【易错题】中考数学模拟试题及答案
- 格式:doc
- 大小:1.16 MB
- 文档页数:23
一、相似真题与模拟题分类汇编(难题易错题)1.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t (0<t<10).(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.【答案】(1)解:在y=ax2+bx+4中,令x=0可得y=4,∴C(0,4),∵四边形OABC为矩形,且A(10,0),∴B(10,4),把B、D坐标代入抛物线解析式可得,解得,∴抛物线解析式为y= x2+ x+4;(2)解:由题意可设P(t,4),则E(t, t2+ t+4),∴PB=10﹣t,PE= t2+ t+4﹣4= t2+ t,∵∠BPE=∠COD=90°,当∠PBE=∠OCD时,则△PBE∽△OCD,∴,即BP•OD=CO•PE,∴2(10﹣t)=4( t2+ t),解得t=3或t=10(不合题意,舍去),∴当t=3时,∠PBE=∠OCD;当∠PBE=∠CDO时,则△PBE∽△ODC,∴,即BP•OC=DO•PE,∴4(10﹣t)=2( t2+ t),解得t=12或t=10(均不合题意,舍去)综上所述∴当t=3时,∠PBE=∠OCD(3)解:当四边形PMQN为正方形时,则∠PMC=∠PNB=∠CQB=90°,PM=PN,∴∠CQO+∠AQB=90°,∵∠CQO+∠OCQ=90°,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴,即OQ•AQ=CO•AB,设OQ=m,则AQ=10﹣m,∴m(10﹣m)=4×4,解得m=2或m=8,①当m=2时,CQ==,BQ==,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC•sin∠PCQ= t,PN=PB•sin∠CBQ=(10﹣t),∴ t =(10﹣t),解得t=,②当m=8时,同理可求得t=,∴当四边形PMQN为正方形时,t的值为或【解析】【分析】(1)先求出抛物线与y轴的交点C的坐标,再根据矩形ABCO及点A的坐标为(10,0),求出点B的坐标,然后利用待定系数法,将点B、D的坐标分别代入函数解析式求出二次函数解析式。
中考数学易错题集锦及答案易错题集锦及答案一、选择题1、若A、B是数轴上原点两旁的点,则它们表示的两个有理数是(C)。
A、互为相反数;B、绝对值相等;C、是符号不同的数;D、都是负数。
2、有理数a、b在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是(A)。
3、轮船顺流航行时m千米/小时,逆流航行时(m-6)千米/小时,则水流速度(B)。
4、方程2x+3y=20的正整数解有(B)。
A、1个;B、3个;C、4个;D、无数个。
5、下列说法错误的是(C)。
A、两点确定一条直线;B、线段是直线的一部分;C、一条直线是一个平角;D、把线段向两边延长即是直线。
6、函数y=(m-1)x-(3m-1)x+2的图象与x轴的交点情况是(C)。
A、当m≠3时,有一个交点;B、m1时,有两个交点;C、当m1时,有一个交点;D、不论m为何值,均无交点。
7、如果两圆的半径分别为R和r(R>r),圆心距为d,且(d-r)=R,则两圆的位置关系是(B)。
A、内切;B、外切;C、内切或外切;D、不能确定。
8、在数轴上表示有理数a、b、c的小点分别是A、B、C且b<a<c,则下列图形正确的是(D)。
9、有理数中,绝对值最小的数是(C)。
A、-1;B、1;C、0;D、不存在。
10、的倒数的相反数是(A)。
11、若|x|=x,则-x一定是(B)。
A、正数;B、非负数;C、负数;D、非正数。
12、两个有理数的和除以这两个有理数的积,其商为,则这两个有理数为(C)。
A、互为相反数;B、互为倒数;C、互为相反数且不为0;D、有一个为0.13、长方形的周长为x,宽为2,则这个长方形的面积为(C)。
14、“比x的相反数大3的数”可表示为(C)。
15、如果0<a<1,那么下列说法正确的是(B)。
二、填空题1、已知函数f(x)=3x-2,则f(2a-1)=(6a-5)。
2、已知函数f(x)=x^2-2x+1,则f(a+1)=(a^2+2a)。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.计算200820090.04(25)⨯-的结果正确的是( ) A .2009B . -25C .1D .-12.小伟五次数学考试成绩分别为86分,78分,80分,85分,92分,李老师想了解小伟数学学习变化情况,则李老师最关注小伟数学成绩的( ) A .平均数B .众数C .中位数D .方差3.已知3282x ⨯=,则x 的值等于( ) A .4B .5C . 6D .74.下列等式成立的是( ) A .22()()x y x y -=-- B .22()()x y x y +=-- C .222()m n m n -=-D .222()m n m n +=+5.下列各式运算正确的是( ) A .0c d c da a-+-= B .0a ba b b a-=-- C .33110()()a b b a +=-- D .22110()()a b b a +=-- 6. 表示人面部表情的四幅图案,其中不是轴对称图形的是( ) 7.下列各个物体的运动,属于旋转的是( ) A .电梯从一楼升到了八楼 B .电风扇叶片的转动 C .火车在笔直的铁路上行驶D .一块石子扔进河里,水波在不断扩大8.下列“QQ 表情”中属于轴对称图形的是( ) A . B . C .D .9.下列各式由左边到右边的变形中,是分解因式的为( )A .ay ax y x a +=+)(B .4)4(442+-=+-x x x x C .)12(55102-=-x x x x D .x x x x x 3)4)(4(3162+-+=+-10.如图,在△ABC 中,∠A :∠ABC :∠ACB =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( ) A .1:2B . 1:3C . 2: 3D . 1 : 411.下列方程中,与方程1x y +=有公共解23x y =-⎧⎨=⎩的是( ) A .45y x -=B .23y 13x -=-C .21y x =+D .1x y =-12.下列方程组中,属于二元一次方程组的是( )A . 78xy x y =⎧⎨+=⎩B . 21729x y x y -=⎧⎨+=⎩C . 82x y x y +=⎧⎨-=⎩D . 5011x y x y -=⎧⎪⎨+=⎪⎩13.向如图所示的盘中随机抛掷一枚骰子,落在阴影区域的概率(盘底被等分成 12份,不考虑骰子落在线上的情形)是( ) A .16B .14C .13D . 1214.由132x y-=可以得到用x 表示y 的式子的是( )A .223x y -=B .2133x y =- C . 223x y =- D .223x y =-15.如图,能判定 AB ∥CD 的条件是( ) A .∠1=∠2B .∠1+∠2= 180°C .∠3=∠4D .∠3+∠1=180°16.如图所示,已知 AB ∥CD ,则与 ∠1相等的角 (∠1 除外)共有( ) A .5 个B .4 个C .3 个D .个17.如图,直线12l l ∥,l 分别与12l l ,相交,如果2120∠=,那么1∠的度数是( )A.30B.45C.60D.7518.如图,小明从A 处出发沿北偏东60°向行走至B处,又沿北偏西20°方向行走至 C 处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左传80°C.右转100°D.左传100°19.如图,1l∥2l ,△ABC为等边三角形,∠ABD=25°,则∠ACE的度数是()A.45°B.35°C.25°D.15°20.有理数:-7,3. 5,12-,112,0,π,1317中正分数有()A.1 个B. 2 个C.3 个D.4 个21.已知Rt△ABC中,∠C=90°,若三角形的周长为24 cm ,斜边c为10 cm,则Rt△ABC的面积为()A.24 cm2 B.36 cm2 C.48 cm2 D.96 cm222.下列图形中,不是轴对称图形的是()A.线段B.角C.直角三角形D.等腰三角形23.在△ABC中,∠BAC=90°,AD⊥BC于D,若AB=3,BC=5,则DC的长度是()A.85B.45C.165D.22524.下图中经过折叠可以围成一个三棱注的有()A.B.C.D.25.袋中有同样大小的4个小球,其中 3个红色,1个白色. 从袋中任意地同时摸出两个球,这两个球颜色相同的概率是()A.12B.13C.23D.1426.如图是某公司近三年的资金投放总额与利润统计示意图,根据图中的信息判断:ll1l212①2001年的利润率比2000年的高2%; ②2002年的利润率比2001年的利润率高8%; ③这三年的平均利润率为14%; ④这三年中2002年的利润率最高. 以上判断正确的结论有( ) A .1个B .2个C .3个D .4个27.设|3|a =-+,|3|b =--,c 是-3 的相反数,则 a 、b 、c 的大小关系是( ) A .a b c ==B .a b c =<C .a b c =>D .a b c ≥>28.数轴上A 、B 两点分别是8.2,365,则 A .B 两点间的距离为( )A .4145B .2145C .-1. 6D .1. 629.1134(1)324-⨯-⨯的结果是( )A .112B .142C .748-D .74830.下面计算正确的是( )A .-5 ×(-4)×(-2) )×(-2) = 5 ×4×2×2=80B .(-12)×(11134--)=-4+3+1=0C .(- 9)×5 ×(-4 )×0 = 9×5×4 = 180D .-2×5 -2×(-1)-(-2)×2 =-2(5+1-2)=-8 31.当n 为整数时,212(1)(1)n n --+-的值为( ) A .-2B .0C .1D . 232.下列说法中正确的是 ( ) A .近似数32与32.0的精确度相同 B .近似数32与32.0的有效数字相同 C .近似数5万与近似数50000的精确度相同D .近似数0.0110与近似数3.20×105的有效数字的个数相同33.小明编制了一个计算程序,当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和,若输入-2,显示的结果应当是( )A .2 B.3 C.4 D.534.倒数与它本身相等的数一定是( ) A . 1B .1或-1C .-1D . 1或-1或035.下列说法正确的是( ) A . 有理数一定有平方根 B . 负数没有平方根C . 一个正数的平方根,只有一个D .1 的平方根是 136.多项式2235x y +与214y xy -+的差是( ) A .229x y - B .223146xy xy y ++ C .223146x xy y -+ D .223144x xy y ++37.以12x y =-⎧⎨=⎩为解的二元一次方程组( ) A . 有且只有一个B . 有且只有两个C . 有且只有三个D . 有无数个38.已知关于x 的方程3x +2a =2的解是a -1,则a 的值是( ) A .1B .53C .51D .-139.等腰三角形一边长等于4,一边长等于9,它的周长是( ) A .17B .22C .17或22D .1340.要反映宁波市一周内每天的最高气温的变化情况,宜采用( ) A .条形统计图B .扇形统计图C .折线统计图D .以上都可以41.张明对沙河口区快餐公司的发展情况作了调查,制成了该地区快餐公司个数情况和平均年销量的情况统计图,由图(1)、图(2)中的信息,知2006年共销售盒饭( )A .50万盒B . 118万盒C .120万盒D .无法估计42.4条直线相交于同一点,对顶角的对数是( ) A .6对B .8对C .10对D .12对43.A 、B 是平面上两点,AB=10 cm ,P 为平面上一点,若PA+PB=20 cm ,则P 点 ( ) A .只能在直线AB 外 B .只能在直线AB 上 C .不能在直线AB 上 D .不能在线段AB 上44.如图,直线AB 、CD 相交于点0,EO ⊥AB 于点0,则图中∠1与∠2的关系是( ) A .相等B .互余C .互补D .没有关系45.下列直线的表示中,正确的是( ) A .直线AB .直线ABC .直线abD .直线A b46.若∠AOB=50°,∠BOC=20°,则∠AOC 的度数是 ( ) A .30°B .70°C .30°或 70°D .100°47.如图所示,如果直线m 是多边形ABCDE 的对称轴,其中∠A=130°,∠B=110°,那么∠BCD 的度数为( )A .30°B .10°C .50°D .60°48.下列事件中,确定事件的个数是( )①下周日是晴天;③人没有氧气就会窒息而死;③三角形的面积=12底×高;④掷一 枚硬币,正面朝上. A .1 个B .2 个C .3 个D .4 个49.用2倍放大镜照一个边长为3的等边三角形,则放大后三角形的( ) A .边长为3B .边长为4C .内角为60°D .内角为l20°50.要锻造直径为200 mm ,厚为18 mm 的钢圆盘,现有直径为40 mm 的圆钢,不计损耗,则应截取的圆钢长为 ( ) A .350 mmB .400 mmC .450 mmD .500 mm51.已知二次函数y=ax 2+bx+c (a ≠0)的顶点坐标为M (2,-4 ),且其图象经过点A (0, 0 ),则a, b , c 的值是( ) A .a=l, b=4, c=0B .a=1,b=-4,c=0C .a=-1,b=-1,c=0D .a=1,b=-4,c=852.如图,在□ABCD 中,对角线AC 、BD 交于点O ,则图中全等三角形的对数有( ) A .2B .4C .6D .853.下列性质中,平行四边形具有而非平行四边形不具有的是( ) A .内角和为360°B .外角和为360°C .不稳定性D .对角相等54.要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( ) A .个体B .总体C .样本容量D .总体的一个样本55.正方形具有而菱形不一定具有的特征有( ) A .对角线互相垂直平分 B .内角和为360° C .对角线相等D .对角线平分内角56.在△ABC 中,∠A :∠B :∠C=2:3:5,则△ABC 是( ) A .锐角三角形B .钝角三角形C .直角三角形D .无法确定57.如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A .32B .33C .34D .358.抽查20名学生每分脉搏跳动次数,获得如下数据(单位:次)81,73,77,79,80,78,85,80,68,90,80,89,82,81,84,72,83,77,79,75. 以5次为组距分组,绘制频数分布表时,频率为0.45的一组是( )A .72.5~77.5B .77.5~82.5C .82.5~87.5D .87.5~92.559. 用长 8m 的铝合金做成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A .6425m 2B .43m 2 C .83m 2 D .4m 260.某商店购进某种商品的价格是每件 2. 5元,在一段时间里,售出单价为 13. 5 元时, 销售量为 500 件,而销售单价每降低 3 元就可多售出 600 件,当销售单价为每件x 元 时,获利润为y 元,那么y 与x 的函数关系式为( )A .220037008000y x x =-+- B .2200+3200y x x =- C .22008000y x =-- D .以上答案都不对61.已知方程220ax bx c ++-=的两根是-3、-1,则抛物线2y ax bx c =++必过点( ) A .(-3,0),(-1,0) B .(-3,-2),(-1,-2) C .(-3,2) ,(-1,2) D .不能确定62.根据下列条件,不能判定四边形ABCD 是平行四边形的是( ) A .∠A :∠B :∠C :∠D=1:2:l :2 B .∠A+∠B=180°,∠B+∠C=180° C .∠A+∠C=180°,∠B+∠D=180° D .∠A=∠C=45°,∠B=∠D=135°63.函数y =ax 2+bx +c 的图像如图所示,这个函数解析式为( )F A DE B CA .y =-x 2+2x +3B .y =x 2―2x ―3C .y =―x 2―2x +3D .y =―x 2―2x ―3 64.下列说法中正确的是( ) A .每个命题都有逆命题 B .每个定理都有逆定理 C .真命题的逆命题是真命题D .假命题的逆命题是假命题65.下列各条件不能确定圆的是( ) A .已知直径 B .已知半径和圆心 C .已知两点D .已知不在一条直线上的三点66.已知二次函数2y ax bx c =++(其中a >0,b >0,c <0),关于这个二次函数的图象有如下说法: ①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧. 以上说法正确的个数为 ( ) A .0B .1C .2D .367.线段 a=6,b=8,c=15,则第四比例项d 为( ) A .10B .20C .30D .4868.如果x :4=7:3,那么x=( ) A .283B .127C .214D .7369.如图, 在Rt △ABC 中, ∠ACB=90°,CD ⊥AB 于D ,若AD=1,BD=4,则CD=( )A .2B .4C D .370.二次函数y =(x -1)2+8的最小值是( ) A .-8B .8C .-1D .171.若⊙A 和⊙B 相切, 它们的半径分别为8cm 和2 cm. 则圆心距AB 为( ) A .10cm B .6cm C .10cm 或6cm D .以上答案均不对 72.在△ABC 中,∠C= 90°,若∠B=2∠A ,则tanB =( )A B .3C .2D .1273. 如图,两个等圆⊙O 和⊙O ′外切,过0点作⊙O ′的两条切线 OA 、OB ,A 、B 是切点,则∠AOB 的度数为( ) A .30°B .45°C .60°D .90°74.如图,圆与圆之间不同的位置关系有( ) A .2种B .3种C .4种D .5种75.如图所示,抛物线顶点坐标 P (1,3),则函数y 随自变量 x 的增大而减小的x 的取值范围是( ) A .x ≥3B .x ≤3C .x ≥1D .x ≤176.如果函数y=ax+b (a<0,b<O )和y=kx (k>0)的图象交于点P ,那么点P 应该位于( ) A .第一象限B .第二象限C .第三象限D .第四象限77.在平面直角坐标系中,下列各结论不成立的是( )A .平面内一点与两坐标轴的距离相等,则这点一定在某象限的角平分线上B .若点P (x ,y )坐标满足0xy=,则点P 一定不是原点 C 点P (a ,b )到x 轴的距离为b ,到y 轴的距离为a D .坐标(-3,4)的点和坐标(-3,-4)的点关于x 轴对称78.在平面直角坐标系中,将点A (1,2)的横坐标乘以-1,纵坐标不变,得到点A ′,则点A 与点A ′的关系是( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .将点A 向x 轴负方向平移一个单位得点A ′ 79.下列函数中,自变量x 的取值范围是2x >的函数是( ) A.y =B.y =C.y =D.y =80.如图,梯形ABCD 中,AD ∥BC ,E 、F 分别是两腰的中点,且AD=5,BC=7,则EF 的长为( ) A .6B .7C .8D .981.2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延.如果把世界地图看成一个平面,如图中以中国为坐标原点建立平面直角坐标系,请写出墨西哥所在位置的坐标是( )FE DCB AA . (4,9)B .(3,8)C .(8,-l )D .(-8,3)82.点A (5,y 1)和B (2,y 2)都在直线y =-x 上,则y 1与y 2的关系是( ) A .y 1≥ y 2B . y 1= y 2C . y 1 <y 2D . y 1 >y 283.编织一副手套收费3.5元,则加工费y (元)与加工件数x (副)之间的函数解析式为 ( ) A .y=3.5+xB .y=3.5-xC .y=3.5xD . 3.5y x=84.如图的棋盘上,若“帅”位于点(1,-2)上,“马”位于点(3,0)上,则“炮” 位于点( ) A .(-1,1)B .(-1,2)C .(-2,1)D .(-2,2)85.解不等式123x x +-≤的过程: ①6613x x -+≤;②316x x --≤--; 47x -≤-;④74x ≥其中造成解答错误的一步是( ) A .①B .②C .③D .④86.弹簧的长度与所挂物体的质量关系为一次函数,如图所示,由图可知不挂物体时弹簧的长度为( ) A .7 cmB .8 cmC .9 cmD .10 cm87. 下列各结论中,正确的是( )A .6=-B .2(9=C 16±D .216(25-=88.当m <0时,化简m的结果是( )A .-1B .1C .mD .-m89.的结果是( )AB .D . 1.490.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的一个根为0,则m 的值等于( )A .1B .2C .1或2D .091.一个容量为80的样本,最大值是l41,最小值是50,取组距为10,则可以分成( )A .10组B .9组C .8组D .7组92.下列图形中,△ABC 与△A ′B ′C ′关于点0成中心对称的是 ( )93.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检.发现其中有5件不合格.那么你估计该厂这20万件产品中合格品约为( )A . 1万件B .9万件C .15万件D . 20万件94.连结等边三角形各边的中点所得到的三角形是( )A .等边三角形B .直角三角形C .非等边三角形D .无法确定95.已知a +b =2,则224a b b -+的值是( )A .2B .3C .4D .696.如图,在ΔABC 中,BC 边上的垂直平分线交AC 于点D, 已知AB=3,AC=7,BC=8,则ΔABD 的周长为( )A .10B .11C . 12D . 15 97.已知整式22x 3()(21)ax x b x +-=+-,则b a 的值是( )A . 125B . -125C .15D .-15 98.已知反比例函数2y x=,下列结论中,不正确...的是( ) A .图象必经过点(12), B .y 随x 的增大而减少C .图象在第三象限内D .若1x >,则2y <99.甲、乙、丙排成一排,甲排在中间的概率是( )A .14B .13C .12D .23100.将方程0.0210.110.030.6x x ++-=中分母化为整数,正确的是( ) A .2110110036x x ++-= B .21001011036x x ++-= C .2100101136x x ++-= D .210101136x x ++-= 101.下列各类项目中,所使用的“球”不属于球体的是( )A .足球B .乒乓球C .羽毛球D .篮球102.下列语句正确的是( )A .不相交的两条直线叫平行线B .在同一平面内,两条直线的位置关系只有相交、平行两种C .如果线段AB 、CD 不相交,那么AB ∥CDD .如果a ∥b ,b ∥c ,那么a 不一定平行c103.如图,直线1l 、2l 、3l 相交于点0,下列结论正确的是( )A .∠l=90°,∠2=30°,∠3=90°,∠4=60°B .∠l=∠3=90°,∠2=∠4=30°C .∠l=∠3=90°,∠2=∠4=60°D .∠l=∠3=90°,∠2=60°,∠4=30°104. 过一个钝角的顶点作这个角两边的垂线,若这两条垂线的夹角为 40°,则此钝角为( )A .140°B .160°C .120°D .110° 105. 抛物线122+-=x x y ,则图象与x 轴交点为( )A . 二个交点B . 一个交点C . 无交点D . 不能确定106.下列关于圆的切线的说法正确的是( )A .与圆有公共点的直线是圆的切线B .圆的切线垂直于圆的半径C .从任意一点都可以引圆的两条切线D .过圆心和切点的直线垂直于经过该切点的切线107.某飞机于空中 A 处探测到平面目标 B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC= 1200 m ,那么飞机到目标B 的距离AB 为( )A .2400mB .1200mC .D . m108.主视图、左视图、俯视图都是圆的几何体是( )A . 圆锥B . 圆柱C . 球D .空心圆柱109.下列关于菱形的对角线的说法中错误的是( )A.互相平分 B.互相垂直 C.相等 D.每一条对角线平分一组对角110.已知长方形ABCD对角线的交点在坐标原点,且AD∥x轴,若A点坐标为(-1,2),则D点坐标为()A.(2,-l)B.(2,1)C.(1,2)D.(-1,2)【参考答案】***试卷处理标记,请不要删除一、选择题1.B2.D3.C4.B5.C6.C7.B8.C9.C10.D11.B12.C13.C14.C15.B16.C17.C18.A19.B20.C21.A22.C23.C24.D28.D 29.D 30.A 31.B 32.D 33.D 34.B 35.B 36.C 37.D 38.A 39.B 40.C 41.B 42.D 43.D 44.B 45.B 46.C 47.D 48.B 49.C 50.C 51.B 52.B 53.D 54.C 55.C 56.C 57.B 58.B62.C 63.C 64.A 65.C 66.C 67.B 68.A 69.A 70.B 71.C 72.A 73.C 74.C 75.C 76.C 77.C 78.B 79.B 80.A 81.C 82.C 83.C 84.C 85.A 86.D 87.A 88.A 89.C 90.B 91.A 92.A96.A 97.A 98.B 99.B 100.C 101.C 102.B 103.D 104.A 105.B 106.D 107.A 108.C 109.C 110.C。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.一个物体由多个完全相同的小立方体组成,它的三视图如图所示,那么组成这个物体的小立方体的个数为( ) A .2B .3C .4D .52.一个均匀的正方体骰子的六个面上分别标有一个1,二个2,三个3,则掷出3在上面的概率是( ) A .61 B .31C .21 D .32 3.计算32)(x x ⋅-所得的结果是( ) A .5xB .5x -C .6xD .6x -4.计算-4a (2a 2+3a-1)的结果是( ) A .-8a 3+12a 2-4a B .-8a 3-12a 2+1C .-8a 3-12a 2+4aD .8a 3+12a 2+4a5. 利用因式分解计算2009200822-,则结果是( )A .2B .1C .20082D .-16.下列现象中,不属于旋转变换的是( ) A .电梯的升降运动B .大风车转动C .方向盘的转动D .钟摆的运动7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小李通过多次摸球试验后发现摸到红色、黑色球的频率分别为 15%和 45%,则口袋中白色球的数目很可能是( ) A .6个B . 16个C .18个D .24个8. 如图,AB ∥CD ,∠1=110°, ∠ECD =70°,∠E 等于( ) A .30°B . 40°C . 50°D . 60°9.一辆汽车在笔直的公路上行驶,两次拐弯后,仍沿原来的方向上平行前进,那么两次拐弯的角度是( ) A .第一次右拐50°,第二次左拐130° B .第一次左拐50°,第二次右拐50° C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50°10.如图,两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北、向东驶去.如果自行车的速度为2.5 m /s ,摩托车的速度为10 m /s ,那么10 s 后,两车大约相距 ( ) A .55 mB .l03 mC .125 mD .153 m11.下列各组数中,以a 、b 、c 为边长的三角形不是..直角三角形的是( ) A .a=1.5,b =2,c=3 B .a=7,b=24,c=25 C .a=6,b=8,c=10D .a=3,b=4,c=512.在平面直角坐标系中,将点P (-2,3)向上平移3个单位后的点的坐标为( ) A .2,6)B .(-2,6)C .(1,3)D .(3,-2)13.下面的四个展开图中,如图所示的正方体的展开图是( )A .B .C .D .14.如图,D 在AB 上,E 在AC 上,且∠B=∠C ,则下列条件中,无法判定△ABE ≌△ACD 的是( ) A .AD=AEB .AB=ACC .BE=CDD .∠AEB=∠ADC15.下列调查方式合适的是( )A .为了了解全国中小学生的睡眠状况,采用普查的方式B .为了对“神舟六号”零部件进行检查,采用抽样调查的方式C .为了了解我市居民的环保意识,采用普查的方式D .为了了解炮弹的杀伤力,采用抽样调查的方式16.一组数据中有a 个1x ,b 个2x ,c 个3x ,那么这组数据的平均数为( )A .1233x x x ++ B .3a b c++ C .1233ax bx cx ++D .123ax bx cx a b c++++17.一组数据方差的大小,可以反映这组数据的( ) A .分布情况B .平均水平C .波动情况D .集中程度18.某班50名学生右眼视力的检查结果如下表所示:那么该班学生右眼视力的众数和中位数分别是 ( ) A .4.9和4.8B . 4.9和4.7C .4.9和4.6D .4.8和4.719.下列不等式的解正确的是( ) A .如果122x ->,,那么1x <- B .如果3223x x >-,那么0x < C .如果48x -<-,那么2x > D .如果203x -<,那么0x <20.为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为2a -b 、2a +b.例如,明文1、2对应的密文是0、4.当接收方收到密文是1、7时,解密得到的明文是( ) A .-1,1B .2,3C . 3,1D .1,l21.某种商品的进价为 800 元,出售时标价为1200 元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打( ) A .6 折B .7 折C .8 折D .9 折22.如图,直线PA PB ,是⊙O 的两条切线,A B ,分别为切点,120APB =︒∠,10OP = 厘米,则弦AB 的长为( )A .厘米B .5厘米C .D .2厘米 23.在函数233y x x =-+,212y x x =-+,221y x x π=-+-,1(53)2y x x =-中,以 x 为自变量的二次函数有( ) A .4 个B .3 个C .2 个D .124.在A ),B (22,-2),C (-22 D ( ) A .1个B .2个C .3个D .4个25.立方体的六个面标有数字:1,2,3,4,5,6,而且相对两个面的数之和相等,下列各图是它的展开图的是()26.用四舍五入法得到的近似数0.002030的有效数字有()A.6个B.4个C.3个D.2个27.甲、乙、丙三筐青菜的质量分别是 102 kg、97 kg、99 kg,若以 100 kg 为基准,并记为0,则甲、乙、丙三筐青菜的质量分别表示为()A.2,3,1 B.2,-3,1 C.2,3,-1 D.2,- 3,-128.下列各组数中,互为相反数的是()A.13-和0. 3 B.0.5 和(2)-+C.-1.25 和114+D.203和-0. 6729.2007年12月某日,我国部分城市的平均气温情况如下表,记温度零上为正(单位:℃),则当天平均气温最低的城市是()A.广州B.哈尔滨C.北京D.上海30.下列运算中,结果为负数的是()A.(-5)×(-3)B.(-8)×O×(-6)C.(-6)+(-8)D.(-6)-(-8)31.已知3x=,||7y=,而0xy<,则x y+的值是()A.10 B.4 C.10±D.4±32.小明和小莉都出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是()A.15号B. 16号C.17号D.18号33.如图,△A8C≌△BAD,A和B,C和D是对应点,若AB=4 cm,BD=3 cm,AD=2 cm,则BC的长度为()A.4 cm B.3 cm C.2 cm D.不能确定34.下列条件中不能判定两个直角三角形全等的是()A.两条直角边对应相等B.直角边和斜边对应相等C .两个锐角对应相等D .斜边和锐角对应相等35.下列方程中,属于一元一次方程的是( ) A .2170y-= B .2150x y += C .3410t -=D .2320x x +-=36.下列说法中正确的个数有( ) ①两点确定一条直线; ②线段上有无数个点;③两条直线至多只有一个公共点; ④经过三个点能确定一条直线. A .1个B .2个C .3个D .4个37.下列运算中,正确的是( ) A .23467()x y x y =B .743x x x =⋅C .2213()()x y x y xy --÷=D .21124-⎛⎫= ⎪⎝⎭38.如图, 已知直线 AB 、CD 相交于点 0,OA 平分∠EOC, ∠EOC =100°,则∠BOD 的度数是( ) A .20°B .40°C .50°D . 80°39.如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ) A .400cm 2B .500cm 2C .600cm 2D .4000cm 240.如果三条线段的比是:(1)1:4:6;(2)1:2:3;(3)3:4:5;(4)7:7:11;(5)3 : 3:6,那么其中可构成三角形的比有( ) A .1种B .2种C .3种D .4种41.如果三角形的两边长分别为7和2,且它的周长为偶数,那么,第三边的长为( ) A .5B .6C .7D .842.如图所示,已知AD ⊥BC ,BD=CD ,则①△ABD ≌△ACD ,②△ABD 和△ACD 不全等,③AB=AC ,④∠BAD=∠CAD ,以上判断正确的是( ) A .①B .②C .①③④D .①②③43.用2倍放大镜照一个边长为3的等边三角形,则放大后三角形的( ) A .边长为3B .边长为4C .内角为60°D .内角为l20°44.下列方程属于二元一次方程的是( ) A .2360x y z -+=B .73x y -=C .150xy +=D .111x y+=45.《九章算术》是我国东汉初年编订的一都数学经典著作. 在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中算筹图是竖排的,为看图方便,我们把它改为横排,如图①、图②中各行从左到右列出的算筹数分别表示未知数 x ,y 的系数与相应的常数项. 把图①所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x y x y +=⎧⎨+=⎩.类似地,图②所示的算筹图我们可以表述为( )A . 2114327x y x y +=⎧⎨+=⎩B . 2114322x y x y +=⎧⎨+=⎩C . 3219423x y x y +=⎧⎨+=⎩D . 264327x y x y +=⎧⎨+=⎩46.已知3282x ⨯=,则x 的值等于( ) A .4B .5C . 6D .747.如果22(3)(5)0x y x y +-+-+=,那么22x y -的值是( ) A .8 B .-8C . 15D .-1548.把分式xx y+(0x ≠,0y ≠)中的分子,分母的x ,y 同时扩大 2倍.那么分式的值( ) A .扩大2倍 B . 缩小2倍 C . 改变原来的值 D . 不改变49.如图,有 6 个全等的等边三角形,下列图形中可由△OBC 平移得到的是( ) A .△OCDB .△OABC .△OAFD .△OEF50.如果2m ,m ,1m -这三个实数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是( ) A .0m <B .12m >C .0m >D .102m <<51.如图,下午2点30分时,时钟的分针与时针所成角的度数为( ) A .90°B .105°C .120°D .135°52.如图,现有一个圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( ) A .4cmB .3cmC .2cmD .1cm53.如图,在两半径不同的圆心角中,∠AOB=∠A ′O ′B ′=60°,则( ) A .AB=A ′B ′B .AB<A ′B ′C .AB 的度数=A ′B ′的度数D .AB 的长度=A ′B ′的长度54.用配方法解方程2210x x --=时,配方结果正确的是( )A .2(1)1x -=B .2(1)2x -=C .21()12x -=D .21()22x -=55. 如图,四边形 ABCD 内接于⊙O ,若∠BOD=150°,则∠BCD=( )A .65°B .130°C . 105°D .115°56.如图,圆内接△ABC 的外角∠ACH 的平分线与圆交于D 点,DP ⊥AC ,垂足为 P ,DH ⊥BH ,垂足为 H ,下列推理:①CH = CP ,②⌒AD =⌒BD ,③AP=BH,④ ⌒AB =⌒BC ,其中一定成立的结论为( ) A .1 个B .2 个C .3 个D .4 个57.如图,点A ,B ,C 在⊙O 上,AO ∥BC ,∠OAC=20°,则∠AOB •的度 数是( ) A .20度B .30度C .40度D .80度58.如图,在⊙O 中,∠B=37°,则劣弧AB 的度数为( ) A .106°B .126°C .74°D .53°59.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.立方体的六个面标有数字:1,2,3,4,5,6,而且相对两个面的数之和相等,下列各图是它的展开图的是 ( )2.不等式组201x x -<⎧⎨≥⎩的解集为( ) A .1≤x<2B .x ≥1C .x<2D .无解3.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换. 在自然界和日常生活中,大量地存在这种图形变换(如图(1)). 结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图(2))的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行4.用平方差公式计算2(1)(1)(1)x x x -++的结果正确的是( ) A .4(1)x -B .41x +C .41x -D .4(1)x +5.若关于x 的分式方程311x mx x -=--有增根,则m 的值为( ) A .1m =B .2m =-C .0m =D .无法确定6. 如果把分式23xyx y+中的x 、y 都扩大5倍,那么分式的值( ) A .扩大5倍B .缩小5倍C .不变D .扩大10倍7.如图所示,∠l 和∠2是( ) A .同位角B .同旁内角C .内错角D .以上结论都不对8.如图,直线a ∥b ,∠1=x °,∠2=y °,∠3=z °,那么下列代数式的值为180的是( ) A .x+y+zB .x —y+zC .y-x+zD .x+y-z9.如图,若∠l=∠2,则在结论:①∠3=∠4;②AB ∥DC ;③AD ∥BC 中,正确的个数是( ) A .0个B .1个C .2个D .3个10.将两个完全一样的有一个角为30°的直角三角形拼成如图所示的图形,其中两条长直角边在同一直线上,则图中等腰三角形的个数有( ) A .4个B .3个C .2个D .1个11.如图,为了测出湖两岸A 、B 间的距离.一个观测者在在C 处设桩,使三角形ABC 恰为直角三角形,通过测量得到AC 的长为160 m ,BC 长为l28 m ,那么从点A 穿过湖到点B 的距离为( ) A .86 mB .90 mC .96 mD .l00 m12.用放大镜将图形放大,应该属于( ) ) A .相似变换B .平移变换C .对称变换D .旋转变换13.如图,在ABC △中,AC BC AB =>,点P 为ABC △所在平面内一点,且点P 与ABC △的任意两个顶点构成PAB PBC PAC △,△,△均是..等腰三角形,则满足上述条件的所有点P 的个数为( ) A .3B .4C .6D .714.计算a ba bb a a +⎛⎫-÷⎪⎝⎭的结果为( )A .a bb - B .a bb+ C .a ba- D .a ba+ 15.一个画家有l4个边长为1 cm 的正方体,他在地上摆成如图所示的形状,然后把露出的表面都染上颜色,那么被染上颜色的面积有( )A .21m 2B .24 m 2C .33 m 2D .37m 216.三个物体的主视图都有圆,那么这三个物体可能是( ) A .立方体、球、圆柱 B .球、圆柱、圆锥 C .直四棱柱、圆柱、三棱锥 D .圆锥、正二十面体、直六棱柱17.若3520x x -≤+,则( ) A .x 有最大的整数解一6B .x 有最小的整数解一5C .x 有最大的整数解 6D .x 有最大的整数解 518.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为( ) A .4x ≤B .2x <C .24x <≤D .2x >19.在函数233y x x =-+,212y x x =-+,221y x x π=-+-,1(53)2y x x =-中,以 x 为自变量的二次函数有( ) A .4 个B .3 个C .2 个D .120.在数轴上,原点及原点右边的点表示的数是( ) A . 正数B .负数C .非负数D .非正数21.如图的棋盘上,若“帅”位于点(1,-2)上,“马”位于点(3,0)上,则“炮” 位于点( ) A .(-1,1)B .(-1,2)C .(-2,1)D .(-2,2)CB A22.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24 B.18 C.16 D.623.如图是甲、乙在同一条道路上跑步时路程s与时间t之间的关系图.甲追上乙后8s到达终点,这时乙离终点还有()A.3 m B.4 m C.5 m D.6 m24.已知正比例函数y=ax(a为常数,且a≠0),y随x的增大而减小,则一次函数y ax a=-+的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限25.三角形的三边长a、b、c满足等式(22+-=,则此三角形是()a b c ab()2A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形26.下列说法中正确的是()A.圆是轴对称图形,对称轴是圆的直径B.正方形有两条对称轴C.线段的对称轴是线段的中点D.任意一个图形,若沿某直线对折能重合,则此图形就是轴对称图形27.世纪联华超市出售的三种品牌的大米包装袋(标准质量为 50千克)上,分别标有(50± 0.2),(50±0.3),(50±0.25)的字样. 则从超市中任意拿出两袋大米,其质量与标准质量最多相差()A. 0.4 B.0.55 C. 0.5 D. 0.628.3233---⨯-+-的值为()2(3)(1)(1)A.-30 B.0 C.-11 D.2429.下列说法:①两个无理数的和必是无理数②两个无理数的积必是无理数③有理数与无理数分别平方后,不可能相等④有理数都有倒数其中正确的个数是()A.1 个B.2 个C.3 个D.4 个30.下列说法正确的是()A.无限小数是无理数B.不循环小数是无理数C .无理数的相反数还是无理数D .两个无理数的和还是无理数31.如果单项式m n xy z -和45n a b 都是五次单项式,那么m 、n 的值分别为( ) A .m=2,n=3B .m=3,n=2C . m=4 , n=1D .m=3,n=132.若x 表示一个两位数,y 也表示一个两位数,小明想用 x 、 y 来组成一个四位数,且把 x 放在 y 的右边..,你认为下列表达式中哪一个是正确的( ) A .yx B .x+y C .100x+y D .100y+x33.轮船在静水中速度为20 km /h .水流速度为每小时4 km /h ,从甲码头顺流航行到乙码 头,再返回甲码头,共用5 h (不计停留时间),求甲、乙两码头的距离.设两码头间距离为x (km ),则列出方程正确的是( ) A .(20+4)x+(20-4) x =5 B .20 x+4 x =5 C .5204x x+= D .5204204x x+=+- 34. 某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过 10立米,每立方米按 a 元收费;用水超过 10立方米的,超过部分加倍收费. 某职工6 份缴水费 l6a 元,则该职工 6 月份实际月水量为( ) A .13 立方米B .14 立方米C .15 立方米D .16 立方米335.下列叙述正确的是 ( )①线段AB 可表示为线段BA ;②射线AB 可表示为射线BA ;③直线AB 可表示为直线BA . A .①②B .①③C .②③D .①②③36.对角的表示方法理解错误的是( )A .角可用三个大写字母表示,顶点字母写在中间,每边上的点的字母写在两旁B .任何角都可用一个顶点字母表示C .记角有时可在靠近顶点处加上弧线,注上数字来表示D .记角有时可在靠近顶点处加上弧线,注上希腊字母表示37. 某风景点的周长约为 3578 m ,若按比例尺 1:2000缩小后,其周长大约相当于( ) A .一个篮球场的周长 B .一张乒乓球台台面的周长 C .《中国日报》的一个版面的周长 D .《数学》课本封面的周长38.下列图形中不是轴对称图形的是 ( )39.编织一副手套收费3.5元,则加工费y (元)与加工件数x (副)之间的函数解析式为 ( ) A .y=3.5+x B .y=3.5-xC .y=3.5xD . 3.5y x=40.解方程组32(1)3211(2)x y x y -=⎧⎨+=⎩的最优解法是( )A . 由①得32y x =-,再代人②B . 由②得3112x y =-,再代人①C . 由②一①,消去xD . 由①×2+②,消去y 41.下列计算中,错误..的是( ) A .33354a a a -=B .236m n m n +⋅=C .325()()()a b b a a b -⋅-=-D .78a a a ⋅=42.当x 为任意实数时,下列分式一定有意义的是( ) A .2xB .21x C .1||x D .211x + 43.某商店举办有奖销售活动,办法如下:凡购货满 100 元者得奖券一张,多购多得,每10000 张奖券为一个开奖单位,设特等奖1 个,一等奖 50 个,二等奖 100 个,那么买100 元商品的中奖概率应该是( ) A .110000B .5010000C .10010000D .1511000044.如图,△ABC ≌△DCB ,AB=5cm ,AC=7 cm ,BC=8 cm ,那么DC 的长是( ) A .8 cmB .7 cmC .6cmD .5 cm45.下列条件能够判断△ABC ≌△DEF 的是( ) A .AB=DE ,BC=EF ,∠A=∠D B .∠A=∠D ,∠C=∠F ,AC=EFC .AB=DE ,BC=EF ,△ABC 的周长等于△DEF 的周长D .∠A=∠D ,∠B=∠E ,∠C=∠F46.关于x ,y 的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,则k 的值是( ) A .43-=k B .43=k C .34=k D .34-=k 47.如图,△ABC 和△ADC 有公共边AC ,∠BAC =∠DAC ,在下列条件中不能..判断△ABC ≌△ADC 的是( )A .BC=DCB .AB =ADC .∠B =∠D D .∠BCA =∠DCA 48.下列运算正确的是( ) A .3362a a a +=B .853)()(a a a -=-⋅-C .3632244)2(b a a b a -=⋅-D .221114416339a b a b b a ⎛⎫⎛⎫---=- ⎪⎪⎝⎭⎝⎭49.下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a50.下列四个代数式中与其他三个不是同类项的一个是 ( ) A .x 2B .2xC .x 2D .x23-51.若两个图形位似,则下列叙述不正确的是( ) A .每对对应点所在的直线相交于同一B .两个图形上的对应线段之比等于位似比C .两个图形上对应线段必平行D .两个图形的面积比等于位似比的平方52.如图,甲、乙、丙比赛投掷飞镖,三人的中标情况如图所示,则三人的名次应是( )A .甲第一,乙第二,丙第三B .甲第三,乙第二,丙第一C .甲第二,乙第三,丙第一D .甲第一,丙第二,乙第三53.将一圆形纸片对折后再对折,得到如图的形状,然后沿着虚线剪开,得到两部分,其中一部分展开后得到的图形是( )A .B .C .D .54.已知a b <,则下列不等式一定成立的是( ) A .33a b +>+B .22a b >C .a b -<-D .0a b -<55.如图,点 C 在⊙O 上,已知∠C=45°, 则∠AOB 为( ) A .45°B .22.5°C .90°D .67.5°56.如果不等式组731x x x n +<-⎧⎨>⎩的解集是4x >,那么n 的取值范围是( )A .4n ≥B .4n ≤C .4n =D .64n <57.如图,⊙O 的直径 CD 过弦 EF 的中点G ,∠EOD=40°,则∠DCF 等于( ) A .80°B .50°C .40°D .20°58.如图,□ABCD 中,BO 1 =O 1O 2=O 2O 3=O 3D ,则 AD :FD 等于( ) A .6:1B .7:1C .8:1D .9:159.如图⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是( ) A .110°B .70°C .55°D .125°60.如图,AB 是斜靠在墙壁上的长梯,梯脚B 距墙1.6米,梯上点D 距墙1.4米,BD 长0.55米,则梯子的长为( ) A .3.85米B .4.00米C .4.40米D .4.50米61. 在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( ) A .k >3B .k >0C .k <3D .k <062. ,则a +bb 的值是( ) A .85 B .35C .32D .5863.如图,AB 、CD 是⊙O 的两条直径,∠1≠∠2,则图中相等的弧 (半圆除外)共有( )A .8对B .6 对C .4对D .2 对64.某人想打电话给他的朋友,但他忘记了号码的后两位数字,他随便拔号,一次恰好拔通 的概率是( ) A .19B .101 C .199D .110065.已知Rt ΔABC 中,∠C=90︒,BC=a 、AC=b ,以斜边AB 上一点O 为圆心,作⊙O 使⊙O 与直角边AC 、BC 都相切,则⊙O 的半径r 等于( )A B .2ab C .aba b+ D .a bab+ 66.河堤的横断面如图所示,堤坝 BC 高 5m ,迎水斜坡的长是 10 m ,则斜坡 AB 的坡度是( )A .1:2B .2:3C .`1D .1:367.如图所示,CD 是平面镑,光线从A 点出发经 CD 上点E 反射后照射到B 点,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为 C .D ,且 AC= 3,BD=6,CD= 11,则tan α的值为( ) A .113B .311C .911D .11968.如图,将△ABC 绕顶点A 顺时针旋转60°后,得到△AB ′C ′,且C ′为BC 的中点,则C ′D :DB ′=( )A .1:2B .1:C .1D .1:369.在平面直角坐标系中, 点(4,3)为圆心,4为半径的圆,必定( ) A . 与x 轴相切B . 与x 轴相离C . 与y 轴相切D . 与y 轴相离70.两名百米赛跑运动员几乎同时到达终点时,哪种视图有利于区分谁是冠军( ) A .主视图B .左视图C . 俯视图D .B 与C 都行71.有一个 1 万人的小镇,随机调查 3000 人,其中 450 人看中央电视台的晚间新闻. 在该镇随便问一个,他(她)看中央电视台晚间新闻的概率是( )A. A .13000B .320C .0D .172.如图,在△ABC 中,∠C=90°,BC=5,AC=12,则 cosA 等于( ) A .512 B .513 C .125 D .121373.在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来.如图所示,则这堆正方体货箱共有( ) A .9箱B .10箱C .11箱D .12箱74.如图,在平行四边形ABCD 中,E 为CD 上一点,DE:CE=2:3,连结AE 、BE 、BD ,且AE 、BD 交于点F ,则S △DEF :S △EBF :S △ABF 等于( ) A .4:10:25B .4:9:25C .2:3:5D .2:5:2575.如图,D ,E ,F 分别是等边△ABC 各边上的点,且AD=BE=CF ,△DEF 的形状是( ) A .等边三角形B .腰和底边不相等的等腰三角形C .直角三角形D .不等边三角形76.如图所示,P 为□ABCD 内任意一点,分别记△PAB ,△PBC ,△PCD ,△PDA 的面积为S 1,S 2,S 3,S 4,则有 ( )A .S 1=S 4B .S 1+S 2=S 3+S 4C .S 1+S 3=S 2+S 4D .以上都不对77.把命题“同角的余角相等”写成“如果……,那么……”的形式,正确的是( ) A .如果同角,那么相等 B .如果同角,那么余角相等 C .如果同角的余角,那么相等D .如果两个角是同一个角的余角,那么这两个角相等78.一个容器装满40 L 纯酒精,第一次倒出若干升后,用水注满,第二次倒出第一次倒出量的一半的液体,已知两次共倒出纯酒精25L ,则第一次倒出纯酒精 ( ) A .10 LB .15 LC .20 LD .25 L79.若三角形三边的比是3:4:5,周长为60 cm ,则此三角形中最长的中位线是( ) A .15 cmB .l2.5 cmC .10cmD .8 cm80.下列各式计算正确的是( ) A .1343422=-=- B .()532322=+=+C .()()2646262-=-=-+D . ()31312-=-81. 已知力 F 所做的功是 30J ,则力 F 与物体在力的方向上通过的距离 S 的图象大致是 ( )A .B .C .D .82.将一个有40个数据的样本经统计分成6组,若某一组的频率为0.15,则该组的频数为 ( ) A .6B .0.9C .6D .183.甲,乙,丙,丁四位同学拿尺子检测一个窗框是否为矩形.他们各自做了如下检测后都说窗框是矩形,你认为正确的是( )A .甲量得窗框两组对边分别相等B .乙测得窗框的对角线长相等C .丙测得窗框的一组邻边相等D .丁测得窗框的两组对边分别相等且两条对角线也相等84.关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p 的值是( )A .4B .0或2C .1D .1-85. 6x =-成立的条件是( )A .6x <B .6x >C .6x ≤D .6x ≥86.如图,顺次连结四边形ABCD 各边的中点得四边形EFGH ,要使EFGH 是菱形,应添加的条件是 ( )A .AD ∥BCB .AC=BDC .AC ⊥BD D .AD=AB87.如图,在菱形ABCD 中,E ,F 分别是AB ,AC 的中点,如果EF=2,那么菱形ABCD 的周长是 ( )A .4B .8C .12D .1688.用反证法证明“a >b ”时应假设( )A .a >bB .a <bC .a =bD .a ≤b 89.把方程0382=+-x x 化成n m x =+2)(的形式,则n m ,的值( )A .4、13B .-4、19C .-4、13D .4、1990. )A B C D 91.下列命题中,是真命题的为( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形92.2+的值是在( )A .5和 6之间B .6和 7之间C .7和8之间D .8和 9 之间93.下列命题中,是真命题的为( )A .两条对角线相等的四边形是矩形B .两条对角线垂直的四边形是菱形C .两条对角线垂直且相等的四边形是正方形D .两条对角线相等的平行四边形是矩形94.在平面直角坐标系中,下列各点关于y 轴的对称点在第一象限的是( )A .(21),B .(21)-,C .(21)-,D .(21)--,95.如果要使一个平行四边形成为正方形,那么需要增加的条件是( )A .对角互补B .对角相等C .对角线互相垂直D .对角线互相垂直且相等96.下列各式中,能用平方差公式分解因式的是( )A .321x -B .21x --C .21x +D .21x -+ 97.等腰三角形一腰上的高线与另一腰的夹角为30°,则顶角的度数为( )A .60°B .120°C .60°或l50°D .60°或l20° 98.31254--可以读作( )A .35减负2减负14B .正35,正 2 与正14的和 C .正35,负 2与负14的差 D .35减 2减1499.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有 ( )A .2个B .3个C .4个D .5个100.观察下面图案,在A ,B ,C ,D 四幅图案中,能通过图案(1)平移得到的是( )101.一个三角形的两边长分别是3和6,第三边长为奇数,那么第三边长是( )102.一副三角板,如图所示叠放在一起,则图中α的度数是( )A .75°B .60°C .65°D .55°103. 用一副三角板画图,不能画出的角的度数是( )A .15°B .75°C .145°D .165°104. 过一个钝角的顶点作这个角两边的垂线,若这两条垂线的夹角为 40°,则此钝角为( )A .140°B .160°C .120°D .110°105.下列判断正确的是( )A .不全等的三角形一定不是相似三角形B .不相似的三角形一定不是全等三角形C .相似三角形一定不是全等三角形D .全等三角形不一定是相似三角形106.下列图形中的直线 1与⊙0的位且关系是相离的是( )A .B .C .D .107.等腰三角形的腰长为32,底边长为6,那么底角等于( )A . 30°B . 45°C . 60°D .120°108. 一扇形纸扇完全打开后,外侧两竹条AB,AC 的夹角为1200, AB 长为30cm ,贴纸部分BD 长为20cm ,则贴纸部分的面积为( )A .28003cm πB . 25003cm πC .800лcm 2D .500лcm 2109.如图,已知直线a,b 被直线c 所截,a ∥b ,∠2=50°,则∠1等于( )A .150°B .130°C .40°D .50°110.下列函数中,属于二次函数的是()A.y=π2x+1 B.y=2-x2+(x-1)2 C.y=-x-2D.y=x2-1 2【参考答案】***试卷处理标记,请不要删除一、选择题1.A2.A3.B4.C5.B6.A7.C8.D9.B10.B11.C12.A13.C14.A15.C16.B17.B18.B19.B20.C23.B 24.B 25.B 26.D 27.D 28.B 29.A 30.C 31.D 32.D 33.D 34.A 35.B 36.B 37.C 38.A 39.C 40.C 41.B 42.D 43.D 44.D 45.C 46.B 47.A 48.D 49.D 50.C 51.C 52.A 53.C57.D 58.D 59.D 60.C 61.A 62.A 63.C 64.D 65.C 66.C 67.D 68.D 69.C 70.C 71.B 72.D 73.A 74.A 75.A 76.C 77.D 78.C 79.B 80.C 81.B 82.C 83.D 84.C 85.D 86.B 87.D91.C 92.B 93.D 94.C 95.D 96.D 97.D 98.D 99.C 100.C 101.A 102.A 103.C 104.A 105.B 106.C 107.A 108.A 109.B 110.D。
一、相似真题与模拟题分类汇编(难题易错题)1.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P 是MN上一点,求△PDC周长的最小值.【答案】(1)解:结论:CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴ = = ,∴CF=2DG(2)解:作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意:CD=AD=10,ED=AE=5,DG= ,EG= ,DH= = ,∴EH=2DH=2 ,∴HM= =2,∴DM=CN=NK= =1,在Rt△DCK中,DK= = =2 ,∴△PCD的周长的最小值为10+2 .【解析】【分析】(1)结论:CF=2DG.理由如下:根据正方形的性质得出AD=BC=CD=AB,∠ADC=∠C=90°,根据中点的定义得出AD=CD=2DE,根据同角的余角相等得出∠CDF=∠DEG,从而判断出△DEG∽△CDF,根据相似三角形对应边的比等于相似比即可得出结论;(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK,由题意得CD=AD=10,ED=AE=5,DG=,EG=,根据面积法求出DH的长,然后可以判断出△DEH相似于△GDH,根据相似三角形对应边的比等于相似比得出EH=2DH=,再根据面积法求出HM的长,根据勾股定理及矩形的性质及对称的性质得出DM=CN=NK= 1,在Rt△DCK中,利用勾股定理算出DK的长,从而得出答案。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.在△ABC 中,AB = BC ,∠A =80°, 则∠B 的度数是( ) A .100°B .80°C . 20D . 80°或 20°2.不等式2x -7<5-2x 的正整数解有 ( ) A .1个B .2个C .3个D .4个3.小明和哥哥并排站在镜子前,小明看到镜子中哥哥的球衣号码如图, ,那么哥哥球衣上的实际号码是( )A .25号B .52号C .55号D .22号 4.计算(6a n+2-9a n+1+3a n-1)÷3a n-1的结果是( ). A .2a 3-3a 2B .2a 3-3a 2+1C . 3a 3-6a 2+1D .以上都不对5.4a 2b 3-8a 4b 2+10a 3b 因式分解时,应提公因式( )A .2a 2bB .2a 2b 2C .4a 2bD .4ab 26.若9x 2+kx+16是一个完全平方式,则k 的值等于( ) A.12 B.24 C.-24 D.±24 7.下列各式中,是分式的是( ) A .2-πxB .31x 2 C .312-+x xD .21x 8.一个三角形的三边长分别是5,6,7,另一个三角形和它是相似图形,其最长边长为10.5, 则另一个三角形的周长是( ) A .23 B .27C .29D .339.若方程组2620x ky x y +=⎧⎨-=⎩有正整数解,则k 的正整数值是( )A .3B .2C .1.D .不存在 10.计算43x x ÷结果是( )A . xB . 1C .7xD .1x11.如图 是一个自 由转动的转盘,转动这个转盘,当它停止转动时,指针最有可能停留的区域是( ) A . A 区域B .B 区域C .C 区域D . D 区域12.小明的运动衣号在镜子中的像是 ,则小明的运动衣号码是( ) A . B . C . D .13.三角形的一个外角小于与它相邻的内角,这个三角形是( ) A . 直角三角形B . 锐角三角形C . 钝角三角形D .属于哪一类不能确定14.如果3x y =,那么分式222xyx y +的值为( ) A . 35B .53C .6D . 不能确定15.下列说法错误的是( )A .三个角都相等的三角形是等边三角形B .有两个角是60°的三角形是等边三角形C .有一个角是60°的等腰三角形是等边三角形D .有两个角相等的等腰三角形是等边三角形16.如图,AD=BC=BA ,那么∠1与∠2之间的关系是( ) A .∠l=2∠2B .2∠1+∠2=180°C .∠l+3∠2=180°D .3∠1-∠2=180°17.将左边的立方体展开能得到的图形是( )A .B .C .D .18.一个画家有l4个边长为1 cm 的正方体,他在地上摆成如图所示的形状,然后把露出的表面都染上颜色,那么被染上颜色的面积有( )A .21m 2B .24 m 2C .33 m 2D .37m 219.一个几何体的三视图如下图所示,则这个几何体是()A.圆柱B.圆锥C.长方体D.正方体20.一个包装箱的表面展开图如图,则这个包装箱的立体示意图是()A.B.C.D.21.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进.李老师行进的路程y(千米)与行进时间t(时)的函数图象大致为()A.B.C.D.22.甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为9,9,x,7,若这组数据的众数与平均数恰好相等,则这组数据的中位数是()A.11 B.9 C.8 D.723.生活处处皆学问,如图,眼镜镜片所在两圆的位置关系是()A.外离B.外切C.内含D.内切24.一组数据共40个,分为6组,第一组到第四组的频数分别为l0,5,7,6,第五组的频 率为0.1,则第六组的频数为( ) A .4B .5C .8D .1025.在△ABC 中,∠A=1O5°,∠B-∠C=15°,则∠C 的度数为( ) A . 35°B .60°C .45°D .30°26.有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n (n 为正整数)块石棉瓦覆盖的宽度为( ) A . 60n 厘米B . 50n 厘米C . (50n+10)厘米D . (60n-10)厘米27.杭州湾跨海大桥全长 36千米,其中 36千米属于( ) A .计数B . 测量C .标号D .排序28. 下列说法正确的是( ) A .两个负数相加,绝对值相减B. 正数加负数,和为正数;负数加正数,和为负数 C .两正数相加,和为正数;两负数相加,和为负数 D .两个有理数相加等于它们的绝对值相加 29.432()()()7143-÷-÷-=( ) A .169-B .449-C .4D .-430.数学课上老师给出下面的数据,精确的是( ) A .2002年美国在阿富汗的战争每月耗费10亿美元 B .地球上煤储量为5万亿吨以上 C .人的大脑有l ×1010个细胞 D .七年级某班有51个人31.按表示算式( ) A .72÷(-5)×3.2B .-72÷5×3.2C .-72÷5×(-3.2)D .72÷(-5)×(-3.2)32.下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(-36)÷(-9)=-4.其中正确的个数是( ) A .1个B .2个 C .3个D .4个33.下面结论中,错误的是( ) A .一个数的平方不可能是负数 B .一个数的平方一定是正数 C .一个非 0有理数的偶数次方是正数D.一个负数的奇数次方还是负数34.下列各式中,正确的是()A.4=B.4C3=-D4=-35.多项式2235x y+与214y xy-+的差是()A.229x y-B.223146xy xy y++C.223146x xy y-+D.223144x xy y++36.实数a、b、c在数轴上的对应点如图,化简||a a b++)A.-b-c B.c-b C.2(a-b+c)D.2a+b+c37.如图是一个可以自由转动的转盘,转动这个转盘,当它停止转动时,指针最可能停留的区域是()A.1 B. 2 C. 3 D. 438.如图.在△ABC中,AB AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=10,△BDC的周长为22,那么△ABC的周长是()A.24 B.30 C.32 D.3439.下列函数中,自变量x的取值范围是2x>的函数是()A.y=B.y=C.y=D.y=40.一个角的余角比它的补角的12少20°,则这个角为()A.30 °B.40°C.60°D.75°41.如图,图中共有()A.9个角和 7条线段B.10个角和 8条线段C.11个角和 9条线段D.12个角和10条线段42.据国家商务部消息,2005年一季度,我国进口总额达2952亿美元.用科学记数法表示这个数是()A.2.952×102亿美元 B.0.2952×103亿美元C.2.952×103亿美元 D.0.2952×104亿美元43.观察右图,寻找规律.在“?”处填上的数字是()A.128 B.136 C.162 D.18844.温度上升了3℃后,又下降2℃,这一过程的温度变化是()A.上升1℃B.上升5℃C.下降1℃D.下降5℃45.如图所示,已知AD⊥BC,BD=CD,则①△ABD≌△ACD,②△ABD和△ACD不全等,③AB=AC,④∠BAD=∠CAD,以上判断正确的是()A.①B.②C.①③④D.①②③46.已知∠A=56°,把么A先向左平移2cm,再向上平移3 cm,则∠A的大小()A.变大B.不变C.变小D.无法确定47.下列对于旋转的判断中,正确的是()A.图形旋转时,图形的形状发生了改变B.图形旋转时,图形的大小发生了改变C.图形旋转时,图形的位置发生了改变D.图形旋转时,图形的形状、大小和位置都发生了改变48.用2倍放大镜照一个边长为3的等边三角形,则放大后三角形的()A.边长为3 B.边长为4 C.内角为60°D.内角为l20°49.已有一对酷爱运动的年轻夫妇给他们 12 个月大的婴儿拼排 3 块分别写有“20”、“08”和“北京”的字块,如果婴儿能够排成“2008北京”或者“北京 2008”,那么他们给婴儿奖励,假设该婴儿能将字块横着正排,那么这个婴儿能得到的奖励的概率是()A.16B.14C.13D.1250.如图,AB=CD,∠l=∠2,AO=3,则AC=()A.3 B.6 C.9 D.1251.如图,已知AB ∥CD ,AD 与BC 相交于点P ,AB=4,CD=7,AD=10,则AP 的长等于( ) A.4011 B.407 C.7011 D. 70452.将△ABC 的三个顶点的纵坐标乘以-1,横坐标不变,则所得图形与原图形的关系是 ( ) A .关于x 轴对称 B .关于y 轴对称C .原图形向x 轴负方向平移1个单位D .原图形向y 轴负方向平移1个单位53. 如图,某反比例函数的图像过点M (2-,1),则此反比例函数表达式为( ) A .y=2x B .y=-2x C .y=12x D .y=-12x54.如图是一个礼品包装盒的表面展开图,将它折成立方体后,“祝”的对面是( )A .“牛”字B .“年”字C .“大”字D .“吉”字55.如图,正方形ABOC 的边长为2,反比例函数ky x=过点A ,则k 的值是( ) A .2B .2-C .4D .4-56.若抛物线2y ax =经过点 (m ,n ),则它也经过点( ) A .(一m ,n )B .(m ,一n )C . (-m, -n )D .(n ,m )57.二次函数28y x x c =-+的最小值是( ) A .4B .8C .-4D .1658.函数223y x x k =++的图象与x 轴有交点,则k 的取值应为( ) A .98k >B .98k ≥C .98k <D .98k ≤59.把抛物线y=x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x 2-3x +5,则有( ) A .b=3,c=7B .b=-9,c=-15C .b=3,c=3D .b=-9,c=2160.下列各条件不能确定圆的是( )A.已知直径B.已知半径和圆心C.已知两点D.已知不在一条直线上的三点61.若圆的一条弦把圆周角分度数的比为1:3的两条弧,则劣弧所对的圆周角等于()A.45°B.90°C.135°D.270°62.已知2925a ba b+=-,则a:b=()A. 13:19 B.l9:13 C. 13:3 D.3:1363.依次连接菱形各边中点所得到的四边形是()A.梯形B.菱形C.矩形D.正方形64.把一个多边形改成和它相似的多边形,如果面积缩小为原来的一,那么边长缩小为原来的()A.1:3 B.3:1 C.D65.2+的值是在()A.5和 6之间B.6和 7之间C.7和8之间D.8和 9 之间66.如图,在△ABC中,DE∥BC,AD:DB=2:3,且△ABC的周长是20cm,则△ADE的周长等于()A.5cm B.6cm C.7cm D.8cm67.在锐角三角形ABC中,若sinA=2,∠B=750,则tanC=()A B C.2D.168.如图,P是∠α的边OA上一点,且点P的坐标为(3,4),则sinα= ()A.35B.45C.34D.4369.四位学生用计算器求 cos27o40′的值正确的是()A. 0.8857 B.0.8856 C. 0. 8852 D. 0.8851 70.与 cos70°值相等的是()A.sin70°B.cos20°C.sin20°D.tan70°71.如图所示,一只蚂蚁在正方形纸片上爬行,正好停在质数上的概率是()A.14B.13C.49D.5972.其市气象局预报称:明天本市的降水概率为70%,这句话指的是()A.明天本市70%的时间下雨,30%的时间不下雨B.明天本市70%的地区下雨,30%的地区不下雨C.明天本市一定下雨D.明天本市下雨的可能性是70%73.生活处处皆学问.如图,眼镜镜片所在的两圆的位置关系是()A.外离B.外切C.内含D.内切74.己如图,BC 是⊙O的直径,P 是 CB 延长线上的一点,PA 切⊙O于点 A,如果PA=,PB= 1,那么∠APC 等于()A.15°B.30°C.45°D.60°75.己两根竖直在地面上的标杆,长度分别为 3 m和 2m,当一个杆子的影长为 3m 时,另一根杆子的影子长为()A.2m B.4.5m C.2m 或4.5 m D.以上都不对76.下面四个图形中,是三棱柱的平面展开图的是()77.两个相似三角形的面积比为 4:9,那么这两个三角形对应边的比为()A.4:9 B.l6:81 C.2:3 D.8:978.如图,在Rt△ABC中,∠C=90°,沿过点B的一条直线BE折叠△ABC,使点C恰好落在AB边的中点D 处,则么A的度数等于()A.15°B.30°C.45°D.60°79.坐标平面内的一个点的横坐标是数据6,3,6,5,5,6,9的中位数,纵坐标是这组数据的众数,那么这个点的坐标是()A.(5,5)B. 6,5)C.(6,6)D.(5,6)80.若5b=,且点M(a,b)在第二象限,则点M的坐标是()a=,4A . (5,4)B .(-5,4)C .(-5,-4)D .(5,-4)81.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h 与时间t 之间的关系的图象是( )A .B .C .D .82.如图所示,直角△ABC 中,∠ACB=90°,DE 过点C 且平行于AB ,若∠BCE=35°, 则∠A 的度数为 ( ) A .35°B .45°C .55°D .65°83.某游客为爬上3 km 高的山顶看日出,先用1 h 爬了2 km ,休息0.5 h 后,再用l h 爬上山顶,游客爬山所用时间他t (h )与山高h (km )间的函数关系用图象表示是( )A .B .C .D . 84.不等式2x -7<5-2x 的正整数解有( ) A .1个B .2个C .3个D .4个85.八年级(1)班50名学生的年龄统计结果如表所示:则此班学生年龄的众数、中位数分别为( )A .14岁,l4岁B .15岁,l4岁C .14岁,l5岁D .15岁,l6岁 86.已知函数y kx b =+的图象如图所示,则2y kx b =+的图象可能是( )A .B .C .D .87.样本容量是40,共分6组,第1~4组的频数分别是l0,5,7,6,第5组的频率是0.10,则第6组的频率是( ) A .0.25B .O .30C .O .15D .O .2088.下列说法中,错误..的是 ( ) A .平行四边形是中心对称图形B .两个全等三角形一定是中心对称图形C .正方形既是中心对称图形也是轴对称图形D .关于某点中心对称的两个图形必是全等形89.以三角形的一条中位线和第三边上的中线为对角线的四边形是 ( )A .梯形B .平行四边形C .四边形D .正方形90.在□ABCD 中,∠A-∠B=20°,则∠B 的度数为( )A .80°B .60°C .100°D .120°91.如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A .32B .33C .34D .392.如图,直角梯形ABCD中,AD ∥BC ,AB ⊥BC ,AD=3,BC=5,将腰 DC 绕点D 逆时针方向旋转90°至DE ,连结AE ,则△ADE 的面积是( )A .1B .2C .3D .493.平行四边形的两条对角线分别为6和10,则其中一条边x 的取值范围为( )A .4<x <6B .2<x <8C .0<x <10D .0<x <6 94.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD BC ,于EF ,点,连结CE ,则CDE △的周长为( )A .5cmB .8cmC .9cmD .10cm95.四边形的四个内角的度数之比是2:1:1:2,则此四边形是( )A .任意四边形B .任意梯形C .等腰梯形D .平行四边形96.下列方程组不是..二元一次方程组的是( ) A .⎩⎨⎧x +y =5x -y =2 B .⎩⎨⎧x -y =0y =2 C .⎩⎪⎨⎪⎧x 1+y =5y =3 D .⎩⎪⎨⎪⎧2x +3y =1x -y =197.在△ABC 中,若∠A =70°-∠B ,则∠C 等于( )A .35°B .70°C .110°D .140°98.掷一枚硬币,正面向上的概率为( )A .1B .12C .13D .14 99.与分式2x y 的值相等的是( ) A .222x y ++ B .63x y C .3(2x)y D .2x y- F A D E B C100.已知:关于y x ,的方程组y x ,a y x a y x -⎩⎨⎧-=++-=+则3242的值为 ( ) A .-1 B .1-a C .0 D .1101.如果△ABC 是等腰三角形,那么∠A ,∠B 的度数可以是( )A .∠A=60°,∠B=50°B .∠A=70°,∠B=40°C .∠A=80°,∠B=60°D .∠A=90°,∠B=30°102.把多项式224n m -+分解因式,其结果正确的是( )A .(2)(2)m n m n +-B .2(2)m n +C . 2(2)m n -D .(2)(2)n m n m +-103. 用一副三角板画图,不能画出的角的度数是( )A .15°B .75°C .145°D .165°104. 某人沿着倾斜角为α的斜坡前进了c 米,则他上升的高度为( )A . csin αB .ctan αC . ccos αD .tan c α105.方程(1)5(1)x x x -=-的解是( )A .1B .5C .1或5D . 无解106.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸, 求出这支蜡烛在暗盒 中所成像 CD 的长( )A .16cm B .13cm C .12cm D .1 cm107. 将方程2440y y ++=的左边配成完全平方后得( )A .2(4)0y +=B .2(4)0y -=C .2(2)0y +=D .2(2)0y -=108.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121, 130, 133,146, 158, 177,188.则跳绳次数在90~110这一组的频率是( )A .0.1B .0.2C .0.3D .0.7109.已知长方形ABCD 对角线的交点在坐标原点,且AD ∥x 轴,若A 点坐标为(-1,2),则D 点坐标为( )A .(2,-l )B .(2,1)C .(1,2)D .(-1,2)110.化简: )A .B .C D一、选择题1.C2.B3.A4.B5.A6.D7.C8.B9.B10.A11.B12.A13.C14.A15.D16.B17.B18.C19.A20.B21.C22.B23.A24.D25.D26.C27.B28.C29.D33.B 34.C 35.C 36.B 37.B 38.D 39.B 40.B 41.D 42.C 43.C 44.D 45.C 46.B 47.C 48.C 49.C 50.B 51.A 52.A 53.B 54.D 55.D 56.A 57.D 58.D 59.A 60.C 61.A 62.B 63.C67.A 68.B 69.A 70.C 71.C 72.D 73.A 74.B 75.C 76.A 77.C 78.D 79.C 80.B 81.C 82.C 83.D 84.B 85.B 86.C 87.D 88.B 89.B 90.A 91.B 92.C 93.B 94.D 95.C 96.C 97.C101.B 102.A 103.C 104.A 105.C 106.D 107.C 108.B 109.C 110.D。
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( )A 、2千米/小时B 、3千米/小时C 、6千米/小时D 、不能确定 4、方程2x+3y=20的正整数解有( ) A 、1个 B 、3个 C 、4个 D 、无数个 5、下列说法错误的是( )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线 6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( )A B C D 9、有理数中,绝对值最小的数是( ) A 、-1 B 、1 C 、0 D 、不存在10、21的倒数的相反数是( )A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x 一定是( )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为( ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( ) A 、-x-3 B 、-(x+3) C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是( ) A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( )A 、12cmB 、10cmC 、8cmD 、4cm18、21-的相反数是( )A 、21+B 、12-C 、21--D 、12+-19、方程x(x-1)(x-2)=x 的根是( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253- D 、x 1=0,x 2=353+, x 3=253- 20、解方程04)1(5)1(322=-+++xx x x 时,若设y x x =+1,则原方程可化为( )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=0 21、方程x 2+1=2|x|有( )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( )A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>ax ax ,正确的结论是( )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( ) A 、0.2 B 、±0.2 C 、510D 、±510 26、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( ) A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( ) A 、k x , k 2s2B 、x , s2C 、k x , ks2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( )A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形 30、已知dcb a =,下列各式中不成立的是( )A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( ) A 、30B 、45C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心33、下列三角形中是直角三角形的个数有( )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( ) A 、4cm, 6cm B 、4cm, 3cm C 、2cm, 12cm D 、4cm, 8cm 36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( ) A 、AE=CD B 、AE>CD C 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( ) A 、矩形 B 、梯形 C 、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是( )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 不可能相等 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( )A 、30B 、60C 、150D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( )A 、∠B=30B 、斜边上的中线长为1C 、斜边上的高线长为552 D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( ) A 、0 B 、1 C 、2 D 、3 43、不等式6322+>+x x 的解是( )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( )A 、m ≤1B 、m ≥31且m ≠1C 、m ≥1D 、-1<m ≤1 45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( )ABA B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( )A 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( ) A 、a B 、a - C 、-a D 、-a -51、若a+|a|=0,则22)2(a a +-等于( ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( )A 、1B 、±21 C 、21 D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( )A 、18B 、6C 、23D 、±23 54、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似 A 、2个 B 、3个 C 、4个 D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_________。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如图所示,已知 AB ∥CD ,则与 ∠1相等的角 (∠1 除外)共有( ) A .5 个B .4 个C .3 个D .个2.计算x 10÷x 4×x 6的结果是( ) A .1B .0C .x 12D .x 363.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图1),把余下的部分拼成一个梯形(如图2),根据两个图形中阴影部分的面积相等,可以验证( ) A .a 2-b 2=(a +b )(a -b ) B .(a -b )2=a 2-2ab +b 2C .(a +b )2=a 2+2ab +b 2D .(a +2b )(a -b )=a 2+ab -2b 24.下列事件是必然事件的是( ) A .明天是晴天B .打开电视,正在播放广告C .两个负数的和是正数D .三角形三个内角的和是180° 5.下列各等式中正确的是( ) A .(x-2y )2=x 2-2xy+4y 2 B .(3x+2)2=3x 2+12x+4 C .(-3x-y )2=9x 2-6xy+y 2 D .(-2x-y )2=4x 2+4xy+y 26.若分式x yx y+-中的x 、y的值都变为原来的3倍,则此分式的值( ) A .不变B .是原来的3倍C .是原来的13D .是原来的16图1 图27.下列各式中,运算结果为22412xy x y -+的是( ) A .22(1)xy -+B .22(1)xy --C .222(1)x y -+D .222(1)x y --8.如图,已知△ABC ≌△CDE ,其中AB=CD ,那么列结论中,不正确的是( ) A .AC=CEB . ∠BAC=∠DCEC .∠ACB=∠ECD D . ∠B=∠D9.方程27x y +=在自然数范围内的解有( ) A .1个B . 2个C .3个D .4个10.下列事件中,为必然事件的是( )A .掷一枚均匀的正方形骰子,骰子停止后朝上的点数是3B .一枚均匀的正方形骰子,骰子停止后朝上的点数不是奇数便是偶数C .随机从0,1,2,·…,9这十个数中选取两个数,和为 20D .开电视,正在播广告11.现规定一种运算a ※b ab a b =+-,其中\a 、b 为实数,则a ※b +()b a -※b 等于( ) A .2a b -B . 2b b -C .2bD .2b a -12.下列图形中,不是正方体的表面展开图的是( )A .B .C .D .13. 如果把分式23xyx y+中的x 、y 都扩大5倍,那么分式的值( ) A .扩大5倍B .缩小5倍C .不变D .扩大10倍14.已知0.5a b a b x y +--与1337a x y -是同类项,那么( )A .12a b =-⎧⎨=⎩B . 12a b =⎧⎨=-⎩C . 21a b =⎧⎨=-⎩D . 21a b =-⎧⎨=⎩15. 如图,1l ∥2l ,将 AB 沿2l 向右平移 1.5 cm 后至 CD 位置,若AB=2,则 CD 等于( ) A .1.5cmB .2 cmC .3.5 cmD .1.5 cm 或2 cm16.将一-直角三角板与两边平行的纸条按如图所示放置,有下列结论:(1)∠1 = ∠2;(2)∠3 =∠4;(3)∠2 +∠4 = 90°;(4)∠4 + ∠5 = 180°. 其中正确的个数为()A.1 B. 2 C.3 D. 417.下列图形:①线段;②角;③数字7;④圆;⑤等腰三角形;⑥直角三角形.其中轴对称图形是()A.①②③④B.①③④⑤⑥C.①②④⑤D.①②⑤18.如图,图中等腰三角形的个数为()A.2个B.3个C.4个D.5个19.下列说法错误的是()A.三个角都相等的三角形是等边三角形B.有两个角是60°的三角形是等边三角形C.有一个角是60°的等腰三角形是等边三角形D.有两个角相等的等腰三角形是等边三角形20.已知Rt△ABC中,∠C=90°,若三角形的周长为24 cm ,斜边c为10 cm,则Rt△ABC的面积为()A.24 cm2 B.36 cm2 C.48 cm2 D.96 cm221.在|7|-中,负数共有()-+,|0|-,|5|,(3)A.1 个B.2 个C.3 个 D.4 个22.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点0,过点O作EF∥BC,交AB于点E,交AC于点F,△ABC的周长是24cm ,BC=10cm,则△AEF的周长是()A.10 cm B.12cm C.14 cm D.34 cm23.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( ) A .41 B .21 C .43 D .124.如图所示的长方体的三视图是( )A .三个正方形B .三个一样大的长方形C .三个大小不_样的长方形但其中可能有两个大小一样D .两个正方形和一个长方形25.如图,在边长为a 的正方形上剪去一个边长为b 的小正方形(a b >),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是( ) A .22()()a b a b a b -=-+ B .222()2a b a ab b +=++ C .222()2a b a ab b -=-+ D .2()a ab a a b -=-26.如图,直线AB 、CD 相交于点0,EO ⊥AB 于点0,则图中∠1与∠2的关系是( ) A .相等B .互余C .互补D .没有关系27. 下列各数中,比2-大的是( ) A .|2|--B .(2)--C .(6)--D .(6)-+28.近似数5.60所表示的准确数的范围是( ) A .5.595至5.605之间B .5.50至5.70之间C .5.55至5.64之间D .5.600至5.605之间 29.下列说法正确的是( ) A . 有理数一定有平方根B . 负数没有平方根C . 一个正数的平方根,只有一个D .1 的平方根是 130.下列各式正确的是( )A 5=±B .5=C 5-D .5=±31.下列判断中错误..的有( ) ①每一个正数都有两个立方根 ②零的平方根等于零的算术平方根 ③没有平方根的数也没有立方根 ④有理数中绝对值最小的数是零 A .1 个B .2 个C .3 个D .4 个32.多项式2235x y +与214y xy -+的差是( ) A .229x y -B .223146xy xy y ++C .223146x xy y -+D .223144x xy y ++33.如果23321133a b x y x y +--与是同类项,那么a 、b 的值分别是( )A .12a b =⎧⎨=⎩B .02a b =⎧⎨=⎩C .21a b =⎧⎨=⎩D .11a b =⎧⎨=⎩34.甲数为2x -1,乙数为2-3x ,则乙数的2倍比甲数大( ) A .5-8x B .8x -5 C .5-4x D .3-8x35.在一次美化校园的活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人分别有多少人?若设支援拔草的有x 人,则下列方程中正确的是 ( ) A .32+x=2×18 B .32+x=2(38-x ) C .52-x =2(18+x ) D .52-x=2×1836.用长为 20m 的铁丝围成一个长方形方框使长为 6.2m ,宽为 x (m ),则可列方程为( ) A .2 6.220x +⨯=B . 6.220x +=C .2 6.220x +=D .2( 6.2)20x +=37. 如图,O 是直线AB 上的一点,过O 点作射线OC , 已知OD 、OE 分别平分∠AOC 、∠COB .则△ODE 是( ) A .钝角三角形B .锐角三角形C .直角三角形D .无法判断38.4条直线相交于同一点,对顶角的对数是( ) A .6对B .8对C .10对D .12对39.计算991002(0.6)(1)3-⋅-的值是( )A .53B .53-C .35D .35-40.小明自从学了有理数的运算法则后, 非常得意,编了一个计算程序, 当他输入任何一个有理数时, 显示屏上出现的结果总等于所输入的有理数的平方与1的差, 他第一次输入2-,然后又将所得的结果再次输入,你猜此时显示屏上出现的结果为()A.6 B.4 C.19 D. 841.在NBA的篮球队员中,有两位出色的中国球员,他们是姚明和易建联. 经调查,七(3)班44位学生中,喜欢姚明的有25人,喜欢易建联的有20人,两个都不喜欢的有8人,那么两个都喜欢的有()人A. 9 B. 11 C. 13 D. 842.小南给计算机编制了按如图所示工作程序.如果现在输入的数是3,那么输出的数是()输入-6 ×9 输出A.-27 B.81 C.297 D.-29743.如图,在长方体中,与AB平行的棱有()A. 1条B.2条C.3条D.4条44.下列图形中不是轴对称图形的是()45.如图所示,△ADF≌△CBE,则结论:①AF=CE;②∠1=∠2;③BE=CF,④AE=CF.其中正确的个数为()A.1个B.2个C.3个D.4个46.平移前有两条直线互相垂直,那么这两条直线平移后()A.互相平行B.互相垂直C.相交但不垂直D.无法确定47.下列各图中,由△ABC绕O点旋转后得到的图形与原图形共同组成的是()48.下列甩纸折叠成的图案中,轴对称图形的个数是()A .4个B .3个C .2个D .1个49.用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是( )A . 4639611x y x y +=⎧⎨-=⎩B . 6396222x y x y +=⎧⎨-=⎩C . 4669633x y x y +=⎧⎨-=⎩D . 6936411x y x y +=⎧⎨-=⎩50.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( ) A .9cmB .12cmC .15cmD .12cm 或15cm51.若方程3(2x-1)=2-3x 的解与关于x 的方程622(3)k x -=+的解相同,则k 的值为( ) A .59B .59-C .53D .53-52.已知等腰△ABC 的两边为 3 和 5,等腰△A ′B ′C ′的两边为 9 和 15,那么这两个三 角形( ) A . 相似 B .不相似 C .不一定相似D . 以上答案都不对53.如图所示,在□ABCD 中,M ,N 分别是边AB ,CD 的中点,DB 分别交AN ,CM 于点P ,Q .下列结论:①DP=PQ=QB ;②AP=CQ ;③CQ=2MQ ;④14ADP ABCDS S ∆=,其中正确的结论的个数为 ( )A .4个B .3个C .2个D .1个54.某校组织学生进行了一次社会调查,并对学生的调查报告进行评比.下图是将某年级60 篇学生调查报告的成绩进行整理,分成5组后画出的频数分布直方图.已知从左到右4个组的频率分别是0.05,0.15,0.35,0.30,那么这次评比中被评为优秀的调查报告有(分数大于或等于80分为优秀,且分数为整数) ( ) A .18篇B .24篇C .25篇D .27篇55.已知甲、乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S =乙,则( ) A .甲组数据比乙组数据的波动大B .乙组数据比甲组数据的波动大C .甲组数据与乙组数据的波动一样大D .甲、乙两组数据的波动性大小不能比较56.已知菱形的周长为9.6 cm .两个邻角的比是1:2,则这个菱形较短的对角线的长是 ( ) A .2.1 cmB .2.2 cmC .2.3 cmD .2.4cm57.满足下列条件的△ABC ,不是直角三角形的是( ) A .222b a c =-B .∠C=∠A 一∠BC .∠A :∠B :∠C=3:4:5D .a :b: c=12:13:558. 根据如图所示的程序计算函数值,若输入的x 值为32,则输出的结果为( )A .52B .94C .454D .359.在边长3和4的矩形中挖去一个半径为r 的圆,剩余部分的面积为s ,则s 关于r 的函数解析式为( ) A .s =7-πr 2B .s =12-πr 2C .s =(3―r )(4―r )D .=12-r 260.已知函数y =ax 2+bx +c 的图像如图所示,那么此函数的解析式为( ) A .y =-x 2+2x +3B .y =x 2―2x ―3C .y =―x 2―2x +3D .y =―x 2―2x ―361.如图,四边形 ABCD 四个顶点在⊙O 上,点E 在 BC 延长线上,且∠BOD =150°,则∠ DCE=( ) A .l05°B . 150°C .75°D .60°62.如图,在⊙O 中AB=BC=CD ,∠E=40°,∠ACD 的度数等于( ) A .45°B .30°C .15°D .不能确定63.在□ABCD 中,∠A 和∠B 的角平分线交于点E ,则∠AEB 等于( ) A .60°B .90°C .120°D .180°64.△ABC 中,AB= 12,BC= 18,CA=24,另一个和它相似的三角形最长的一边是36,则最短的一边是( ) A .27B .20C .18D .1265.直角梯形的一腰长为l0 cm ,这条腰与底所成的角为30°,则它的另一腰长为 ( ) A .2.5 cmB .5 cmC .10 cmD .15 cm66.两个相似菱形的边长比是 1:4,那么它们的面积比是( )D A .1:2B .1:4C .1:8D .1:1667.已知BC ∥DE ,则下列说法不正确的是( ) C . A. 两个三角形是位似图形 B .点A 是两个三角形的位似中心 C . AE :AD 是位似比 D . 点B 与点 D ,点 C 与点E 是对应位似点68.如图,△ABC 和△DEF 是位似图形,且位似比为 2:3,则EFBC等于( ) A .12B .13C .14D .2369.在下列四个函数的图象中,函数y 的值随x 值的增大而减少的是( ) 70.在ABC ∆中,︒=∠90C ,AB=15,sinA=13,则BC 等于( ) A .45B .5C .15D .14571.如图是某小区的一块三角形空地,准备在上面种植某种草皮以美化环境,已知这种草皮每平方米售价为m 元,则购买这种草皮至少需要( ) A .450m 元B .225m 元C .150m 元D .300m 元72. 下列不等式中能成立的是( )A . cos10<cosl00<cos200B .tan15O >tan250>tan350C . coslO O <tan700<tan600D . sin8O O >sin550>sin30073. 学校升旗要求学生穿校服,但有一些粗心大意的学生忘记了,若有学生 l200名,没 有穿校服的学生有 60 名,则任意叫一名学生没有穿校服的概率是( ) A .121B .119C .120D .11074. 如图,以点O 为圆心的同心圆中,大圆的弦AB 切小圆于点C ,两圆的半径分别为5cm 和3cm ,则AB=( )A .8cmB .4cmC .D75.在太阳光线下,一张正方形纸片的影子不可是( ) A .线段B .正方形C .平行四边形D .等腰梯形76.已知△ABC ∽△A 1B 1C 1,且△A 1B 1C 1∽△A 2B 2C 2,下列关于△ABC 与△A 2B 2C 2 关 系的结论正确的是( ) A .全等B .面积相等C .相似D .面积不相等77.若正比例函数的图象经过点(-l ,2),则这个图象必经过点( ) A .(1,2)B . (-l ,-2)C .(2,-1)D . (1,-2)78.数学老师对小明在参加中考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的( ) A .平均数或中位数B .方差或标准差C .众数或平均数D .众数或中位数79.某地区10户家庭的年消费情况如下:年消费l0万元的有2户,年消费5万元的有l 户,年消费1.5万元的有6户,年消费7千元的有1户.可估计该地区每户年消费金额的一般水平为( ) A.1.5万元 B .5万元 C .10万元 D .3.47万元 80.不等式组⎩⎨⎧>->-03042x x 的解集为( )A .x >2B .x <3C .x >2或 x <-3D .2<x <381.正比例函数(0)y kx k =<,当13x =-,20x =,32x =时,对应的1y ,2y ,3y 之间的关系是( ) A .32y y <,12y y < B .123y y y << C .23l y y y >> D .无法确定82.如图所示,直角△ABC 中,∠ACB=90°,DE 过点C 且平行于AB ,若∠BCE=35°, 则∠A 的度数为 ( ) A .35°B .45°C .55°D .65°83.如图,两平行直线AB 和CD 被直线MN 所截,交点分别为E 、F ,点G 为射线FD 上的一点,且EG=EF ,若∠EFG=45°,则∠BEG 为( ) A .300B .45°C .60°D .90°84.下图几何体的主视图是()A.B.C.D.85.两个完全相间的长方体的长,宽,高分别是5 cm,4 cm,3 cm,把它们叠放在一起组成一个新长方体,在这些新长方体中,表面积最大的是()A.188cm2B.176cm2C.164cm2 D.158 cm286.“a≥b”的反面是()A.a<b B.a≠b C.a≤b D.a=b或a<b87.的结果是()A.B.1 C.D.88.代数式223χ-+的值一定是()xA.负数B.正数C.非负数D.不能确定89.△ABC和△A′B′C′中,条件①AB=A′B′;②BC=B′C′;③AC=A′C′;④∠A=∠A′;⑤∠B=∠8′;⑥∠C=∠C′,则下列各组中不能保证△ABC≌△A′B′C′的是()A.①②③B.①②⑤C.①③⑤D.②⑤⑥90.小明3min共投篮80次,进了50个球,则小明进球的频率是()A.80 B.50 C.1.6 D.0.62591.如果一个角的两边与另一个角的两边分别平行,则这两个角的关系是()A.相等B.互余C.互补D.相等或互补92.下列命题中,是真命题的是()A.一组对角相等,一组对边相等的四边形是平行四边形B.若a b=,则a b=C.一组对边相等,另一组对边平行的四边形是平行四边形D.夹在两条平行线之间的平行线段相等93.下列语句不是命题的个数是()(1)大于90°的角都是钝角;(2)请借给我一枝钢笔;(4)如果a=0,那么ab=0.A .0个B .1个C .2个D .3个94.S 型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x ,则下列方程中正确的是( )A .1500 (1+x )2=980B .980(1+x )2=1500C .1500 (1-x )2=980D .980(1-x )2=150095.为解决药价偏高给老百姓带来的求医难的问题,国家决定对某药品分两次降价.若设每次降价的百分率为x ,该药品的原价是m 元,降价后的价格是y 元,则可列方程为( )A .y=2m (1-x )B .y=2m (1+x )C .y=m (1-x )2D .y=m (1+x )296.将一个三形平移后得到另一个三角形,则下列说法中,错误的是( )A .两个三角形的大小不同B .两个三角形的对应边相等C .两个三角形的周长相等D .两个三角形的面积相等97.已知等腰三角形一腰上的高线等于底边的一半,则这个等腰三角形的顶角等于( )A .120°B .90°C . 60°D .30°98.要使分式2143x x -+的值为 0,则x 的值应为( ) A .1 B .-1 C .34- D .1±99.计算326(3)m m ÷-正确的结果是( )A .3m -B .2m -C .2mD .3m100.若 01a b <<<,下列各式成立的是( )A .11a b ->-B .11a b <C .11a b -<-D .b a >-101.已知A 、B 、C 是数轴上的三个点,点B 表示2,点C 表示-4,AB=3,则AC 的长是( )A .3B .6C .3或6D .3或9102.一副三角板,如图所示叠放在一起,则图中α的度数是( )A .75°B .60°C .65°D .55°103.如果改动三项式2246a ab b -+中的某一项,能使它变为完全平方式,那么改动的办法是( )A .可以改动三项中的任意一项B .只能改动第一项104.由表格中信息可知,若使2y ax bx c =++,则下列 y 与x 之间的函数关系式正确的是( )A .243y x x =-+B .234y x x -=+C .233y x x =--D .248y x x =-+105.如图,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC ∆∽ADE ∆的是( ) A .AE AC AD AB = B .DE BC AD AB = C .D B ∠=∠ D .AED C ∠=∠106.已知二次函数y =x 2-x +a (a >0),当自变量x 取m 时,其相应的函数值小于0,那么下列结论中正确的是( )A .m -1的函数值小于0B .m -1的函数值大于0C . m -1的函数值等于0D .m -1的函数值与0的大小关系不确定107.如图所示的物体是一个几何体,其主视图是( )108.如图,等腰梯形ABCD 中,AD ∥BC ,以A 为圆心,AD 为半径的圆与BC 切于点M ,与AB 交于点E ,若AD =2,BC =6,则⌒DE的长为( ) A .23π B .43π C .83π D .π3 109.为了备战市运动会,教练对主明 20次的训练成绩进行统计分析,判断他的成绩是否稳定,则教练需要知道王明这20次成绩的( )A . 众数B . 方差C . 频数D . 平均数110.如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( )A .34B .33C .24D .8【参考答案】***试卷处理标记,请不要删除一、选择题4.D 5.D 6.A 7.A 8.C 9.D 10.B 11.B 12.C 13.A 14.C 15.B 16.D 17.C 18.D 19.D 20.A 21.A 22.C 23.B 24.C 25.A 26.B 27.C 28.A 29.B 30.D 31.B 32.C 33.A 34.A38.D 39.B 40.D 41.A 42.D 43.C 44.A 45.C 46.B 47.A 48.B 49.C 50.C 51.B 52.C 53.B 54.D 55.B 56.D 57.C 58.C 59.B 60.A 61.C 62.C 63.B 64.C 65.B 66.D 67.C 68.D72.D 73.C 74.A 75.D 76.C 77.D 78.B 79.A 80.D 81.C 82.C 83.B 84.C 85.C 86.A 87.A 88.B 89.C 90.D 91.D 92.D 93.B 94.C 95.C 96.A 97.A 98.D解析:D.99.B 100.C 101.D105.B 106.A 107.C 108.A 109.B 110.A。
【易错题】中考数学模拟试题及答案一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.62.如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3.二次函数y=x2﹣6x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,则m的值为()A.27B.9C.﹣7D.﹣164.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm5.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.6.不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D .7.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°8.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .49.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm10.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55a b >D .-3a >-3b11.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A .60°B .50°C .45°D .40°12.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.1069605076020500x x-=+B.5076010696020500x x-=+C.1069605076050020x x-=+D.5076010696050020x x-=+二、填空题13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.14.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.15.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=2x的图像上,则菱形的面积为_______.16.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.17.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为_____.18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.19.已知10a b b -+-=,则1a +=__.20.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.三、解答题21.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 22.如图,在平面直角坐标系中,直线10y kx =-经过点(12,0)A 和(,5)B a -,双曲线(0)my x x=>经过点B . (1)求直线10y kx =-和双曲线my x=的函数表达式; (2)点C 从点A 出发,沿过点A 与y 轴平行的直线向下运动,速度为每秒1个单位长度,点C 的运动时间为t (0<t <12),连接BC ,作BD ⊥BC 交x 轴于点D ,连接CD , ①当点C 在双曲线上时,求t 的值;②在0<t <6范围内,∠BCD 的大小如果发生变化,求tan ∠BCD 的变化范围;如果不发生变化,求tan ∠BCD 的值;③当136112DC 时,请直接写出t的值.23.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;(3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).24.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=12.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.25.修建隧道可以方便出行.如图:A,B两地被大山阻隔,由A地到B地需要爬坡到山顶C地,再下坡到B地.若打通穿山隧道,建成直达A,B两地的公路,可以缩短从A地i=,从B到C坡面的坡角到B地的路程.已知:从A到C坡面的坡度1:3∠=︒,42CBA45BC=公里.(1)求隧道打通后从A到B的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A地到B地的路程约缩短多少公里?(结果精确到0.01)(2 1.414≈)≈,3 1.732【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.2.A解析:A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.考点:由三视图判定几何体.3.D解析:D【解析】【分析】先确定抛物线的对称轴为直线x=3,根据抛物线的对称性得到x=−2和x=8时,函数值相等,然后根据题意判断抛物线与x轴的交点坐标为(−2,0),(8,0),最后把(−2,0)代入y=x2−6x+m可求得m的值.【详解】解:∵抛物线的对称轴为直线x=,∴x=−2和x=8时,函数值相等,∵当−2<x<−1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,∴抛物线与x轴的交点坐标为(−2,0),(8,0),把(−2,0)代入y=x2−6x+m得4+12+m=0,解得m=−16.故选:D.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.4.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.5.D解析:D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.6.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.7.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.8.C解析:C【解析】【详解】①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x==﹣1,∴b=2a<0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确; ②∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,∴4ac <b 2,所以②正确; ③∵b =2a ,∴2a ﹣b =0,所以③错误;④∵x =﹣1时,y >0,∴a ﹣b +c >2,所以④正确. 故选C .9.C解析:C 【解析】 【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积. 【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm . 所以该几何体的侧面积为2π×1×3=6π(cm 2). 故选C . 【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.10.D解析:D 【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55ab >,∴选项C 正确; D.∵a >b ,∴-3a <-3b ,∴选项D 错误. 故选D.11.D解析:D 【解析】 【分析】 【详解】∵∠C=80°,∠CAD=60°, ∴∠D=180°﹣80°﹣60°=40°, ∵AB ∥CD , ∴∠BAD=∠D=40°. 故选D .12.A解析:A 【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴1069605076020500x x-=+.故选A.考点:由实际问题抽象出分式方程.二、填空题13.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC 绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上∴AC=A′C∴△A′AC是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°.14.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB =25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D为AB的中点,∴DF=12AB=2.5,∵DE为△ABC的中位线,∴DE=12BC=4,∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.15.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:4 解析:4【解析】【分析】【详解】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A在反比例函数y=2x的图象上,∴△AOD的面积=12×2=1,∴菱形OABC的面积=4×△AOD的面积=4故答案为:416.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC∥DE根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵DE分别是A解析:18【解析】【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为18.【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.17.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.18.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下: -2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:1 -2 -122-4-22∴积为大于-4小于2的概率为612=12, 故答案为12. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.19.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab 的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b ﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要解析:【解析】 【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出a ,b 的值,进而即可得出答案. 【详解】∵a b -+|b ﹣1|=0, 又∵0a b -≥,|1|0b -≥, ∴a ﹣b =0且b ﹣1=0, 解得:a =b =1, ∴a +1=2. 故答案为2. 【点睛】本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a 、b 的方程是解题的关键.20.28【解析】【分析】设加分前及格人数为x 人不及格人数为y 人原来不及格加分为及格的人数为n 人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n 分别表示xy 得到解析:28 【解析】 【分析】设加分前及格人数为x 人,不及格人数为y 人,原来不及格加分为及格的人数为n 人,所以,用n 分别表示x 、y 得到x+y =n ,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.【详解】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为为及格的人数为n人,根据题意得,解得,所以x+y=n,而15<n<30,n为正整数,n为整数,所以n=5,所以x+y=28,即该班共有28位学生.故答案为28.【点睛】本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.三、解答题21.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息. 22.(1)直线的表达式为5106y x =-,双曲线的表达式为30y x =-;(2)①52;②当06t <<时,BCD ∠的大小不发生变化,tan BCD ∠的值为56;③t 的值为52或152.【解析】 【分析】(1)由点(12,0)A 利用待定系数法可求出直线的表达式;再由直线的表达式求出点B 的坐标,然后利用待定系数法即可求出双曲线的表达式;(2)①先求出点C 的横坐标,再将其代入双曲线的表达式求出点C 的纵坐标,从而即可得出t 的值;②如图1(见解析),设直线AB 交y 轴于M ,则(0,10)M -,取CD 的中点K ,连接AK 、BK .利用直角三角形的性质证明A 、D 、B 、C 四点共圆,再根据圆周角定理可得BCD DAB ∠=∠,从而得出tan tan OMBCD DAB OA∠=∠=,即可解决问题; ③如图2(见解析),过点B 作⊥BM OA 于M ,先求出点D 与点M 重合的临界位置时t 的值,据此分05t <<和512t ≤<两种情况讨论:根据,,A B C 三点坐标求出,,AM BM AC 的长,再利用三角形相似的判定定理与性质求出DM 的长,最后在Rt ACD ∆中,利用勾股定理即可得出答案. 【详解】(1)∵直线10y kx =-经过点(12,0)A 和(,5)B a -∴将点(12,0)A 代入得12100k -= 解得56k =故直线的表达式为5106y x =-将点(,5)B a -代入直线的表达式得51056a -=- 解得6a =(6,5)B ∴-∵双曲线(0)my x x=>经过点(6,5)B - 56m∴=-,解得30m =- 故双曲线的表达式为30y x=-; (2)①//AC y Q 轴,点A 的坐标为(12,0)A ∴点C 的横坐标为12将其代入双曲线的表达式得305122y =-=- ∴C 的纵坐标为52-,即52AC =由题意得512t AC ⋅==,解得52t = 故当点C 在双曲线上时,t 的值为52; ②当06t <<时,BCD ∠的大小不发生变化,求解过程如下: 若点D 与点A 重合由题意知,点C 坐标为(12,)t -由两点距离公式得:222(612)(50)61AB =-+--=2222(126)(5)36(5)BC t t =-+-+=+-+ 22AC t =由勾股定理得222AB BC AC +=,即226136(5)t t ++-+= 解得12.2t =因此,在06t <<范围内,点D 与点A 不重合,且在点A 左侧 如图1,设直线AB 交y 轴于M ,取CD 的中点K ,连接AK 、BK 由(1)知,直线AB 的表达式为5106y x =- 令0x =得10y =-,则(0,10)M -,即10OM =Q 点K 为CD 的中点,BD BC ⊥12BK DK CK CD ∴===(直角三角形中,斜边上的中线等于斜边的一半)同理可得:12AK DK CK CD ===BK DK CK AK ∴===∴A 、D 、B 、C 四点共圆,点K 为圆心BCD DAB ∴∠=∠(圆周角定理)105tan tan 126OM BCD DAB OA ∴∠=∠===;③过点B 作⊥BM OA 于M由题意和②可知,点D 在点A 左侧,与点M 重合是一个临界位置 此时,四边形ACBD 是矩形,则5AC BD ==,即5t = 因此,分以下2种情况讨论:如图2,当05t <<时,过点C 作CN BM ⊥于N(6,5(1),2,0),(12,)B A t C --Q12,6,6,5,OA OM AM OA OM BM AC t ∴===-===90CBN DBM BDM DBM ∠+∠=∠+∠=︒QCBN BDM ∴∠=∠又90CNB BMD ∠=∠=︒Q CNB BMD ∴∆~∆CN BNBM DM∴= AM BM AC BM DM -∴=,即655tDM-= 5(5)6DM t ∴=-56(5)6AD AM DM t ∴=+=+-由勾股定理得222AD AC CD +=即222513616(5)(6t t ⎡⎤+-+=⎢⎥⎣⎦解得52t =或152t =(不符题设,舍去) 当512t ≤<时,同理可得:222513616(5)()6t t ⎡⎤--+=⎢⎥⎣⎦解得152t =或52t =(不符题设,舍去)综上所述,t 的值为52或152.【点睛】本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题. 23.(1)280名;(2)补图见解析;108°;(3)0.1. 【解析】 【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率. 【详解】解:(1)56÷20%=280(名), 答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名), 补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D EA(A,B)(A,C)(A,D)(A,E)B(B,A)(B,C)(B,D)(B,E)C(C,A)(C,B)(C,D)(C,E)D(D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是0.1.24.(1)(-8,0)(2)k=-19225(3)(﹣1,3)或(0,2)或(0,6)或(2,6)【解析】【分析】(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=12 OBOA=,∴OA=8,∴A(﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245-,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣192 25.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P 坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.25.(1)隧道打通后从A 到B 的总路程是(434)+公里;(2)隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【解析】【分析】(1)过点C 作CD ⊥AB 于点D ,利用锐角三角函数的定义求出CD 及AD 的长,进而可得出结论.(2)由坡度可以得出A ∠的度数,从而得出AC 的长,根据AC CB AB +-即可得出缩短的距离.【详解】(1)作CD AB ⊥于点D ,在Rt BCD ∆中,∵45CBA ∠=︒,42BC =,∴4CD BD ==.在Rt ACD ∆中,∵1:3CD i AD==, ∴343AD CD ==,∴()434AB =+公里.答:隧道打通后从A 到B 的总路程是()434+公里.(2)在Rt ACD ∆中,∵CD i AD==, ∴30A ∠=︒,∴2248AC CD ==⨯=,∴8AC CB +=+∵4AB =,∴84 2.73AC CB AB +-=+≈(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【点睛】本题考查的是解直角三角形的应用-坡度问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记坡度和锐角三角函数的定义.。