=AC=5,cos∠ABC=0.6,将△ABC绕点C顺时针旋转,得到△A1B1C。
天津市南开区2017年中考数学模拟试卷(5)含答案2017年九年级数学中考模拟试卷一、选择题:1.若|m|=3,|n|=5且m-n>0,则m+n的值是()A.-2B.-8或-2C.-8或8D.8或-22.如图,已知∠α的一边在x轴上,另一边经过点A(2,4),顶点为(﹣1,0),则sinα的值是()A.0.4B.C.0.6D.0.83.下列四个图案中,属于中心对称图形的是()A.B.C. D.4.2016年2月19日,经国务院批准,设立无锡市新吴区,将无锡市原新区的鸿山、旺庄、硕放、梅村、新安街道划和滨湖区的江溪街道归新吴区管辖.新吴区现有总人口322819人,这个数据用科学记数法(精确到千位)可表示为()A.323×103B.3.22×105C.3.23×105D.0.323×1065.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个6.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心、正方形对角线的长为半径画弧,交数轴于点A,则点A表示的数是()A.-B.2-C.1-D.1+7.如果()2÷()2=3,那么a8b4等于()A.6B.9C.12D.818.若非零实数a、b满足4a2+b2=4ab,则=()A.2B.﹣2C.4D.﹣49.使有意义的x的取值范围是()A.x≥B.x>C.x>﹣D.x≥﹣10.下列说法中,正确的是()A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线互相垂直平分且相等的四边形是菱形11.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为()12.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()二、填空题:13.分解因式:a2﹣6a+9﹣b2=.14.化简:=_______.15.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一个社区参加实践活动的概率为.16.结合正比例函数y=4x的图像回答:当x>1时,y的取值范围是17.如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为.18.若函数y=mx2+(m+2)x+0.5m+1的图象与x轴只有一个交点,那么m的值为.三、解答题:19.解不等式组.20.央视新闻报道从5月23日起,在《朝闻天下》、《新闻直播间》、《新闻联播》和《东方时空》等多个栏目播放《湟鱼洄游季探秘青海湖》新闻节目,广受全国观众关注,青海电视台到我市某中学进行宣传调查活动,随机调查了部分学生对湟鱼洄游的了解程度,以下是根据调查结果做出的统计图的一部分:(1)根据图中信息,本次调查共随机抽查了名学生,其中“不了解”在扇形统计图中对应的圆心角的度数是,并补全条形统计图;(2)该校共有3000名学生,试估计该校所有学生中“非常了解”的有多少名?(3)青海电视台要从随机调查“非常了解”的学生中,随机抽取两人做为“随行小记者”参与“湟鱼洄游”的宣传报道工作,请你用树状图或列表法求出同时选到一男一女的概率是多少?并列出所有等可能的结果.21.如图,△ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,连接OA,(1)求证:AE平分∠DAO;(2)若AB=6,AC=8,求OE的长.22.如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:=1.414,=1.732)23.如图,在一面靠墙的空地商用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃.设花圃的宽AB为x 米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)已知墙的最大可用长度为8米;①求所围成花圃的最大面积;②若所围花圃的面积不小于20平方米,请直接写出x的取值范围.24.(1)如图1,在线段AB上取一点C(BC>AC),分别以AC、BC为边在同一侧作等边ACD与等边BCE,连结AE、BD,则ACE经过怎样的变换(平移、轴对称、旋转)能得到DCB?请写出具体的变换过程;(不必写理由)(2)如图2,在线段AB上取一点C(BC>AC),如果以AC、BC为边在同一侧作正方形ACDG与正方形CBEF,连结EG,取EG的中点M,设DM的延长线交EF于N,并且DG=NE;请探究DM与FM的关系,并加以证明;(3)在图2的基础上,将正方形CBEF绕点C顺时针旋转(如图3),使得A、C、E在同一条直线上,请你继续探究线段MD、MF的关系,并加以证明.25.如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y轴交于点C(0,5).(1)求该抛物线所对应的函数关系式;(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.①求S关于m的函数关系式及自变量m的取值范围;②当m为何值时,S有最大值,并求这个最大值;③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.参考答案1.D2.D3.D4.C5.A6.B7.B8.A9.A10.C11.C12.C13.(a﹣3+b)(a﹣3﹣b).14.略15.答案为:.16.略17.解:如图所示:∵正方形ABCD边长为25,∴∠A=∠B=90°,AB=25,过点G作GP⊥AD,垂足为P,则∠4=∠5=90°,∴四边形APGB是矩形,∴∠2+∠3=90°,PG=AB=25,∵六个大小完全一样的小正方形如图放置在大正方形中,∴∠1+∠2=90°,∴∠1=∠FGB,∴△BGF∽△PGE,∴=,∴=,∴GB=5.∴AP=5.同理DE=5.∴PE=AD﹣AP﹣DE=15,∴EG=5,∴小正方形的边长为.18.答案为:0或2或﹣2.19.解①得x>﹣0.5,解②得x≤0,则不等式组的解集是﹣0.5<x≤0.20.解:(1)根据题意得:(16+20)÷72%=50(名),72°,则本次调查共随机抽查了50名学生,“不了解”在扇形统计图中对应的圆心角的度数是72°;故答案为:50;72°;(2)根据题意得:240(名),则估计该校所有学生中“非常了解”的有240名;所有等可能的情况有12种,其中一男一女的情况有6种,则P(一男一女)=0.5.21.(1)证明:连接OA,∵BC是⊙O的直径,∴∠BAC=90°,∴∠C+∠B=90°,∵AD⊥BC,∴∠B+∠BAD=90°,∴∠BAD=∠C,∵OA=OC,∴∠OAC=∠C,∴∠BAD=∠OAC,∵F是弧BC中点,∴∠BAF=∠CAF,∴∠DAE=∠OAE,即AE平分∠DAO;(2)解:连接OF,∵∠BOF=2∠BAF=∠BAC=90°,∴OF⊥BC,∵AD⊥BC,∴OF∥AD,∴DE:OE=AD:OF,∵AB=6,AC=8,∴BC=AB 2+AC 2=10,∴AD=AB•ACBC=4.8,∴BD=AB 2−AD 2=3.6,∴OD=OB-BD=5-3.6=1.4,∴DE:OE=4.8:5=24:25,∴OE=5/7.22.解:由题意得,AH=10米,BC=10米,在Rt△ABC 中,∠CAB=45°,∴AB=BC=10,在Rt△DBC 中,∠CDB=30°,∴DB==10,∴DH=AH﹣AD=AH﹣(DB﹣AB)=10﹣10+10=20﹣10≈2.7(米),∵2.7米<3米,∴该建筑物需要拆除.23.解:(1)S=x(24﹣4x)=﹣4x 2+24x(0<x<6)(2)①S=﹣4x 2+24x=﹣4(x﹣3)2+36由,解得4≤x<6当x=4时,花圃有最大面积为32②令﹣4x 2+24x=20时,解得x 1=1,x 2=5所以5<x<624.(1)将ACE绕点C顺时针旋转60°后能得到DCB (2)如图(2),答:相等且垂直.先证MGD≌MEN∴DM=NM.在中,.∵NE=GD,GD=CD,∴NE=CD,∴FN=FD即FM⊥DM,∴DM与FM相等且垂直(3)如图(3),答:相等且垂直.延长DM交CE于N,连结DF、FN先证MGD≌MNE∴DM =NM,NE=DG.∵∠DCF=∠FEN=45°,DC=DG=NE,FC=FE,∴DCF≌NEF,∴DF=FN,∠DFC=∠NFE,可证∠DFN=90°,即FM=DM,FM⊥DM∴DM与FM相等且垂直25.。
2017年九年级数学中考模拟试卷一、选择题:1.计算(-3)+9的结果等于( )A.6B.12C.-12D.-62.如图,两条宽度都是1的纸条交叉叠在一起,且它们的夹角为α,则它们重叠部分(图中阴影部分)面积是()A. B. C. D.13.下列各图中,不是中心对称图形的是()4.目前我国年可利用的淡水资源总量为27500亿立方米,人均占有量居全世界第110位,因此我们要节约用水,27500亿这个数用科学记数法表示为( )A.2.75×1013B.2.75×1012C.2.75×1011D.2.75×10105.如图是由相同小正方体组成的立体图形,它的左视图为()6.若一个数的一个平方根是8,则这个数的立方根是()A.±2B.±4C.2D.47.化简:的结果是()A.2B.C.D.8.下列关于x的方程有实数根的是()A.x2﹣x+1=0B.x2+x+1=0C.(x-1)(x+2)=0D.(x-1)2+1=09.下列计算正确的是( )A.B.C.D.10.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直11.小华以每分钟x个字的速度书写,y分钟写了300个字,则y与x的函数关系式为( )12.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若点B(-1.5,y1)、C(-2.5,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0.其中正确结论的个数是()A.1B.2C.3D.4二、填空题:13.分解因式2x2﹣4x+2的最终结果是.14.计算:(﹣)×= .停在1号板上的概率是.16.直线经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是.17.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为.18.若一元二次方程ax2+bx+1=0有两个相同的实数根,则a2-b2+5的最小值为__________.三、解答题:19.解不等式组:20.有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.21.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E是边BC的中点.(1)求证:BC2=BD•BA;(2)判断DE与⊙O位置关系,并说明理由.22.如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°,已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号)(2)求旗杆CD的高度.23.某通讯移动通讯公司手机费用有A、B两种计费标准,如下表:(1)按A类收费标准,该用户应缴纳费用y A(元)与通话时间x(分钟)之间的函数关系式是;按B类收费标准,该用户应缴纳费用y B(元)与通话时间x(分钟)之间的函数关系式是;(2)如果该用户每月通话时间为400分钟,应选择哪种收费方式?为什么?24.在平面直角坐标系中,点A(-2,0),B(2,0),C(0,2),点D,点E分别是AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD/E/,及旋转角为α,连接AD/,BE/.(1)如图①,若00<α<900,当 AD/∥CE/时,求α的大小;(2)如图②,若900<α<1800,当点D/落在线段BE/上时,求sin∠CBE/的值;(3)若直线AD/与直线BE/相交于点P,求点P的横坐标m的取值范围(直接写出结果即可).25.如图,在平面直角坐标系中,点O为坐标原点,点A在第一象限,点B在x轴正半轴上,AO=AB,OB=4,tan∠AOB=2,点C是线段OA的中点.(1)求点C的坐标;(2)若点P是x轴上的一个动点,使得∠APO=∠CBO,抛物线y=ax2+bx经过点A、点P,求这条抛物线的函数解析式;(3)在(2)的条件下,点M是抛物线图象上的一个动点,以M为圆心的圆与直线OA相切,切点为点N,点A关于直线MN的对称点为点D.请你探索:是否存在这样的点M,使得△MAD∽△AOB?若存在,请直接写出点M的坐标;若不存在,请说明理由.参考答案1.A2.A3.B4.B5.A6.D7.B8.C9.D10.B11.B12.B13.【解答】解:2x2﹣4x+2=2(x2﹣2x+1)=2(x﹣1)2.故答案为:2(x﹣1)2.14.答案为:815.答案为:0.25;16.17.答案为:3或.18.答案为:1;19.略20.21.(1)证明:∵AC为⊙O的直径,∴∠ADC=90°,∴∠BDC=90°,又∵∠ACB=90°,∴∠ACB=∠BDC,又∵∠B=∠B,∴△BCD∽△BAC,∴,即BC2=BA•BD;(2)解:DE与⊙O相切.理由如下:连结DO,如图,∵∠BDC=90°,E为BC的中点,∴DE=CE=BE,∴∠EDC=∠ECD,又∵OD=OC,∴∠ODC=∠OCD,而∠OCD+∠DCE=∠ACB=90°,∴∠EDC+∠ODC=90°,即∠EDO=90°,∴DE⊥OD,∴DE与⊙O相切.22.解:(1)∵教学楼B点处观测到旗杆底端D的俯角是30°,∴∠ADB=30°,在Rt△ABD中,∠BAD=90°,∠ADB=30°,AB=4m,∴AD===4(m),答:教学楼与旗杆的水平距离是4m;(2)∵在Rt△ACD中,∠ADC=90°,∠CAD=60°,AD=4m,∴CD=AD•tan60°=4×=12(m),答:旗杆CD的高度是12m.23.(1) y A=0.2x+15 ;y B =0.25x(2) 当x=400时,算出y A=95元,y B =100元,24.25.。
2017年中考数学模拟题一、选择题:1. 计算5﹣(﹣2)×3的结果等于()A. ﹣11B. ﹣1C. 1D. 11 【答案】D【解析】【分析】【详解】5-(-2)×3 =11故选:D.【点睛】2. 在Rt△ABC中,∠C=90°,若tan A=512,则sin A=()A. 1213B.512C.135D.513【答案】D 【解析】BC=5,AC=12,则AB=13.则sinA=513.故选D.3. 点p(5,-3)关于原点对称的点的坐标是()A. (3,-5)B. (-5,-3)C. (-5,3)D. (-3,5)【答案】C【解析】试题分析:点P(5.-3)关于原点对称的点的坐标是(-5,3).故选C.考点:关于原点对称的点的坐标.4. 我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A. 4.4×108B. 4.40×108C. 4.4×109D. 4.4×1010【答案】C【解析】分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:4 400 000 000=4.4×109,故选C.5. 如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A. B. C. D.【答案】D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.6.251144=51122(4)4-=±22222-==-11113164424+=+=;错误的个数为( )A. 1B. 2C. 3D. 4 【答案】D【解析】【分析】根据算术平方根的定义即可得到结论.25 1 1441312,故错误;()24-16,故错误;()22-4=2,故错误;④11164+=54,故错误; 所以这4个都是错的. 故选D .【点睛】本题考查了算术平方根的定义,熟记算术平方根的定义是解题的关键.7.化简21(1)211x x x x ÷-+++的结果是( )A. 11x + B. 1x x+ C. x +1D. x ﹣1【答案】A 【解析】 【分析】根据分式混合运算法则计算即可. 【详解】解:原式=2211(1)1(1)1x x x x x x x x x +÷=⋅=++++ .故选:A .【点睛】本题考查的是分式的混合运算,熟知分式混和运算的法则是解答本题的关键. 8. 方程3x (x ﹣1)=5(x ﹣1)的根为( ) A. x=53B. x=1C. x 1=1 x 2=53D. x 1=1 x 2=35【答案】C 【解析】3x (x ﹣1)=5(x ﹣1)变形:125(1)(35)01,3x x x x --=⇒== 故选C.9. 要使式子2x -有意义,则的取值范围是【 】 A. x 0> B. x 2≥-C. x 2≥D. x 2≤【答案】D 【解析】 【分析】2x -2x 0x 2-≥⇒≤. 故选D.10. 如图,在正方形ABCD 中,2AB =,延长BC 到点E ,使1CE =,连接DE ,动点P 从点A 出发以每秒1个单位长度的速度沿AB BC CD DA →→→向终点A 运动.设点P 的运动时间为t 秒.当ABP △和DCE 全等时,t 的值为( )A. 3B. 5C. 7D. 3或7【答案】D 【解析】 【分析】分两种情况,①当点P 在BC 边上时,②当点P 在AD 边上时,找出对应的边列式计算即可. 【详解】当点P 在BC 边上时,在ABP △与DCE 中,90AB DC ABP DCE BP CE =⎧⎪∠=∠=︒⎨⎪=⎩, ∴()ABP DCE SAS ≌. 由题意得21BP t =-=, ∴3t =.当点P 在AD 上时,在ABP △与CDE △中,90AB CD BAP DCE AP CE =⎧⎪∠=∠=︒⎨⎪=⎩, ∴()ABP CDE SAS ≌,由题意得81AP t =-=,解得7t =. 当点P 在CD 上时,不满足条件.∴当t 的值为3或7时,ABP △和DCE 全等. 故选D .【点睛】本题考查的是正方形的性质和全等三角形的性质,能够分情况讨论是解题的关键. 11. 函数6y x=- 的图象经过点A (x 1 ,y 1)、B (x 2 ,y 2),若x 1<x 2<0,则y 1、y 2、0三者的大小关系是( ) A. y 1<y 2<0B. y 2<y 1<0C. y 1>y 2>0D. y 2>y 1>0【答案】D 【解析】分析:本题考查的是反比例函数的性质. 解析:因为反比例函数y=﹣6x,在每一支上y 随x 的增大而增大,∵x 1<x 2<0,∴y 2>y 1>0. 故选D.12. 如图,在直角坐标系中,正△AOB 的边长为2,设直线x=t (0≤t≤2)截这个三角形所得位于此直线左方的图形的面积为y ,则y 关于t 的函数图象大致是( )A .B. C. D.【答案】D 【解析】当01t ≤≤ 时,232y =当12t <≤时,233)2y t =- 根据二次函数的图像,易得D.二、填空题:13. 计算()22133x y xy ⎛⎫-⋅=⎪⎝⎭_______. 【答案】33x y -【解析】 【分析】根据同底数幂的乘法法则计算即可. 【详解】()22133x y xy ⎛⎫-⋅⎪⎝⎭22133x y xy =-⨯⋅33x y =-故答案是:33x y -【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法运算法则是解题的关键. 14. 计算:327-=______. 【答案】53【解析】 【分析】先化为最简二次根式,再合并同类二次根式. 【详解】解:33532733-=-=故答案为:53. 15. 在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为,那么口袋中小球共有_______个.【答案】15 【解析】 【分析】【详解】试题分析:设小球共有x 个,则315x =,解得:x =15 考点:概率的计算16. 已知一次函数y =ax +b (a 、b 为常数),x 与y 的部分对应值如下表: x –2 –1 0 1 2 3 y642–2–4那么方程ax +b =0的解是________,不等式ax +b >0的解集是_______. 【答案】 (1). x=1 (2). x<1 【解析】(1). x=1 (2). x<117. 如图,在ABC 中,AB =2,AC =4,ABC 绕点C 按逆时针方向旋转得到A B C ''△,使CB '∥AB ,分别延长AB ,CA '相交于点D ,则线段BD 的长为__.【答案】6. 【解析】试题分析:∵将△ABC 绕点C 按逆时针方向旋转得到△A′B′C ,AB =2,AC =4, ∴A′B′=AB =2,AC′=AC =4,∠CA′B′=∠A. 又∵CB′∥AB ,∴∠A′CB′=∠A. ∴△A′CB′∽△DAC. ∴CA AB AD AC '''=,即4284AD AD =⇒=. ∴BD=6. 考点:1.旋转的性质;2.平行的性质;3.相似三角形的判定和性质.18. 如图,在平面直角坐标系中,抛物线y=a 1(x ﹣2)2+2与y=a 2(x ﹣2)2﹣3的顶点分别为A ,B ,与x 轴分别交于点O ,C ,D ,E .若点D 的坐标为(﹣1,0),则△ADE 与△BOC 的面积比为______.【答案】1 【解析】根据二次函数的对称轴为直线2x = ,则(50),(40),(22),(23)E C A B -,,,, 则△ADE 与△BOC 的面积比为12:12=1 三、简答题:19. 解不等式组: 12(3)33222x x x --≤⎧⎪⎨-<+⎪⎩①②,并把解集在数轴上表示出来.【答案】2≤x<6 【解析】解:解不等式①,得:x≥2,解不等式②,得:x <6, 所以原不等式组的解集为:2≤x<6,数轴上表示解集如图:20. 已知甲同学手中藏有三张分别标有数字11,,124的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为,a b . (1)请你用树形图或列表法列出所有可能的结果. (2)现制定这样一个游戏规则:若所选出的能使得有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释 【答案】(1)列表见解析;(2)不公平,理由见解析. 【解析】 【分析】(1)首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果;(2)利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平. 【详解】(1)列表如下: a b12312(12,1)(12,2)(12,3)14(14,1)(14,2)(14,3)1(1,1)(1,2)(1,3)(2)要使方程210ax bx ++=有两个不相等的实根,即△=240b a ->,满足条件的有5种可能:1111,2,,2,,3,,3,(1,3)2424⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴甲获胜的概率为()59P =甲,乙获胜的概率为()49P =乙,5499>即此游戏不公平.21. 如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD2=AB·AE.求证:DE是⊙O的切线.【答案】证明略【解析】证明:连结DC,DO并延长交⊙O于F,连结AF.∵AD2=AB·AE,∠BAD=∠DAE,∴△BAD∽△DAE,∴∠ADB=∠E.又∵∠ADB=∠ACB,∴∠ACB=∠E,BC∥DE,∴∠CDE=∠BCD=∠BAD=∠DAC,又∵∠CAF=∠CDF,∴∠FDE=∠CDE+∠CDF=∠DAC+∠CDF=∠DAF=90°,故DE是⊙O的切线22. 已知:在△ABC中,∠ACB=90°,CD⊥AB于D,BE:AB=3:5,若CE= 2,cos∠ACD= 45,求tan∠AEC的值及CD的长.【答案】tan∠AEC=3, CD=1212 5【解析】解:在RT△ACD与RT△ABC中∵∠ABC+∠CAD=90°, ∠ACD+∠CAD=90°∴∠ABC=∠ACD, ∴cos∠ABC=cos∠ACD=4 5在RT△ABC中,45BCAB=令BC=4k,AB=5k 则AC=3k由35BEAB= ,BE=3k 则CE=k,且2则2,2∴RT△ACE中,tan∠AEC=ACEC=3∵RT△ACD 中cos∠ACD=45CD AC ,,CD=12125. 23. 如图,A (0,1),M (3,2),N (4,4).动点P 从点A 出发,沿y 轴以每秒1个单位长的速度向上移动,且过点P 的直线l :y=-x+b 也随之移动,设移动时间为t 秒. (1)当t=2时,则AP= ,此时点P 的坐标是 . (2)当t=3时,求过点P 的直线l :y=-x+b 的解析式?(3)当直线l :y=-x+b 从经过点M 到点N 时,求此时点P 向上移动多少秒? (4)点Q 在x 轴时,若S △ONQ =8时,请直按写出点Q 的坐标是 .【答案】(1) 2,(0,3);(2)y=-x+4; (3)3秒; (4)(4,0)或(-4,0). 【解析】 【分析】【详解】(1) 当t=2时,则AP=2,此时点P 的坐标是(0,3); (2)直线y=-x+b 交y 轴于点P (0,b ), 由题意,得b>0,t≥0,b=1+t 当t=3时,b=4, ∴y=-x+4;(3)当直线y=-x+b 过M (3,2)时2=-3+b ,解得b=5 ,5=1+t 1,∴t 1=4, 当直线y=-x+b 过N (4,4)时,4=-4+b ,解得 b=8,8=1+ t 2,∴t 2=7, ∴t 2-t 1=7-4=3秒; (4)由题意得:1482Q x ,解得:4Qx 或-4,∴点Q 的坐标是(4,0)或(-4,0).24. 如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BGC , (1)求证:AD =BC ;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求ADEF的值.【答案】(1)见解析;(2)见解析;(3) 2.ADEF=【解析】【分析】(1)根据线段垂直平分线上的点到线段两个端点的距离相等可得GA=GB,GD=GC.由“SAS”可判定△AGD≌△BGC根据全等三角形的对应边相等即可得AD=BC;(2)根据两边对应成比例且夹角相等的两个三角形相似可判定△AGB∽△DGC,再由相似三角形对应高的比等于相似比可得GA EGGD FG=,再证得∠AGD=∠EGF,根据两边对应成比例且夹角相等的两个三角形相似即可判定△AGD∽△EGF;(3)如图1,延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH.由△AGD≌△BGC可知∠GAD=∠GBC.在△GAM和△HBM中,由∠GAD=∠GBC,∠GMA=∠HMB可证得∠AGB=∠AHB=90°,根据等腰三角形三线合一的性质可得∠AGE =45°,即可得出 2.GAGE=根据相似三角形对应边的比相等即可得 2.AD AGEF EG==【详解】(1)∵GE是AB的垂直平分线,∴GA=GB.同理GD=GC.在△AGD和△BGC中,∵GA=GB,∠AGD=∠BGC,GD=GC,∴△AGD≌△BGC.∴AD=BC.(2)∵∠AGD=∠BGC,∴∠AGB=∠DGC.在△AGB和△DGC中,GA GBGD GC=,∠AGB=∠DGC,∴△AGB∽△DGC.∴GA EGGD FG=,又∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF.(3)如图,延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH.由△AGD≌△BGC,知∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB.∴∠AGB=∠AHB=90°,∴∠AGE=12∠AGB=45°,∴ 2.GAGE=又△AGD∽△EGF,∴ 2.ADAGEF EG==25. 如图,抛物线223y x x=-++与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,请解决下列问题.(1)填空:点C的坐标为(,),点D的坐标为(,);(2)设点P的坐标为(a,0),当PD PC-最大时,求a的值并在图中标出点P的位置;(3)在(2)的条件下,将△BCP沿x轴的正方向平移得到△B′C′P′,设点C对应点C′的横坐标为t(其中0<t<6),在运动过程中△B′C′P′与△BCD重叠部分的面积为S,求S与t之间的关系式,并直接写出当t 为何值时S最大,最大值为多少?【答案】(1)C(0,3),D(1,4);(2)a=﹣3;(3)S=22533?(0)42{133?(6)122t t tt t t-+<<-+≤<,当t=65时,S有最大值95.【解析】试题分析:(1)令x=0,得到C的坐标,把抛物线配成顶点式,可得顶点D的坐标;(2)延长CD交x轴于点P.因为PD PC-小于或等于第三边CD,所以当PD PC-等于CD时,PD PC-的值最大.因此求出过CD 两点的解析式,求它与x 轴交点坐标即可;(3)过C 点作CE ∥x 轴,交DB 于点E ,求出直线BD 的解析式,得到点E 的坐标,求出P′C′与BC 的交点M 的坐标,分两种情况讨论:①点C′在线段CE 上;②点C′在线段CE 的延长线上,再分别求得N 点坐标,再利用图形的面积的差,可表示出S ,再求得其最大值即可.试题解析:(1)在223y x x =-++中,令x=0,得到y=3,∴C (0,3),∵223y x x =-++=2(1)4x --+,∴D (1,4),故答案为C (0,3),D (1,4);(2)∵在三角形中两边之差小于第三边,∴延长DC 交x 轴于点P ,设直线DC 的解析式为y kx b =+,把D 、C 两点坐标代入可得:4{3k b b +==,解得:13k b =⎧⎨=⎩,∴直线DC 的解析式为3y x ,将点P 的坐标(a ,0)代入得a+3=0,求得a=﹣3,如图1,点P (﹣3,0)即为所求;(3)过点C 作CE ∥x ,交直线BD 于点E ,如图2,由(2)得直线DC 的解析式为3y x ,易求得直线BD 的解析式为26y x =-+,直线BC 的解析式为3y x =-+,在26y x =-+中,当y=3时,x=32,∴E 点坐标为(32,3),设直线P′C′与直线BC 交于点M ,∵P′C′∥DC ,P′C′与y 轴交于点(0,3﹣t ),∴直线P′C′的解析式为3y x t =+-,联立:3{3y x y x t=-+=+-,解得:2{62tx t y =-=,∴点M 坐标为(2t ,62t -),∵B′C′∥BC ,B′坐标为(3+t ,0),∴直线B′C′的解析式为3y x t =-++,分两种情况讨论:①当302t <<时,如图2,B′C′与BD 交于点N ,联立:,解得:3{2x t y t=-=,∴N 点坐标为(3﹣t ,2t ),S=S △B′C′P ﹣S △BMP ﹣S △BNB′=12×6×3﹣12(6﹣t )×12(6﹣t )﹣12t×2t=2534t t -+,其对称轴为t=65,可知当302t <<时,S 随t 的增大而增大,当t=65时,有最大值95; ②当362t ≤<时,如图3,直线P′C′与DB 交于点N , 联立:26{3y x y x t =-+=+-,解得:33{1223t x t y +=-=,∴N 点坐标为(33t +,1223t -),S=S △BNP′﹣S △BMP′=12(6﹣t )×1223t -﹣12×(6﹣t )×62t -=21(6)12t -=21312t t -+; 显然当32<t <6时,S 随t 的增大而减小,当t=32时,S=2716 综上所述,S 与t 之间的关系式为S=22533?(0)42{133?(6)122t t t t t t -+<<-+≤<,且当t=32时,S 有最大值,最大值为2716. ∵927516>,∴当t=65时,S 有最大值95. 考点:1.二次函数综合题;2.分类讨论;3.最值问题;4.平移的性质;5.分段函数;6.二次函数的最值;7.压轴题.。
2017年天津市部分区初中毕业生学业考试第二次模拟练习数学参考答案一、选择题(本大题共12小题,每小题3分,共36分)(1)A (2)D (3)D (4)D (5)A (6)C(7)C (8)B (9)C (10)B (11)B (12)A二、填空题(本大题共6小题,每小题3分,共18分)(13)2618x xy -+ (14)125(15)答案不唯一 (16)81)1(1002=-x(17)4(18)(Ⅰ)52;(Ⅱ)如图,取格点M ,N ,连接MN 交AB于点P ,则点P 即为所求.三、解答题(本大题共7小题,共66分)(19)(本小题8分)解:(Ⅰ)x <3 ………... ……2分(Ⅱ)4x ≥- ………... ……4分(Ⅲ)(Ⅳ)4-≤x <3 ………... ……8分(20)(本小题8分)解:(Ⅰ)30 ………... ……1分(Ⅱ)补全图2 ………... ……2分.. ……6分第(18)题图∵ 在这组数据中,5出现了8次,出现的次数最多,∴ 这组数据的众数为5 ………... ……3分 ∵ 将这组数据按从小到大的顺序排列,其中处于中间的两个数都是5 ∴ 这组数据的中位数为5 ………... ……5分 (Ⅲ) 3.52027668544=⨯+⨯+⨯+⨯=x (棵), 答:抽查的20名学生平均每人的植树量5.3棵. ………... ……7分 13782603.5=⨯(棵)答:估计全校260名学生共植树1378棵. ………... ……8分 (21)(本小题10分)(Ⅰ)如图1:连接OC ………... ……1分 ∵CD 切⊙O 于点C∴CD OC ⊥ ………... ……2分 又∵四边形ABCD 是平行四边形∴AB ∥CD ∴AB OC ⊥又∵OB OC =∴︒=∠=∠45OCB B ………... ……3分 ∴︒=∠+∠=∠135OCB OCD BCD ………... ……4分∵四边形ABCD 是平行四边形∴︒=∠=∠135BCD DAB︒=∠=∠45B D ………... ……5分(Ⅱ)如图2,连接OC 交AB 于点E ,连接OB ………... ……6分由(1)可得AB OC ⊥∴222BE OE OB =-第(21)题图 1第(21)题图2222BE CE BC =-设cm x OE =,则()cm 3x CE -=又∵cm 3=OB ,cm 2=BC∴()2222323x x --=-∴37=x ……... ……7分即cm 37=OE ∴cm 32422=-=OE OB BE ………... ……8分 ∴cm 3282==BE AB ∵四边形ABCD 是平行四边形 ∴cm 328==AB CD ………... ……10分(22)(本小题10分)解:(Ⅰ)如图,过点D 作MN DP ⊥于点P ,……... ……1分 ∵DE ∥MN∴︒=∠=∠76ADE DCP ……... ……2分在Rt △CDP 中,DCDPDCP =∠sin ……... ……3分 ∴8.3897.04076sin =⨯≈︒=DC DP (cm )答:椅子的高度约为8.8cm 3 ………... ……4分(Ⅱ)作MN EQ ⊥于点Q ………... ……5分 ∴︒=∠=∠90EQB DPQ ∴DP ∥EQ第(22)题图QP又∵DF ∥MN ,︒=∠58AED ,︒=∠76ADE∴四边形DEQP 是矩形,且︒=∠=∠76ADE DCP ,︒=∠=∠58AED EBQ ∴,20==PQ DE 8.38==DP EQ 又∵在DPC Rt ∆和EQB Rt ∆中,︒=∠=67cos 40cos DCP CD CP ………... ……7分︒=∠=58tan 8.38EBQ tan EQ BQ ………... ……9分∴ 5476cos 402058tan 8.38≈︒++︒=++=CP PQ BQ BC (cm )答:椅子两脚B 、C 之间的距离约为54cm ………... ……10分(23)(本小题10分)解:(Ⅰ)1,2,2,1.5;75.12=+b a ,2,2; 第五空2分,其余每空1分,共8分;(Ⅱ)依题意y 与x 的关系式为()x x y -+=85.12即125.0+=x y …10分(24)(本小题10分) 解:(Ⅰ)A '(3-,3),B '(0,4) ………... ……2分(Ⅱ)①四边形CB B A '是平行四边形 ………... ……3分理由:如图2,∵C B '∥AB ∴BAC CA B ∠='∠又∵︒=∠+∠90CAO BAC ∴︒=∠+''∠90CAO A C B又∵︒='∠+''∠90A A O C A B ,且由旋转得A O OA '=,则A A O CAO '∠=∠ ∴C A B A C B ''∠=''∠ ………... ……4分 ∴A B C B ''=' 又∵AB B A ='' ∴AB C B ='∴四边形CB B A '是平行四边形 ………... ……5分 ②过点A '作x E A ⊥'轴,垂足为E由点A (32-,0)可得32=OA 又∵︒=∠90OAB ,︒=∠30AOB∴2=AB ,4=OB ,则32='A O ,2=''B A由︒='∠135A AO ,得︒='∠45OE A ∴622='='=A O E A OE ∴点A '(6,6) ………... ……6分 过点B '作E A F B '⊥',垂足为点F 由︒='∠45O A E ,得︒=''∠45B A E ∴2222=⨯='='F A F B ∴26-=EF ,26+='+F B OE∴点B '(26+,2-6) ………... ……7分(Ⅲ)C B '扫过的面积为12 ………... ……10分 ( 注:C B '扫过的图形是平行四边形) (25)(本小题10分)解:(Ⅰ)抛物线322+--=x x y 取0=y ,得11=x ,32-=x∴ A (3-,0),C (1,0) ………... ……2分 取0=x ,得3=y ∴B (0,3) ………... ……3分(Ⅱ)∵点D 为AC 中点,∴D (1-,0) ………... ……4分∵DE BE 2=,∴E (32-,1) ………... ……5分 设直线CE 为b kx y +=,把点C (1,0),E (32-,1)代入, F EyxA /B /C OBA图2得⎪⎩⎪⎨⎧=+=+-0132b k b k ,解得⎪⎪⎩⎪⎪⎨⎧=-=5353b k∴直线CE 为5353+-=x y ………... ……6分 由⎪⎩⎪⎨⎧+--=+-=3253532x x y x y 得⎩⎨⎧==01y x 或⎪⎪⎩⎪⎪⎨⎧=-=2551512y x ∴依题意点M (512-,2551) ………... ……7分 (Ⅲ)PG PC PA ++的最小值是192, ………... ……8分点P (199-,19312) ………... ……10分 附答案:∵AGQ ∆,APR ∆是等边三角形∴PR AR AP ==,AG AQ =,︒=∠=∠60RAP QAG∴G A P Q A R ∠=∠在Q A R ∆和G A P ∆中⎪⎩⎪⎨⎧=∠=∠=AP AR GAP QAR AGAQ∴Q A R ∆≌G A P ∆ ∴PG QR =∴QR PC PR PG PC PA ++=++∴当Q 、R 、P 、C 共线时PG PC PA ++的值最小,为线段QC 的值,如图: 作OA QN ⊥于点N ,作CQ AM ⊥于点M ,作CN PK ⊥于点K依题意︒=∠60GAO ,3=AO∴6===QA GQ AG ,︒=∠30AGO ∵︒=∠60AGQ ∴︒=∠90QGO ∴点Q (6-,33)在QNC Rt ∆中,33=QN ,7=CN ∴19222=+=CN QN QC ∴QCQNAC AM ACM ==∠sin ∴19576=AM ∵APR ∆是等边三角形, ∴︒=∠60APM ,AM PM 33=19191422=-=AM AC MC ∴19198=-=PM CM PC ∵QC QN PC PK PCN ==∠sin ,CQCNCP CK PCN ==∠cos ∴19312=PK ,1928=CK ∴199=OK ∴点P (199-,19312)。
2017年九年级数学中考模拟题一选择题:1.计算1-(-2)的正确结果是( )A.-2B.-1C.1D.32.在Rt△ABC中,∠C=90°,BC=1,那么AB的长为( )A.sinAB.cosAC.D.3.如图,不是中心对称图形的是()A. B. C. D.4.已知数349028用四舍五入法保留两个有效数字约是3.5×105,则所得近似数精确到()A.十位B.千位C.万位D.百位5.一个几何体的三视图如图所示,则该几何体的表面积为()A.4π B.3π C.2π+4 D.3π+46.下列说法正确的是()A.0的算术平方根是0B.9是3的算术平方根C.3是9的算术平方根D.-3是9的算术平方根7.下列分式中,最简分式有()A.2个B.3个C.4个D.5个8.若x、x2是方程x2+3x﹣5=0的两个根,则x1•x2的值为()1A.﹣3 B.﹣5 C.3 D.59.在函数中,自变量x的取值范围( )A.x≤1B.x≥1C.x<1D.x>110.如图,□ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16B.14C.12D.1011.小华以每分钟x个字的速度书写,y分钟写了300个字,则y与x的函数关系式为( )12.如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是()A. B. C. D.二填空题:13.若a2n+1b2与5a3n﹣2b2是同类项,则n= .14.三角形的三边长分别为,,,则这个三角形的周长为15.小明把如图所示的矩形纸板ABCD挂在墙上,E为AD中点,且∠ABD=60°,并用它玩飞镖游戏(每次飞镖均落在纸板上),击中阴影区域的概率是________.16.若函数y=mx2+(m+2)x+0.5m+1的图象与x轴只有一个交点,那么m的值为.17.如图,B、C、D依次为一直线上4个点,BC=3,△BCE为等边三角形,⊙O过A、D、E三点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为.18.如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是.一、计算综合题:19.解不等式组:,并在数轴上表示不等式组的解集.20.中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图1、图2补充完整;(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).21.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求∠BEC的正切值.22.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C 在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22°)23.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.24.数学活动--求重叠部分的面积.问题情境:数学活动课上,老师出示了一个问题:如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合.(1)若DE经过点C,DF交AC于点G,求重叠部分(△DCG)的面积;(2)合作交流:“希望”小组受问题(1)的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求重叠部分(△DGH)的面积。
2017年九年级数学中考模拟试卷一、选择题:1.下列算式正确的是()A.(-14)-5=﹣9B.0﹣(-3)=3C.(-3)﹣(-3)=-6D.|5﹣3|=-(5﹣3)2.把锐角△ABC的各边都扩大2倍得△A′B′C′,那么∠A、∠A′的余弦值关系是()A.cosA=cosA′B.cosA=2cosA′C.2cosA=cosA′D.不确定的3.由图所示的地板砖各两块所铺成的下列图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.G20峰会来了,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人.而这个数字,还在不断地增加.请问近似数9.17×105的精确度是()A.百分位B.个位C.千位D.十万位5.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A. B. C. D.6.估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间7.下列算式中,你认为正确的是()8.已知一次函数y=ax+c图象如图,那么一元二次方程ax2+bx+c=0根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.无法判断9.下列根式中能与合并的二次根式为( )A. B. C. D.10.已知四边形ABCD是平行四边形,再从①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④11.已知反比例函数的图象过点(2,3),那么下列四个点中,也在这个函数上的是( )A.(-6,1)B.(1,6)C.(2,-3)D.(3,-2)12.如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标为(1,n),与y轴的交点在(0,2),(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①② B.③④ C.①③ D.①③④二、填空题:13.分解因式:a2b﹣6ab2+9b3= .14.使有意义的x的取值范围是______.15.如图有6个质地均匀和大小相同的球,每个球只标有一个数字,现将标有3,4,5,的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.小明和小海分别从甲、乙两箱中各摸一球,则小海所摸球上的数字比小明所摸球上数字大的概率为.16.己知一次函数y=kx+5和y=k/x+3,假设k>0,k/<0,则这两个一次函数图象的交点在第象限;17.如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN= .18.如图所示,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DFEC的面积之比是 .三、解答题:19.解不等式组:,并在数轴上表示不等式组的解集.20.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为人,扇形统计图中短跑项目所对应圆心角的度数为°;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.21.如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.22.小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角,立杆OA=OB=140cm,小梅的连衣裙垂挂在衣架上的总长度为122cm(含衣挂的长度),问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66).23.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元,已知该服装成本是每件200元.设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?24.两块等腰直角三角形纸片AOB和COD按图1所示放置,直角顶点重合在点O处,AB=25,CD=17.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图2所示.(1)利用图2证明AC=BD且AC⊥BD;(2)当BD与CD在同一直线上(如图3)时,求AC的长和α的正弦值.25.如图,已知抛物线经过点A(﹣2,0),点B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)P是抛物线的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由;(3)是否存在动点D在抛物线上,动点E在抛物线的对称轴上,且以AO为边,以A、O、D、E为顶点的四边形是平行四边形,若存在,请直接写出点D的坐标;若不存在,请说明理由.参考答案1.B2.A3.A4.C5.D6.C7.D8.A9.D10.B11.B12.D.13.答案为:b(a﹣3b)214.x≥0且15.答案为:.16.答案为:二;17.4或618.19.答案为:﹣1≤x<220.解:(1)由扇形统计图和条形统计图可得:参加复选的学生总人数为:(5+3)÷32%=25(人);扇形统计图中短跑项目所对应圆心角的度数为:×360°=72°.故答案为:25,72;(2)长跑项目的男生人数为:25×12%﹣2=1,跳高项目的女生人数为:25﹣3﹣2﹣1﹣2﹣5﹣3﹣4=5.如下图:(3)∵复选中的跳高总人数为9人,跳高项目中的男生共有4人,∴跳高项目中男生被选中的概率=.21.解;(1)连接OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,在RT△OCD中,∵C是AO中点,CD=,∴OD=2CO,设OC=x,∴x2+()2=(2x)2,∴x=1,∴OD=2,∴⊙O的半径为2.(2)∵sin∠CDO==,∴∠CDO=30°,∵FD∥OB,∴∠DOB=∠ODC=30°,∴S圆=S△CDO+S扇形OBD﹣S扇形OCE=×+﹣=+.22.解:过点O作OE⊥AB于点E,∵OA=OB,∠AOB=62°,∴∠OAB=∠OBA=59°,在Rt△AEO中,OE=OA•sin∠OAB=140×sin59°≈140×0.86=120.4,∵120.4<122,∴这件连衣裙垂挂在晒衣架上会拖落到地面.23.24.(1)证明:如图2中,延长BD交OA于G,交AC于E.∵∠AOB=∠COD=90°,∴∠AOC=∠DOB,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,∵∠DBO+∠GOB=90°,∵∠OGB=∠AGE,∴∠CAO+∠AGE=90°,∴∠AEG=90°,∴BD⊥AC.(2)解:如图3中,设AC=x,∵BD、CD在同一直线上,BD⊥AC,∴△ABC是直角三角形,∴AC2+BC2=AB2,∴x2+(x+17)2=252,解得x=7,∵∠ODC=∠α+∠DBO=45°,∠ABC+∠DBO=45°,∴∠α=∠ABC,∴sinα=sin∠ABC==.25.(3)存在,D点坐标为(1,3)或(﹣3,3).当以A、O、D、E为顶点的平行四边形时,且AO为边,则有DE=AO=2,且DE∥AO,∴D点只能在x轴上方,过点E作DE∥x轴,交抛物线与点D,如图2,设D点横坐标为x,∵E点在抛物线对称轴上,∴E点横坐标为﹣1,∴DE=|x+1|=2,解得x=1或x=﹣3,∴D点坐标为(1,3)或(﹣3,3).。
2017年中考数学模拟试卷一、选择题:1.计算(﹣3)﹣(﹣9)的结果等于()A.12B.﹣12C.6D.﹣62.在Rt△ABC中,∠C=90°,若tanA=,则sinA=()A. B. C. D.3.上面图案中,既是中心对称图形,又是轴对称图形的是()4.亚投行候任行长金立群12月1日在北京表示,亚投行将在12月底前正式成立,计划在第二季度开始试营,计划总投入1000亿美元,中国计划投入500亿美元,折合人民币约3241亿元,将3241亿元用科学记数法表示为()元.A.3.241×103B.0.3241×104C.3.241×1011D.3.241×10125.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()6.一个正方形的面积为50平方厘米,则正方形的边长约为( )A.5厘米B.6厘米C.7厘米D.8厘米7.下列算式中,你认为错误的是()A. B.C. D.8.已知一元二次方程kx2-x+1=0有两个不相等的实数根,则k的范围是()A. B. C. D.且9.若代数式有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠210.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是()A.6cm B.9cm C.3cm D.12cm11.反比例函数y=2x-1的大致图象为()A. B. C. D.12.已知抛物线y=x2-(2m+1)x+2m不经过第三象限,且当x>2时,函数值y随x的增大而增大,则实数m的取值范围是()A.0≤m≤1.5B.m≥1.5C.0≤m≤1D.0<m≤1.5二、填空题:13.已知2×4m×8m=216,则m= .14.若二次根式有意义,则x的取值范围是__________.15.在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球个.16.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则系数k,m,n的大小关系是__________.17.如图,已知等边△ABC的边长为3,点E在AC上,点F在BC上,且AE=CF=1,则AP•AF的值为.18.在Rt△ABC中,∠C=90°,cosB=0.6,把这个直角三角形绕顶点C旋转后得到Rt△A'B'C,其中点B'正好落在AB上,A'B'与AC相交于点D,那么B/D:CD= .三、解答题:19.解不等式组:并把解集在数轴上表示出来.20.可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.21.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=2,sin∠BCP=,求⊙O的半径及△ACP的周长.22.如图,已知在△ABC中,∠ABC=30°,BC=8,sin∠A=,BD是AC边上的中线.求:(1)△ABC的面积;(2)∠ABD的余切值.23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?24.在△ABC中,AB=AC=5,cos∠ABC=0.6,将△ABC绕点C顺时针旋转,得到△AB1C。
2016-2017学年度南开区 九年级模拟数学 (二)一 选择题:1.(-2)3的结果是( )A.-6B.6C.-8D.82.4cos60°的值为( ) A.21 B.2 C.23 D.323.下列图形中,轴对称图形的个数是( )A.1B.2C.3D.44.小明上网查德H7N9禽流感病毒直径约为0.00000008米,用科学计数法表示为( )A.0.8×10-7米B.8×10-7米C.8×10-8米D.8×10-9米5.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )6.估计2-41的值( )A.在4和5之间B.在3和4之间C.在2和3之间D. 在1和2之间7.如图,在平面直角坐标系中,点B 、C 、E 在y 轴上,Rt △ABC 讲过变换得到Rt △ODE ,若点C 的坐标为(0,1),AC=2,则这种变换可以是 ( )A.△ABC 绕点C 顺时针旋转90°,再向下平移3B.△ABC 绕点C 顺时针旋转90°,再向下平移1C.△ABC 绕点C 逆时针旋转90°,再向下平移1D.△ABC 绕点C 逆时针旋转90°,再向下平移38.下列等式成立的是( ) A.b a b a +=+321 B.b a b a +=+122 C.ba ab ab ab -=-2 D.b a a b a a +=+- 9.已知A(x 1,y 1),B(x 2,y 2),P(x 3,y 3)是反比例函数y=x 2上的三点,若x 1<x 2<x 3,y 2<y 1<y 3,则下列关系不正确的是( )A.x 1·x 2<0B.x 1·x 3<0C.x 2·x 3<0D.x 1+x 2<010.已知正方体的体积为22,则这个正方体的棱长为( ) A.1 B.2 C. 6 D.311.如图,四边形ABCD 是正方形,以CD 为边作等边△CDE ,BE 与AC 相交于点M ,则∠AMD 的度数是( )A.75°B.60°C.54°D.67.5°12.“如果二次函数y=ax 2+bx+c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx+c=0有两个不相等的实数根”.请根据你对这句话的理解,解决下面问题:若m 、n (m<n )是关于x 的方程1-(x-a)(x-b)=0的两根,且a < b, 则a 、b 、m 、n 的大小关系是( )A.m < a < b< nB.a < m < n < bC.a < m < b< nD.m < a < n < b二 填空题: 13. -|-3|= .14.已知关于x 的方程x 2-2x+a=0有两个不相等的实数根,则a 的取值范围为 .15.小玲在一次班会中参加知识抢答活动,现有语文题6道,数学题5道,综合题9道,她从中随机抽取1道,抽中数学题的概率是 .16.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为 .17.如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN +∠ANM 的度数为18.下列网格中的六边形ABCDEF 是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长为 ;(2)在图中画出两条裁剪线,并画出将此六边形剪拼成的正方形.三 解答题:19.解不等式组:⎪⎩⎪⎨⎧->+-<-)2(1321)1(43)1(4x x x x 请结合题意填空:完成本题的解答:(Ⅰ)解不等式(1),得 ;(Ⅱ)解不等式(2),得 ;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .20.为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)根据表、图提供的信息,解决以下问题:(1)计算出表中a 、b 的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;少人?21.如图,在边长为8的正方形ABCD中,E是AB上的点,⊙O是以BC为直径的圆.(1)如图1,若DE与⊙O相切于点F,求BE的长;(2)如图2,若AO⊥DE,垂足为F,求EF的长.22.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度.(精确到0.1)(参考数据:2≈1.414,3≈1.132)23.由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?24.如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0),将矩形OABC绕点O按顺时针旋转135°,得到矩形EFGH(点E与O重合)(1)若GH交y轴于点M,则∠FOM= ,OM= ;(2)矩形EFGH沿y轴向上平移t个单位.①直线GH与x轴交于点D,若AD∥BO,求t的值;②若矩形EFHG与矩形OABC重叠部分的面积为S个平方单位,试求当0<t≤2-4时,S与t之间的函数2关系式.25.已知抛物线C1的函数解析式为y=ax2-2x-3a,若抛物线C1经过点(0,-3).(参考公式:在平面直角坐标系中,若P(x 1,y1),Q(x2,y2),则P,Q两点间的距离为)参考答案1.C2.B3.B4.B5.C6.A7.A8.C9.A10.B11.B12.A13.答案为:-3;14.答案为:a<1;15.答案为:0.25;16.答案为:±6.17.答案为:120°;18.答案为:(1)24;(2)如图:19.解:(1)x<0,(2)x<4,(3)略;(4)x<0.20.解:(1)162,135;(2)108°;(3)3800.21. 解:(1)BE=2;(2)554. 22.解:如图作BH ⊥EF ,CK ⊥MN ,垂足分别为H 、K ,则四边形BHCK 是矩形,设CK=HB=x,∵∠CKA=90°,∠CAK=45°,∴∠CAK=∠ACK=45°,∴AK=CK=x,BK=HC=AK﹣AB=x﹣30,∴HD=x﹣30+10=x﹣20,在RT△BHD中,∵∠BHD=30°,∠HBD=30°,∴tan30°=HD:HB,∴=,解得x=30+10.∴河的宽度为(30+10)米.23.24.解:(1)45°,;(2)①-2;②.25.解:(1)∵抛物线过(0,-3)点,∴-3a=-3∴a=1 ∴y=x2-2x-3∴y=x2-2x-3=(x-1)2-4∴抛物线C1的顶点坐标为(1,-4)(2)∵x>0,∴∴显然当x=1时,才有(3)由平移知识易得C2的解析式为:y=x2∴A(m,m2),B(n,n2)∵ΔAOB为RtΔ∴OA2+OB2=AB2∴m2+m4+n2+n4=(m-n)2+(m2-n2)2化简得:m n=-1∵SΔAOB==∵m n=-1∴SΔAOB==∴S的最小值为1,此时m=1,A(1,1)∴直线OA的一次函数解析式为y=x。
2017年九年级数学中考模拟试卷一、选择题:1.计算﹣2﹣1的结果是()A.﹣3B.﹣2C.﹣1D.32.在Rt△ABC中,∠C=90°,若tanA=,则sinA=()A. B. C. D.3.下列图形中,是中心对称图形但不是轴对称图形的为()4.用四舍五入法得到近似数4.005万,关于这个数有下列说法,其中正确的是( )A.它精确到万位B.它精确到0.001C.它精确到万分位D.它精确到十位5.如图1所示,将一个正四棱锥(底面为正方形,四条侧棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是()A.PA,PB,AD,BCB.PD,DC,BC,ABC.PA,AD,PC,BCD.PA,PB,PC,AD6.下列各式中正确的是( )7.已知a是方程x2+x﹣2015=0的一个根,则的值为()A.2014B.2015C.D.8.用配方法解方程x2+x﹣1=0,配方后所得方程是()A.(x﹣0.5)2=0.75B.(x+0.5)2=0.75C.(x﹣0.5)2=1.25D.(x+0.5)2=1.259.使代数式有意义的x的取值范围是( )A.x≥0B.x≠C.x取一切实数D.x≥0且x≠10.如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(﹣3,1) B.(4,1) C.(﹣2,1) D.(2,﹣1)11.已知点A(-2,y),B(3,y2)是反比例函数图象上的两点,则有( )1A.y1<0<y2B.y2<0<y1 C.y1<y2<0 D.y2<y1<012.已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A.6B.3C.﹣3D.0二、填空题:13.把x3﹣9x分解因式,结果正确的是14.化简×﹣4××(1﹣)0的结果是.15.在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球个.16.直线y=kx+1与y=2x-1平行,则y=kx+1的图象不经过象限.17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.18.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x、x2,其中﹣12<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正确的结论有.(填写正确结论的序号)三、解答题:19.解不等式组:.20.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为;(2)条形统计图中存在错误的是(填A、B、C中的一个),并在图中加以改正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?21.已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.22.在一次综合实践活动中,小明要测某地一座古塔AE的高度.如图,已知塔基顶端B(和A、E共线)与地面C处固定的绳索的长BC为80m.她先测得∠BCA=35°,然后从C点沿AC方向走30m到达D点,又测得塔顶E的仰角为50°,求塔高AE.(人的高度忽略不计,结果用含非特殊角的三角函数表示)23.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?24.在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).25.如图,在平面直角坐标系中,直线y=-x+4与x轴、y轴分别交于点A、B.抛物线y=-+n的顶点P在直线y=﹣x+4上,与y轴交于点C(点P、C不与点B重合),以BC为边作矩形BCDE,且CD=2,点P、D在y轴的同侧.(1)n= (用含m的代数式表示),点C的纵坐标是 (用含m的代数式表示).(2)当点P在矩形BCDE的边DE上,且在第一象限时,求抛物线对应的函数表达式.(3)设矩形BCDE的周长为d(d>0),求d与m之间的函数表达式.(4)直接写出矩形BCDE有两个顶点落在抛物线上时m的值.参考答案1.A1.D3.C4.D5.A6.C7.D8.D9.D10.A11.B12.A13.答案为:x(x+3)(x﹣3)14.答案为:.15.答案为:20;16.答案为:第四象限;17.答案为:.18.答案为:①②.19.,不等式①的解集为:x<4,不等式②的解集为:x>2.故不等式组的解集为:2<x<4.20.解:(1)∵40÷20%=200,80÷40%=200,∴此次调查的学生人数为200;(2)由(1)可知C条形高度错误,应为:200×(1﹣20%﹣40%﹣15%)=200×25%=50,即C的条形高度改为50;故答案为:200;C;(3)D的人数为:200×15%=30;(4)600×(20%+40%)=360(人).答:该校对此活动“非常喜欢”和“比较喜欢”的学生有360人.21.22.【解答】解:在Rt△ABC中,∠ACB=35°,BC=80m,∴cos∠ACB=,∴AC=80cos35°,在Rt△ADE中,tan∠ADE=,∵AD=AC+DC=80cos35°+30,∴AE=(80cos35°+30)tan50°.答:塔高AE为(80cos35°+30)tan50°m.23.【答案】(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)y=﹣0.2x+60(0≤x≤90);(3)当该产品产量为75kg时,获得的利润最大,最大值为2250.24.25.【解答】解:(1)y=﹣(x﹣m)2+n=﹣x2+mx﹣m2+n,∴P(m,n),∵点P在直线y=﹣x+4上,∴n=﹣m+4,当x=0时,y=﹣m2+n=﹣m2﹣m+4,即点C的纵坐标为:﹣m2﹣m+4,故答案为:﹣m+4,﹣m2﹣m+4;(2)∵四边形BCDE是矩形,∴DE∥y轴.∵CD=2,∴当x=2时,y=2.∴DE与AB的交点坐标为(2,2).∴当点P在矩形BCDE的边DE上时,抛物线的顶点P坐标为(2,2).∴抛物线对应的函数表达式为.(3)∵直线y=﹣x+4与y轴交于点B,∴点B的坐标是(0,4).当点B与点C重合时,.解得m1=0,m2=﹣3.i)当m<﹣3或m>0时,如图①、②,..ii)当﹣3<m<0时,如图③,..(4)如图④⑤,点C、D在抛物线上时,由CD=2可知对称轴为:x=±1,即m=±1;如图⑥⑦,点C、E在抛物线上时,由B(0,4)和CD=2得:E(﹣2,4)则4=﹣(﹣2﹣m)2+(﹣m+4),解得:、.综上所述:m=1、m=﹣1、、.。
天津市南开区2017届九年级数学第二次模拟试题
一 选择题:
1.(-2)3的结果是( )
A.-6
B.6
C.-8
D.8 2.4cos60°的值为( ) A.
21 B.2 C.2
3 D.32 3.下列图形中,轴对称图形的个数是( )
A.1
B.2
C.3
D.4
4.小明上网查德H7N9禽流感病毒直径约为0.00000008米,用科学计数法表示为( ) A.0.8³10-7
米 B.8³10-7
米 C.8³10-8
米 D.8³10-9
米
5.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )
6.估计2-41的值( )
A.在4和5之间
B.在3和4之间
C.在2和3之间
D. 在1和2之间 7.如图,在平面直角坐标系中,点B 、C 、E 在y 轴上,Rt △ABC 讲过变换得到Rt △ODE ,若点C 的坐标为(0,1),AC=2,则这种变换可以是 ( )
A.△ABC 绕点C 顺时针旋转90°,再向下平移3
B.△ABC 绕点C 顺时针旋转90°,再向下
平移1
C.△ABC 绕点C 逆时针旋转90°,再向下平移1
D.△ABC 绕点C 逆时针旋转90°,再向下平移3
8.下列等式成立的是( ) A.
b a b a +=+321 B.b a b a +=+122 C.b
a a
b ab ab -=-2 D.b a a
b a a +=
+- 9.已知A(x 1,y 1),B(x 2,y 2),P(x 3,y 3)是反比例函数y=x
2
上的三点,若x 1<x 2<x 3,y 2<y 1<y 3,则下列关系不正确的是( )
A.x 1²x 2<0
B.x 1²x 3<0
C.x 2²x 3<0
D.x 1+x 2<0 10.已知正方体的体积为22,则这个正方体的棱长为( ) A.1 B.2 C. 6 D.3
11.如图,四边形ABCD 是正方形,以CD 为边作等边△CDE ,BE 与AC 相交于点M ,则∠AMD 的度数是( )
A.75°
B.60°
C.54°
D.67.5°
12.“如果二次函数y=ax 2+bx+c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx+c=0有两个不相等的实数根”.请根据你对这句话的理解,解决下面问题:若m 、n (m<n )是关于x 的方程1-(x-a)(x-b)=0的两根,且a < b, 则a 、b 、m 、n 的大小关系是( ) A.m < a < b< n B.a < m < n < b C.a < m < b< n D.m < a < n <
b
二 填空题: 13. -|-3|= .
14.已知关于x 的方程x 2-2x+a=0有两个不相等的实数根,则a 的取值范围为 . 15.小玲在一次班会中参加知识抢答活动,现有语文题6道,数学题5道,综合题9道,她从中随机
抽取1道,抽中数学题的概率是 .
16.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为 . 17.如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN +∠ANM 的度数为
18.下列网格中的六边形ABCDEF 是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.
(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长为 ; (2)在图中画出两条裁剪线,并画出将此六边形剪拼成的正方形
.
三 解答题:
19.解不等式组:⎪⎩
⎪
⎨⎧->+-<-)2(1
321)1(43)1(4x x x x
请结合题意填空:完成本题的解答: (Ⅰ)解不等式(1),得 ; (Ⅱ)解不等式(2),得 ;
(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为 .
20.为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)
根据表、图提供的信息,解决以下问题:
(1)计算出表中a、b的值;
(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;
(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?
21.如图,在边长为8的正方形ABCD中,E是AB上的点,⊙O是以BC为直径的圆.
(1)如图1,若DE与⊙O相切于点F,求BE的长;
(2)如图2,若AO⊥DE,垂足为F,求EF的长.
22.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度.(精确到0.1)(参考数据:2≈1.414,3≈1.132)
23.由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.
(1)完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的
取值范围;
(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?
24.如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0),将矩形OABC绕点O按顺时针旋转135°,得到矩形EFGH(点E与O重合)
(1)若GH交y轴于点M,则∠FOM= ,OM= ;
(2)矩形EFGH沿y轴向上平移t个单位.
①直线GH与x轴交于点D,若AD∥BO,求t的值;
②若矩形EFHG与矩形OABC重叠部分的面积为S个平方单位,试求当0<t≤2-
4时,S与t之
2
间的函数关系式.
25.已知抛物线C1的函数解析式为y=ax2-2x-3a,若抛物线C1经过点(0,-3).
⑴求抛物线C1的顶点坐标.
⑶若将抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C2,设A(m,y1),B(n,y2)是C2上的两个不同点,且满足:∠AOB=90︒,m>0,n<0.请你用含m的表达式表示出△AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式.
(参考公式:在平面直角坐标系中,若P(x1,y1),Q(x2,y2),则P,Q两点间的距离为
)
参考答案
1.C
2.B
3.B
4.B
5.C
6.A
7.A
8.C
9.A 10.B 11.B 12.A
13.答案为:-3; 14.答案为:a<1; 15.答案为:0.25; 16.答案为:±6. 17.答案为:120°;
18.答案为:(1)24;(2)如图:
19.解:(1)x<0,(2)x<4,(3)略;(4)x<0.
20.解:(1)162,135;(2)108°;(3)3800. 21. 解:(1)BE=2;(2)
55
4
.
22.解:如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,
设CK=HB=x,∵∠CKA=90°,∠CAK=45°,∴∠CAK=∠ACK=45°,
∴AK=CK=x,BK=HC=AK﹣AB=x﹣30,∴HD=x﹣30+10=x﹣20,
在RT△BHD中,∵∠BHD=30°,∠HBD=30°,∴tan30°=HD:HB,
∴=,解得x=30+10.∴河的宽度为(30+10)米.
23.
24.解:(1)45°,;(2)①-2;②.
25.解:(1)∵抛物线过(0,-3)点,∴-3a=-3∴a=1 ∴y=x2-2x-3
∴y=x2-2x-3=(x-1)2-4∴抛物线C1的顶点坐标为(1,-4)
(2)∵x>0,∴
∴显然当x=1时,才有
(3)由平移知识易得C2的解析式为:y=x2∴A(m,m2),B(n,n2)
∵ΔAOB为RtΔ∴OA2+OB2=AB2∴m2+m4+n2+n4=(m-n)2+(m2-n2)2化简得:m n=-1
∵SΔAOB ==
∵m n=-1∴SΔAOB ==
∴SΔAOB的最小值为1,此时m=1,A(1,1)
∴直线OA的一次函数解析式为y=x
11。