(全国通用版)2020高考数学二轮复习 专题二 数列 第1讲 等差数列与等比数列学案 文
- 格式:doc
- 大小:268.04 KB
- 文档页数:15
第1讲 等差数列与等比数列「考情研析」 1.从具体内容上,主要考查等差数列、等比数列的基本计算和基本性质及等差、等比数列中项的性质、判定与证明. 2.从高考特点上,难度以中、低档题为主,近几年高考题一般设置一道选择题和一道解答题,分值分别为5分和12分.核心知识回顾1.等差数列(1)通项公式:□01a n =a 1+(n -1)d =a m +(n -m )d . (2)等差中项公式:□022a n =a n -1+a n +1(n ∈N *,n ≥2). (3)前n 项和公式:□03S n =n (a 1+a n )2=na 1+n (n -1)d 2. 2.等比数列(1)等比数列的通项公式:□01a n =a 1q n -1=a m q n -m . (2)等比中项公式:□02a 2n =a n -1·a n +1(n ∈N *,n ≥2).(3)等比数列的前n 项和公式:□03S n =⎩⎪⎨⎪⎧na 1(q =1),a 1-a n q 1-q=a 1(1-q n )1-q (q ≠1).3.等差数列的性质(n ,m ,l ,k ,p 均为正整数)(1)若m +n =l +k ,则□01a m +a n =a l +a k (反之不一定成立);特别地,当m +n =2p 时,有□02a m +a n =2a p .(2)若{a n },{b n }是等差数列,则{ka n +tb n }(k ,t 是非零常数)是□03等差数列. (3)等差数列“依次每m 项的和”即S m ,□04S 2m -S m ,□05S 3m -S 2m ,…仍是等差数列. (4)等差数列{a n },当项数为2n 时,S 偶-S 奇=□06nd ,S 奇S 偶=□07a n a n +1,项数为2n -1时,S 奇-S 偶=□08a 中=□09a n ,S 2n -1=(2n -1)a n 且S 奇S 偶=□10n n -1.(其中S 偶表示所有的偶数项之和,S 奇表示所有的奇数项之和)4.等比数列的性质(n ,m ,l ,k ,p 均为正整数)(1)若m +n =l +k ,则□01a m ·a n =a l ·a k (反之不一定成立);特别地,当m +n =2p 时,有□02a m ·a n =a 2p .(2)当n 为偶数时,S 偶S 奇=□03q (公比).(其中S 偶表示所有的偶数项之和,S 奇表示所有的奇数项之和)(3)等比数列“依次m 项的和”,即S m ,□04S 2m -S m ,□05S 3m -S 2m ,…(S m ≠0)成等比数列.热点考向探究考向1 等差数列、等比数列的运算例1 (1)(2019·陕西榆林高考第三次模拟)在等差数列{a n }中,其前n 项和为S n ,且满足若a 3+S 5=12,a 4+S 7=24,则a 5+S 9=( )A .24B .32C .40D .72答案 C解析 ∵a 3+S 5=6a 3=12,a 4+S 7=8a 4=24,∴a 3=2,a 4=3,∴a 5=4,∴a 5+S 9=10a 5=40.故选C.(2)在等差数列{a n }中,已知a 4=5,a 3是a 2和a 6的等比中项,则数列{a n }的前5项的和为( )A .15B .20C .25D .15或25答案 D解析 设公差为d ,∵a 3为a 2,a 6的等比中项,∴a 23=a 2·a 6,即(a 4-d )2=(a 4-2d )(a 4+2d ),∴5d (d -2)=0,∴d =0或d =2.∴5-d =5或3,即a 3=5或3,∴S 5=5a 3=25或15.故选D.(3)已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n ,若a 1=2,则数列{a n }的前n 项和为________. 答案 3n-1解析 ∵a 2n +1-6a 2n =a n +1a n ,∴(a n +1-3a n )(a n +1+2a n )=0,∵a n >0,∴a n +1=3a n ,∴{a n }为等比数列,且首项为2,公比为3,∴S n =3n-1.利用等差数列、等比数列的通项公式、前n 项和公式,能够在已知三个元素的前提下求解另外两个元素,其中等差数列的首项和公差、等比数列的首项和公比为最基本的量,解题中首先要注意求解最基本的量.1.在各项为正数的等比数列{a n }中,S 2=9,S 3=21,则a 5+a 6=( ) A .144 B .121 C .169 D .148答案 A解析 由题意可知,⎩⎪⎨⎪⎧a 1+a 2=9,a 1+a 2+a 3=21,即⎩⎪⎨⎪⎧a 1(1+q )=9,a 1(1+q +q 2)=21,解得⎩⎪⎨⎪⎧q =2,a 1=3或⎩⎪⎨⎪⎧q =-23,a 1=27(舍去).∴a 5+a 6=a 1q 4(1+q )=144.故选A.2.(2019·辽宁沈阳郊联体高三一模)我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,五等人与六等人所得黄金数之和为( )A.13 B.76C.73D.67答案 C解析 设a n 为第n 等人的得金数,则{a n }为等差数列,由题设可知a 1+a 2+a 3=4,a 8+a 9+a 10=3,故a 2=43,a 9=1,而a 5+a 6=a 2+a 9=73.故选C.3.(2019·安徽太和第一中学高一调研)定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n=d (n ∈N *,d 为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2022a 2020=( )A .4×20202-1 B .4×20192-1 C .4×20222-1D .4×20192答案 A解析 ∵a 1=a 2=1,a 3=3,∴a 3a 2-a 2a 1=2,∴⎩⎨⎧⎭⎬⎫a n +1a n 是以1为首项,2为公差的等差数列,∴a n +1a n=2n -1, ∴a 2022a 2020=a 2022a 2021·a 2021a 2020=(2×2021-1)×(2×2020-1)=4×20202-1.故选A. 考向2 等差数列、等比数列的判定与证明例2 已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满足a n =2S 2n 2S n -1(n≥2,n∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)证明:13S 1+15S 2+17S 3+…+12n +1S n <12.证明 (1)当n ≥2时,S n -S n -1=2S 2n 2S n -1,S n -1-S n =2S n ·S n -1,1S n -1S n -1=2,所以数列⎩⎨⎧⎭⎬⎫1S n 是以1为首项,2为公差的等差数列.(2)由(1)可知,1S n =1S 1+(n -1)·2=2n -1,所以S n =12n -1.13S 1+15S 2+17S 3+…+12n +1S n =11×3+13×5+15×7+…+1(2n -1)(2n +1)=12×⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1 =12×⎝ ⎛⎭⎪⎫1-12n +1<12.(1)判断或者证明数列为等差数列、等比数列最基本的方法是用定义判断或证明,其他方法最后都会回到定义,如证明等差数列可以证明通项公式是n 的一次函数,但最后还得使用定义才能说明其为等差数列.(2)证明数列{a n }为等比数列时,不能仅仅证明a n +1=qa n ,还要说明a 1≠0,才能递推得出数列中的各项均不为零,最后断定数列{a n }为等比数列.(3)证明等差、等比数列,还可利用等差、等比数列的中项公式.(2019·江西八所重点中学4月联考)设数列{a n }满足a 1=1,a n +1=44-a n (n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列; (2)设b n =a 2na 2n -1,求数列{b n }的前n 项和T n . 解 (1)证明:∵a n +1=44-a n ,∴1a n +1-2-1a n -2=144-a n-2-1a n -2=4-a n 2a n -4-1a n -2=2-a n2a n -4=-12为常数,又a 1=1,∴1a 1-2=-1,∴数列⎩⎨⎧⎭⎬⎫1a n -2是以-1为首项,-12为公差的等差数列.(2)由(1)知,1a n -2=-1+(n -1)⎝ ⎛⎭⎪⎫-12=-n +12, ∴a n =2-2n +1=2n n +1, ∴b n =a 2n a 2n -1=4n2n +12(2n -1)2n =4n2(2n -1)(2n +1)=1+1(2n -1)(2n +1)=1+12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+b 3+…+b n =n +12⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1=n +12⎝ ⎛⎭⎪⎫1-12n +1=n +n 2n +1,所以数列{b n }的前n 项和T n =n +n2n +1.考向3 数列中a n 与S n 的关系问题例3 设S n 是数列{a n }的前n 项和,已知a 1=3,a n +1=2S n +3(n ∈N *). (1)求数列{a n }的通项公式;(2)令b n =(2n -1)a n ,求数列{b n }的前n 项和T n . 解 (1)当n ≥2时,由a n +1=2S n +3,得a n =2S n -1+3, 两式相减,得a n +1-a n =2S n -2S n -1=2a n , ∴a n +1=3a n ,∴a n +1a n=3. 当n =1时,a 1=3,a 2=2S 1+3=2a 1+3=9,则a 2a 1=3. ∴数列{a n }是以3为首项,3为公比的等比数列. ∴a n =3×3n -1=3n.(2)由(1),得b n =(2n -1)a n =(2n -1)×3n. ∴T n =1×3+3×32+5×33+…+(2n -1)×3n,① 3T n =1×32+3×33+5×34+…+(2n -1)×3n +1,②①-②,得-2T n =1×3+2×32+2×33+…+2×3n -(2n -1)×3n +1=3+2×(32+33+…+3n )-(2n -1)×3n +1=3+2×32(1-3n -1)1-3-(2n -1)×3n +1=-6-(2n -2)×3n +1.∴T n =(n -1)×3n +1+3.由a n 与S n 的关系求通项公式的注意点(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1成立的前提是n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合,则需统一表示(“合写”). (3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).(2019·福建泉州5月质检)设数列{a n }的前n 项和为S n ,已知S 1=2,a n +1=S n +2. (1)证明:{a n }为等比数列;(2)记b n =log 2a n ,数列⎩⎨⎧⎭⎬⎫λb n b n +1的前n 项和为T n ,若T n ≥10恒成立,求λ的取值范围. 解 (1)证明:由已知,得a 1=S 1=2,a 2=S 1+2=4, 当n ≥2时,a n =S n -1+2,所以a n +1-a n =(S n +2)-(S n -1+2)=a n ,所以a n +1=2a n (n ≥2). 又a 2=2a 1,所以a n +1a n=2(n ∈N *), 所以{a n }是首项为2,公比为2的等比数列. (2)由(1)可得a n =2n,所以b n =n . 则λb n b n +1=λn (n +1)=λ⎝ ⎛⎭⎪⎫1n -1n +1, T n =λ⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=λ⎝ ⎛⎭⎪⎫1-1n +1, 因为T n ≥10,所以λn n +1≥10,从而λ≥10(n +1)n, 因为10(n +1)n=10⎝⎛⎭⎪⎫1+1n ≤20,所以λ的取值范围为[20,+∞).真题押题『真题模拟』1.(2019·湖南六校高三联考)已知公差d ≠0的等差数列{a n }满足a 1=1,且a 2,a 4-2,a 6成等比数列,若正整数m ,n 满足m -n =10,则a m -a n =( )A .10B .20C .30D .5或40答案 C解析 由题意,知(a 4-2)2=a 2a 6,因为{a n }为等差数列,所以(3d -1)2=(1+d )(1+5d ),因为d ≠0,解得d =3,从而a m -a n =(m -n )d =30.故选C.2.(2019·全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2答案 C解析 由题意知⎩⎪⎨⎪⎧a 1>0,q >0,a 1+a 1q +a 1q 2+a 1q 3=15,a 1q 4=3a 1q 2+4a 1,解得⎩⎪⎨⎪⎧a 1=1,q =2,∴a 3=a 1q 2=4.故选C.3.(2019·安徽宣城高三第二次调研)我国明代珠算家程大位的名著《直指算法统宗》中有如下问题:“今有白米一百八十石,令三人从上及和减率分之,只云甲多丙米三十六石,问:各该若干?”其意思为:“今有白米一百八十石,甲、乙、丙三人来分,他们分得的白米数构成等差数列,只知道甲比丙多分三十六石,那么三人各分得多少白米?”请问:乙应该分得________白米( )A .96石B .78石C .60石D .42石答案 C解析 今有白米一百八十石,甲、乙、丙三个人来分,他们分得的米数构成等差数列,只知道甲比丙多分三十六石.设此等差数列为{a n },公差为d ,其前n 项和为S n ,∴d =a 3-a 13-1=-362=-18,S 3=3a 1+3×22×(-18)=180,解得a 1=78.∴a 2=a 1+d =78-18=60.∴乙应该分得60石.故选C.4.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8n D .S n =12n 2-2n答案 A解析 设等差数列{a n }的首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n .故选A.5.(2019·新疆高三第一次诊断)已知数列{a n }为等差数列,a 3=3,a 1+a 2+…+a 6=21,数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若对一切n ∈N *,恒有S 2n -S n >m 16,则m 能取到的最大正整数是________.答案 7解析 设数列{a n }的公差为d ,由题意得,⎩⎪⎨⎪⎧a 1+2d =3,6a 1+15d =21,解得⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =n ,且1a n =1n ,∴S n =1+12+13+…+1n ,令T n =S 2n -S n =1n +1+1n +2+…+12n, 则T n +1=1n +2+1n +3+…+12n +2, 即T n +1-T n =12n +2+12n +1-1n +1>12n +2+12n +2-1n +1=0,∴T n +1>T n ,则T n 随着n 的增大而增大, 即T n 在n =1处取最小值,∴T 1=S 2-S 1=12,∵对一切n ∈N *,恒有S 2n -S n >m16成立,∴12>m16即可,解得m <8, 故m 能取到的最大正整数是7.『金版押题』6.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=12S n +1S n ,则数列{S n }的通项公式为________.答案 -2n +1解析 由已知得a n +1=S n +1-S n =12S n +1S n ,所以1S n +1-1S n =-12,所以⎩⎨⎧⎭⎬⎫1S n 是以-1为首项,-12为公差的等差数列.所以1S n =-1-12(n -1)=-12n -12.故S n =-2n +1.7.给出一个直角三角形数阵(如下),满足每一列的数成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为a ij (i ≥j ,i ,j ∈N *),则a n 4=________.14 12,14 34,38,316 … 答案n32解析 因为每一列的数成等差数列,且第一列公差为12-14=14,所以a i 1=14+(i -1)14=i4,因为从第三行起,每一行的数成等比数列,且每一行的公比相等为3834=12,所以a ij =a i 1⎝ ⎛⎭⎪⎫12j -1=i 4⎝ ⎛⎭⎪⎫12j -1(i ≥3),因此a n 4=n 4⎝ ⎛⎭⎪⎫124-1=n 32. 8.已知正项等比数列{a n }满足:a 2a 8=16a 5,a 3+a 5=20,若存在两项a m ,a n 使得 a m a n =32,则1m +4n的最小值为________.答案 34解析 因为数列{a n }是正项等比数列,a 2a 8=16a 5,a 3+a 5=20,所以a 2a 8=a 25=16a 5,a 5=16,a 3=4.由a 5=a 3q 2,得q =2(q =-2舍去),由a 5=a 1q 4,得a 1=1,所以a n =a 1q n -1=2n -1,因为a m a n =32,所以2m -12n -1=210,m +n =12,1m +4n =112(m +n )⎝ ⎛⎭⎪⎫1m +4n =112⎝ ⎛⎭⎪⎫5+n m +4m n ≥112⎝ ⎛⎭⎪⎫5+2n m ·4m n =34(m >0,n >0),当且仅当n =2m 时“=”成立, 所以1m +4n 的最小值为34.配套作业一、选择题1.(2019·山东德州高三下学期联考)在等比数列{a n }中,a 1=1,a 5+a 7a 2+a 4=8,则a 6的值为( )A .4B .8C .16D .32答案 D解析 设等比数列{a n }的公比为q ,∵a 1=1,a 5+a 7a 2+a 4=8,∴a 1(q 4+q 6)a 1(q +q 3)=8,解得q =2,则a 6=25=32.故选D.2.已知等比数列{a n }满足a 1a 2=1,a 5a 6=4,则a 3a 4=( ) A .2 B .±2 C. 2 D .± 2答案 A解析 ∵a 1a 2,a 3a 4,a 5a 6成等比数列,即(a 3a 4)2=(a 1a 2)(a 5a 6),∴(a 3a 4)2=4,a 3a 4与a 1a 2符号相同,故a 3a 4=2,故选A.3.(2019·安徽蚌埠高三下学期第二次检测)等差数列{a n }的公差为d ,若a 1+1,a 2+1,a 4+1成以d 为公比的等比数列,则d =( )A .2B .3C .4D .5答案 A解析 将a 1+1,a 2+1,a 4+1转化为a 1,d 的形式为a 1+1,a 1+1+d ,a 1+1+3d ,由于这三个数成以d 为公比的等比数列,故a 1+1+d a 1+1=a 1+1+3d a 1+1+d =d ,化简得a 1+1=d ,代入a 1+1+da 1+1=d ,得2dd=2=d ,故选A.4.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( ) A .63 B .45 C .36D .27答案 B解析 解法一:设等差数列{a n }的公差为d ,由S 3=9,S 6=36,得⎩⎪⎨⎪⎧3a 1+3×22d =9,6a 1+6×52d =36,即⎩⎪⎨⎪⎧a 1+d =3,2a 1+5d =12,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以a 7+a 8+a 9=3a 8=3(a 1+7d )=3×(1+7×2)=45.解法二:由等差数列的性质,知S 3,S 6-S 3,S 9-S 6成等差数列,即9,27,S 9-S 6成等差数列,所以S 9-S 6=45,即a 7+a 8+a 9=45.5.已知S n 为等比数列{a n }的前n 项和,若S 3,S 9,S 6成等差数列,则( ) A .S 6=-2S 3 B .S 6=-12S 3C .S 6=12S 3D .S 6=2S 3答案 C解析 设等比数列{a n }的公比为q ,则S 6=(1+q 3)S 3,S 9=(1+q 3+q 6)S 3,因为S 3,S 9,S 6成等差数列,所以2(1+q 3+q 6)S 3=S 3+(1+q 3)S 3,解得q 3=-12,故S 6=12S 3.6.(2019·陕西西安高三第一次质检)已知函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),则{a n }的前21项之和为( )A .0 B.252C .21D .42答案 C解析 函数y =f (x +1)的图象关于y 轴对称,平移可得y =f (x )的图象关于x =1对称,且函数f (x )在(1,+∞)上单调,由数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),可得a 4+a 18=2,所以a 1+a 21=a 4+a 18=2,可得数列{a n }的前21项和S 21=21(a 1+a 21)2=21.故选C.二、填空题7.已知数列{a n }的前n 项和为S n ,a 1=1,2S n =a n +1,则S n =________. 答案 3n -1解析 由2S n =a n +1得2S n =a n +1=S n +1-S n ,所以3S n =S n +1,即S n +1S n=3,所以数列{S n }是以S 1=a 1=1为首项,q =3为公比的等比数列,所以S n =3n -1.8.设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 答案 -8解析 设等比数列{a n }的公比为q , ∵a 1+a 2=-1,a 1-a 3=-3, ∴a 1(1+q )=-1, ①a 1(1-q 2)=-3. ②∵a 1+a 2=-1≠0,∴q ≠-1,即1+q ≠0.②÷①,得1-q =3,∴q =-2.∴a 1=1,∴a 4=a 1q 3=1×(-2)3=-8.9.(2019·山西太原第五中学高三阶段检测)各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________.答案 a n =n (n +1)2解析 由题设可得a n +1=b n b n +1,a n =b n b n -1,得2b n =a n +a n +1⇒2b n =b n b n -1+b n b n +1,即2b n =b n -1+b n +1,又a 1=1,a 2=3⇒2b 1=4⇒b 1=2,则{b n }是首项为2的等差数列.由已知得b 2=a 22b 1=92,则数列{b n }的公差d =b 2-b 1=322-2=22,所以b n =2+(n -1)22=2(n +1)2,即b n =n +12.当n =1时,b 1=2,当n ≥2时,b n -1=n 2,则a n =b n b n -1=n (n +1)2,a 1=1符合上式,所以数列{a n }的通项公式为a n =n (n +1)2.10.已知数列{a n }满足13a 1+132a 2+…+13n a n =3n +1,则a n =________,a 1+a 2+a 3+…+a n=________.答案 ⎩⎪⎨⎪⎧12,n =1,3n +1,n ≥2 ⎩⎪⎨⎪⎧12,n =1,3n +2-32,n ≥2解析 由题意可得,当n =1时,13a 1=4,解得a 1=12.当n ≥2时,13a 1+132a 2+…+13n -1a n-1=3n -2,所以13n a n =3,n ≥2,即a n =3n +1,n ≥2,又当n =1时,a n =3n +1不成立,所以a n=⎩⎪⎨⎪⎧12,n =1,3n +1,n ≥2.当n ≥2时,a 1+a 2+…+a n =12+33-3n +21-3=3n +2-32.三、解答题11.(2019·广东茂名五大联盟学校高三3月联考)设数列{a n }的前n 项和为S n ,且满足a n -12S n -1=0(n ∈N *).(1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列{S n +(n +2n)λ}为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)由a n -12S n -1=0(n ∈N *),可知当n =1时,a 1-12a 1-1=0,即a 1=2.又由a n -12S n -1=0(n ∈N *).可得a n +1-12S n +1-1=0,两式相减,得⎝ ⎛⎭⎪⎫a n +1-12S n +1-1-⎝ ⎛⎭⎪⎫a n -12S n -1=0, 即12a n +1-a n =0,即a n +1=2a n . 所以数列{a n }是以2为首项,2为公比的等比数列, 故a n =2n(n ∈N *).(2)由(1)知,S n =a 1(1-q n )1-q=2(2n-1),所以S n +(n +2n )λ=2(2n -1)+(n +2n)λ 若数列{S n +(n +2n)λ}为等差数列,则S 1+(1+2)λ,S 2+(2+22)λ,S 3+(3+23)λ成等差数列, 即有2[S 2+(2+22)λ]=[S 1+(1+2)λ]+[S 3+(3+23)λ], 即2(6+6λ)=(2+3λ)+(14+11λ),解得λ=-2.经检验λ=-2时,{S n +(n +2n)λ}成等差数列,故λ的值为-2.12.(2019·江西上饶市高三二模)已知首项为1的等比数列{a n }满足a 2+a 4=3(a 1+a 3),等差数列{b n }满足b 1=a 2,b 4=a 3,数列{b n }的前n 项和为S n .(1)求数列{a n },{b n }的通项公式;(2)若数列{c n }满足c 1a 1+c 2a 2+c 3a 3+…+c n a n=S n ,求{c n }的前n 项和T n . 解 (1)设{a n }的通项公式为a n =a 1qn -1,∴a 1q +a 1q 3=3(a 1+a 1q 2),∴q =3.∵a 1=1,∴a n =3n -1,∴a 2=3,a 3=9,∴b 1=3,b 4=9. 设{b n }的公差为d ,∴d =b 4-b 13=2,∴b n =2n +1.(2)∵b n =2n +1,∴S n =n (3+2n +1)2=n 2+2n ,当n =1,c 1a 1=3,c 1=3,当n ≥2,c 1a 1+c 2a 2+…+c n a n=n 2+2n ,c 1a 1+c 2a 2+…+c n -1a n -1=(n -1)2+2(n -1), 两式相减,得c na n=2n +1,∴c n =(2n +1)·3n -1,经检验,n =1时上式也成立.综上,c n =(2n +1)·3n -1,n ∈N *.T n =3×30+5×31+…+(2n +1)·3n -1,∴3T n =3×31+5×32+…+(2n +1)·3n,两式相减-2T n =3-(2n +1)·3n +2×31+2×32+…+2×3n -1=3-(2n +1)·3n+6(1-3n -1)1-3=-2n ·3n.∴T n =n ·3n.13.已知数列{a n }的各项均为正数,记数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3T n =S 2n +2S n ,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.解 (1)由3T 1=S 21+2S 1,得3a 21=a 21+2a 1,即a 21-a 1=0. 因为a 1>0,所以a 1=1. (2)因为3T n =S 2n +2S n , ① 所以3T n +1=S 2n +1+2S n +1, ②②-①,得3a 2n +1=S 2n +1-S 2n +2a n +1,即3a 2n +1=(S n +a n +1)2-S 2n +2a n +1.因为a n +1>0, 所以a n +1=S n +1, ③ 所以a n +2=S n +1+1, ④④-③,得a n +2-a n +1=a n +1,即a n +2=2a n +1,所以当n ≥2时,a n +1a n=2. 又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2), 即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以a 2a 1=2,所以对任意的n ∈N *,都有a n +1a n=2成立,所以数列{a n }的通项公式为a n =2n -1,n ∈N *.14.(2019·河北省中原名校联盟高三联考)已知正项等比数列{a n }中,a 1=12,且a 2,a 3,a 4-1成等差数列.(1)求数列{a n }的通项公式;(2)若b n =2log 2a n +4,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解 (1)设等比数列{a n }的公比为q .因为a 2,a 3,a 4-1成等差数列.所以2a 3=a 2+a 4-1,得2a 1q 2=a 1q +a 1q 3-1.又a 1=12,则2×12q 2=12q +12q 3-1,即q 2=12q +12q 3-1.所以2q 2=q +q 3-2,所以2q 2+2=q +q 3, 所以2(q 2+1)=q (q 2+1).所以(q 2+1)(2-q )=0. 显然q 2+1≠0,所以2-q =0,解得q =2. 故数列{a n }的通项公式a n =a 1·q n -1=12·2n -1=2n -2. (2)由(1)知,b n =2log 22n -2+4=2(n -2)+4=2n .所以1b n b n +1=12n ·2(n +1)=14⎝ ⎛⎭⎪⎫1n -1n +1.则T n =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1=n 4(n +1).。
专题四 数 列第1讲 等差数列、等比数列真题试做 1.(2020·福建高考,理2)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ). A .1 B .2 C .3 D .42.(2020·安徽高考,理4)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( ).A .4B .5C .6D .73.(2020·浙江高考,理7)设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误的是( ).A .若d <0,则数列{S n }有最大项B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列4.(2020·课标全国高考,理5)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ).A .7B .5C .-5D .-75.(2020·江苏高考,20)已知各项均为正数的两个数列{a n }和{b n }满足:a n +1=a n +b na 2n +b 2n,n ∈N *.(1)设b n +1=1+b n a n,n ∈N *,求证:数列2n nb a⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设b n +1=2·b n a n,n ∈N *,且{a n }是等比数列,求a 1和b 1的值.考向分析高考中等差(等比)数列的考查主客观题型均有体现,一般以等差数列、等比数列的定义或以通项公式、前n 项和公式为基础考点,常结合数列递推公式进行命题,主要考查学生综合应用数学知识的能力以及计算能力等,中低档题占多数.考查的热点主要有三个方面:(1)对于等差、等比数列基本量的考查,常以客观题的形式出现,考查利用通项公式、前n 项和公式建立方程组求解,属于低档题;(2)对于等差、等比数列性质的考查主要以客观题出现,具有“新、巧、活”的特点,考查利用性质解决有关计算问题,属中低档题;(3)对于等差、等比数列的判断与证明,主要出现在解答题的第一问,是为求数列的通项公式而准备的,因此是解决问题的关键环节.热点例析热点一 等差、等比数列的基本运算【例1】(2020·福建莆田质检,20)设数列{a n }的前n 项和为S n ,已知a 1=1,等式a n +a n +2=2a n +1对任意n ∈N *均成立.(1)若a 4=10,求数列{a n }的通项公式;(2)若a 2=1+t ,且存在m ≥3(m ∈N *),使得a m =S m 成立,求t 的最小值.规律方法 此类问题应将重点放在通项公式与前n 项和公式的直接应用上,注重五个基本量a 1,a n ,S n ,n ,d (q )之间的转化,会用方程(组)的思想解决“知三求二”问题.我们重在认真观察已知条件,在选择a 1,d (q )两个基本量解决问题的同时,看能否利用等差、等比数列的基本性质转化已知条件,否则可能会导致列出的方程或方程组较为复杂,无形中增大运算量.在运算过程中要注意消元法及整体代换的应用,这样可减少计算量.特别提醒:(1)解决等差数列前n 项和常用的有三个公式S n =n (a 1+a n )2;S n =na 1+n (n -1)2d ;S n =An 2+Bn (A ,B 为常数),灵活地选用公式,解决问题更便捷;(2)利用等比数列前n 项和公式求和时,不可忽视对公比q 是否为1的讨论.变式训练1 (2020·山东青岛质检,20)已知等差数列{a n }的公差大于零,且a 2,a 4是方程x 2-18x +65=0的两个根;各项均为正数的等比数列{b n }的前n 项和为S n ,且满足b 3=a 3,S 3=13.(1)求数列{a n },{b n }的通项公式;(2)若数列{c n }满足c n =⎩⎪⎨⎪⎧a n ,n ≤5,b n ,n >5,n ∈N *,求数列{c n }的前n 项和T n .热点二 等差、等比数列的性质【例2】(1)在正项等比数列{a n }中,a 2,a 48是方程2x 2-7x +6=0的两个根,则a 1·a 2·a 25·a 48·a 49的值为( ).A .212B .9 3C .±9 3D .35(2)正项等比数列{a n }的公比q ≠1,且a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( ).A .5+12或5-12 B .5+12 C .5-12 D .1-52规律方法 (1)解决此类问题的关键是抓住项与项之间的关系,项的序号之间的关系,从这些特点入手选择恰当的性质进行求解;(2)应牢固掌握等差、等比数列的性质,特别是等差数列中“若m +n =p +q ,则a m +a n =a p +a q ”这一性质与求和公式S n =n (a 1+a n )2的综合应用.变式训练2 (1)(2020·江西玉山期末,3)已知等差数列{a n }的前n 项和为S n ,且满足S 15=25π,则tan a 8的值是( ).A . 3B .- 3C .± 3D .-33(2)(2020·广西桂林调研,7)已知数列{a n }是等比数列,其前n 项和为S n ,若公比q =2,S 4=1,则S 8=( ).A .17B .16C .15D .256 热点三 等差、等比数列的判定与证明【例3】(2020·山东淄博一模,20)已知数列{a n }中,a 1=5且a n =2a n -1+2n-1(n ≥2,且n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫a n -12n 为等差数列;(2)求数列{a n }的前n 项和S n .规律方法 证明数列{a n }为等差数列或等比数列有两种基本方法: (1)定义法a n +1-a n =d (d 为常数)⇔{a n }为等差数列;a n +1a n=q (q 为常数)⇔{a n }为等比数列. (2)等差、等比中项法2a n =a n -1+a n +1(n ≥2,n ∈N *)⇔{a n }为等差数列;a 2n =a n -1a n +1(a n ≠0,n ≥2,n ∈N *)⇔{a n }为等比数列.我们要根据题目条件灵活选择使用,一般首选定义法.利用定义法一种思路是直奔主题,例如本题中的方法;另一种思路是根据已知条件变换出要解决的目标,如本题还可这样去做:由a n =2a n -1+2n -1,得a n -1=2a n -1-2+2n ,所以a n -1=2(a n -1-1)+2n,上式两边除以2n,从而可得a n -12n =a n -1-12n -1+1,由此证得结论.特别提醒:(1)判断一个数列是等差(等比)数列,还有通项公式法及前n 项和公式法,但不作为证明方法;(2)若要判断一个数列不是等差(等比)数列,只需判断存在连续三项不成等差(等比)即可;(3)a 2n =a n -1a n +1(n ≥2,n ∈N *)是{a n }为等比数列的必要而不充分条件,也就是判断一个数列是等比数列时,要注意各项不为0.变式训练3 在数列{a n }中,a n +1+a n =2n -44(n ∈N ),a 1=-23.是否存在常数λ使数列{a n -n +λ}为等比数列,若存在,求出λ的值及数列的通项公式;若不存在,请说明理由.思想渗透1.函数方程思想——等差(比)数列通项与前n 项和的计算问题:(1)已知等差(比)数列有关条件求数列的通项公式和前n 项和公式以及由通项公式和前n 项和公式求首项、公差(比)、项数及项等,即主要指所谓的“知三求二”问题;(2)由前n 项和求通项;(3)解决与数列通项,前n 项和有关的不等式最值问题. 2.求解时主要思路方法:(1)运用等差(比)数列的通项公式及前n 项和公式中的5个基本量,建立方程(组),进行运算时要注意消元的方法及整体代换的运用;(2)数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式即为相应的函数解析式,因此在解决数列问题时,应用函数的思想求解.【典型例题】在等比数列{a n }中,a n >0(n ∈N *),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,a 3与a 5的等比中项为2.(1)求数列{a n }的通项公式;(2)设b n =log 2a n ,数列{b n }的前n 项和为S n ,当S 11+S 22+…+S nn最大时,求n 的值.解:(1)∵a 1a 5+2a 3a 5+a 2a 8=25, ∴a 23+2a 3a 5+a 25=25. 又a n >0,∴a 3+a 5=5.又a 3与a 5的等比中项为2,∴a 3a 5=4. 而q ∈(0,1),∴a 3>a 5.∴a 3=4,a 5=1,q =12,a 1=16.∴1511622n n n a -⎛⎫⨯ ⎪⎝⎭-==.(2)b n =log 2a n =5-n , ∴b n +1-b n =-1,∴{b n }是以4为首项,-1为公差的等差数列.∴S n =n (9-n )2,S n n =9-n 2,∴当n ≤8时,S n n >0,当n =9时,S n n =0,n >9时,S n n<0, 当n =8或9时,S 11+S 22+…+S nn最大.1.(2020·河北冀州一模,5)在等差数列{a n }中,a 9=12a 12+6,则数列{a n }前11项的和S 11等于( ).A .24B .48C .66D .1322.在等比数列{a n }中,a n >0,若a 1·a 5=16,a 4=8,则a 5=( ). A .16 B .8 C .4 D .323.(2020·广东汕头质检,2)已知等比数列{a n }的公比q 为正数,且2a 3+a 4=a 5,则q 的值为( ).A .32B .2C .52D .3 4.(2020·河北衡水调研,6)等差数列{a n }前n 项和为S n ,满足S 20=S 40,则下列结论中正确的是( ).A .S 30是S n 中的最大值B .S 30是S n 中的最小值C .S 30=0D .S 60=05.已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m ·a n =4a 1,则1m+4n的最小值为________.6.(原创题)已知数列{a n }为等差数列,数列{b n }为等比数列,且满足a 1 000+a 1 013=π,b 1b 13=2,则tan a 1+a 2 0121-b 47=__________.7.若数列{a n }满足a 1=1,a n +1=pS n +r (n ∈N *),p ,r ∈R ,S n 为数列{a n }的前n 项和. (1)当p =2,r =0时,求a 2,a 3,a 4的值;(2)是否存在实数p ,r ,使得数列{a n }为等比数列?若存在,求出p ,r 满足的条件;若不存在,说明理由.8.设{a n }是公比大于1的等比数列,S n 为数列的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n .参考答案命题调研·明晰考向 真题试做1.B 2.B 3.C 4.D5.解:(1)证明:由题设知a n +1=a n +b na 2n +b 2n=1n b+所以b n +1a n +1=,从而2211n n n n b b a a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭++-=1(n ∈N *),所以数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是以1为公差的等差数列.(2)因为a n >0,b n >0, 所以(a n +b n )22≤a 2n +b 2n <(a n +b n )2,从而1<a n +1=a n +b na 2n +b 2n≤ 2.(*)设等比数列{a n }的公比为q ,由a n >0知q >0.下证q =1.若q >1,则a 1=a 2q<a 2≤2,故当n >log q2a 1时,a n +1=a 1q n>2,与(*)矛盾;若0<q <1,则a 1=a 2q >a 2>1,故当n >log q 1a 1时,a n +1=a 1q n<1,与(*)矛盾. 综上可知,q =1,故a n =a 1(n ∈N *),所以1<a 1≤ 2.又b n +1=2·b n a n =2a 1·b n (n ∈N *),所以{b n }是公比为2a 1的等比数列.若a 1≠2,则2a 1>1,于是b 1<b 2<b 3.又由1a +得1n b ,所以b 1,b 2,b 3中至少有两项相同,矛盾.所以a 1=2,从而1n b = 2.所以a 1=b 1= 2. 精要例析·聚焦热点 热点例析【例1】解:(1)∵a n +a n +2=2a n +1对n ∈N *都成立,∴数列{a n }为等差数列. 设数列{a n }的公差为d , ∵a 1=1,a 4=10,∴a 4=a 1+3d =10,∴d =3. ∴a n =a 1+(n -1)d =3n -2.∴数列{a n }的通项公式为a n =3n -2. (2)∵a 2=1+t ,∴公差d =a 2-a 1=t .∴a n =a 1+(n -1)d =1+(n -1)t .S n =na 1+n (n -1)2d =n +n (n -1)2t .由a m =S m ,得1+(m -1)t =m +m (m -1)2t ,∴(m -1)t =(m -1)+m (m -1)2t .∴t =1+m 2t .∴t =22-m.∵m ≥3,∴-2≤t <0.∴t 的最小值为-2.【变式训练1】解:(1)设{a n }的公差为d (d >0),{b n }的公比为q (q >0),则由x 2-18x +65=0,解得x =5或x =13. 因为d >0,所以a 2<a 4,则a 2=5,a 4=13. 则⎩⎪⎨⎪⎧a 1+d =5,a 1+3d =13,解得a 1=1,d =4,所以a n =1+4(n -1)=4n -3.因为⎩⎪⎨⎪⎧b 3=b 1q 2=9,b 1+b 1q +b 1q 2=13,q >0,解得b 1=1,q =3.所以b n =3n -1.(2)当n ≤5时, T n =a 1+a 2+a 3+…+a n =n +n (n -1)2×4=2n 2-n ;当n >5时,T n =T 5+(b 6+b 7+b 8+…+b n )=(2×52-5)+35(1-3n -5)1-3=3n-1532,所以T n =⎩⎪⎨⎪⎧2n 2-n ,n ≤5,3n-1532,n >5.(n ∈N *)【例2】(1)B 解析:依题意知a 2·a 48=3. 又a 1·a 49=a 2·a 48=225a =3,a 25>0, ∴a 1·a 2·a 25·a 48·a 49=a 255=9 3.(2)C 解析:因为a 2,12a 3,a 1成等差数列,所以a 3=a 1+a 2.∴q 2=1+q .又q >0,解得q =1+52,故a 3+a 4a 4+a 5=a 3+a 4(a 3+a 4)q =1q =5-12. 【变式训练2】(1)B (2)A【例3】(1)证明:设b n =a n -12n ,b 1=5-12=2,∴b n +1-b n =a n +1-12n +1-a n -12n=12n +1[(a n +1-2a n )+1] =12n +1[(2n +1-1)+1]=1, ∴数列⎩⎨⎧⎭⎬⎫a n -12n 是首项为2,公差为1的等差数列.(2)解:由(1)知,a n -12n =a 1-12+(n -1)×1,∴a n =(n +1)·2n+1.∵S n =(2·21+1)+(3·22+1)+…+(n ·2n -1+1)+[(n +1)·2n+1],∴S n =2·21+3·22+…+n ·2n -1+(n +1)·2n+n .设T n =2·21+3·22+…+n ·2n -1+(n +1)·2n,①则2T n =2·22+3·23+…+n ·2n +(n +1)·2n +1.② 由②-①,得T n =-2·21-(22+23+…+2n )+(n +1)·2n +1=n ·2n +1,∴S n =n ·2n +1+n =n ·(2n +1+1).【变式训练3】解:假设a n +1-(n +1)+λ=-(a n -n +λ)成立,整理得a n +1+a n =2n +1-2λ,与a n +1+a n =2n -44比较,得λ=452.∴数列⎩⎨⎧⎭⎬⎫a n-n +452是以-32为首项,-1为公比的等比数列.故a n -n +452=-32(-1)n -1,即a n =n -452-32(-1)n -1.创新模拟·预测演练1.D 2.A 3.B 4.D 5.326.- 37.解:(1)由a 1=1,a n +1=pS n +r ,当p =2,r =0时,a n +1=2S n ,∴a 2=2a 1=2,a 3=2S 2=2(a 1+a 2)=2×(1+2)=6,a 4=2S 3=2(a 1+a 2+a 3)=2×(1+2+6)=18. (2)∵a n +1=pS n +r , ∴a n =pS n -1+r (n ≥2).∴a n +1-a n =(pS n +r )-(pS n -1+r )=pa n ,即a n +1=(p +1)a n ,其中n ≥2. ∴若数列{a n }为等比数列,则公比q =p +1≠0. ∴p ≠-1.又a 2=p +r =a 1q =a 1(p +1)=p +1, 故r =1.∴当p ≠-1,r =1时,数列{a n }为等比数列. 8.解:(1)设数列{a n }的公比为q (q >1).由已知得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2,即⎩⎪⎨⎪⎧a 1+a 2+a 3=7,a 1-6a 2+a 3=-7,亦即⎩⎪⎨⎪⎧a 1(1+q +q 2)=7,a 1(1-6q +q 2)=-7,解得a 1=1,q =2或a 1=4,q =12(舍去).故a n =2n -1.(2)由(1)得a 3n +1=23n,∴b n =ln a 3n +1=ln 23n=3n ln 2, ∴b n +1-b n =3ln 2.∴{b n }是以b 1=3ln 2为首项,公差为3ln 2的等差数列.∴T n =b 1+b 2+…+b n =n (b 1+b n )2=n (3ln 2+3n ln 2)2=3n (n +1)ln 22,即T n =3n (n +1)ln 22.。
2020年高考数学二轮复习:06 等差数列与等比数列一、单选题(共12题;共24分)1.在等差数列中,,则数列的公差为()A. B. C. 1 D. 2【答案】A【考点】等差数列的通项公式2.已知数列为等比数列,,数列的前项和为,则等于()A. B. C. D.【答案】A【考点】等比数列的通项公式,等比数列的前n项和3.已知数列为各项均为正数的等比数列,是它的前项和,若,且,则=()A. 32B. 31C. 30D. 29【答案】B【考点】等比数列的前n项和,等比数列的性质4.数列的通项公式,其前项和为,则()A. B. C. D.【答案】A【考点】函数的周期性,等差数列的前n项和5.已知数列满足,且成等比数列.若的前n项和为,则的最小值为()A. B. C. D.【答案】 D【考点】等差数列的前n项和,等比数列的性质6.已知为等差数列,其公差为-2,且是与的等比中项,为的前n项和,,则的值为()A. -100B. -90C. 90D. 110【答案】 D【考点】等差数列的前n项和,等比数列的性质7.在中,角、、所对的边分别为、、,若、、成等差数列,且,则()A. B. C. D.【答案】A【考点】等差数列的性质,任意角三角函数的定义,正弦定理8.在等比数列中,,,且前项和,则此数列的项数等于()A. B. C. D.【答案】B【考点】等比数列的前n项和,等比数列的性质9.在等差数列中,已知,则该数列前9项和()A. 18B. 27C. 36D. 45【答案】 D【考点】等差数列的前n项和,等差数列的性质10.等比数列的公比,则等于()A. B. -3 C. D. 3【答案】C【考点】等比数列的性质11.已知数列满足,且是函数的极值点,设,记表示不超过的最大整数,则()A. 2019 B. 2018 C. 1009 D. 1008【答案】 D【考点】利用导数研究函数的单调性,等比数列的通项公式,数列的求和12.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有,,.据此,可得正项等比数列中,()A. B. C. D.【答案】C【考点】等比数列的通项公式二、填空题(共5题;共5分)13.已知数列为正项等差数列,其前2020项和,则的最小值为________. 【答案】4【考点】基本不等式在最值问题中的应用,等差数列的前n项和14.若数列{}的前项和,则此数列的通项公式________.【答案】【考点】等差数列的通项公式15.已知数列的各项均为正数,其前项和为,且满足,则________.【答案】【考点】数列的概念及简单表示法,数列递推式16.已知等差数列的前项和是,,且成等比数列,则________. 【答案】【考点】等差数列的通项公式,等差数列的前n项和,等比数列的性质17.我国古代庄周所著的《庄子天下篇》中引用过一句话:“一尺之棰,日取其半,万世不竭”,其含义是:一根一尺长的木棒,每天截下其一半,这样的过程可以无限地进行下去.若把“一尺之棰”的长度记为1个单位,则第天“日取其半”后,记木棒剩下部分的长度为,则________【答案】【考点】数列的概念及简单表示法,归纳推理三、解答题(共4题;共35分)18.已知等差数列和等比数列满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求的通项公式;(Ⅱ)求和:.【答案】解:(Ⅰ)设等差数列{a n}的公差为d.因为a2+a4=10,所以2a1+4d=10.解得d=2.所以a n=2n−1.(Ⅱ)设等比数列的公比为q.因为b2b4=a5,所以b1qb1q3=9.解得q2=3.所以.从而【考点】数列的求和,等差数列与等比数列的综合19.已知数列满足,且时,,,成等差数列.(1)求证:数列为等比数列;(2)求数列的前项和.【答案】(1)证明:由题意,当时,,,成等差数列,则,即,,又,数列是以1为首项,2为公比的等比数列.(2)解:由(1),知,即,.【考点】等比关系的确定,数列的求和,等差数列的性质20.已知公差为的等差数列中,,且成等比数列(1)求数列的通项公式;(2)若数列的前项和为,且,求的值.【答案】(1)解:因为成等比数列,所以,即,将代入得,又,解得,所以(2)解:=则【考点】等差数列的通项公式,等差数列的前n项和,等比数列的性质21.已知等差数列的首项为1,公差为1,等差数列满足.(1)求数列和数列的通项公式;(2)若,求数列的前项和.【答案】(1)解:由条件可知,,.,,,.由题意为等差数列,,解得,(2)解:由(1)知,,①则②①-②可得,.【考点】等差数列的通项公式,数列的求和,等差数列的性质。
专题三数列第一讲等差数列、等比数列高考导航平等差、等比数列基本量的考察,常以客观题的形式出现,考察利用通项公式、前n 项和公式成立方程组求解.2.平等差、等比数列性质的考察主要以客观题出现,拥有“新、巧、活”的特色,考察利用性质解决相关计算问题.3.平等差、等比数列的判断与证明,主要出此刻解答题的第一问,是为求数列的通项公式而准备的,所以是解决问题的重点环节.1.(2016 ·全国卷Ⅰ )已知等差数列 { a n} 前 9 项的和为 27,a10=8,则 a100=()A .100B.99 C.98D.97[分析]设{ a n} 的公差为 d,由等差数列前 n 项和公式及通项公9=9a1+9×8a1=- 1,2=,a n=a1+(n-1)d=n式,得S d 27解得10=a1+9d=8,d=1,a-2,∴ a100=100-2=98.应选 C.[答案] C2.(2017 ·全国卷Ⅲ )等差数列 { a n} 的首项为 1,公差不为 0.若 a2,a3,a6成等比数列,则 { a n} 前 6 项的和为 ()A .- 24 B.- 3 C.3 D.8[ 分析 ]设等差数列{ a n}的公差为d,依题意得a23=a2·a6,即 (1+2d)2=(1+d)(1+5d),解得 d=- 2 或 d=0(舍去 ),又 a1=1,∴ S66×5=6×1+2×(-2)=-24.应选A.[答案]A3.(2016 ·浙江卷 )设数列 { a n} 的前 n 项和为 S n,若 S2=4,a n+1=*[ 分析 ]∵a n+1=2S n+1,∴ a2=2S1+1,即S2-a1=2a1+1,又∵S2=4,∴ 4-a1=2a1+1,解得 a1=1.又 a n+1=S n+1-S n,∴S n+1-S n=2S n+1.解法一: S n+1=3S n+1,由 S2=4,可求出 S3=13,S4=40,S5=121.1113解法二: S n+1=3S n+1,则 S n+1+2= 3 S n+2 .又 S1+2=2,∴13S n+2是首项为2,公比为 3的等比数列,13n-13n-1∴ S n+2=2×3,即 S n=2,35-1∴ S5=2=121.[答案] 11214.(2017 ·绵阳三诊 )已知 { a n} 是各项都为正数的数列,其前n 项1和为 S n,且 S n为 a n与a n的等差中项.(1)求证:数列 { S n2} 为等差数列;- 1 n(2) b n=a n,求{ b n}的前n和T n.1 [ 分析 ] (1)明:由意知2S n=a n+a n,即 2S n a n-a2n=1.①当 n=1 ,由①式可得 S1=1;当 n≥2 , a n=S n-S n-1,代入①式得2S n(S n- S n-1)-(S n-S n-1)2= 1,整理得 S2n-S2n-1=1.∴ { S2n} 是首 1,公差 1 的等差数列.(2)由(1)知 S2n=n, S n=n,∴a n=S n-S n-1= n- n-1.∴ b n=-1 n-1 nn+ n-1).==(-1)n(a n n- n-1当 n 奇数, T n=- 1+ ( 2+1)-(3+2)+⋯+(n-1+n-2)-( n+ n-1)=- n;当 n 偶数, T n=- 1+ ( 2+1)-(3+2)+⋯-(n-1+n-2)+( n+ n-1)= n.∴{ b n} 的前 n 和 T n=(-1)n n.考点一等差、等比数列的基本运算1.等差数列的通公式及前n 和公式a n=a1+(n-1)d;S n=n a1+a n=na1+n n-1 d.222.等比数列的通公式及前n 和公式a n=a1q n-1(q≠0);na1 q=1 ,S n= a1 1-q n a1-a n q1-q =1-qq≠1 .[点 ]1.(2017 ·全国卷Ⅰ ) S n等差数列 { a n} 的前 n 和.若 a4+a5=24,S6=48, { a n} 的公差 ()A .1 B.2 C.4 D.8[ 分析 ] 等差数列 { a n} 中,S6=a1+a6×6=48, a1+a6= 16=2a2+a5,又 a4+a5=24,所以 a4-a2=2d=24-16=8,得 d=4,故 C.[答案] C2.(2017 ·全国卷Ⅱ )我国古代数学名著《算法宗》中有以下:“ 望巍巍塔七,光点点倍加增,共灯三百八十一,尖几灯?”意思是:一座 7 塔共挂了 381 灯,且相两中的下一灯数是上一灯数的 2倍,塔的共有灯 ()A .1B.3C.5D.9[ 分析 ] 由意可知,由上到下灯的数a1, a2,a3,⋯,a7构a1 1-27成以 2 公比的等比数列,∴S7=1-2=381,∴ a1=3.故 B.[答案]B3.(2017 ·湖北省武市武昌区高三研)公比q(q>0)的等比数列 { a n} 的前 n 和 S n.若 S2=3a2+2,S4=3a4+2, a1=()1 2A .- 2 B.- 1 C.2 D.3[ 分析 ] 由 S 2=3a 2+2,S 4=3a 4+2 得 a 3+a 4=3a 4-3a 2,即 q +q 2=3q 2-3,解得 q =- 1(舍)或 q =3,将 q =3代入 S 2=3a 2+2 中得22a 1 33+2,解得 a 1=- 1,应选 B.+ a 1=3× a 12 2[答案] B4. (2017 ·东北三校联考 )已知等差数列 { a n } 知足 a 2=3,a 5=9,若数列 { b 知足 = 3,b + =ab ,则 { b n } 的通项公式为 .n } b 1 n 1 n________[分析] 由题意可得等差数列 { a n } 的公差 d = a 5-a 25-2 =2,所以 a n= a 2+(n -2)d =2n -1,则 b n +1=ab n =2b n -1,b n + 1-1=2(b n -1),又由于 b 1-1= 2,所以数列 { b n - 1} 是首项为 2、公比为 2 的等比数列,所以 b n -1= 2n ,b n =2n +1.[ 答案 ] b n =2n +1等差 (比)数列的运算注意两点(1)在等差 (比)数列中,首项 a 1 和公差 d(公比 q)是两个最基本的元素.(2)在进行等差 (比)数列项与和的运算时, 若条件和结论间的联系不显然,则均可化成对于 a 1 和 d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量.【易错提示】 等比数列前 n 项和公式中若不确立 q 能否等于 1 应分 q =1 或 q ≠1 两种状况议论.考点二等差、等比数列的性质[对点训练 ]1.(2017 ·广州六校联考 )已知等差数列 { a n} 中, a7+ a9=16, S11=99,则 a的值是 ()212A .15B.30 C.31 D.64[分析]由于 a7+a9=2a8=16,所以 a8=8.由于 S=11 a1+a11=11×2a6=11a =99,所以 a =9,则 d=11226262a8-a6 72=4,所以 a12=a8+4d=15,应选 A.[答案]A2.太·原模拟已知等比数列{ a n}知足=1,a=4(a -1),(2017)a143a54则 a2=()11A .2B.1 C.2 D.8[分析]由等比数列的性质,得a3a5=a42=4(a4-1),解得 a =2.又 a =1,所以 q3=a4=8,即 q=2,414a111故 a 2=a1q =4×2=2.[答案]C3.(2017 ·合肥模 ) 等比数列 { a n } 的前 n 和 S n ,若 S 5=1,S 10=3, S 15 的 是 ________.[ 分析 ] ∵数列 { a n } 是等比数列,∴ S 5,S 10-S 5,S 15-S 10 成等比数列,∴ (S 10-S 5)2=S 5·(S 15-S 10),4=1×(S 15-3),得 S 15=7.[答案]7[ 研究追]3 中条件不 ,怎样求S 100 的 ?[分析]在等比数列 { a n } 中, S 5,S 10- S 5,S 15-S 10,⋯成等比数列,因 S 5=1,S 10=3,所以 S 100 可表示 等比数列1,2,4,⋯的前201× 1-22020 和,故 S 100==2 -1.[答案 ] 220-1等差、等比数列的性 是两种数列基本 律的深刻体 , 是解决等差、等比数列 既快捷又方便的工具, 存心 地去 用.但在 用性 要注意性 的前提条件,有 需要 行合适 形.考点三 等差、等比数列的判断与 明1. 明数列 { a n } 是等差数列的两种基本方法(1)利用定 , 明a n +1-a n (n ∈N * ) 一常数;(2)利用等差中 ,即 明2a n =a n -1+a n +1(n ≥2).2. 明数列 { a n } 是等比数列的两种基本方法a n+1*(1)利用定义,证明a n(n∈N)为一常数;(2)利用等比中项,即证明a2n=a n-1a n+1(n≥2).[ 解](1)证明:由 a1=1,及 S n+1=4a n+2,有 a1+a2=4a1+2,a2=3a1+2=5,∴ b1=a2-2a1=3.由 S n+1=4a n+2①知当 n≥2 时,有 S n=4a n-1+2②①-②得 a n+1=4a n-4a n-1,∴a n+1-2a n=2(a n-2a n-1)又∵ b n=a n+1-2a n,∴ b n=2b n-1,∴{ b n} 是首项 b1=3,公比为 2 的等比数列.(2)由(1)可得 b n=a n+1- 2a n=3·2n-1,a n+1 a 3∴2n+1-2n n=4,a n1 3∴数列 2n是首项为 2,公差为 4的等差数列.∴ a 2n n =12+(n -1)×34=43n -14,n -2a n =(3n -1) ·2 .等差、等比数列的判断与证明应注意的两点(1)判断一个数列是等差 (比)数列,也能够利用通项公式及前n 项和公式,但不可以作为证明方法.(2)a n+1=q 和 a 2=a - a + (n ≥2)都是数列 {a } 为等比数列的必需a n nn 1 n 1n不充足条件,判断时还要看各项能否为零.[对点训练 ]若数列 { a n } 的前 n 项和为 S n ,且知足 a n +2S n S n -1=0(n ≥2),a 11=2.1(1)求证: S n 成等差数列;(2)求数列 { a n } 的通项公式.[ 解] (1)证明:当 n ≥2 时,由 a n +2S n S n -1=0, 得 S n -S n - 1=- 2S n S n -1,所以 1 -1=2,S n S n -11 1 1 又 S 1=a 1 =2,故 S n 是首项为 2,公差为 2 的等差数列. (2) 由 可得 1 =2n ,∴ S = 1 , (1) S n n 2n11当 n ≥2 时, a n =S n -S n -1=2n -2 n -1n -1-n 1 = 2n n -1 =- 2n n -1 .1当 n =1 时, a 1=2不合适上式.12,n =1,故 a n =1-2n n -1 ,n ≥2.热门课题 11函数与方程思想在数列中的应用[感悟体验 ]1.(2017 ·西安统测 )已知等差数列 { a n } 的前 n 项和为 S n ,a 1=13,S 3=S 11,则 A .49S n 的最大值为B .28()C .- 49 或- 28D .28或 49[ 分析 ] 由 S 3=S 11,可得 3a 1+3d =11a 1+ 55d ,把 a 1=13 代入得d =- 2,故 S n =13n -n(n -1)=- n 2+14n ,依据二次函数性质, 知当n =7 时, S n 最大,且最大值为 49.2020届高三理科数学二轮复习讲义:模块二专题三数列第一讲等差数列、等比数列Word版含解析.doc[答案]A2.(2017 ·河南郑州二中期末 )已知等差数列 { a n} 的公差 d≠0,且2S n+16 a1,a3,a13成等比数列,若 a1=1,S n是数列 { a n} 的前 n 项的和,则a n+3(n∈N* )的最小值为 ()9A .4 B.3 C.2 3-2 D.2[ 分析 ]∵a1=1,a1、a3、a13成等比数列,∴ (1+2d)2=1+12d.得 d=2 或 d=0(舍去 )∴ a n=2n-1,∴S n=n 1+2n-1=n2,22S n+162n2+16∴a n+3=2n+2 .令 t=n+1,2S n+169则a n+3=t+t-2≥6-2=4 当且仅当 t=3,2S n+16即 n=2 时,∴a n+3的最小值为 4.应选 A. [答案] A。
[A 组 小题提速练]1.(等差数列求和及性质)在等差数列{a n }中,a n >0,且a 1+a 2+…+a 10=30,则a 5·a 6的最大值等于( ) A .3 B .6 C .9D .36解析:∵a 1+a 2+…+a 10=30, 得a 5+a 6=305=6,又a n >0, ∴a 5·a 6≤⎝⎛⎭⎪⎫a 5+a 622=⎝ ⎛⎭⎪⎫622=9. 答案:C2.(等差数列求和及不等式)设等差数列{a n }满足a 2=7,a 4=3,S n 是数列{a n }的前n 项和,则使得S n >0的最大的自然数n 是( ) A .9 B .10 C .11D .12解析:∵{a n }的公差d =3-74-2=-2,∴{a n }的通项为a n =7-2(n -2)=-2n +11,∴{a n }是递减数列,且a 5>0>a 6,a 5+a 6=0,于是S 9=9a 5>0,S 10=a 5+a 62·10=0,S 11=11a 6<0,故选A. 答案:A3.(等差数列求和)设数列{a n }是等差数列,且a 2=-6,a 6=6,S n 是数列{a n }的前n 项和,则( ) A .S 4<S 3 B .S 4=S 3 C .S 4>S 1D .S 4=S 1解析:设{a n }的公差为d ,由a 2=-6,a 6=6,得⎩⎨⎧a 1+d =-6,a 1+5d =6,解得⎩⎨⎧a 1=-9,d =3.于是,S 1=-9,S 3=3×(-9)+3×22×3=-18,S 4=4×(-9)+4×32×3=-18,所以S 4=S 3,S 4<S 1,故选B. 答案:B4.(等差数列求和及最值)在等差数列{a n }中,a 6+a 11=0,且公差d >0,则数列{a n }的前n 项和取最小值时n 的值为( ) A .6 B .7 C .8D .9解析:由题意知a 6<0,a 11>0,且a 1+5d +a 1+10d =0,所以a 1=-152d .又数列{a n }的前n 项和S n =na 1+n n -12d =d2[(n -8)2-64],所以当n =8时,数列{a n }的前n 项和取得最小值.故选C. 答案:C5.(数学文化与等比数列求和)中国古代数学著作《算法统宗》中有这样一个问题:三百七十八里关,初行健步并不难,次日脚痛减一半,六朝才得至其关,欲问每朝行里数,请公仔细算相还.其大意为:有一人走378里路,第一天健步行走,从第二天起因为脚痛每天走的路程都为前一天的一半,走了6天后到达目的地,问此人每天走多少里路.则此人第五天走的路程为( ) A .48里 B .24里 C .12里D .6里解析:依题意知,此人每天走的路程数构成以12为公比的等比数列a 1,a 2,…,a 6,由S6=a1⎝⎛⎭⎪⎫1-1261-12=378,解得a1=192,所以此人第五天走的路程为a5=192×124=12(里).故选C.答案:C6.(等比数列性质及基本不等式)已知首项与公比相等的等比数列{a n}满足a m a2n=a2 4(m,n∈N*),则2m+1n的最小值为( )A.1 B.3 2C.2 D.9 2解析:设该数列的首项及公比为a,则由题可得a m×a2n=a4×2,即a m×a2n=a m+2n=a4×2,得m+2n=8,所以2m+1n=18(m+2n)·⎝⎛⎭⎪⎫2m+1n=182+2+4nm+mn≥182+2+24nm×mn=1,当且仅当4nm=mn,即m=4,n=2时等号成立,故选A.答案:A7.(等比数列前n项和)在等比数列{a n}中,a1+a n=34,a2·a n-1=64,且前n 项和S n=62,则项数n等于( )A.4 B.5C.6 D.7解析:设等比数列{a n}的公比为q,由a2a n-1=a1a n=64,又a1+a n=34,解得a1=2,a n=32或a1=32,a n=2.当a1=2,a n=32时,S n=a11-q n1-q=a1-a n q1-q=2-32q1-q=62,解得q=2.又a n=a1q n-1,所以2×2n-1=2n=32,解得n=5.同理,当a1=32,a n=2时,由S n=62,解得q=12.由a n=a1q n-1=32×⎝⎛⎭⎪⎫12n-1=2,得⎝⎛⎭⎪⎫12n-1=116=⎝⎛⎭⎪⎫124,即n-1=4,n=5.综上,项数n等于5,故选B.答案:B8.(等差数列前n 项和性质)在等差数列{a n }中,a 1=-2 015,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 016的值等于( ) A .-2 015 B .2 015 C .2 016D .0解析:设数列{a n }的公差为d ,S 12=12a 1+12×112d ,S 10=10a 1+10×92d , 所以S 1212=12a 1+12×112d 12=a 1+112d .S 1010=a 1+92d ,所以S 1212-S 1010=d =2, 所以S 2 016=2 016×a 1+2 015×2 0162d =0.答案:D9.(等比数列前n 项和性质)已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2nD .1+(n -1)×2n解析:设等比数列{a n }的公比为q ,∵S 3=7,S 6=63,∴q ≠1,∴⎩⎪⎨⎪⎧a 11-q 31-q =7,a 11-q 61-q =63,解得⎩⎨⎧a 1=1,q =2,∴a n =2n -1,∴na n =n ·2n -1,设数列{na n }的前n 项和为T n ,∴T n =1+2×2+3×22+4×23+…+(n -1)·2n -2+n ·2n -1,2T n =2+2×22+3×23+4×24+…+(n -1)·2n -1+n ·2n ,∴-T n =1+2+22+23+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )2n -1,∴T n =1+(n -1)×2n ,故选D. 答案:D10.(递推关系、通项及性质)已知数列{a n }满足a 1=2,2a n a n +1=a 2n +1,设b n =a n -1a n +1,则数列{b n }是( ) A .常数列 B .摆动数列 C .递增数列D .递减数列解析:由2a n a n +1=a 2n +1可得a n +1=a 2n +12a n ,b n +1=a n +1-1a n +1+1=a 2n +12a n -1a 2n +12a n+1=a 2n -2a n +1a 2n +2a n +1=a n -12a n +12=b 2n ,由b n >0且b n ≠1,对b n +1=b 2n 两边取以10为底的对数,可得lgb n +1=2lg b n ,所以数列{lg b n }是以lg b 1=lg 2-12+1=lg 13为首项,2为公比的等比数列,所以lg b n =2n -1lg 13,b n =(13)2n -1,故数列{b n }是递减数列,故选D. 答案:D11.(等比数列、等差数列混合及性质)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值是( )A .1B .22C .-22D .- 3解析:{a n }是等比数列,{b n }是等差数列,且a 1·a 6·a 11=33,b 1+b 6+b 11=7π,∴a 36=(3)3,3b 6=7π,∴a 6=3,b 6=7π3, ∴tan b 3+b 91-a 4·a 8=tan 2b 61-a 26=tan2×7π31-32=tan ⎝ ⎛⎭⎪⎫-7π3=tan ⎝ ⎛⎭⎪⎫-2π-π3=-tan π3=- 3.答案:D12.(等差数列性质,等比数列通项)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.解析:由3S 1,2S 2,S 3成等差数列,得4S 2=3S 1+S 3,即3S 2-3S 1=S 3-S 2,则3a 2=a 3,得公比q =3,所以a n =a 1q n -1=3n -1. 答案:3n -113.(S n 与a n 关系及等差数列通项)设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=3S n ,n ∈N *,则a n =________. 解析:当n =1时,a 2=3S 1=3a 1=3. 当n ≥2时,∵a n +1=3S n ,∴a n =3S n -1,两式相减得a n +1-a n =3(S n -S n -1)=3a n ,即a n +1=4a n ,当n ≥2时,{a n }是以3为首项,4为公比的等比数列,得a n =3×4n -2.综上,a n =⎩⎨⎧1,n =1,3×4n -2,n ≥2.答案:⎩⎨⎧1,n =1,3×4n -2,n ≥2.14.(等差数列通项)已知函数y =f (x )的定义域为R ,当x <0时,f (x )>1,且对任意的实数x ,y ∈R ,等式f (x )f (y )=f (x +y )恒成立.若数列{a n }满足a 1=f (0),且f (a n +1)=1f-2-a n(n ∈N *),则a 2 016的值为________.解析:根据题意,不妨设f (x )=(12)x,则a 1=f (0)=1,∵f (a n +1)=1f-2-a n,∴a n +1=a n +2,∴数列{a n }是以1为首项、2为公差的等差数列,∴a n =2n -1,∴a 2 016=4 031. 答案:4 03115.(等差数列及性质、不等式)已知数列{a n }满足a 2=2a 1=2,na n +2是(2n +4)a n ,λ(2n 2+4n )的等差中项,若{a n }为单调递增数列,则实数λ的取值范围为________.解析:因为na n +2是(2n +4)a n ,λ(2n 2+4n )的等差中项,所以2na n +2=(2n +4)a n +λ(2n 2+4n ),即na n +2-(n +2)a n =λ(n 2+2n ),所以a n +2n +2-a nn =λ.设b n =a nn,则b n +2-b n =λ,因为a 1=1,a 2=2,所以b 1=b 2=1. 所以当n 为奇数时,b n =1+n -12λ;当n 为偶数时,b n =1+n -22λ.所以a n=⎩⎪⎨⎪⎧n +n n -1λ2,n 为奇数,n +n n -2λ2,n 为偶数.由数列{a n }为单调递增数列,得a n <a n +1. ①当n 为奇数且n >1时,n +n n -1λ2<n +1+n +1n +1-2λ2,所以λ>21-n, 又-1≤21-n<0,所以λ≥0; ②当n 为偶数时,2n +nn -2λ2<2n +1+n +1n +1-1λ2,所以λ>-23n ,又-13≤-23n<0,所以λ≥0. 综上,实数λ的取值范围为[0,+∞). 答案:[0,+∞)[B 组 大题规范练]1.(S n 与a n 的关系,等比数列的证明)已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)设b n =a n +3,证明数列{b n }为等比数列,并求a n . 解析:(1)因为数列{a n }的前n 项和为S n , 且S n =2a n -3n (n ∈N *).所以n =1时,由a 1=S 1=2a 1-3×1,解得a 1=3,n =2时,由S 2=2a 2-3×2,得a 2=9, n =3时,由S 3=2a 3-3×3,得a 3=21.(2)证明:因为S n =2a n -3×n ,所以S n +1=2a n +1-3×(n +1), 两式相减,得a n +1=2a n +3,*把b n =a n +3及b n +1=a n +1+3,代入*式, 得b n +1=2b n (n ∈N *),且b 1=6,所以数列{b n }是以6为首项,2为公比的等比数列, 所以b n =6×2n -1, 所以a n =b n -3=6×2n -1-3=3(2n-1).2.(等差数列定义、等比数列通项及求和)已知数列{a n }满足a 1=1,a n +1-a n =3,数列{b n }满足b n =3a n . (1)求数列{b n }的通项公式; (2)求数列{a n +b n }的前n 项和S n . 解析:(1)因为a 1=1,a n +1-a n =3,所以数列{a n }是首项为1,公差为3的等差数列, 所以a n =1+3(n -1)=3n -2, 故b n =3a n =33n -2.(2)由(1)知b n +1b n =33n +133n -2=27,所以数列{b n }是以3为首项,27为公比的等比数列,则数列{a n +b n }的前n 项和S n =a 1+b 1+a 2+b 2+…+a n +b n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n ) =[1+4+…+(3n -2)]+(3+34+…+33n -2) =32n 2-12n +326·27n -326. 3.(a n 与S n 关系、等比数列证明及不等式最值)已知数列{a n }的前n 项和为S n ,满足a n +S n =2n .(1)证明:数列{a n -2}为等比数列,并求出a n ; (2)设b n =(2-n )(a n -2),求{b n }的最大项. 解析:(1)证明:由a 1+S 1=2a 1=2,得a 1=1.由a n +S n =2n 可得a n +1+S n +1=2(n +1),两式相减得,2a n +1-a n =2, ∴a n +1-2=12(a n -2),∴{a n -2}是首项为a 1-2=-1,公比为12的等比数列,a n -2=(-1)×⎝ ⎛⎭⎪⎫12n -1,故a n =2-⎝ ⎛⎭⎪⎫12n -1.(2)由(1)知b n =(2-n )×(-1)×⎝ ⎛⎭⎪⎫12n -1=(n -2)×⎝ ⎛⎭⎪⎫12n -1,由b n +1-b n =n -12n-n -22n -1=n -1-2n +42n=3-n 2n≥0,得n ≤3,由b n +1-b n <0得n >3,∴b 1<b 2<b 3=b 4>b 5>…>b n >…,故{b n }的最大项为b 3=b 4=14.4.(等差、等比数列通项及和的最值)设S n ,T n 分别是数列{a n },{b n }的前n 项和,已知对于任意n ∈N *,都有3a n =2S n +3,数列{b n }是等差数列,且T 5=25,b 10=19.(1)求数列{a n }和{b n }的通项公式; (2)设c n =a nb nn n +1,求数列{c n }的前n 项和R n ,并求R n 的最小值.解析:(1)由3a n =2S n +3,得 当n =1时,有a 1=3; 当n ≥2时,3a n -1=2S n -1+3, 从而3a n -3a n -1=2a n ,即a n =3a n -1, 所以a n ≠0,a na n -1=3, 所以数列{a n }是首项为3,公比为3的等比数列,因此a n =3n . 设数列{b n }的公差为d ,由T 5=25,b 10=19, 得⎩⎨⎧5b 1+10d =25,b 1+9d =19,解得b 1=1,d =2, 因此b n =2n -1.(2)由(1)可得c n =2n -13nn n +1=[3n -n +1]3n n n +1=3n +1n +1-3nn,R n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫-31+322+⎝ ⎛⎭⎪⎫-322+333+…+⎝ ⎛⎭⎪⎫-3nn +3n +1n +1=3n +1n +1-3,因为c n =2n -13nn n +1>0,所以数列{R n }单调递增.所以n =1时,R n 取最小值,故最小值为32.。
第1讲 等差数列与等比数列[考情考向分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力.热点一 等差数列、等比数列的运算 1.通项公式等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1.2.求和公式 等差数列:S n =n (a 1+a n )2=na 1+n (n -1)2d ;等比数列:S n =a 1(1-q n )1-q =a 1-a n q1-q(q ≠1).3.性质 若m +n =p +q ,在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q .例1 (1)(2018·北京)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为______. 答案 a n =6n -3(n ∈N *)解析 方法一 设公差为d .∵a 2+a 5=36,∴(a 1+d )+(a 1+4d )=36,∴2a 1+5d =36.∵a 1=3,∴d =6,∴通项公式a n =a 1+(n -1)d =6n -3(n ∈N *). 方法二 设公差为d ,∵a 2+a 5=a 1+a 6=36,a 1=3, ∴a 6=33,∴d =a 6-a 15=6.∵a 1=3,∴通项公式a n =6n -3(n ∈N *).(2)(2018·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 25,且S 4+S 12=λS 8,则λ=________. 答案 83解析 ∵a 3a 11=2a 25,∴a 27=2a 25,∴q 4=2, ∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q,1-q 4+1-q 12=λ(1-q 8), 将q 4=2代入计算可得λ=83.思维升华 在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a 1和d (q )的方程组求解,但要注意消元法及整体计算,以减少计算量.跟踪演练1 (1)设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则a 1等于( ) A .-2 B .-1 C.12 D.23答案 B解析 S 4-S 2=a 3+a 4=3a 4-3a 2,即3a 2+a 3-2a 4=0,即3a 2+a 2q -2a 2q 2=0, 即2q 2-q -3=0,解得q =-1(舍)或q =32,当q =32时,代入S 2=3a 2+2,得a 1+a 1q =3a 1q +2,解得a 1=-1.(2)(2018·全国Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. ①求{a n }的通项公式;②记S n 为{a n }的前n 项和,若S m =63,求m . 解 ①设{a n }的公比为q ,由题设得a n =qn -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1(n ∈N *).②若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m=-188,此方程没有正整数解. 若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6. 综上,m =6.热点二 等差数列、等比数列的判定与证明证明数列{a n }是等差数列或等比数列的证明方法 (1)证明数列{a n }是等差数列的两种基本方法: ①利用定义,证明a n +1-a n (n ∈N *)为一常数;②利用等差中项,即证明2a n =a n -1+a n +1(n ≥2,n ∈N *). (2)证明数列{a n }是等比数列的两种基本方法: ①利用定义,证明a n +1a n(n ∈N *)为一常数; ②利用等比中项,即证明a 2n =a n -1a n +1(n ≥2,n ∈N *).例2 已知数列{a n },{b n },其中a 1=3,b 1=-1,且满足a n =12(3a n -1-b n -1),b n =-12(a n -1-3b n -1),n ∈N *,n ≥2.(1)求证:数列{a n -b n }为等比数列;(2)求数列⎩⎨⎧⎭⎬⎫2n a n a n +1的前n 项和T n . (1)证明 a n -b n =12(3a n -1-b n -1)-⎝ ⎛⎭⎪⎫-12(a n -1-3b n -1)=2(a n -1-b n -1), 又a 1-b 1=3-(-1)=4,所以{a n -b n }是首项为4,公比为2的等比数列. (2)解 由(1)知,a n -b n =2n +1,①又a n +b n =12(3a n -1-b n -1)+⎝ ⎛⎭⎪⎫-12(a n -1-3b n -1)=a n -1+b n -1,又a 1+b 1=3+(-1)=2,所以{a n +b n }为常数数列,a n +b n =2,② 联立①②得,a n =2n+1,2n a n a n +1=2n(2n +1)(2n +1+1)=12n +1-12n +1+1, 所以T n =⎝ ⎛⎭⎪⎫121+1-122+1+⎝ ⎛⎭⎪⎫122+1-123+1+…+⎝ ⎛⎭⎪⎫12n +1-12n +1+1=121+1-12n +1+1=13-12n +1+1(n ∈N *). 思维升华 (1)判断一个数列是等差(比)数列,也可以利用通项公式及前n 项和公式,但不能作为证明方法.(2)a 2n =a n -1a n +1(n ≥2)是数列{a n }为等比数列的必要不充分条件,判断时还要看各项是否为零.跟踪演练2 (2018·新余模拟)已知{a n }是各项都为正数的数列,其前n 项和为S n ,且S n 为a n 与1a n的等差中项.(1)求证:数列{S 2n }为等差数列; (2)求数列{a n }的通项公式;(3)设b n =(-1)n a n,求{b n }的前n 项和T n .(1)证明 由题意知2S n =a n +1a n,即2S n a n -a 2n =1,(*)当n ≥2时,有a n =S n -S n -1,代入(*)式得 2S n (S n -S n -1)-(S n -S n -1)2=1, 整理得S 2n -S 2n -1=1(n ≥2).又当n =1时,由(*)式可得a 1=S 1=1, ∴数列{S 2n }是首项为1,公差为1的等差数列. (2)解 由(1)可得S 2n =1+n -1=n , ∵数列{a n }的各项都为正数, ∴S n =n ,∴当n ≥2时,a n =S n -S n -1=n -n -1, 又a 1=S 1=1满足上式, ∴a n =n -n -1(n ∈N *). (3)解 由(2)得b n =(-1)n a n=(-1)nn -n -1=(-1)n(n +n -1), 当n 为奇数时,T n =-1+(2+1)-(3+2)+…+(n -1+n -2)-(n +n -1)=-n ,当n 为偶数时,T n =-1+(2+1)-(3+2)+…-(n -1+n -2)+(n +n -1)=n ,∴数列{b n }的前n 项和T n =(-1)nn (n ∈N *).热点三 等差数列、等比数列的综合问题解决等差数列、等比数列的综合问题,要从两个数列的特征入手,理清它们的关系;数列与不等式、函数、方程的交汇问题,可以结合数列的单调性、最值求解. 例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与其前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使得对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.解 (1)由a 2+a 7+a 12=-6,得a 7=-2,∴a 1=4, ∴a n =5-n ,从而S n =n (9-n )2(n ∈N *).(2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列{b n }的公比为q ,则q =b 2b 1=12,∴T m =4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12m 1-12=8⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12m ,∵⎝ ⎛⎭⎪⎫12m随m 的增加而减少, ∴{T m }为递增数列,得4≤T m <8. 又S n =n (9-n )2=-12(n 2-9n )=-12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫n -922-814,故(S n )max =S 4=S 5=10,若存在m ∈N *,使得对任意n ∈N *,总有S n <T m +λ, 则10<8+λ,得λ>2.即实数λ的取值范围为(2,+∞).思维升华 (1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.(2)数列的项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列问题. (3)数列中的恒成立问题可以通过分离参数,通过求数列的值域求解. 跟踪演练3 已知数列{a n }的前n 项和为S n ,且S n -1=3(a n -1),n ∈N *. (1)求数列{a n }的通项公式;(2)设数列{b n }满足a n +1=32n na b ⋅⎛⎫ ⎪⎝⎭,若b n ≤t 对于任意正整数n 都成立,求实数t 的取值范围.解 (1)由已知得S n =3a n -2,令n =1,得a 1=1, 又a n +1=S n +1-S n =3a n +1-3a n , 得a n +1=32a n ,所以数列{a n }是以1为首项,32为公比的等比数列,所以a n =⎝ ⎛⎭⎪⎫32n -1(n ∈N *).(2)由a n +1=32n na b ⋅⎛⎫⎪⎝⎭,得b n =1a n 312log n a +=⎝ ⎛⎭⎪⎫23n -1323log 2n⎛⎫ ⎪⎝⎭=n ·⎝ ⎛⎭⎪⎫23n -1,所以b n +1-b n =(n +1)·⎝ ⎛⎭⎪⎫23n -n ·⎝ ⎛⎭⎪⎫23n -1=2n -13n (2-n ), 所以(b n )max =b 2=b 3=43,所以t ≥43.即t 的取值范围为⎣⎢⎡⎭⎪⎫43,+∞.真题体验1.(2017·全国Ⅰ改编)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为________. 答案 4解析 设{a n }的公差为d ,由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,解得d =4.2.(2017·浙江改编)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的________条件.解析 方法一 ∵数列{a n }是公差为d 的等差数列, ∴S 4=4a 1+6d ,S 5=5a 1+10d ,S 6=6a 1+15d , ∴S 4+S 6=10a 1+21d ,2S 5=10a 1+20d . 若d >0,则21d >20d ,10a 1+21d >10a 1+20d , 即S 4+S 6>2S 5.若S 4+S 6>2S 5,则10a 1+21d >10a 1+20d , 即21d >20d ,∴d >0.∴“d >0”是“S 4+S 6>2S 5”的充要条件.方法二 ∵S 4+S 6>2S 5⇔S 4+S 4+a 5+a 6>2(S 4+a 5)⇔a 6>a 5⇔a 5+d >a 5⇔d >0. ∴“d >0”是“S 4+S 6>2S 5”的充要条件.3.(2017·北京)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________. 答案 1解析 设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 则由a 4=a 1+3d , 得d =a 4-a 13=8-(-1)3=3,由b 4=b 1q 3,得q 3=b 4b 1=8-1=-8,∴q =-2. ∴a 2b 2=a 1+db 1q =-1+3-1×(-2)=1.4.(2017·江苏)等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.答案 32解析 设{a n }的首项为a 1,公比为q ,则⎩⎪⎨⎪⎧a 1(1-q 3)1-q =74,a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧a 1=14,q =2,所以a 8=14×27=25=32.1.设等差数列{a n}的前n项和为S n,且a1>0,a3+a10>0,a6a7<0,则满足S n>0的最大自然数n的值为( )A.6 B.7 C.12 D.13押题依据等差数列的性质和前n项和是数列最基本的知识点,也是高考的热点,可以考查学生灵活变换的能力.答案 C解析∵a1>0,a6a7<0,∴a6>0,a7<0,等差数列的公差小于零,又a3+a10=a1+a12>0,a1+a13=2a7<0,∴S12>0,S13<0,∴满足S n>0的最大自然数n的值为12.2.在等比数列{a n}中,a3-3a2=2,且5a4为12a3和2a5的等差中项,则{a n}的公比等于( ) A.3 B.2或3C.2 D.6押题依据等差数列、等比数列的综合问题可反映知识运用的综合性和灵活性,是高考出题的重点.答案 C解析设公比为q,5a4为12a3和2a5的等差中项,可得10a4=12a3+2a5,10a3q=12a3+2a3q2,得10q=12+2q2,解得q=2或3.又a3-3a2=2,所以a2q-3a2=2,即a2(q-3)=2,所以q =2.3.已知各项都为正数的等比数列{a n}满足a7=a6+2a5,存在两项a m,a n使得a m·a n=4a1,则1m+4n的最小值为( )A.32B.53C.256D.43押题依据本题在数列、方程、不等式的交汇处命题,综合考查学生应用数学的能力,是高考命题的方向.答案 A解析由a7=a6+2a5,得a1q6=a1q5+2a1q4,整理得q2-q-2=0,解得q =2或q =-1(不合题意,舍去), 又由a m ·a n =4a 1,得a m a n =16a 21, 即a 212m +n -2=16a 21,即有m +n -2=4,亦即m +n =6,那么1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n =16⎝ ⎛⎭⎪⎫4m n +n m +5≥16⎝⎛⎭⎪⎫24m n ·n m +5=32, 当且仅当4m n =nm,即n =2m =4时取等号.4.定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x;③f (x )=|x |;④f (x )=ln|x |. 则其中是“保等比数列函数”的f (x )的序号为( ) A .①② B.③④ C.①③ D.②④押题依据 先定义一个新数列,然后要求根据定义的条件推断这个新数列的一些性质或者判断一个数列是否属于这类数列的问题是近年来高考中逐渐兴起的一类问题,这类问题一般形式新颖,难度不大,常给人耳目一新的感觉. 答案 C解析 由等比数列的性质得,a n a n +2=a 2n +1. ①f (a n )f (a n +2)=a 2n a 2n +2=(a 2n +1)2=[f (a n +1)]2; ②f (a n )f (a n +2)=222n n aa +=22n n a a ++≠122n a +=[f (a n +1)]2;③f (a n )f (a n +2)=|a n a n +2|=|a n +1|2=[f (a n +1)]2; ④f (a n )f (a n +2)=ln|a n |ln|a n +2|≠(ln|a n +1|)2=[f (a n +1)]2.A 组 专题通关1.(2018·大庆质检)已知等差数列{a n }中,a 4=9,S 4=24,则a 7等于( ) A .3 B .7 C .13 D .15 答案 D解析 由于数列为等差数列,依题意得⎩⎪⎨⎪⎧a 1+3d =9,4a 1+6d =24,解得d =2,所以a 7=a 4+3d =9+6=15.2.(2018·淮北模拟)已知等比数列{a n }中,a 5=2,a 6a 8=8,则a 2 018-a 2 016a 2 014-a 2 012等于( )A .2B .4C .6D .8 答案 A解析 ∵数列{a n }是等比数列,∴a 6a 8=a 27=8,a 7=22(与a 5同号),∴q 2=a 7a 5=2, 从而a 2 018-a 2 016a 2 014-a 2 012=q 4=(2)2=2.3.(2018·株洲质检)已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,S n 是{a n }的前n 项和,则S 9等于( )A .-8B .-6C .0D .10 答案 C解析 ∵a 1,a 3,a 4成等比数列, ∴a 23=a 1a 4,∴(a 1+2×2)2=a 1·(a 1+3×2),化为2a 1=-16, 解得a 1=-8,则S 9=-8×9+9×82×2=0.4.一个等比数列的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列的项数是( ) A .13 B .12 C .11 D .10答案 B解析 设等比数列为{a n },其前n 项积为T n ,由已知得a 1a 2a 3=2,a n a n -1a n -2=4,可得(a 1a n )3=2×4,a 1a n =2,∵T n =a 1a 2…a n ,∴T 2n =(a 1a 2…a n )2=(a 1a n )(a 2a n -1)…(a n a 1)=(a 1a n )n=2n=642=212, ∴n =12.5.(2018·荆州质检)已知数列{a n }满足51n a +=25·5n a,且a 2+a 4+a 6=9,则13log (a 5+a 7+a 9)等于( )A .-3B .3C .-13 D.13答案 A解析 ∵15n a +=25·5n a =25n a +,∴a n +1=a n +2,∴数列{a n }是等差数列,且公差为2.∵a 2+a 4+a 6=9,∴3a 4=9,a 4=3. ∴log 13(a 5+a 7+a 9)=log 133a 7=log 133(a 4+6)=log 1327=-3.6.(2018·资阳模拟)已知等差数列{a n }的前n 项和为S n ,a 1=9,a 5=1,则使得S n >0成立的最大的自然数n 为________.答案 9解析 因为a 1=9,a 5=1,所以d =1-94=-2, 所以S n =9n +12n (n -1)(-2)>0,即n <10, 因此使得S n >0成立的最大的自然数n 为9.7.(2018·石嘴山模拟)在正项等比数列{a n }中,若a 1,12a 3,2a 2成等差数列,则a 5a 3=________. 答案 3+2 2解析 由于a 1,12a 3,2a 2成等差数列, 所以a 3=a 1+2a 2,即a 1q 2=a 1+2a 1q ,q 2-2q -1=0,解得q =2+1或q =1-2(舍去).故a 5a 3=q 2=3+2 2.8.已知数列{a n }满足a 1=2,且a n =2na n -1a n -1+n -1(n ≥2,n ∈N *),则a n =________. 答案 n ·2n2n -1解析 由a n =2na n -1a n -1+n -1,得n a n =n -12a n -1+12, 于是n a n -1=12⎝ ⎛⎭⎪⎫n -1a n -1-1(n ≥2,n ∈N *).又1a 1-1=-12, ∴数列⎩⎨⎧⎭⎬⎫n a n -1是以-12为首项,12为公比的等比数列,故n a n -1=-12n , ∴a n =n ·2n 2n -1(n ∈N *). 9.意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…,即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N *),此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,若此数列被3整除后的余数构成一个新数列{}b n ,则b 2 017=________.答案 1解析 由题意得引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…, 此数列被3 整除后的余数构成一个新数列为1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,…, 构成以8项为周期的周期数列,所以b 2 017=b 1=1.10.(2018·天津)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *),已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6.(1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.解 (1)设等比数列{b n }的公比为q (q >0).由b 1=1,b 3=b 2+2,可得q 2-q -2=0.因为q >0,可得q =2,故b n =2n -1. 所以T n =1-2n 1-2=2n -1(n ∈N *). 设等差数列{a n }的公差为d .由b 4=a 3+a 5,可得a 1+3d =4.由b 5=a 4+2a 6,可得3a 1+13d =16,从而a 1=1,d =1,故a n =n ,所以S n =n (n +1)2(n ∈N *). (2)由(1),有T 1+T 2+...+T n =(21+22+ (2))-n =2×(1-2n )1-2-n =2n +1-n -2. 由S n +(T 1+T 2+…+T n )=a n +4b n ,可得n (n +1)2+2n +1-n -2=n +2n +1,整理得n 2-3n -4=0,解得n =-1(舍去)或n =4.所以n 的值为4.B 组 能力提高11.数列{a n }是以a 为首项,b 为公比的等比数列,数列{b n }满足b n =1+a 1+a 2+…+a n (n =1,2,…),数列{}c n 满足c n =2+b 1+b 2+…+b n (n =1,2,…),若{}c n 为等比数列,则a +b 等于( ) A. 2 B .3 C. 5 D .6答案 B解析 由题意知,当b =1时,{c n }不是等比数列,所以b ≠1.由a n =ab n -1,得b n =1+a (1-b n )1-b =1+a 1-b -ab n1-b, 则c n =2+⎝ ⎛⎭⎪⎫1+a 1-b n -a 1-b·b (1-b n)1-b =2-ab (1-b )2+1-b +a 1-b n +ab n +1(1-b )2, 要使{}c n 为等比数列,必有⎩⎪⎨⎪⎧ 2-ab (1-b )2=0,1-b +a 1-b =0,得⎩⎪⎨⎪⎧ a =1,b =2,a +b =3.12.艾萨克·牛顿(1643年1月4日-1727年3月31日)是英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f (x )的零点时给出一个数列{}x n 满足x n +1=x n -f (x n )f ′(x n ),我们把该数列称为牛顿数列.如果函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,数列{}x n 为牛顿数列,设a n =ln x n -2x n -1,已知a 1=2,x n >2,则{a n }的通项公式a n =________.答案 2n解析 ∵ 函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,∴⎩⎪⎨⎪⎧ a +b +c =0,4a +2b +c =0, 解得⎩⎪⎨⎪⎧ c =2a ,b =-3a .∴f (x )=ax 2-3ax +2a ,则f ′(x )=2ax -3a .则x n +1=x n -ax 2n -3ax n +2a 2ax n -3a =x n -x 2n -3x n +22x n -3=x 2n -22x n -3, ∴x n +1-2x n +1-1=x 2n -22x n -3-2x 2n -22x n -3-1 =x 2n -2-2(2x n -3)x 2n -2-(2x n -3)=⎝ ⎛⎭⎪⎫x n -2x n -12, 则数列{a n }是以2为公比的等比数列,又∵a 1=2,∴数列{a n }是以2为首项,以2为公比的等比数列,则a n =2·2n -1=2n. 13.(2018·攀枝花统考)记m =d 1a 1+d 2a 2+…+d n a n n,若{}d n 是等差数列,则称m 为数列{a n }的“d n 等差均值”;若{}d n 是等比数列,则称m 为数列{a n }的“d n 等比均值”.已知数列{a n }的“2n -1等差均值”为2,数列{b n }的“3n -1等比均值”为3.记c n =2a n+k log 3b n ,数列{}c n 的前n 项和为S n ,若对任意的正整数n 都有S n ≤S 6,则实数k 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤135,114 解析 由题意得2=a 1+3a 2+…+(2n -1)a n n, 所以a 1+3a 2+…+(2n -1)a n =2n ,所以a 1+3a 2+…+(2n -3)a n -1=2n -2(n ≥2,n ∈N *),两式相减得a n =22n -1(n ≥2,n ∈N *). 当n =1时,a 1=2,符合上式,所以a n =22n -1(n ∈N *). 又由题意得3=b 1+3b 2+…+3n -1b n n, 所以b 1+3b 2+…+3n -1b n =3n , 所以b 1+3b 2+…+3n -2b n -1=3n -3(n ≥2,n ∈N *), 两式相减得b n =32-n (n ≥2,n ∈N *).当n =1时,b 1=3,符合上式, 所以b n =32-n (n ∈N *). 所以c n =(2-k )n +2k -1.因为对任意的正整数n 都有S n ≤S 6,所以⎩⎪⎨⎪⎧ c 6≥0,c 7≤0,解得135≤k ≤114. 14.设等差数列{a n }的前n 项和为S n ,a =(a 1,1),b =(1,a 10),若a·b =24,且S 11=143,数列{b n }的前n 项和为T n ,且满足12n a -=λT n -(a 1-1)(n ∈N *). (1)求数列{a n }的通项公式及数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和M n ;(2)是否存在非零实数λ,使得数列{b n }为等比数列?并说明理由. 解 (1)设数列{a n }的公差为d , 由a =(a 1,1),b =(1,a 10),a·b =24, 得a 1+a 10=24,又S 11=143,解得a 1=3,d =2, 因此数列{a n }的通项公式是a n =2n +1(n ∈N *), 所以1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3, 所以M n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =n 6n +9(n ∈N *). (2)因为12n a -=λT n -(a 1-1)(n ∈N *),且a 1=3, 所以T n =4n λ+2λ, 当n =1时,b 1=6λ; 当n ≥2时,b n =T n -T n -1=3·4n -1λ, 此时有b n b n -1=4,若{b n }是等比数列, 则有b 2b 1=4,而b 1=6λ,b 2=12λ,彼此相矛盾, 故不存在非零实数λ使数列{b n }为等比数列.。