高一数学必修3综合测试题
- 格式:doc
- 大小:414.50 KB
- 文档页数:8
第一章综合检测(B)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列说法不正确的是()A.顺序结构是由若干个依次执行的处理步骤组成的,每一个算法都离不开顺序结构B.循环结构是在一些算法中从某处开始按照一定条件,反复执行某一处理步骤,故循环结构中一定包含条件结构C.循环结构中不一定包含条件结构D.循环结构中反复执行的处理步骤叫做循环体[答案] C[解析]例如不论是直到型循环还是当型循环,其中都包含条件结构.循环结构是在一些算法中从某处开始按照一定条件,反复执行某一处理步骤,故循环结构中一定包含条件结构.所以答案选C.另外其他三个选项都是正确的,注意理解记忆.2.下列程序执行后输出的结果是()A.-1B.0C.1D.2[答案] B[解析]第一次循环后S=5,n=4,第二次循环后S=9,n=3,第三次循环后S=12,n =2,第四次循环后S=14,n=1,第五次循环后S=15,n=0.3.1 337与382的最大公约数是()A.3 B.382C.191 D.201[答案] C[解析](1 337,382)→(955,382)→(573,382)→(191,382)→(191,191),故选C.4.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4时,v4的值为()A.-57 B.220[答案] B[解析]由秦九韶算法有:v0=3,v1=v0x+5=-7,v2=-7x+6=34,v3=34x+79=-57,v4=-57x-8=220.5.对于程序:试问,若输入m=-4,则输出的数为()A.9 B.-7C.5或-7 D.5[答案] D[解析]阅读程序,先输入m,判断m>-4,是否成立,因为m=-4,所以不成立,则执行m=1-m,最后输出结果为5.6.执行下列程序时,计算机能输出结果仅是15的是()A.s=0;for x=1∶1∶5s=s+x;end;disp(s)B.s=0;for x=1∶1∶5s=s+x,end;disp(s)C.s=0;for x=1∶1∶5s=s+x;disp(s);(s)D.s=0;for x=1∶1∶5s=s+x;end;disp(s)[答案] D[解析]当程序在一行中书写时,for表达式后用逗号,其余句式之间用分号,最后一句没有标点符号,C中输出的是1,3,6,10,15.7.如图所示中的程序框图的循环体执行的次数是()A.50 B.49[答案] B[解析]从2开始,到100结束,步长为2,所以共执行循环次数为49次.8.下列程序的功能是()A.求2×6×…×68的值B.求1×2×3×4×…×68的值C.求2×4×6×…×68的值D.求2×4×……×66的值[答案] C[解析]由while循环的条件限制可知,当i=68+2时,不再执行循环体,循环终止,执行end后面的语句,故选C.9.如果以下程序运行后输出的结果是132,那么在程序中,while后面的条件表达式应为()A.i>11 B.i>=11C.i<=11 D.i<11[答案] B[解析]∵132=12×11,∴选B.10.390,455,546的最大公约数是()A.65 B.91C.26 D.13[答案] D[解析] (546,455)→(455,91)→(364,91)→(273,91)→(182,91)→(91,91),故546与455的最大公约数为91.(390,91)→(299,91)→(208,91)→(117,91)→(26,91)→(26,65)→(26,39)→(26,13)→(13,13),故390与91的最大公约数为13,即390,455,546的最大公约数是13.11.任意给定一个自然数M ,一定存在自然数n ,使1+12+13+ (1)>M ,下面的程序是用来验证这一结论的,其中“while ”后面的条件表达式为( )A .S<=MB .S>=MC .S<MD .S >M[答案] A[解析] 要求的是使1+12+13+ (1)>M 的最小的自然数n ,故和大于M 时输出,∴循环体是在S ≤M 的条件下执行的,故选A.12.阅读程序框图,该程序框图输出的结果是( )A .25B .50C .125D .250[答案] C[解析] 执行第一次后,a =2,S =5;执行第二次后,a =3,S =25;执行第三次后,a =4,S =125;此循环终止,输出125.二、填空题(本大题共4小题,每小题4分,共16分.把答案填写在题中的横线上.)13.有如下的程序框图,则该程序框图表示的算法功能是________.[答案] 计算并输出使1×3×5×…×n ≥10 000成立的最小正整数[解析] i 是计数变量,从S =S ×i 中判断最后S =1×3×5×…×n .14.已知f (x )=13x 6-2x 5-x 4+3x 3+x +21,则f (3)=________. [答案] -219[解析] 用秦九韶算法求值:v 0=13; v 1=13×3-2=-1; v 2=-1×3-1=-4;v 3=-4×3+3=-9;v 4=-9×3+0=-27;v 5=-27×3+1=-80;v 6=-80×3+21=-219.15.输入8,下列程序执行后输出的结果是________.[答案] 0.7[解析] 这是一个条件语句编写的程序,由于输入的数据为8,t ≤4不成立,∴c =0.2+0.1×(8-3)=0.7.16.2010年上海世博会园区每天9 00开园,20 00停止入园,在下边的框图中,S 表示上海世博会官方网站在每个整点报道的入园总人数,a 表示整点报道前1个小时内入园人数,则空白的执行框内应填入________.[答案]S←S+a[解析]每个整点入园总人数S等于前一个整点入园总人数加前1个小时内入园人数,即应填S←S+a.三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分12分)下面给出一个循环语句的程序:(1)指出程序所用的是何种循环语句,并指出该程序的功能;(2)请用另一种循环语句的形式把该程序写出来.[解析](1)本程序所用的循环语句是while语句,其功能是计算12+22+32+…+92的值.(2)用for循环语句改写程序如下:18.(本题满分12分)用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x +64,当x=2时的值.[解析]先将多项式f(x)进行改写:f(x)=x6-12x5+60x4-160x3+240x2-192x+64=((((x-12)x+60)x-160)x+240)x-192)x+64.然后由内向外计算得:v0=1,v1=1×2-12=-10,v2=-10×2+60=40,v3=40×2-160=-80,v4=-80×2+240=80,v5=80×2-192=-32,v6=-32×2+64=0.所以多项式f(x)当x=2时的值为f(2)=0.19.(本题满分12分)给出30个数:1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第2个数大2,第5个数比第3个数大3,以此类推,要计算这30个数的和,现已给出了该问题算法的程序框图(如图所示).(1)请在图中判断框内①处和执行框中的②处填上合适的语句,使之能完成该题算法的功能;(2)根据程序框图写出程序.[解析](1)①处填i≤30.②处填p=p+i.(2)程序如下:20.(本题满分12分)为了加强居民的节水意识,某市制定了以下生活用水收费标准:每户每月用水未超过7m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费,超过7m3的部分,每立方米收费1.5元,并加收0.4元的城市污水处理费.试设计一个算法来解决收费问题,并画出程序框图.[解析] 设某用户月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 y =⎩⎪⎨⎪⎧1.2x (0≤x ≤7)1.9x -4.9 (x >7). 算法步骤:S1 输入用户月用水量x ;S2 判断输入的x 是否超过7,若是,则计算y =1.2x ;若不是,则计算x =1.9x -4.9; S3 输出用户应交纳的水费y .程序框图如下:21.(本题满分12分)设计算法求11×2+13×4+15×6+…+199×100的值,要求画出程序框图,写出用基本语句编写的程序.[解析] 程序框图如下:程序:22.(本题满分14分)青年歌手电视大奖赛共有10名选手参加,并请了12位评委,在计算每位选手的平均分时,为了避免受个别评委所给极端分数的影响,必须去掉一个最高分和一个最低分后再求平均分.试设计一个算法解决该问题,写出相应的程序(假定分数采用10分制,即每位选手的分数最高分为10分,最低分为0分).[解析]相应程序如下:。
第一章综合素质检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下面对程序框图中的图形符号的说法错误的是()A.起、止框是任何流程不可少的,表明程序开始和结束B.输入、输出可用在算法中任何需要输入、输出的位置C.算法中间要处理数据或计算,可分别写在不同的注释框内D.当算法要求对两个不同的结果进行判断时,判断条件要写在判断框内[答案]C[解析]算法中间要处理数据或计算,可分别写在不同的处理框内.2.十进制数389化成四进制数的末位数是()A.1B.2C.3D.0[答案]A[解析]故389=12 011(4),故末位是1.3.下列程序的功能是()S=1i=3WHILE S<=10 000S=S*ii=i+2WENDPRINT iENDA.求1×2×3×4×…×10 000的值B.求2×4×6×8×…×10 000的值C.求3×5×7×9×…×10 000的值D.求满足1×3×5×…×n>10 000的最小正整数n[答案]D[解析]解法一:S是累乘变量,i是计数变量,每循环一次,S 乘以i一次且i增加2.当S>10 000时停止循环,输出的i值是使1×3×5×…×n>10 000成立的最小正整数n.解法二:最后输出的是计数变量i,而不是累乘变量S,由排除法可知,D正确.4.(2011~2012·广东广州模拟)用辗转相除法,计算56和264的最大公约数时,需要做的除法次数是()A.3 B.4C.6 D.7[答案]B[解析]由辗转相除法,264=56×4+40,56=40×1+16,40=16×2+8,16=8×2,即得最大公约数为8,做了4次除法,故选B.5.下面的程序运行后,输出的值是()i =0DOi =i +1LOOP UNTIL i *i >=2 000 i =i -1PRINT i ENDA .42B .43C .44D .45[答案] C[解析] 由题意知,此程序为循环语句,当i =44时,44×44=1 936;当i =45时,45×45=2 025>2 000,输出结果为i =45-1=44,故选C .6.下面的程序运行后的输出结果为( )A .17B .19C .21D .23[答案] C[解析] 第一次循环,i =3,S =9,i =2;第二次循环,i=4,S=11,i=3;第三次循环,i=5,S=13,i=4;第四次循环,i=6,S=15,i=5;第五次循环,i=7,S=17,i=6;第六次循环,i=8,S=19,i=7;第七次循环,i=9,S=21,i=8.此时i=8,不满足i<8,故退出循环结构,输出S=21,结束.7.用秦九韶算法求多项式f(x)=208+9x2+6x4+x6在x=-4时,v2的值为()A.-4 B.1C.17 D.22[答案] D[解析]v0=a6=1;v1=v0x+a5=x+0=-4;v2=v1x+a4=-4x+6=22.8.(2011~2012·辽宁抚顺模拟)下图给出的是计算1+2+4+…+219的值的一个程序框图,则其中判断框内应填入的是()A .i =19?B .i ≥20?C .i ≤19?D .i ≤20?[答案] B[解析] 计算S =1+2+4+…+219的值,所使用的循环结构是直到型循环结构,循环应在i ≥20时退出,并输出S .故填“i ≥20?”.9.(2011~2012·山东日照模拟)如下图,程序框图所进行的求和运算是( )A .1+12+13+…+110B .1+13+15+…+119C.12+14+16+…+120 D.12+122+123+…+1210 [答案] C[解析] 第一次循环后,S =0+12=12,i =2;第二次循环后,S =12+14,i =3;第三次循环后,S =12+14+16,i =4;……第十次循环后,S =12+14+16+…+120,i =11,i >10,退出循环并输出S .10.(2011~2012·浙江衢州模拟)下列程序框图运行后,输出的结果最小是( )A .2 012B .2 011C .64D .63[答案] D[解析] 由题图知,若使n (n +1)2>2 012,n 最小为63.11.(2011~2012·北京怀柔模拟)右图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2,x 2, x >2的值的程序框图,则在①、②和③处应分别填入的是( )A .y =-x ,y =0,y =x 2B .y =-x ,y =x 2,y =0C .y =0,y =x 2,y =-xD .y =0,y =-x ,y =x 2 [答案] B[解析] 当x >-1不成立时,y =-x ,故①处应填“y =-x ”;当x >-1成立时,若x >2,则y =x 2,即②处应填“y =x 2”,否则y =0,即③处应填“y =0”.故选B.12.(2011~2012·山东滨州模拟)对于任意函数f (x ),x ∈D ,可按下图所示构造一个数字发生器,其工作原理如下:①输入数据x0∈D,经过数字发生器,输出x1=f(x0);②若x1∉D,则数字发生器结束工作;若x1∈D,则将x1反馈回输入端,再输出x2=f(x1),并依此规律继续下去.现定义f(x)=2x+1,D=(0,1 000).若输入x0=0,当发生器结束工作时,输出数据的总个数为() A.8 B.9C.10 D.11[答案] C[解析]依题中规律,当输入x0=0时,可依次输出1,3,7,15,31,63,127,255,511,1 023,共10个数据,故选C.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.459与357的最大公约数是________.[答案]51[解析]459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数为51.14.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64当x=2时的值时,v4的值为________.[答案]80[解析]v0=1,v1=v0x+a5=1×2-12=-10,v2=v1x+a4=-10×2+60=40,v3=v2x+a3=40×2-160=-80,v4=v3x+a2=-80×2+240=80.15.(2012·江苏高考卷)下图是一个算法流程图,则输出的k的值是________.[答案] 5[解析]将k=1带入0=0不满足,将k=2带入-4<0不满足,将k=3带入-2<0不满足,将k=4带入0=0不满足,将k=5带入4>0满足,所以k=5.16.某城市缺水问题比较突出,为了制定水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x 1,…,x 4(单位:吨).根据如图所示的程序框图,若x 1,x 2,x 3,x 4分别为1,1.5,1.5,2,则输出的结果s 为________.[答案] 32[解析] i =1时,s 1=0+x 1=0+1=1,s =11·s 1=1;i =2时,s 1=1+x 2=1+1.5=52,s =12·s 1=54;i =3时,s 1=52x 3=52+32=4,s =13·s 1=43;i =4时,s 1=4+x 4=4+2=6,s =14·s 1=32.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知一个正三角形的周长为a ,求这个正三角形的面积,设计一个算法解决这个问题.[解析] 算法步骤如下:第一步,输入a 的值.第二步,计算l =a 3的值. 第三步,计算S =34l 2的值. 第四步,输出S 的值.18.(本小题满分12分)(1)用辗转相除法求567与405的最大公约数.(2)用更相减损术求2 004与4 509的最大公约数.[解析] (1)∵567=405×1+162,405=162×2+81,162=81×2.∴567与405的最大公约数为81.(2)∵4 509-2 004=2 505,2 505-2 004=501,2 004-501=1 503,1 503-501=1 002,1 002-501=501.∴2 004与4 509的最大公约数为501.19.(本小题满分12分)已知函数y =⎩⎪⎨⎪⎧ x 2-1,x <-1,|x |+1,-1≤x ≤1,3x +2,x >1,编写一个程序求函数值.[解析] 程序如下:20.(本小题满分12分)利用秦九韶算法判断方程x5+x3+x2-1=0在[0,2]上是否存在实根.[解析]利用秦九韶算法求出当x=0及x=2时,f(x)=x5+x3+x2-1的值,f(x)=x5+x3+x2-1可改写成如下形式:f(x)=((((x+0)x +1)x+1)x+0)x-1.当x=0时,v0=1,v1=0,v2=1,v3=1,v4=0,v5=-1,即f(0)=-1.当x=2时,v0=1,v1=2,v2=5,v3=11,v4=22,v5=43,即f(2)=43.由f(0)f(2)<0知f(x)在[0,2]上存在零点,即方程x5+x3+x2-1=0在[0,2]上存在实根.21.(本小题满分12分)如图,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P 运动的路程为x,△APB的面积为y,求y与x之间的函数关系式,并画出程序框图.[解析] 由题意可得y =⎩⎪⎨⎪⎧ 2x , 0≤x ≤4,8, 4<x ≤8,2(12-x ), 8<x ≤12.程序框图如图:22.(本小题满分12分)假定在银行中存款10 000元,按2.5%的年利率,一年后连本带息将变为10 250元,若将此款继续存入银行,试问多长时间就会连本带利翻一番?请用直到型和当型两种语句写出程序.[解析] 用“当型”循环用“直到型”循环。
本册综合素能检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.某学校高一年级有35个班,每个班有56名同学都是从1到56编的号码.为了交流学习经验,要求每班号码为14的同学留下进行交流,这里运用的是( )A .分层抽样B .抽签抽样C .随机抽样D .系统抽样[答案] D[解析] 由于分段间隔相等,是系统抽样.2.已知函数y =⎩⎪⎨⎪⎧lg x ,x>0,2x ,x ≤0,输入自变量x 的值,输出对应函数值的算法中所用到的基本逻辑结构是( )A .顺序结构B .顺序结构、条件结构C .条件结构D .顺序结构、条件结构、循环结构 [答案] B3.用秦九韶算法计算当x =0.4时,多项式f(x)=3x 6+4x 5+6x 3+7x 2+1的值时,需要做乘法运算的次数是( )A .6B .5C .4D .3 [答案] A4.下列说法正确的是( )A .一个人打靶,打了10发子弹,有7发子弹中靶,因此这个人中靶的概率为710B .一个同学做掷硬币试验,掷了6次,一定有3次“正面朝上”C .某地发行福利彩票,其回报率为47%,有个人花了100元钱买彩票,一定会有47元的回报D .大量试验后,可以用频率近似估计概率 [答案] D5.已知五个数据3,5,7,4,6,则该样本标准差为( ) A .1 B . 2 C . 3 D .2[答案] B[解析] ∵x =15×(3+5+7+4+6)=5,∴s =15×[(3-5)2+…+(6-5)2] =15×(4+0+4+1+1)= 2. 6.如图所示是一容量为100的样本的频率分布直方图,则由图形中的数据,样本落在[15,20]内的频数为( )A .20B .30C .40D .50[答案] B[解析] 样本落在[15,20]内的频率是1-5(0.04+0.1)=0.3,则样本落在[15,20]内的频数为0.3×100=30.7.某林场有树苗30 000棵,其中松树苗4 000棵,为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( )A .30B .25C .20D .15[答案] C[解析] 抽样比是15030 000=1200,则样本中松树苗的数量为1200×4000=20.8.(2011~2012·合肥第二次质检)扇形AOB 的半径为1,圆心角为90°.点C ,D ,E 将弧AB 等分成四份.连接OC ,OD ,OE ,从图中所有的扇形中随机取出一个,面积恰为π8的概率是( )A .310B .15C .25D .12[答案] A[命题立意] 本题考查扇形面积公式及古典概型概率求解,难度中等.[解题思路] 据题意若扇形面积为π8,据扇形面积公式π8=12×α×1⇒α=π4,即只需扇形中心角为π4即可,列举可得这种情况共有3种,而整个基本事件个数共有10种,故其概率为310.9.阅读下列程序: INPUT x IF x <0 THENA .0B .-1C .-2D .9[答案] B[解析] 输入x =-2,则x =-2<0成立,则y =2×(-2)+3=-1,则输出-1.10.(2011~2012·广东佛山高三教学质量检测(一))某程序框图如下图所示,该程序运行后输出的S 的值是( )A .-3B .-12C.13 D .2[答案] B[解析] 该程序框图的运行过程是: S =2,i =1,i =1≤2 010成立, S =1+21-2=-3; i =1+1=2,i =2≤2 010成立, S =1+(-3)1-(-3)=-12;i =2+1=3,i =3≤2010成立, S =1+(-12)1-(-12)=13i =3+1=4,i =4≤2 010成立; S =1+131-13=2;i =4+1=5, …….对于判断框内i 的值,n ∈N ,当i =4n +1时,S =2;当i =4n +2时,S =-3;当i =4n +3时,S =-12;当i =4n +4时,S =13.由于2011=4×502+3,则S =-12.该程序框图中含有当型循环结构,判断框内的条件不成立时循环终止,即i =2 011时开始不成立,输出S =-12. 11.如图是某年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个).去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别a 1,a 2,则一定有()A .a 1>a 2B .a 1<a 2C .a 1=a 2D .a 1,a 2的大小与m 的值有关[答案] B[解析] 去掉一个最高分和一个最低分后,甲选手得分是81,85,85,84,85,则平均数是a 1=15(81+85+85+84+85)=84;乙选后得分是84,84,86,84,87,则平均数是a 2=15(84+84+86+84+87)=85>84,所以a 1<a 2.12.某工厂对一批产品进行了抽样检测.下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A .90B .75C .60D .45[答案] A[解析] 设样本容量是n ,产品净重小于100克的概率为(0.050+0.100)×2=0.300,已知样本中产品净重小于100克的个数是36,则36n =0.300,所以n =120.净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75.所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2012·江苏高考卷)某学校高一、高二、高三年级的学生人数之比为3 3 4,现用分层抽样的方法从该校高中三个年极的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.[答案] 15[解析] 由已知,高二人数占总人数的310,所以抽取人数为310×50=15.14.102,238的最大公约数是________. [答案] 34[解析] 利用辗转相除法或更相减损术可得最大公约数是34. 15.假设学生在初中的英语成绩和高一英语成绩是线性相关的.现有10名学生的初中英语成绩(x )和高一英语成绩(y )如下:第4位)[答案] 1.218 2[解析] 求斜率即求回归方程中的b ^,按照公式进行即可,即需要依次计算出x=71,∑i =110x 2i =50 520,y =72.3,∑i =110x i y i =51 467,所以b ^=51 467-10×71×72.350 520-10×712≈1.218 2,所以斜率为1.218 2. 16.如图所示,在半径为1的半圆内,放置一个边长为12的正方形ABCD ,向半圆内任投一点,则该点落在正方形内的概率是________.[答案] 12π[解析] 由题设可知,该事件符合几何概型.正方形的面积为(122=14,半圆的面积为12×π=π2,故点落在正方形内的概率是14π2=12π. 三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)有一段长为11米的木棍,现要折成两段,每段不小于3米的概率有多大?[分析] 从第一个位置折断都是一个基本事件,基本事件有无限多个.但在每一处折断的可能性相等,故是几何概型.[解析] 记“折得两段都不小于3米”为事件A ,从木棍的两端各度量出3米,这样中间就有11-3-3=5(米),在间的5米长的木棍上任何一个位置折都能满足条件,所以P (A )=11-3-311=511.18.(本小题满分12分)某班50名同学参加数学测验,成绩的分组及各组的频数如下:[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100),8.(1)列出样本的频率分布表; (2)画出频率分布直方图. [解析] (1)频率分布表如下:(2)19.(本小题满分12分)对某400件元件进行寿命追求调查,情况分布如下:(1)(2)计算元件寿命在500 h~800 h以内的频率.[分析](1)频率×400=对应寿命组的频数;(2)转化为求互斥事件的频率.[解析](1)由于频率=频数样本容量,每组的频数=频率×400,计算得寿命与频数对应表:600~700 h以内”为事件B,“元件寿命在700~800 h以内”为事件C,“元件寿命在500~800 h以内”为事件D,则事件A,B,C两两互斥,且D=A+B+C,由题意,得P(A)=0.10,P(B)=0.15,P(C)=0.40,则P(D)=P(A)+P(B)+P(C)=0.10+0.15+0.40=0.65,即元件寿命在500~800 h 以内的频率为0.65.20.(2011~2012·北京西城二模)(本小题满分12分)由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问,对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:知从“支持”态度的人中抽取了45人,求n 的值;(2)在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有1人20岁以下的概率;(3)在接受调查的人中,有8人给这项活动打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8个人打出的分数看作一个总体,从中任取1个数,求该数与总体平均数之差的绝对值超过0.6的概率.[解析] (1)由题意得800+10045=800+450+200+100+150+300n,所以n =100.(2)设所选取的人中,有m 人20岁以下,则200200+300=m5,解得m =2.也就是20岁以下抽取了2人,另一部分抽取了3人,分别记作A 1,A 2;B 1,B 2,B 3,则从中任取2人的所有基本事件为(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 1,A 2),(B 1,B 2),(B 2,B 3),(B 1,B 3)共10个.其中至少有1人20岁以下的基本事件有7个:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 1,A 2),所以从中任意抽取2人,至少有1人20岁以下的概率为710.(3)总体的平均数为x =18(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9,那以与总体平均数之差的绝对值超过0.6的数只有8.2, 所以该数与总体平均数之差的绝对值超过0.6的概率为18.21.(2011~2012·沈阳质量监测一)(本小题满分12分)某校高三某班的一次测试成绩的茎叶图、频率分布直方图以及频率分布表中的部分数据如下,请据此解答如下问题:(1)(2)将频率分布表及频率分布直方图的空余位置补充完整; (3)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100)之间的概率.[解析] (1)由茎叶图知分数在[900,100)之间的频数为2.由频率分布直方图知分数在[900,100)之间的频率为0.008×10=0.08.所以,全班人数为20.08=25人.(2)直方图如下.频率分布表如下2个分数编号为5,6.则在[80,100)之间的试卷中任取两份的基本事件为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.其中,至少有一个在[90,100)之间的基本事件有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6),共9个,故至少有一个分数在[90,100)之间的概率是915=35.22.(2011~2012·湖南师大附中第七次月考)(本小题满分12分)2009年年底,某商业集团根据相关评分标准,对所属100家商业连锁店进行了年度考核评估,并依据考核评估得分(最低分60分,最高分100分)将这些连锁店分别评定为A ,B ,C ,D 四个类型,其考核评估标准如下表:布直方图如下:(1)估计该商业集团各连锁店评估得分的中位数;(2)假设该商业集团所有商业连锁店的评估得分互不相同,将所有A 类型连锁店按评估得分从高到低依次编号为A 1,A 2,A 3,…;所有D 类型连锁店按评估得分从高到低依次编号为D 1,D 2,D 3,…,现从A ,D 两类型连锁店中各随机抽取1家对各项评估指标进行比较分析,记被抽取的两家连锁店分别为A i ,D j ,求i +j ≥35的概率.[解析](1)因为0.015×10=0.15,0.04×10=0,4,在频率分布直方图中,中位数左边和右边的面积相等,所以中位数在区间[70,80)内.设中位数为70+x,则x10=0.5-0.150.4,解得x=8.75.估计该商业集团各连锁店评估得分的中位数是78.75分.(2)由直方图可知,A类型连锁店的频数是0.025×10×100=25,D类型连锁店的频数是0.015×10×100=15,所以该商业集团A类型连锁店共有25家,D类型连锁店共有15家.所以i∈{1,2,3,…,25},j∈{1,2,3,…,15}.若i+j≥35,则20≤i≤25,j≤15.当i=20时,j=15,有1种抽取方法;当i=21时,j=14,15,有2种抽取方法;当i=22时,j=13,14,15,有3种抽取方法;当i=23时,i=12,13,14,15,有4种抽取方法;当i=24时,j=11,12,13,14,15,有5种抽取方法;当i=25时,j=10,11,12,13,14,15,有6种抽取方法.记“i+j≥35”为事件A,则事件A包含的基本事件数为1+2+3+4+5+6=21.又从A,D两类型连锁店中各随机抽取1家的方法总数为25×15=375.所以P(A)=21375=7125,故i+j≥35的概率是7125.。
最新人教版高中数学必修三测试题及答案全套阶段质量检测(一)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列给出的赋值语句正确的有( ) ①2=A ; ②x +y =2; ③A -B =-2; ④A =A *AA .0个B .1个C .2个D .3个解析:选B 对于①,赋值语句中“=”左右不能互换,即不能给常量赋值,左边必须为变量,右边必须是表达式,若改写为A =2就正确了;②赋值语句不能给一个表达式赋值,所以②是错误的,同理③也是错误的,这四种说法中只有④是正确的.2.计算机执行下面的程序段后,输出的结果是( )a =1b =3a =a +b b =a -bPRINT a ,bA .1 3B .4 1C .0 0D .6 0解析:选B 输出a =1+3=4,b =4-3=1. 3.把二进制数10 110 011(2)化为十进制数为( ) A .182 B .181 C .180D .179解析:选D 10 110 011(2)=1×27+0×26+1×25+1×24+0×23+0×22+1×21+1×20=128+32+16+2+1=179.4.下图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2x 2, x >2的值的程序框图,则在①、②和③处应分别填入的是( )A.y=-x,y=0,y=x2B.y=-x,y=x2,y=0C.y=0,y=x2,y=-xD.y=0,y=-x,y=x2解析:选B当x>-1不成立时,y=-x,故①处应填“y=-x”;当x>-1成立时,若x>2,则y=x2,即②处应填“y=x2”,否则y=0,即③处应填“y=0”.5.下面的程序运行后的输出结果为()A.17 B.19C.21 D.23解析:选C第一次循环,i=3,S=9,i=2;第二次循环,i=4,S=11,i=3;第三次循环,i=5,S=13,i=4;第四次循环,i=6,S=15,i=5;第五次循环,i=7,S=17,i=6;第六次循环,i=8,S=19,i=7;第七次循环,i=9,S=21,i=8.此时i=8,不满足i<8,故退出循环,输出S=21,结束.6.下面的程序运行后,输出的值是( )i =0DOi =i +1LOOP UNTIL 2^i >2 000 i =i -1PRINT i ENDA .8B .9C .10D .11解析:选C 由题意知,此程序为循环语句,当i =10时,210=1 024;当i =11时,211=2 048>2 000,输出结果为i =11-1=10.7.下列程序框图运行后,输出的结果最小是( )A .2 015B .2 014C .64D .63解析:选D 由题图知,若使n (n +1)2>2 015,n 最小为63.8.(全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n =2,依次输入的a 为2,2,5,则输出的s =( )A .7B .12C.17 D.34解析:选C第一次运算:s=0×2+2=2,k=1;第二次运算:s=2×2+2=6,k=2;第三次运算:s=6×2+5=17,k=3>2,结束循环,s=17.9.执行如图所示的程序框图,输出的结果为()A.55 B.89C.144 D.233解析:选B初始值:x=1,y=1,第1次循环:z=2,x=1,y=2;第2次循环:z=3,x=2,y =3;第3次循环:z=5,x=3,y=5;第4次循环:z=8,x=5,y=8;第5次循环:z=13,x=8,y =13;第6次循环:z=21,x=13,y=21;第7次循环:z=34,x=21,y=34;第8次循环:z=55,x =34,y=55;第9次循环:z=89,x=55,y=89;第10次循环时z=144,循环结束,输出y,故输出的结果为89.10.(四川高考)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,2,则输出v的值为()A.9B.18C.20 D.35解析:选B由程序框图知,初始值:n=3,x=2,v=1,i=2,第一次循环:v=4,i=1;第二次循环:v=9,i=0;第三次循环:v=18,i=-1.结束循环,输出当前v的值18.故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.459与357的最大公约数是________.解析:459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数为51. 答案:5112.对任意非零实数a ,b ,若a ⊗b 的运算原理如图所示,则log 28⊗⎝⎛⎭⎫12-2=________.解析:log 28<⎝⎛⎭⎫12-2,由题图,知log 28⊗⎝⎛⎭⎫12-2=3⊗4=4-13=1.答案:113.(山东高考)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.解析:第1次循环:a =0+1=1,b =9-1=8,a <b ,此时i =2; 第2次循环:a =1+2=3,b =8-2=6,a <b ,此时i =3; 第3次循环:a =3+3=6,b =6-3=3,a >b ,输出i =3. 答案:314.(天津高考改编)阅读如图所示的程序框图,运行相应的程序,则输出S 的值为________.解析:S=4不满足S≥6,S=2S=2×4=8,n=1+1=2;n=2不满足n>3,S=8满足S≥6,则S=8-6=2,n=2+1=3;n=3不满足n>3,S=2不满足S≥6,则S=2S=2×2=4,n=3+1=4;n=4满足n>3,输出S=4.答案:4三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤.)15.(本小题满分12分)如图是求1+12+13+…+1100的算法的程序框图.(1)标号①②处应分别是什么?(2)根据框图用“当”型循环语句编写程序.解:(1)①k<101?(k<=100?)②S=S+1k. (2)程序如下:16.(本小题满分12分)以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.解:算法语句每一步骤对应于程序框图的步骤,其框图如下:17.(本小题满分12分)画出求12-22+32-42+…+992-1002的值的程序框图.解:程序框图如图所示:18.(本小题满分14分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n).(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4;(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 007;(3)程序框图的程序语句如下:(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.算法的每一步都应该是确定的,能有效执行的,并且得到确定的结果,这是指算法的( ) A .有穷性 B .确定性 C .普遍性 D .不唯一性 答案:B2.已知函数y =⎩⎨⎧x ,x ≥0,x +1,x <0,输入自变量x 的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是( )A .顺序结构B .条件结构C .顺序结构、条件结构D .顺序结构、循环结构 答案:C3.用“辗转相除法”求得360和504的最大公约数是( ) A .72 B .36 C .24D .2520解析:选A 504=360×1+144,360=72×5+0,故最大公约数是72. 4.若十进制数26等于k 进制数32,则k 等于( ) A .4 B .5 C .6D .8解析:选D 由题意知,26=3×k 1+2,解得k =8.5.阅读下图所示的程序框图,运行相应的程序,输出的结果是( )A .3B .11C .38D .123解析:选B 根据框图可知第一步的运算为:a =1<10,满足条件,可以得到a =12+2=3,又因为a=3<10,满足条件,所以有a=32+2=11,因为a=11>10,不满足条件,输出结果a=11.6.对于下列算法:如果在运行时,输入2,那么输出的结果是()A.2,5 B.2,4C.2,3 D.2,9解析:选A本题主要考查条件语句的应用.输入a的值2,首先判断是否大于5,显然2不大于5,然后判断2与3的大小,显然2小于3,所以结果是b=5,因此结果应当输出2,5.7.根据下面的算法,可知输出的结果S为()第一步,i=1;第二步,判断i<10是否成立,若成立,则i=i+2,S=2i+3,重复第二步,否则执行下一步;第三步,输出S.A.19 B.21C.25 D.27解析:选C该算法的运行过程是:i=1,i=1<10成立,i=1+2=3,S=2×3+3=9,i=3<10成立,i=3+2=5,S=2×5+3=13,i=5<10成立,i=5+2=7,S=2×7+3=17,i=7<10成立,i=7+2=9,S=2×9+3=21,i=9<10成立,i=9+2=11,S=2×11+3=25,i=11<10不成立,输出S=25.8.按下列程序运行的结果是()A.10.5 B.11.5C.16 D.25解析:选D A=4.5,第一个条件结构中的条件不满足,则B=6-3=3,B=3+2=5;而第二个条件结构中的条件满足,则B=5×5=25,所以运行结果为25.9.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S*(n+1)B.S=S*x n+1C.S=S*nD.S=S*x n解析:选D由题意知,由于求乘积,故空白框中应填入S=S*x n.10.(全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14解析:选B a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.将二进制数110 101(2)化成十进制数,结果为________,再转为七进制数,结果为________.解析:110 101=1×25+1×24+0×23+1×22+0×21+1=32+16+0+4+0+1=53.110 101(2)=104(7).答案:53104(7)12.如图所示,程序框图(算法流程图)的输出结果是________.解析:第一次进入循环体有T =0+0,第二次有T =0+1,第三次有T =0+1+2,……,第n 次有T =0+1+2+…+n -1(n =1,2,3,…),令T =n (n -1)2>105,解得n>15,故n =16,k =15.答案:1513.输入8,下列程序执行后输出的结果是________.解析:∵输入的数据为8,t ≤4不成立, ∴c =0.2+0.1(8-3)=0.7. 答案:0.714.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为________.解析:第1次循环:s =1+(1-1)=1,i =1+1=2;第2次循环:s =1+(2-1)=2,i =2+1=3;第3次循环:s =2+(3-1)=4,i =3+1=4;第4次循环:s =4+(4-1)=7,i =4+1=5.循环终止,输出s 的值为7.答案:7三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)阅读下列两个程序,回答问题. ①x =3 y =4 x =y PRINT x ,y END(1)上述两个程序的运行结果是:①________________;②_____________________________________________. (2)上述两个程序中的第三行有什么区别? 解:(1)两个程序的运行结果是①4 4;②3 3;(2)程序①中的x =y 是将y 的值4赋给x ,赋值后,x 的值变为4,程序②中的y =x 是将x 的值3赋给y ,赋值后y 的值变为3.16.(本小题满分12分)用秦九韶算法求多项式f (x )=7x 7+6x 6+5x 5+4x 4+3x 3+2x 2+x ,当x =3时的值.解:f (x )=((((((7x +6)x +5)x +4)x +3)x +2)x +1)x , v 0=7,v 1=7×3+6=27, v 2=27×3+5=86, v 3=86×3+4=262, v 4=262×3+3=789, v 5=789×3+2=2 369, v 6=2 369×3+1=7 108, v 7=7 108×3+0=21 324, ∴f (3)=21 324.17.(本小题满分12分)在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客购买唱片的数量a ,输出顾客要缴纳的金额C .并画出程序框图.②x =3 y =4 y =x PRINT x ,yEND解:由题意得C =⎩⎪⎨⎪⎧25a ,a <5,22.5a ,5≤a <10,21.25a ,a ≥10.程序框图,如图所示:程序如下:18.(本小题满分14分)设计一个算法,求f(x)=x 6+x 5+x 4+x 3+x 2+x +1,当x =2时的函数值,要求画出程序框图,并写出程序.解:则程序框图为:程序为:S =0i =0WHILE i ≤6S =S +2^i i =i +1WEND PRINT S END阶段质量检测(二)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样解析:选D 由抽样方法的概念知选D.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x +200,则下列结论正确的是( )A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r =-10C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量在100件左右解析:选D y 与x 具有负的线性相关关系,所以A 项错误;当销售价格为10元时,销售量在100件左右,因此C 错误,D 正确;B 项中-10是回归直线方程的斜率.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝ ⎛⎭⎪⎫1+1+…+1n =2x -3y +1.6.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.7.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得的他们某月交通违章次数的数据制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.8.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据:用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y =-0.7x +a ,则a 的值为( ) A .5.25 B .5 C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25. 9.在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B .84,1.6 C .85,1.6D .85,4解析:选C 去掉一个最高分93,去掉一个最低分79,平均数为15×(84+84+86+84+87)=85,方差为15[(85-84)2+(85-84)2+(85-86)2+(85-84)2+(85-87)2]=1.6.10.图甲是某县参加2017年高考学生的身高条形统计图,从左到右各条形表示的学生人数依次记为A 1,A 2,…,A 10{如A 2表示身高(单位:cm)在[150,155)内的学生人数},图乙是统计图甲中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )A .i <6?B .i <7?C .i <8?D .i <9?解析:选C 由图甲可知身高在160~180 cm 的学生都在A 4~A 7内,∴i <8. 二、填空题(本大题共4小题,每小题5分,共20分)11.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为____件.解析:设乙设备生产的产品总数为x 件, 则4 800-x 50=x80-50,解得x =1 800,故乙设备生产的产品总数为1 800件. 答案:1 80012.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4,则样本在[25,25.9)上的频率为________.解析:[25,25.9)包括[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;频数之和为20,频率为2040=12.答案:1213.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表法抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:____________________,_______,_______,_______,_______. (下面摘取了随机数表第7行至第9行) 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44714.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,则x100=0.030×10,解得x =30.同理,y =20,z =10.故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共4题,共50分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样法. (2)x 甲=17(102+101+99+98+103+98+99)=100, x乙=17(110+115+90+85+75+115+110)=100, s 2甲=17(4+1+1+4+9+4+1)≈3.43, s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定. 16.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数. 解:由分组[10,15)的频数是10,频率是0.25, 知10M =0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3.故p =3M =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.17.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2016年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升的.对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2,b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×2942+22+22+42=26040=6.5. a ^=y -b ^x =3.2.由上述计算结果知所求回归直线方程为 y ^-257=b ^(x -2 010)+a ^=6.5(x -2 010)+3.2. 即y ^=6.5(x -2 010)+260.2.①(2)利用直线方程①,可预测2016年的粮食需求量为 6.5×(2 016-2 010)+260.2 =6.5×6+260.2 =299.2(万吨).18.(本小题满分14分)(四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)内的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2a ×0.5, 解得a =0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000. (3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是() A.分层抽样B.抽签抽样C.随机抽样D.系统抽样答案:D2.下列各选项中的两个变量具有相关关系的是()A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积解析:选C A、B、D均为函数关系,C是相关关系.3.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是()A.总体B.个体C.样本D.样本容量答案:C4.已知总体容量为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号最方便的是()A.1,2,…,106 B.0,1,2,…,105C.00,01,…,105 D.000,001,…,105解析:选D由随机数抽取原则可知选D.5.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A .18B .36C .54D .72解析:选B 易得样本数据在区间[10,12)内的频率为0.18,则样本数据在区间[10,12)内的频数为36. 6.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是( )A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化解析:选B 设原来数据的平均数为x -,将它们改变为x i +c 后平均数为x ′,则x ′=x -+c ,而方差s ′2=1n[(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.7.某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x +y 的值为( )A .7B .8C .9D .10解析:选B 甲班学生成绩的众数为85,结合茎叶图可知x =5;又因为乙班学生成绩的中位数是83,所以y =3,即x +y =5+3=8.8.相关变量x ,y 的样本数据如下表:经回归分析可得y 与x 线性相关,并由最小二乘法求得回归直线方程为y ^=1.1x +a ,则a =( ) A .0.1 B .0.2 C .0.3D .0.4 解析:选C ∵回归直线经过样本点的中心(x ,y ),且由题意得(x ,y )=(3,3.6),∴3.6=1.1×3+a ,∴a =0.3.9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为( )①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1个B.2个C.3个D.4个解析:选D因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,①也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,①正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,①正确.10.已知数据:①18,32,-6,14,8,12;②21,4,7,14,-3,11;③5,4,6,5,7,3;④-1,3,1,0,0,-3.各组数据中平均数和中位数相等的是()A.①B.②C.③D.①②③④解析:选D运用计算公式x=1n(x1+x2+…+x n),可知四组数据的平均数分别为13,9,5,0.根据中位数的定义:把每组数据从小到大排列,取中间一位数(或两位的平均数)即为该组数据的中位数,可知四组数据的中位数分别为13,9,5,0.故每组数据的平均数和中位数均对应相等.二、填空题(本大题共4小题,每小题5分,共20分)11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解析:由分层抽样得,此样本中男生人数为560×280560+420=160.答案:16012.(山东高考)下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.解析:设样本容量为n,则n×(0.1+0.12)×1=11,所以n=50,故所求的城市数为50×0.18=9.答案:913.(江苏高考)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:解析:对于甲,平均成绩为x -=90,所以方差为s 2=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,对于乙,平均成绩为x -=90,方差为s 2=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.由于2<4,所以乙的平均成绩较为稳定.答案:214.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是________,父亲的平均年龄比母亲的平均年龄多________岁.解析:由41+432=42,得中位数是42.母亲平均年龄=42.5, 父亲平均年龄为45.5,因而父亲平均年龄比母亲平均年龄多3岁. 答案:42 3三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109)3株;[109,111)9株;[111,113)13株; [113,115)16株;[115,117)26株;[117,119)20株; [119,121)7株;[121,123)4株;[123,125]2株. (1)列出频率分布表; (2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几? 解:(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.16.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84 乙 92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?解:(1)作出茎叶图如下:(2)x 甲=18(78+79+81+82+84+88+93+95)=85,x 乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41, ∵x甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.17.(本小题满分12分)某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这些服装件数x 之间有如下一组数据:已知∑i =17x 2i =280,∑i =17x i y i =3 487, (1)求x ,y ;(2)求纯利y 与每天销售件数x 之间的回归直线方程; (3)每天多销售1件,纯利y 增加多少元? 解:(1)x =17(3+4+5+…+9)=6,y =17(66+69+…+91)≈79.86.(2)设回归直线方程为y ^=a ^+b ^x ,则b ^=∑i =17x i y i -7x - y-∑i =17x 2i -7x2=3 487-7×6×79.86280-7×62≈4.75. a ^=y -b x -≈79.86-4.75×6=51.36. ∴所求的回归直线方程为y ^=51.36+4.75x .(3)由回归直线方程知,每天多销售1件,纯利增加4.75元.18.(本小题满分14分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25, 0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).阶段质量检测(三)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( ) A .对立事件 B .互斥但不对立事件 C .不可能事件D .必然事件解析:选B 根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,故两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,故两者不是对立事件,所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.2.已知集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B .12C.13D .16解析:选C 从A ,B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中和为4的有(2,2),(3,1),共2种情况,所以所求概率P =26=13.3.在区间[-3,3]上任取一个实数,所得实数是不等式x 2+x -2≤0的解的概率为( ) A.16 B .13C.12D .23解析:选C 由x 2+x -2≤0,得-2≤x ≤1, 所求概率为1-(-2)3-(-3)=12.4.在正方体ABCD A 1B 1C 1D 1中随机取点,则点落在四棱锥O ABCD 内(O 为正方体的对角线的交点)的概率是( )A.13 B .16C.12D .14解析:选B 设正方体的体积为V ,则四棱锥O ABCD 的体积为V6,所求概率为V 6V =16.5.从{}a ,b ,c ,d ,e 的所有子集中任取一个,这个集合恰是集合{}a ,b ,c 子集的概率是( ) A.35 B .25C.14D .18解析:选C 符合要求的是∅,{}a ,{}b ,{}c ,{}a ,b ,{}a ,c ,{}b ,c ,{}a ,b ,c 共8个,而集合{}a ,b ,c ,d ,e 共有子集25=32个,∴P =14.6.(全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13B.12C.23D.56解析:选C 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C.7.连续掷两次骰子,以先后得到的点数m ,n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17内部的概率是( )A.19 B .29C.13D .49解析:选B 点P (m ,n )的坐标的所有可能为6×6=36种,而点P 在圆x 2+y 2=17内部只有⎩⎪⎨⎪⎧m =1n =1,⎩⎪⎨⎪⎧ m =1n =2,⎩⎪⎨⎪⎧ m =1n =3,⎩⎪⎨⎪⎧ m =2n =1,⎩⎪⎨⎪⎧ m =2n =2,⎩⎪⎨⎪⎧ m =2n =3,⎩⎪⎨⎪⎧ m =3n =1,⎩⎪⎨⎪⎧m =3n =2,共8种,故概率为29.8.甲、乙、丙三人在3天节假日中值班,每人值班1天,则甲排在乙的前面值班的概率是( ) A.16 B .14C.13 D .12解析:选C 甲、乙、丙三人在3天中值班的情况为甲,乙,丙;甲,丙,乙;丙,甲,乙;丙,乙,甲;乙,甲,丙;乙,丙,甲共6种,其中符合题意的有2种,故所求概率为13.9.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个卡片,从中无放回...地每次抽一张卡片,共抽2次,则取得两张卡片的编号和不小于...14的概率为( )A.128 B .156C.356D .114 解析:选D 从中无放回地取2次,所取号码共有56种,其中和不小于14的有4种,分别是(6,8),(8,6),(7,8),(8,7),故所求概率为456=114.10.小莉与小明一起用A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x ,小明掷的B 立方体朝上的数字为y 来确定点P (x ,y ),那么他们各。
泸溪一中高一数学必修3-4综合训练试题班级 姓名 得分一、选择题。
每小题5分,共40分。
每小题有且只有一个正确答案 1. 下列各角中与角3π终边相同的是 ( )A .-3π B.-300o C.23π D.240o2. sin390°=( ) A.21B.21-C 23.D 23.-3. 袋中装有6只白球,5只黄球,4只红球,从中任取一球,抽到不是白球的概率为( ) A 52. B 154.C 53. D.非以上答案4. 下列函数中,最小正周期为2π的是( ) A .ysinx= B .sin yxco sx= C 2tan.x y= D .4ycos x=5. ︒︒-︒︒144sin 66cos 36cos 24cos 的值为 ( )A . 0 B.12C.2D.12-6. 某程序框图如右图所示,若输出的57=S ,则判断框内为( ) A.?4>k B.?5>k C.?6>k D.?7>k7. 要得到函数2sin 2yx=的图像,只需将xx y 2cos 2sin 3-=的图像 ( ) A. 向右平移6π个单位 B. 向右平移12π个单位 C. 向左平移6π个单位 D. 向左平移12π个单位8. 函数,[0,]y sinx cosx x π=+∈的值域是 ( ) A ]2,2.[- B ]2,2.[-C]2,1.[- D ]2,1.[二、填空题。
每小题5分,共35分。
将正确答案填在横线上。
9. 已知锐角αβ、满足sin 5α=,sin ()10αβ-=-β=10. 若()2sin (01)f x x ωω=<<在区间⎥⎦⎤⎢⎣⎡3,0π上的最大值是2,则ω=11. 设214sin =⎪⎭⎫⎝⎛+θπ, 则θ2sin 的值为 .12. 已知tan2x =,则3sin 22co s 2co s 23sin 2x x x x+-的值为13. 某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。
最新北师大版高中数学必修三测试题全套及答案章末综合测评(一)统计(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民,这个问题中“2 500名城镇居民的寿命的全体”是()A.总体B.个体C.样本D.样本容量【解析】每个人的寿命是个体,抽出的2 500名城镇居民的寿命的全体是从总体中抽取的一个样本.【答案】 C2.为了了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为()A.40B.30C.20D.12【解析】系统抽样也叫间隔抽样,抽多少就分成多少组,总数除以组数=间隔数,即k=1 20040=30.【答案】 B3.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为()A.10组B.9组C.8组D.7组【解析】根据频率分布表的步骤,极差组距=140-5110=8.9,所以分成9组.【答案】 B4.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11 B.12C.13 D.14【解析】依据系统抽样的特点分42组,每组20人,区间[481,720]包含25组到36组,每组抽一个,则抽到的人数为12.【答案】 B5.甲、乙两名篮球运动员在某几场比赛中得分的茎叶图如图1所示,则甲、乙两人在这几场比赛中得分的中位数之和是()图1A.63 B.64C.65 D.66【解析】由茎叶图知甲比赛得分的中位数为36,乙比赛得分的中位数为27,故甲、乙两人得分的中位数之和为27+36=63.【答案】 A6.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球数的标准差为0.3.下列说法中,正确的个数为()①甲队的进球技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1 B.2C.3 D.4【解析】因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,②也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,③正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,④正确,故选D.【答案】 D7.某学校为调查学生的学习情况,对学生的课堂笔记进行了抽样调查,已知某班级一共有56名学生,根据学号(001~056),用系统抽样的方法抽取一个容量为4的样本,已知007号、021号、049号在样本中,那么样本中还有一个学生的学号为()A.014 B.028C.035 D.042【解析】由系统抽样的原理知,抽样的间隔为564=14,故第一组的学号为001~014,所以007为第一组内抽取的学号,所以第二组抽取的学号为021;第三组抽取的学号为035;第四组抽取的学号为049.故选C.【答案】 C8.从800件产品中抽取60件进行质检,利用随机数表法抽取样本时,先将800件产品按001,002,…,800进行编号.如果从随机数表第8行第8列的数8开始往右读数(随机数表第7行至第9行的数如下),则抽取的第4件产品的编号是()844217533157245506887704744767217633502583921206766301637859169556671998105071751286735807443952387933211234297864560782524207443815510013429966027954A.169 B.556C.671 D.105【解析】找到第8行第8列的数8,并开始向右读,每次读取三位,凡不在001~800中的数跳过去不读,前面已经读过的也跳过去不读,从而最先抽取的4件产品的编号依次是169,556,671,105.故抽取的第4件产品的编号是105.【答案】 D9.对具有线性相关关系的变量x,Y有一组观测数据(x i,y i)(i=1,2,…,8),其回归直线方程是:y=16x+a,且x1+x2+x3+…+x8=3,y1+y2+y3+…+y8=6,则a=()A.116 B.18C.14D.1116【解析】 因为x 1+x 2+x 3+…+x 8=3,y 1+y 2+y 3+…+y 8=6, 所以x =38,y =34,所以样本中心点的坐标为⎝ ⎛⎭⎪⎫38,34,代入回归直线方程得34=16×38+a ,所以a =1116. 【答案】 D10.(2015·安徽高考)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A .8B .15C .16D .32【解析】 已知样本数据x 1,x 2,…,x 10的标准差为s =8,则s 2=64,数据2x 1-1,2x 2-1,…,2x 10-1的方差为22s 2=22×64,所以其标准差为22×64=2×8=16,故选C.【答案】 C11.(2015·福建高考)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元【解析】 由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4,∴当x =15时,y ^=0.76×15+0.4=11.8(万元). 【答案】 B12.(2016·日照高一检测)样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ).若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =ax +(1-a )y ,其中0<a <12,则n ,m 的大小关系为( )A .n <mB .n >mC .n =mD .不能确定【解析】 由题意知,样本(x 1,…,x n ,y 1,…,y m )的平均数为z =nx +my m +n=nn +m x +m n +m y ,且z =ax +(1-a )y ,所以a =n n +m ,1-a =m n +m .又因为0<a <12,所以0<n n +m<12,解得n <m . 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.(2015·江苏高考)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为______. 【解析】 x -=4+6+5+8+7+66=6.【答案】 614.甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm 2):【解析】 由题意,需比较s 2甲与s 2乙的大小.由于x 甲=x 乙=10,s 2甲=0.02,s 2乙=0.244,则s 2甲<s 2乙,因此甲产量比较稳定. 【答案】 甲15.(2015·湖北高考)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图2所示.(1)直方图中的a=________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.图2【解析】(1)由0.1×1.5+0.1×2.5+0.1a+0.1×2.0+0.1×0.8+0.1×0.2=1,解得a=3.(2)区间[0.3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.【答案】(1)3(2)6 00016.(2016·潍坊高一检测)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17].将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,图3是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为________.图3【解析】因为第一组与第二组共有20人,并且根据图像知第一组与第二组的频率之比=12.又因为第一组与第三组的频率之比是是0.24∶0.16=3∶2,所以第一组的人数为20×350.24∶0.36=2∶3,所以第三组有12÷23=18人.因为第三组中没有疗效的人数为6,所以第三组中有疗效的人数是18-6=12.【答案】 12三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)某校高中三年级有503名学生,为了了解他们的身体状况,准备按1∶10的比例抽取一个样本,试用系统抽样方法进行抽取,并写出抽样过程.【解】 (1)用简单随机抽样法从503名学生中剔除3名学生. (2)采用随机的方式将500名学生编号为1,2,3,…,500. (3)确定分段间隔,样本容量为500×110=50, 分段间隔k =50050=10,即将500名学生分成50部分,其中每一部分包括10名学生,即把1,2,3,…,500均分成50段.(4)在第一段用简单随机抽样法确定起始的个体编号l ,例如,l =8.(5)按照事先确定的规则抽取样本:从8号起,每隔10个抽取1个号码,这样得到一个容量为50的样本:8,18,28,38,…,488,498.编号为8,18,28,…,488,498的学生便作为抽取的一个样本参与试验.18.(本小题满分12分)两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲:1,0,2,0,2,3,0,4,1,2; 乙:1,3,2,1,0,2,1,1,0,1.(1)哪台机床次品数的平均数较小? (2)哪台机床的生产状况比较稳定? 【解】 (1)x甲=(1+0+2+0+2+3+0+4+1+2)×110=1.5,x乙=(1+3+2+1+0+2+1+1+0+1)×110=1.2.∵x甲>x乙,∴乙车床次品数的平均数较小.(2)s2甲=110[(1-1.5)2+(0-1.5)2+(2-1.5)2+(0-1.5)2+(2-1.5)2+(3-1.5)2+(0-1.5)2+(4-1.5)2+(1-1.5)2+(2-1.5)2]=1.65,同理s2乙=0.76,∵s2甲>s2乙,∴乙车床的生产状况比较稳定.19.(本小题满分12分)为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将取得数据整理后,画出频率分布直方图(如图4).已知图中从左到右前三个小组频率分别为0.1,0.3,0.4,第一小组的频数为5.图4(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.【解】(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2.(2)设参加这次测试的学生有x人,则0.1x=5,∴x=50.即参加这次测试的学生有50人.(3)达标率为0.3+0.4+0.2=0.9,∴估计该年级学生跳绳测试的达标率为90%.20.(本小题满分12分)为了了解中学生的身体发育情况,对某一中学同年龄的50名男生的身高进行了测量,结果如下:[157,161)3人;[161,165)4人;[165,169)12人;[169,173)13人;[173,177)12人;[177,181]6人.(1)列出频率分布表;(2)画出频率分布直方图;(3)估计总体在[165,177)间的比例.【解】(1)列出频率分布表:分组频数频率频率组距[157,161)30.060.015[161,165)40.080.02[165,169)120.240.06[169,173)130.260.065[173,177)120.240.06[177,181]60.120.03合计50 1.00(2)画出频率分布直方图如图:(3)因0.24+0.26+0.24=0.74,所以估计总体在[165,177)间的比例为74%.21.(本小题满分12分)(2014·全国卷Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:甲部门乙部门3 5 9440 4 4 89 75 1 2 2 4 5 6 6 7 7 7 8 99 7 6 6 5 3 3 2 1 1 060 1 1 2 3 4 6 8 89 8 8 7 7 7 6 6 5 5 5 5 5 4 4 4 3 3 3 2 1 0 070 0 1 1 3 4 4 96 6 5 5 2 0 0 8 1 2 3 3 4 56 3 2 2 2 090 1 1 4 5 6100 0 0(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.【解】(1)由所给茎叶图知,将50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本的中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.22.(本小题满分12分)(2015·广东高考)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图6.图6(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【解】(1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1得x=0.007 5,∴直方图中x的值为0.007 5.(2)月平均用电量的众数是220+2402=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,则(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,解得a=224,即中位数为224.(3)月平均用电量在[220,240)的用户有0.012 5×20×100=25(户),同理可求月平均用电量为[240,260),[260,280),[280,300]的用户分别有15户、10户、5户,故抽取比例为1125+15+10+5=1 5,∴从月平均用电量在[220,240)的用户中应抽取25×15=5(户).章末综合测评(二)算法初步一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的叙述中,不是解决问题的算法的是()A.从北京到海南岛旅游,先坐火车,再坐飞机抵达B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100C.方程x2-4=0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15【解析】算法是解决某类问题的一系列步骤或程序,C只是描述了事实,没有解决问题的步骤.【答案】 C2.用二分法求方程x2-10=0的近似根的算法中要用哪种算法结构()A.顺序结构B.选择结构C.循环结构D.以上都用【解析】由求方程x2-10=0的近似根的算法设计知以上三种结构都用到.【答案】 D3.下列程序中的For语句终止循环时,S等于()S=0For M=1To10S=S+MNext输出S.A.1B.5C.10D.55【解析】S=0+1+2+3+…+10=55.【答案】 D4.下列给出的赋值语句中正确的是()A.0=M B.x=-xC.B=A=-3 D.x+y=0【解析】赋值语句不能计算,不能出现两个或两个以上的“=”且变量在“=”左边.【答案】 B5.当A=1时,下列程序输入A;A=A*2A=A*3A=A*4A=A*5输出A.输出的结果A是()A.5 B.6C.15 D.120【解析】运行A=A*2得A=1×2=2.运行A=A*3得A=2×3=6.运行A=A*4得A=6×4=24.运行A=A*5得A=24×5=120.即A=120.故选D.【答案】 D6.(2014·福建高考)阅读如图1所示的程序框图,运行相应的程序,输出的n的值为()图1A.1 B.2C.3 D.4【解析】当n=1时,21>12成立,执行循环,n=2;当n=2时,22>22不成立,结束循环,输出n=2,故选B.【答案】 B7.(2016·菏泽高一检测)执行如图2所示的算法框图,输出的S值为()图2A.2 B.4C.8 D.16【解析】运行如下:①k=0,S=1;②S=1×20=1,k=1;③S=1×21=2,k=2;④S =2×22=8,k =3.此时输出S .【答案】 C8.(2015·福建高考)阅读如图3所示的程序框图,运行相应的程序,若输入x 的值为1,则输出y 的值为( )图3A .2B .7C .8D .128【解析】 由程序框图知,y =⎩⎪⎨⎪⎧2x ,x ≥2,9-x ,x <2.∵输入x 的值为1,比2小,∴执行的程序要实现的功能为9-1=8,故输出y 的值为8. 【答案】 C9.(2016·北京高考)执行如图4所示的程序框图,若输入的a 值为1,则输出的k 值为( )图4A .1B .2C .3D .4【解析】 开始a =1,b =1,k =0;第一次循环a=-1,k=1;2第二次循环a=-2,k=2;第三次循环a=1,条件判断为“是”,跳出循环,此时k=2.【答案】 B10.阅读如图5所示的算法框图,若输出s的值为-7,则判断框内可填写()图5A.i≥3 B.i≥4C.i≥5 D.i≥6【解析】此算法框图运行如下:①i=1,s=2;②s=1,i=3;③s=-2,i=5;④s =-7,i=7此时应结束循环.所以i=5时不满足循环条件,i=7时满足循环条件.【答案】 D11.当a=16时,下面的算法输出的结果是()If a<10 Theny=2*aElsey=a *aEnd If输出y.A.9B.32 C .10D .256【解析】 该程序是求分段函数y =⎩⎪⎨⎪⎧2a (a <10),a 2(a ≥10)的函数值,所以当a =16时y =162=256.【答案】 D12.阅读如图6所示的程序框图,运行相应的程序,若输入m 的值为2,则输出的结果i =( )图6A .2B .3C .4D .5【解析】 m =2,A =1,B =1,i =0. 第一次:i =0+1=1,A =1×2=2, B =1×1=1,A >B ;第二次:i =1+1=2,A =2×2=4, B =1×2=2,A >B ;第三次:i =2+1=3,A =4×2=8, B =2×3=6,A >B ;第四次:i =3+1=4,A =8×2=16, B =6×4=24,A <B . 终止循环,输出i =4.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.如图7是求12+22+32+…+1002的值的算法框图,则正整数n=________.图7【解析】由题意知s=12+22+32+…+1002,先计算s=s+i2,i再加1,故n=100.【答案】10014.下面的程序运行后输出的结果是________.x=1i=1Dox=x+1i=i+1Loop While i<=5输出x.【解析】每循环一次时,x与i均增加1直到i>5时为止,所以输出的结果为6.【答案】 615.如图8给出一个程序框图,其作用是输入x的值,输出相应的y的值,若要使输入的x的值与输出的y的值相等,则这样的x的值的集合为________.图8【解析】这个程序框图对应的函数为y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5.当x ≤2时,由x 2=x ,得x =0或1; 当2<x ≤5时,由2x -3=x ,得x =3;当x >5时,由1x =x ,得x =±1(舍),故x =0或1或3.【答案】 {0,1,3} 16.已知程序:【解析】 由程序知,当x >0时, 3x2+3=6.解得x =2; 当x <0时,-3x 2+5=6,解得x =-23, 显然x =0不成立. 【答案】 2或-23三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤) 17.(本小题满分10分)下面给出了一个问题的算法: 1.输入x .2.若x ≥4,则y =2x -1;否则,y =x 2-2x +3.3.输出y .问题:(1)这个算法解决的问题是什么? (2)当输入的x 值为多少时,输出的y 值最小?【解】 (1)这个算法解决的问题是求分段函数y =⎩⎪⎨⎪⎧2x -1,x ≥4,x 2-2x +3,x <4的函数值.(2)当x ≥4时,y =2x -1≥7;当x <4时,y =x 2-2x +3=(x -1)2+2≥2,所以y min =2,此时x =1.即当输入的x 值为1时,输出的y 值最小.18.(本小题满分12分)将某科成绩分为3个等级:85分~100分为“A”;60分~84分为“B”;60分以下为“C”.试用条件语句表示某个成绩等级的程序(分数为整数).【解】 程序:19.(本小题满分12分)已知函数y =⎩⎪⎨⎪⎧2x +1,x <0,1,x =0,x 2+1,x >0.画出算法框图并编写算法语句,输入自变量x 的值,输出相应的函数值. 【解】 算法框图如图所示:算法语句如下:输入x;If x<0 Theny=2*x+1ElseIf x=0 Theny=1Elsey=x2+1End IfEnd If输出y.20.(本小题满分12分)给出30个数:1,2,4,7,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已给出了解决该问题的算法框图(如图9所示),图9(1)请在图中处理框内①处和判断框中的②处填上合适的语句,使之能完成该题算法功能;(2)根据算法框图写出算法.【解】 (1)因为是求30个数的和.故循环体应执行30次,其中i 是计数变量,因此判断框内的条件就是限制计数变量i 的,故应为i >30.算法中的变量p 实质是表示参与求和的各个数,由于它也是变化的,且满足第i 个数比其前一个数大i -1,第i +1个数比其前一个数大i ,故应有p =p +i .故①处应填p =p +i ;②处应填i >30.(2)根据框图.写出算法如下: i =1 p =1 S =0 Do S =S +p p =p +i i =i +1Loop While i <=30 输出S .21.(本小题满分12分)如图10所示,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B (起点)向点A (终点)运动.设点P 运动的路程为x ,△APB 的面积为y ,求y 与x 之间的函数关系式.并写出算法,画出算法框图,写出程序.图10【解】 函数关系如下 y =⎩⎪⎨⎪⎧2x (0≤x ≤4),8(4<x ≤8),2(12-x )(8<x ≤12).算法如下: 1.输入x .2.如果0≤x ≤4,则使y =2x ;否则执行3. 3.如果4<x ≤8,则使y =8;否则执行4.4.如果8<x≤12,则使y=2(12-x);否则结束.5.输出y.算法框图如图所示:算法语句:输入x;If x>=0And x<=4Theny=2*xElseIf x<=8Theny=8ElseIf x<=12Theny=2*(12-x)End IfEnd IfEnd If输出y.22.(本小题满分12分)设计一个算法,求满足1×2+2×3+…+n×(n+1)<1 000的最大整数n,画出框图,并用循环语句描述.【解】算法框图如下所示:用语句描述为:n=0S=0Don=n+1S=S+n*(n+1)Loop While S<1 000输出n-1.章末综合测评(三)概率(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件:①如果a,b是实数,那么b+a=a+b;②某地1月1日刮西北风;③当x是实数时,x2≥0;④一个电影院某天的上座率超过50%,其中是随机事件的有() A.1个B.2个C.3个D.4个【解析】由题意可知①③是必然事件,②④是随机事件.【答案】 B2.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n 个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mn D.2mn【解析】分别确定n个数对(x1,y1),(x2,y2),…,(x n,y n)和m 个两数的平方和小于1的数对所在的平面区域,再用随机模拟的方法和几何概型求出圆周率π的近似值.因为x1,x2,…,x n,y1,y2,…,y n都在区间[0,1]内随机抽取,所以构成的n个数对(x1,y1),(x2,y2),…,(x n,y n)都在正方形OABC内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC内的数对有m个.用随机模拟的方法可得S扇形S正方形=mn,即π4=mn,所以π=4mn.【答案】 C3.从含有3个元素的集合中任取一个子集,所取的子集是含有两个元素的集合的概率是()A.310 B.112C.4564 D.38【解析】所有子集共8个,其中含有2个元素的为{a,b},{a,c},{b,c},所以概率为38.【答案】 D4.(2016·山东青岛一模)如图1所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角θ=π6.现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是()图1A.2-32B.2+32 C.1+32D.1-32【解析】 易知小正方形的边长为3-1,故小正方形的面积为S 1=(3-1)2=4-23,大正方形的面积为S =2×2=4,故飞镖落在小正方形内的概率P =S 1S =4-234=2-32.【答案】 A5.4张卡片上分别写有数字1,2,3,4.从这4张卡片中随机抽取2张,则抽取的2张卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34【解析】 基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6个,其中两数字之和为奇数的有(1,2),(2,3),(1,4),(3,4),所以概率为23.【答案】 C6.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积不小于S3的概率是( ) A.23 B.13 C.34D.14【解析】 如图,设点M 为AB 的三等分点,要使△PBC 的面积不小于S3,则点P 只能在AM 上选取,由几何概型的概率公式得所求概率|AM ||AB |=23|AB ||AB |=23.【答案】 A7.(2016·东北八校二模)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A.19 B.29 C.718D.49【解析】 任意找两人玩这个游戏,共有6×6=36种猜数字结果,其中满足|a -b |≤1的有如下情形:①a =1,b =1,2;②a =2,b =1,2,3;③a =3,b =2,3,4;④a =4,b =3,4,5;⑤a =5,b =4,5,6;⑥a =6,b =5,6,总共16种,故他们“心有灵犀”的概率为P =1636=49.【答案】 D8.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4 C.π8D .1-π8【解析】 长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2,取到的点到O 的距离大于1的概率为2-π22=1-π4.【答案】 B9.设a 是甲抛掷一枚骰子得到的点数,则方程x 2+ax +2=0有两个不相等的实数根的概率为( )A.23B.13C.12D.512【解析】 若方程有实根,则a 2-8>0.a 的所有取值情况共6种,满足a 2-8>0的有4种情况,故P =46=23.【答案】 A10.(2016·石家庄高一检测)有分别写着数字1到120的120张卡片,从中取出1张,这张卡片上的数字是2的倍数或是3的倍数的概率是( )A.12B.34C.47D.23【解析】 是2的倍数的数有60个,是3的倍数的数有40个,是6的倍数的数有20个,∴P =60+40-20120=23.【答案】 D11.(2015·湖北高考)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( )A .p 1<p 2<12 B .p 2<12<p 1 C.12<p 2<p 1D .p 1<12<p 2【解析】 如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12”对应的图形为阴影△ODE ,其面积为12×12×12=18,故p 1=18<12,事件“xy ≤12”对应的图形为斜线表示部分,其面积显然大于12,故p 2>12,则p 1<12<p 2,故选D.【答案】 D12.如图2所示,在矩形ABCD 中,AB =5,AD =7.现在向该矩形内随机投一点P ,则∠APB >90°的概率为( )图2A.536B.556πC.18πD.18【解析】 由于是向该矩形内随机投一点P ,点P 落在矩形内的机会是均等的,故可以认为矩形ABCD 为区域Ω.要使得∠APB >90°,需满足点P 落在以线段AB 为直径的半圆内,以线段AB 为直径的半圆可看作区域A .记“点P 落在以线段AB 为直径的半圆内”为事件A ,于是求∠APB >90°的概率转化为求以线段AB 为直径的半圆的面积与矩形ABCD 的面积的比,依题意,得μA =12π×⎝ ⎛⎭⎪⎫522=25π8,矩形ABCD 的面积μΩ=35,故所求的概率为P (A )=25π835=5π56.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.某产品分一、二、三级,其中一、二级是正品,若生产中出现正品的概率是0.98,二级品的概率是0.21,则出现一级品与三级品的概率分别是________,________.【解析】 由题意知出现一级品的概率是0.98-0.21=0.77,又由对立事件的概率公式可得出现三级品的概率是1-0.98=0.02.【答案】 0.77 0.0214.如图3的矩形,长为5 m ,宽为2 m ,在矩形内随机地撒300粒黄豆,数得落在阴影部分的黄豆数为138粒,则我们可以估计出阴影部分的面积为________m 2.图3【解析】 由题意得138300=S 阴5×2,S 阴=235.【答案】 23515.在箱子中装有十张卡片,分别写有1到10的十个整数;从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的读数y ,则x +y 是10的倍数的概率为________.【解析】 先后两次取卡片,形成的有序数对有(1,1),(1,2),(1,3),…,(1,10),…,(10,10),共计100个.因为x +y 是10的倍数,这些数对应该是(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(10,10)共10个,故x +y 是10的倍数的概率为P =10100=110.【答案】 11016.(2015·重庆高考)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.【解析】 ∵方程x 2+2px +3p -2=0有两个负根, ∴⎩⎪⎨⎪⎧Δ=4p 2-4(3p -2)≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝ ⎛⎭⎪⎫1-23+(5-2)5-0=23.【答案】23三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料,若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和B 两种饮料没有鉴别能力.(1)求此人被评为优秀的概率; (2)求此人被评为良好及以上的概率.【解】 将5杯饮料编号为1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5种饮料中选出3杯的所有可能情况为(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共有10种,令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件,则(1)P (D )=110.(2)P (E )=35,P (F )=P (D )+P (E )=710.18.(本小题满分12分)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x ,第二次出现的点数为y .(1)求事件“x +y ≤3”的概率; (2)求事件“|x -y |=2”的概率.【解】 设(x ,y )表示一个基本事件,则掷两次骰子包括(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,5),(6,6),共36个基本事件.(1)用A 表示事件“x +y ≤3”,则A 的结果有(1,1),(1,2),(2,1),共3个基本事件. ∴P (A )=336=112.即事件“x +y ≤3”的概率为112. (2)用B 表示事件“|x -y |=2”,则B 的结果有(1,3),(2,4),(3,5),(4,6),(6,4),(5,3),(4,2),(3,1)共8个基本事件. ∴P (B )=836=29.即事件“|x -y |=2”的概率为29.19.(本小题满分12分)在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相邻整数的概率;(2)求取出的两个球上标号之和与标号之积都不小于5的概率.【解】 设从甲、乙两个盒子中各取出1个球,编号分别为x ,y ,用(x ,y )表示抽取的结果,结果有以下25种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5).(1)取出的两个球上标号为相邻整数的结果有以下8种:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),故所求概率为P =825,即取出的两个球上标号为相邻整数的概率为825.(2)标号之和与标号之积都不小于5的结果有以下17种:(1,5),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),故所求概率为P =1725,故取出的两个球上标号之和与标号之积都不小于5的概率是1725.20. (本小题满分12分)把一颗骰子抛掷两次,第一次出现的点数记为a ,第二次出现的点数记为b .试就方程组⎩⎨⎧ ax +by =3,x +2y =2解答下列各题: (1)求方程组只有一组解的概率;(2)求方程组只有正数解(x 与y 都为正)的概率.【解】 (1)当且仅当a b ≠12时,方程组只有一组解;a b =12的情况有三种:⎩⎪⎨⎪⎧ a =1,b =2或⎩⎪⎨⎪⎧ a =2,b =4或⎩⎪⎨⎪⎧a =3,b =6.而抛掷两次的所有情况有6×6=36(种),所以方程组只有一组解的概率为P =1-336=1112.(2)因为方程组只有正数解,所以两直线的交点一定在第一象限,解方程组得 ⎩⎪⎨⎪⎧ x =6-2b 2a -b ,y =2a -32a -b .当⎩⎪⎨⎪⎧ 2a -b >0,6-2b >0,2a -3>0,或⎩⎪⎨⎪⎧ 2a -b <0,6-2b <0,2a -3<0,且a >0,b >0,。
第三章综合素质检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列现象是随机事件的是( )A .方程x -1=2x 有实数根B .若x ∈(-1,1),则x >2C .x ∈R ,x 2+3>1D .从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到1号签[答案] D2.12件同类产品中,有10件是正品,2件是次品,从中任意抽出3件,与“1件次品2件正品”互斥而不对立的事件是( )A .3件正品B .至少有一件正品C .至少有一件次品D .3件正品或2件次品1件正品[答案] A3.下列说法正确的是( )A .由生物学知道生男生女的概率均约为12,一对夫妇生两个孩子,则一定为一男一女B .一次摸奖活动中,中奖概率为15,则摸5张票,一定有一张中奖C .10张票中有1张奖票,10人去摸,谁先摸则谁摸到的可能性大D .10张票中有1张有奖,10人去摸,无论谁先摸,摸到有奖票的概率都是110[答案] D4.下列叙述随机事件的频率与概率的关系中,说法正确的是( )A .频率就是概率B .频率是客观存在的,与试验次数无关C .随着试验次数的增多,频率越来越接近概率D .概率是随机的,在试验前不能确定[答案] C[解析] 频率不是概率,所以A 项不正确;频率不是客观存在的,具有随机性,所以B 项不正确;概率是客现存在的.不受试验的限制,不是随机的,在试验前已经确定,随着试验次数的增多,频率越来越接近概率,所以D 项不正确,C 项正确.5.下列命题不正确的是( )A .根据古典概型概率计算公式P (A )=n A nA 发生的概率的精确值B .根据几何概型概率计算公式P (A )=μA μΩ求出的值是事件A 发生的概率的精确值C .根据古典概型试验,用计算机或计算器产生随机整数统计试验次数N 和事件A 发生的次数N 1,得到的值N 1N是P (A )的近似值 D .根据几何概型试验,用计算机或计算器产生均匀随机数统计试验次数N 和事件A 发生次数N 1,得到的值N 1N是P (A )的精确值 [答案] D[解析] 很明显A ,B 项是正确的;随机模拟中得到的值是概率的近似值,则C 项正确,D 项不正确.6.口袋中装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是( )A .0.42B .0.28C .0.3D .0.7[答案] C[解析] 摸出黑球的概率P =1-0.42-0.28=0.3.7.某人向一个半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各点是随机的,则此人射击中靶点与靶心的距离小于2的概率为( )A.113B.19C.14D.12[答案] B[解析] 此人射击击中靶点与靶心的距离小于2的概率为π×22π×62=19. 8.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是( ) A .都不是一等品B .恰有一件一等品C .至少有一件一等品D .至多有一件一等品[答案] D[解析]从5件产品中任取2件,共有10种结果,2件都是二等品的可能性只有1种,2件都是一等品的可能性结果有3种,1件一等品1件二等品的可能结果有6种.9.某班从2名男生与3名女生中挑选2名同学参加歌咏比赛,再又从剩下的3名学生中挑选1名参加体育比赛,则被挑选的3名同学中是2男1女的概率为()A.110 B.1 3C.310 D.2 5[答案] C[解析]从2名男生与3名女生中挑2名参加歌咏比赛,再从剩余的同学中挑一名参加体育比赛,共有10种挑法,而事件“挑选2男1女”对应着3种选法,故所求概率P=310.10.为了调查某厂2 000名工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[10,15),[15,20),[20,25),[25,30),[30,35],频率分布直方图如图所示.工厂规定从生产低于20件产品的工人中随机地选取2位工人进行培训,则这2位工人不在同一组的概率是()A.110 B.7 15C.815 D.13 15[答案] C[解析]根据频率分布直方图可知产品件数在[10,15),[15,20)内的人数分别为5×0.02×20=2,5×0.04×20=4,设生产产品件数在[10,15)内的2人分别是A,B,设生产产品件数在[15,20)内的4人分别为C,D,E,F,则从生产低于20件产品的工人中随机地选取2位工人的结果有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.2位工人不在同一组的结果有(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),共8种.则选取这2人不在同一组的概率为815.11.如图的矩形长为5、宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为( )A.235B.2350 C .10D .不能估计[答案] A[解析] 利用几何概型的概率计算公式,得138300×(2×5)=235. 12.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 与b ,确定平面上一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上”为事件C n (2≤n ≤5,n ∈N ),若事件C n 的概率最大,则n 的所有可能值为( )A .3B .4C .2和5D .3和4 [答案] D[解析] 点P (a ,b )共有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)6种情况,得x +y 分别等于2,3,4,3,4,5,所以出现3与4的概率最大,故n 为3或4.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.在区间[-2,2]上随机取一个数x ,则x ∈[0,1]的概率为___.[答案] 14[解析] x ∈[0,1]的概率为1-02-(-2)=14. 14.三张卡片上分别写上字母E ,E ,B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.[答案] 13[解析] 题中三张卡片随机地排成一行的情况有BEE ,EBE ,EEB共3种,恰好排成英文单词BEE 的概率为13. 15.为了测算如图的阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点.已知恰有200个点落在阴影部分,据此,可估计阴影部分的面积是________.[答案] 9[解析] 设阴影部分的面积为S ,向正方形内随机投掷1个点,落在阴影部分的概率的估计值是200800=14,则S S 正方形=14,又正方形的面积是36,则S =14×36=9. 16.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高分别为:(单位:cm)162,148,154,165,168,172,175,162,171,170,150,151,152,160,163,175,164,179,149,172.根据样本频率分布估计总体分布的原则,在该校高二年级任抽一名同学身高在155.5cm ~170.5cm 之间的概率为________.(用分数表示)[答案] 25[解析] 样本中有8人身高在155.5 cm ~170.5 cm 之间,所以估计在该校高二年级任抽一名同学身高在155.5 cm ~170.5 cm 之间的概率为820=25. 三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(2011~2012·辽宁模拟)某种日用品上市以后供不应求,为满足更多的消费者,某商场在销售的过程中要求购买这种产品的顾客必须参加如下活动:摇动如右图所示的游戏转盘(上面扇形的圆心角都相等),按照指针所指区域的数字购买商品的件数,每人只能参加一次这个活动.(1)某顾客参加活动,求购买到不少于5件该产品的概率;(2)甲、乙两位顾客参加活动,求购买该产品件数之和为10的概率.[解析] (1)设“购买到不少于5件该产品”为事件A ,则P (A )=812=23. (2)设“甲、乙两位顾客参加活动,购买该产品数之和为10”为事件B ,甲、乙购买产品数的情况共有12×12=144种,则事件B 包含(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),共9种情况,故P (B )=9144=116. 18.(本小题满分12分)现从5名优秀学生中选派2人参加数学竞赛,其中甲、乙两人至多有一个去参加比赛的概率是多少?[解析] 从5名优秀学生中选派2人去参加数学竞赛共有10种选派方法,即基本事件的总数为10.记事件A 为“甲、乙两人至多有一个去参加比赛”,它的对立事件A -是“甲、乙两人都去参加比赛”.而“甲、乙两人都去参加比赛”的选派方法只有1种,故P (A -)=110,所以P (A )=1-P (A -)=1-110=910即甲、乙两人至多有一人去参加比赛的概率为91019.(本小题满分12分)(2011~2012·北京海淀模拟)某园林局对1 000株树木的生长情况进行调查,其中槐树600株,银杏树400株.现用分层抽样方法从这1 000株树中随机抽取100株,其中银杏树树干周长(单位:cm)的抽查结果如下表:(2)若已知树干周长在30~40 cm之间的4株银杏树中有1株患有虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.求排查的树木恰好为2株的概率.[解析](1)因为用分层抽样方法从这1 000株树木中随机抽取100株,所以应该抽取银杏树100×4001 000=40(株),故4+18+x+6=40,所以x=12.(2)记这4株树为树1,树2,树3,树4,不妨设树4就是那株患虫害的树.设“恰好在排查到第二株时发现树4”为事件A.基本事件空间为Ω={(树1,树2),(树1,树3),(树1,树4),(树2,树1),(树2,树3),(树2,树4),(树3,树1),(树3,树2),(树3,树4),(树4,树1),(树4,树2),(树4,树3),}共12个基本事件,其中事件A中包含的基本事件有(树1,树4),(树2,树4),(树3,树4),共3个,所以恰好在排查到第二株时发现患虫害树的概率为P(A)=312=14.20.(本小题满分12分)(2011~2012·广东模拟)甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数则算甲赢,否则算乙赢.(1)若以A表示“和为6”的事件,求P(A);(2)现连玩三次,以B表示“甲至少赢一次”的事件,C表示“乙至少赢两次”的事件,则B与C是否为互斥事件?试说明理由;(3)这种游戏规则公平吗?试说明理由.[解析](1)令x,y分别表示甲、乙出的手指数,则基本事件空间可表示为S={(x,y)|x∈N*,y∈N*,1≤x≤5,1≤y≤5}.因为S 中点的总数为5×5=25, 所以基本事件总数n =25.事件A 包含的基本事件为(1,5),(2,4),(3,3),(4,2),(5,1),共5个,所以P (A )=525=15.(2)B 与C 不是互斥事件,如“甲赢一次,乙赢两次”的事件中,事件B 与C 是同时发生的.(3)由(1)知,和为偶数的基本事件数为13,即甲赢的概率为1325,乙赢的概率为1225,所以这种游戏规则不公平.21.(2011~2012东北三省四市第一次联考)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:(2)从3月1日至3月5日中任选2天,记发芽的种子数分别为m ,n ,用(m ,n )的形式列出所有的基本事件[视(m ,n )与(n ,m )相同],并求满足“⎩⎪⎨⎪⎧25≤m ≤30,25≤n ≤30”的事件A 的概率.[解析] 本小题考查频率及古典概型的概率及简单运算. (1)这5天的平均发芽率为23100+25100+30100+26100+161005×100%=24%.(2)m ,n 的取值情况有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16).则基本事件总数为10.设“⎩⎪⎨⎪⎧25≤m ≤30,25≤n ≤30”为事件A ,,则事件A 包含的基本事件为(25,30),(25,26),(30,26),∴P (A )=310.故该事件的概率为310.22.(本小题满分12分)如图,OA =1,在以O 为圆心,OA 为半径的半圆弧上任取一点B ,求使△AOB 的面积大于等于14的概率.[解析] 如下图所示,作OC ⊥OA ,过OC 的中点D 作OA 的平行线EF .则当点B 位于EF ︵上时,S △AOB ≥14.连接OE ,OF ,因为OD =12OC =12OF ,且OC ⊥EF ,所以∠DOF =60°,所以∠EOF =120°,。
高一数学必修3质量检测试题(卷)(1)一、单项选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列给出的赋值语句中,正确的是( ) A .x + y = 0 B .M= —M -1C .m m -=0D . m =22.在右图所示的程序框图中,若输入x =28,则输出的k =( )A .2B .3C .4D .53.算法共有三种逻辑结构,即顺序结构、选择结构、循环结构,下列说法中正确的是( )A. 一个算法只能含有一种逻辑结构B. 一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D. 4. 下列关于算法的说法中,正确的是( ) A .算法是某个问题的解决过程B .算法可以无限不停地操作下去C .算法执行后的结果是不确定的D .解决某类问题的算法不是唯一的5.右图所示的算法流程图中,输出的S 表达式为( ) A .1+2+…+49B .1+2+…+50C .11249++⋅⋅⋅+D. 11250++⋅⋅⋅+6.给出两个具有线性相关关系的变量x ,y 之间的一组数据(0,1),(1,3),(2,5),(3,7),则y 与x 的线性回归直线yˆ=bx +a 必过点( ) A .(1,2) B .(1.5,3)C .(1.5,4)D .(2,3)7. 有两项调查:① 某社区有300个家庭,其中高收入家庭105户,中等收入家庭180户,低收入家庭15户,为了了解社会购买力的某项指标,要从中抽出一个容量为100户的样本;② 在某地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况.这两项调查宜采用的抽样方法是( )A. 调查①采用系统抽样法,调查②采用分层抽样法B. 调查①采用分层抽样法,调查②采用系统抽签法C. 调查①采用分层抽样法,调查②采用抽签法D. 调查①采用抽签法,调查②采用系统抽样法 8. 下面的算法的功能是( )(1)a m =,(2)若,m b >则b m =;(3)若m c >,则c m =; (4)若m d >,则d m =;(5)输出m . A .求a ,b ,c ,d 中的最大值 B .求a ,b ,c ,d 中的最小值 C .将a ,b ,c ,d 由小到大排序D .将a ,b ,c ,d 由大到小排序9.早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个步骤.下列选项中最好的一种算法是( )A .S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B .S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C .S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D .S1吃饭同时听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶10. 右图是求1210,,,x x x 的乘积S 的程序框图,图中空白框中应填入的内容为( )A. (1)S s n =*+B. n S s x =*C. 1n S s x +=*D. S s n =*二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上. 11. 随机地向某个区域抛撒了100粒种子,在面积为102m 的地方有2粒种子发芽,假设种子的发芽率为100%,则整个撒种区域的面积大约有________2m .12.右图是一个算法程序框图,当输入x 的 值为1时,则其输出的结果是__________;13.若总体中含有1610个个体,现在要采用系统抽样,从中抽取一个容量为25的样本,分段时应从总体中随机剔除个个体,编号后应均分为 段;14. 一个口袋内装有大小相同的红球、白球和黑球共100个,其中有37个红球,从中摸出1个球,摸出白球的概率为0.23,则摸出黑球的概率为_________.15. 设变量a 、b 分别表示一个数,现将a 、b 交换,用赋值语句描述该算法的结果是三、解答题:(本大题共6小题,共75分.)16.有一把围棋子,5个5个地数,最后剩下4个;7个7个地数,最后剩下2个;9个9个地数,最后剩下6个.请设计两个算法,求出这把围棋子至少有多少个.算法一:算法二:17.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为80的样本(80名男生的身高,单位:cm),制成如下频率分布表:频率分布表,推出①处的数值为________,②处的数值为_______,③处的数值为________,④处的数值为___________;(2)请你给出计算①处数值的两种不同的方法;(3)根据上面表格所给数据,画出频率分布直方图.18.将两粒均匀的骰子各抛掷一次,观察向上的点数,计算:(1)共有多少种不同的结果?(2)两粒骰子点数之和等于3的倍数的概率;(3)两粒骰子点数之和为4或5的概率.19.某良种培育基地正在培育甲、乙两种小麦新品种,为了进行对 照试验,两种小麦各种了15亩,所得亩产数据(单位:kg )如下:品种甲:368, 392, 399, 400, 405, 412, 415, 421, 423,423, 427, 430,434, 445, 445;品种乙:374, 383, 385, 386, 391, 392, 395,397, 400,401, 401, 403,406, 410, 415.(1)画出两组数据的茎叶图;(2)用茎叶图处理现有的数据,有什么优点?(3)根据茎叶图比较甲、乙两种小麦亩产量的极差及标准差.20.设火车托运重量为()x kg 行李时,托运费用y (单位:元)的 标准为:⎩⎨⎧>-+⨯≤<=50)50(5.0503.05003.0x x x xy试画出计算行李托运费用的流程框图;并用if 语句写出算法.21.为了解某种干电池的使用寿命,对其使用情况进行了追踪调查,统计情况如下表:(1)根据上面数据列出频率分布表; (2)画出频率分布直方图;(3)估计使用寿命在300h 以上的干电池在总体中所占的比例.。
第二章综合素质检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2011~2012·福建福州模拟)某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是()A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样[答案] D[解析]由抽样方法的概念知选D.2.当前,国家正大力建设保障性住房以解决低收入家庭住房困难的问题.已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户,假设第一批保障性住房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,若采用分层抽样的方法决定各社区户数,则应从甲社区中抽取低收入家庭的户数为() A.40B.30C.20D.36[答案] A[解析]360360+270+180×90=40.3.(2011~2012·安徽合肥模拟)将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是() A.09,14,19,24 B.16,28,40,52C.10,16,22,28 D.08,12,16,20[答案] B[解析]分成5组,每组12名学生,按等间距12抽取.选项B 正确.4.下列说法:①一组数据不可能有两个众数;②一组数据的方差必须是正数;③将一组数据中的每个数据都加上或减去同一常数后,方差恒不变;④在频率分布直方图中,每个小长方形的面积等于相应小组的频率.其中错误的个数有()A.0 B.1C.2 D.3[答案] C[解析]若一组数据中,有两个或几个数据出现的次数相同且最多,则这几个数据都是这组数据的众数.可见,一组数据的众数可以不唯一,即①错误.一组数据的方差是标准差的平方,必须是非负数,即②错误.根据方差的定义知③正确.根据频率分布直方图的定义知④正确.5.某中学有教职工300人,分为业务人员、管理人员、后勤服务人员三部分,其组成比例为8 1 1,现用分层抽样方法从中抽取容量为20的样本,则三部分抽得的人数分别为()A.16,2,2 B.2,16,2C.2,2,16 D.14,3,3[答案] A[解析]分层抽样中,各部分样本数与各部分总体数成比例.故选A.6.两个相关变量满足如下关系A.y^=0.56x+997.4B.y^=0.63x-231.2C.y^=50.2x+501.4D.y^-60.4x+400.7[答案] A[解析]由数据得x=20,y=1 008.6,而回归直线必过点(x,y),将(20,1 008.6)代入各选项验证知A正确.7.某市正在全面普及数字电视,某住宅区有2万户住户,从中随机抽取200户,调查是否安装数字电视.调查的结果如下表,则估计该住宅区已安装数字电视的户数是()C.8 000 D.9 500[答案] C[解析] 由于样本中安装数字电视的频率为80200=25,所以估计已安装的户数为20 000×25=8 000.故选C.8.一个容量为35的样本数据,分组后,组距与频数如下:[5,10),5;[10,15),12;[15,20),7;[20,25),5;[25,30),4;[30,35),2,则样本在区间[20,35]上的频率约为( )A .20%B .69%C .31%D .27%[答案] C[解析] 由题意可知,六个组的频率分别为:535,1235,735,535,435,235,故样本在区间[20,35]上的频率为535+435+235=1135≈0.31=31%.9.一组数据中的每一个数据都乘以2,再减去80,得到一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )A .40.6,1.1B .48.4,4.4C .81.2,44.4D .78.8,75.6[答案] A[解析] 设原来数据的平均数和方差分别为x 和s ,则⎩⎪⎨⎪⎧ 4.4=22s ,2x -80=1.2,解得⎩⎪⎨⎪⎧s =1.1,x =40.6. 10.(2012·安徽高考卷)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差 [答案] C[解析] x -甲=15(4+5+6+7+8)=6,x -乙=15(5×3+6+9)=6,甲的成绩的方差为15(22×2+12×2)=2,乙的成绩的方差为15(12×3+32×1)=2.4.11.某班50名学生在一次百米测试中,成绩全部介于13s 与19s 之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13s 且小于14s ;第二组,成绩大于等于14s 且小于15s ;…;第六组,成绩大于等于18s 且小于等于19s.如图是按上述分组方法得到的频率分布直方图.设成绩小于17s 的学生人数占全班总人数的百分比为x ,成绩大于等于15s且小于17s的学生人数为y,则从频率分布直方图中可分析出x和y分别为()A.0.9,35 B.0.9,45C.0.1,35 D.0.1,45[答案] A[解析]由图中可知小于17s的学生频率:x=(0.02+0.18+0.36+0.34)×1=0.9,大于等于15s且小于17s的学生频率为(0.36+0.34)×1=0.7.又因频数=频率×样本容量,故y=50×0.7=35.12.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的分数登记错了,甲实际得了80分却记成了50分,乙得了70分却记成了100分,更正后平均分和方差分别为()A.70,75B.70,50C.70,1.04D.60,25[答案] B[解析]注意到平均数没有变化,只是方差变动.更正前,s 21=148×[…+(50-70)2+(100-70)2+…]=75, 更正后,s 22=148×[…+(80-70)2+(70-70)2+…]=148×(48×75-400-900+100)=50.故选B.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.为了了解1 201名学生对学校某项教改试验的意见,打算从中抽取一个容量为60的样本,考虑用系统抽样,则分段的间隔k 为________.[答案] 30[解析] 由于1 20160不是整数,则先剔除一名学生后再重新编号,其分段间隔k =1 20060=20.14.如图所示,是在某一年全国少数民族运动会上,七位评委为某民族舞蹈运动员打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为________,方差为________.[答案] 85 1.6[解析] 七位评委为某民族舞蹈运动员打出的分数是:79,84,84,86,84,87,93,去掉一个最高分和一个最低分后所剩数据是84,84,86,84,87,平均分等于15(84+84+86+84+87)=85,则方差s 2=15[3(84-85)2+(86-85)2+(87-85)2]=1.6.15.某企业五月中旬生产A ,B ,C 三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:统计员只记得A 产品的样本容量比C 产品的样本容量多10,请你根据以上信息补全表格中的数据:________,________,________,________.(从左到右依次填入)[答案] 900 800 90 80[解析] 由产品B 的数据可知该分层抽样的抽样比k =1301 300=110设产品C 的样本容量为x ,则产品A 的样本容量为(x +10),那么x +10+130+x =3 000×110,解之得x =80,所以产品A 的样本容量为90,产品A 的数量为90÷110=900,产品C 的数量为80÷110=800.16.某服装商场为了了解毛充的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程y =b x +a 中的b ≈-2.气象部门预测下个月的平均气温为6 ℃,据此估计,该商场下个月毛衣的销售量约为________件.(参考公式:b^=∑i=1nx i y i-n x-y-∑i=1nx2i-n x-2,a^=y--b^x-)[答案]46[解析]x-=10,y-=38,回归直线必过点(x-,y-),则有38=-2×10+a^,解得a^=58,所以回归方程为y^=-2x+58,当x=6时,y^=-2×6+58=46.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)某工厂有工人1 021人,其中高级工程师20人,现从中抽取普通工人40人,高级工程师4人,组成代表队参加某项活动,你认为应如何抽取?[解析]先在1 001名普通工人中抽取40人,用系统抽样法抽样过程如下:第一步,将1 001名工人用随机方式编号;第二步,从总体中用抽签法剔除1人,将剩下的1 000名工人重新编号(分别为000,001,…,999),并分成40段;第三步,在第1段000,001,…,024这25个编号中,用简单随机抽样法抽出一个(如003)作为起始号;第四步,将编号为003,028,053,…,978的工人抽出作为代表参加此项活动.再从20人中抽取4人,用抽签法:第一步,将20名工程师随机编号(1,2,…,20);第二步,将这20个号码分别写在一张纸条上,制成号签;第三步,把得到的号签放入一个不透明的盒子里,充分搅匀; 第四步,从盒子里逐个抽取4个号签,并记录上面的编号; 第五步,从总体中将与抽到的号签的编号相一致的工程师抽出,作为代表参加此项活动.由以上两种方法得到的工人便是代表队成员.18.(本小题满分12分)某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:(2)在这10天中,该公司每天用水量的中位数是多少? (3)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?[解析] (1)x -=110(22+38+40+2×41+2×44+50+2×95)=51(吨).(2)中位数为41+442=42.5(吨).(3)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下,故用中位数描述每天的用水量更合适.19.(本小题满分12分)甲、乙两名工人每天生产60个机器零件,经检验员检验合格后才能入库,不合格的销毁重做,10天中甲工人的合格品个数为:15,56,28,9,27,38,33,24,31,39;乙工人的合格品个数为:19,51,49,39,37,28,31,33,36,36.(1)用茎叶图表示甲、乙两个工人合格品的分布情况;(2)根据茎叶图分析甲、乙两个工人谁的技术水平发挥得更稳定.[解析](1)茎叶图如下:(2)从茎叶图上可以看到,乙的中位数是36,合格品数据对称,故乙的技术水平发挥较稳定.20.(本小题满分12分)为了研究质量对弹簧长度的影响,对6根不同的弹簧进行测量,所得数据如下:(2)根据散点图,判断弹簧长度与质量是否具有相关关系.[解析](1)散点图如下图所示:(2)从散点图可以看出,数据对应的点大致分布在一条直线的附近,因此可以得出结论:弹簧长度与质量具有相关关系,且是正相关的.21.(本小题满分12分)为了了解某校毕业班数学考试情况,抽取了若干名学生的数学成绩,将所得的数据经过整理后,画出频率分布直方图(如图所示).已知从左到右的第一组的频率是0.03,第二组的频率是0.06,第四组的频率是0.12,第五组的频率是0.10,第六组的频率是0.27,且第四组的频数是12,则(1)所抽取的学生人数是多少?(2)哪些组出现的学生人数一样多?出现人数最多的组有多少人?(3)若分数在85分以上(含85分)的为优秀,试估计数学成绩的优秀率是多少?[解析] (1)因为第四组的频数为12,频率为0.12, 则120.12=100,即抽取的学生共有100人. (2)从左到右看频率分布直方图,第一组与第九组出现的学生人数一样多,第二组和第三组出现的学生人数一样多,学生人数最多的是第六小组,有0.27×100=27(人).(3)第一组的人数是0.03×100=3,第二、三组的人数都是0.06×100=6,第四组的人数是0.12×100=12,第五组的人数是0.10×100=10.所在以85分以下的人数约为3+6+6+12+10=37(人),则分数在85分以上(含85分)的人数约为100-37=63(人),优秀率为63100×100%=63%.22.(2011~2012·陕西咸阳模拟)(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中M,p及图中a的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)内的人数.[解析] 由分组[10,15)内的频数是10,频率是0.25知,10M =0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3,故p =3M =340=0.075. 因为a 是对应分组[15,20)的频率与组距的商,所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)内的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.。
雪枫中学2009学年度高一数学期中考试模拟试题第一部分 选择题 (共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知某厂的产品合格率为%90,现抽出10件产品检查,则下列说法正确的是 (A )合格产品少于9件 (B )合格产品多于9件 (C )合格产品正好是9件 (D )合格产品可能是9件(2) 某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点。
公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为○1;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为○2。
则完成○1、○2这两项调查宜采用的抽样方法依次是 (A )分层抽样法,系统抽样法 (B )分层抽样法,简单随机抽样法 (C )系统抽样法,分层抽样法 (D )简单随机抽样法,分层抽样法(3) 用直接排序法将无序列{}27,13,76,97,65,38,49按照从大到小的顺序排为有序列时,第五趟有序列插入排序后,得到的数列是(A ){}27,13,76,97,38,49,65 (B ){}27,13,76,38,65,49,97 (C ){}13,27,97,65,38,49,76 (D ){}27,13,38,49,65,76,97(4) 从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中至少有1名女生的概率是 (A )51 (B )53 (C )54 (D )31(5) 在抽查产品的尺寸过程中,将其尺寸分成若干组。
[),a b 是其中的一组, 抽查出的个体在该组上的频率为m,该组上的直方图的高为h,则a b -=(A )hm (B )m h (C )hm (D )h+m (6) 右图给出的是计算201614121++++ 的值的一个流程图,其中判断框内应填入的条件是(A ) 10>i (B ) 10<i (C ) 20>i (D ) 20<i(7) 一个样本M 的数据是x 1, x 2, ,x n ,它的平均数是5,另一个样本N 的数 据x 12,x 22, ,x n 2它的平均数是34。
那么下面的结果一定正确的是(A ) 29MS= (B ) 29N S = (C ) 23M S = (D )23NS =(8) 以下程序运行后的输出结果是i : = 1 ; repeat i : = i +2 ;S : = 2 i +3 ; i : = i -1 ; until i ≥8; 输出 S .(A )17 (B )19 (C ) 21 (D )23(9)为考察两个变量x 和y 之间的线性相关,;甲、乙两同学各自独立地做了10次和15次试验,并且利用线性回归方法求得回归直线分别为12l l 和。
已知两个人在试验中发现对变量x 的观测数据的平均数都为s ,对变量y 的观测数据的平均数都为t ,那么下列说法台正确的是(A )12l l 与有交点(s ,t ) (B )12l l 与相关,但交点不一定是(s ,t ) (C )12l l 与必重合 (D )12l l 与必平行(10) 同室四人各写一张贺卡,先集中起来,然后每人从中任意抽取一张,则四人所抽取的都不是自己所写的贺卡的概率是 (A )41 (B )83 (C )241 (D )256911.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知 P (A )= 0.65 ,P(B)=0.2 ,P(C)=0.1。
则事件“抽到的不是一等品”的概率为( )A. 0.7B. 0.65C. 0.35D. 0.313.如右图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长。
在这个图形上随机撒一粒黄豆,它落在扇形外正方形内的概率为 。
(用分数表示)A.44π- B. 4π C. 21π- D. 21数学试卷 第2页 (共5页)第二部分 非选择题 (共100分)二、填空题:本大题共4小题,每小题5分,共20分.(13) 甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环)如果甲、乙两人中只有1人入选,则入选的应是___________;(14)如果某一循环变量的初始值为100-,终值为190,循环时每次循环变量的值增加10,则该循环变量一共循环的次数是 ;(15) 射箭比赛的箭靶涂有五个彩色得分环。
从外向内为白色、黑色、蓝色、红色,靶心是金色。
金色靶心叫“黄心”。
奥运会的比赛靶面直径为cm 122,靶心直径为cm 2.12。
运动员在m 70外射箭。
假设射箭都能中靶,且射中靶面内的任一点都是等可能的,则射中黄心的概率是 ;(16) 若输入8,则下列程序执行后输出的结果是____________;输入t ; If 5<t ,Then 1:2+=t y ; Else if 8<t , Then 12:-=t y ; Else 12:+=t y ;输出y .三、解答题:本大题共6小题,共 70 分. 解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分10分)为了解一大片经济林生长情况,随机测量其中的60株的底部周长(单位:Cm ),将周长整理后画出的频率分布表和频率分布直方图如下:观察图形,回答下列问题:(1)补充上面的频率分布表和频率分布直方图.(2) 79.5~89.5 这一组的频数、频率分别是多少?(3)估计这次环保知识竞赛的及格率(60cm 及以上为合格).(18)(本小题满分10分)(Ⅰ) 求单位成本y 与月产量x 之间的线性回归方程。
(其中已计算得:1481662211=+++y x y x y x ,结果 保留两位小数)(Ⅱ) 当月产量为12千件时,单位成本是多少?(19)(本小题满分12分)将一张足够大的纸,第一次对折,第二次对折,第三次对折,…,如此不断地对折27次,这时纸的厚度将会超过世界第一高峰的高度,请完成下面的程序框图,并用算法语句描述算法。
(假设10层纸的厚度为0.001m ) 解:(设用变量n 来表示纸的层数,用h 来表示纸的厚度)填空: ①____________________________②____________________________③____________________________分),只见他手拿一黑色小布袋,袋中有3,旁边立着一块小黑板写道:3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;3个球,摸球者付给摊主1元钱。
(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?21.(本小题满分12分)给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推. 要求计算这50个数的和. 先将下面给出的程序框图补充完整,再根据程序框图写出程序.1. 把程序框图补充完整:Array(1)________________________ (3分)(2)________________________ (4分)2. 程序:(7分)22.(14分)假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间(1)你离家前不能看到报纸(称事件A)的概率是多少?(8分,须有过程)(2)请你设计一种随机模拟的方法近似计算事件A的概率(包括手工的方法或用计算器、计算机的方法)(6分)雪枫中学2009学年度高一数学必修3模块考试试题参考答案一、选择题(每小题5分,共60分)二、填空题 (每小题4分,共20分)(13)甲 (14) 30 (15)01.0 (16) 5 (17) 略(18)(Ⅰ) ,1481,79,71,62161612====∑∑==i i i i i y x x y x代入公式得:()37.7762182.171,82.162167971621614812≈⨯--=-≈⎪⎭⎫⎝⎛⨯-⨯⨯-=a b 故线性回归方程为:x y 82.137.77-=. (Ⅱ)y=56.5(19)填空:① n n ⨯=2:② 27≤i③ 001.0*)10/(:n h =用算法语句描述算法如下: n:=1;for i:=1 to 27 do begin n:=2n; end.h:=(n/10)*0.001; 输出h20解:把3只黄色乒乓球标记为A 、B 、C ,3只白色的乒乓球标记为1、2、3。
从6个球中随机摸出3个的基本事件为:ABC 、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个 (1) 事件E={摸出的3个球为白球},事件E 包含的基本事件有1个,即摸出123号3个球,P (E )=1/20=0.05(2)事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,P (F)=9/20=0.45(3)事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P(G)=2/20=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G发生有10次,不发生90次。
则一天可赚90=⨯-⨯,每月可赚1200元。
14051021(1)_____i < = 50___(2)_____p= p + i____2. 程序:i=1p=1s=0Dos= s + pp= p + ii=i+1Loop While i<=50PRINT sEND解:如图,设送报人到达的时间为X,小王离家去工作的时间为Y。
(X,Y)可以看成平面中的点,试验的全部结果所构成的区域为YXΩYX,)(一个正方形区域,面积为SΩ=4,事件A表示小王离家前不能,=87≤6/}9≤≤{≤看到报纸,所构成的区域为A={(X,Y)/ }≤≤,即图中的阴影部分,X>≤,≤X9786YY面积为S A=0.5。
这是一个几何概型,所以P(A)=S A/SΩ=0.5/4=0.125。
答:小王离家前不能看到报纸的概率是0.125。
(2)用计算机产生随机数摸拟试验,X是0—1之间的均匀随机数,Y也是0—1之间的均匀随机数,各产生100个。
依序计算,如果满足2X+6>2y+7,那小王离家前不能看到报纸,统计共有多少为M,则M/100即为估计的概率。