简易数字式电阻、电感、电容测试仪
- 格式:doc
- 大小:523.00 KB
- 文档页数:14
简易数字式电阻、电感和电容测量仪摘要本系统主控制部分采用TI公司的16位超低功耗单片机MSP430F149。
以自制电源作为LRC测量模块和各个主要控制芯片的输入电源,测量原理是通过测量电阻、电容或者电感和标准电阻各自的引起的频率变化,利用频率与电阻、电容、电感的函数关系推算出电阻值、电容值或者电感值。
测量的原理是LM311组成的LC震荡器的震荡回路的频率由单片机采样,然后再依据震荡频率计算出对应的电容或电感值,以及由NE555多谐振荡电路实现对电阻的测量。
软件设计部分使用C语言编程编写了包括控制测量程、按键处理、电阻电感电容计算、液晶显示程序。
利用MSP430F149单片机控制测量和计算结果,测量结果采用12864液晶模块实时显示。
关键词: MSP430F149、NE555芯片、LRC测量、12864液晶目录1 系统总体方案设计 (1)1.1系统方案选择 (1)1.2系统软硬件总体设计 (1)1.2.1硬件部分 (1)1.2.2软件部分 (2)2系统模块设计 (3)2.1硬件模块设计 (3)2.1.1电感电容测量模块 (3)2.1.2电阻测量模块 (4)2.1.3主控制模块 (5)2.1.4 AD采样模块 (5)2.1.5 液晶显示模块 (5)2.2软件模块设计 (5)2.2.1 控制测量程序模块 (5)2.2.2按键处理程序模块 (6)2.2.3电阻电感电容计算程序 (7)2.2.4液晶显示程序模块 (7)3系统测试 (8)3.1测试原理 (8)3.2测试方法 (8)3.3测试结果 (8)3.4测试分析 (9)4系统总结 (9)参考文献: (10)1 系统总体方案设计1.1系统方案选择方案一.基于模拟电路的测量仪利用模拟电路,电阻可用比例运算器法和积分运算器法,电容可用恒流法和比较法,电感可用时间常数法和同步分离法等,虽然避免了编程的麻烦,但电路复杂,所用器件较多,灵活性差,测量精度低,现在已较少使用。
简易数字式电阻、电容和电感测量仪设计报告摘要:本系统利用TI公司的16位超低功耗单片机MSP430F149和ICL8038精密函数发生器实现对电阻、电容和电感参数的测量。
本系统以自制电源作为LRC数字电桥和各个主要控制芯片的输入电源,并采用ICL8038芯片产生高精度的正弦波信号流经待测的电阻、电容或者电感和标准电阻的串联电路,通过测量电阻、电容或者电感和标准电阻各自的电压,利用电压比例计算的方法推算出电阻值、电容值或者电感值。
利用MSP430F149单片机控制测量和计算结果,运用自校准电路提高测量精度,同时用差压法,消除了电源波动对结果的影响。
测量结果采用12864液晶模块实时显示。
实验测试结果表明,本系统性能稳定,测量精度高。
关键词:LRC 数字电桥、电压比例法、液晶模块、MSP430F149、电阻电容电感测量一、设计内容及功能1.1设计内容设计并制作一台简易数字式电阻、电容和电感参数测量仪,由测量对象、测量仪、LCD 显示和自制电源组成,系统模块划分如下图所示:1.2 具体要求1. 测量范围(1)基本测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。
(2)发挥测量范围:电阻10Ω~10MΩ;电容50pF~10μF;电感50μH~1H。
2. 测量精度(1)基本测量精度:电阻±5% ;电容±10% ;电感±5% 。
(2)发挥测量精度:电阻±2% ;电容±8% ;电感±8% 。
3. 利用128*64液晶显示器,显示测量数值、类型和单位。
4. 自制电源5. 使用按键来设置测量的种类和单位1.3系统功能1. 基本完成以上具体要求2. 使用三个按键分别控制R、C、L的测试3. 采用液晶显示器显示测量结果二、系统方案设计与选择电阻、电容、电感测试仪的设计目前有多种方案可以实现,例如、使用可编程逻辑控制器(PLC)、振荡电路与单片机结合或CPLD与EDA相结合等等来实现。
简易电阻、电容和电感测试仪摘要:在现代化生产、学习、实验当中,往往需要对某个元器件的具体参数进行测量,在这之中万用表所选择使用。
然而万用表有一定的局限性,它不能够测量电感,而且容量稍大的电容也显得无能为力,所以制作一个简单易用的电抗元器件测量仪是很有必要的。
本系统是以STC89C52单片机为基础,用555定时器振荡电路测量电阻、电容,用电容三点式测电感。
三种方式产生的频率值送到单片机的计数器口进行计数,通过单片机操作实现频率到各个电参数的转换,然后用数码管显示出来。
本系统实现了使用三个按键分别控制R、C、L的测试,用红、黄、绿三个发光二极管分别代表三种类别的测试,同时每个电参数都有两档,用发光二极管的自动转换来指示。
关键词:STC89C52单片机555多谐振荡电路电容三点式振荡Abstract:In modern production, learning, experiment, often require specific parameters of a component is measured, the multimeter with its easy to use, low power consumption advantages used by most people. so making a reactance components easy to use measuring instrument is very necessary.The system is based on STC89C52, using 555 timer oscillator circuit measuring the resistance, capacitance, inductance capacitance measurement with three point. Three ways to produce frequency counter to the port count, through the SCM operation to realize frequency conversion to various electrical parameters, and then use the digital tube display. This system has realized using three buttons control R, test C, L, three categories representing with red, yellow, green three light-emitting diode test, at the same time, each of the electrical parameters are two files, automatic conversion LEDs to indicate.目录一、设计功能及要求 (3)1.1 设计要求 (3)1.2 系统功能 (3)二、方案设计与论证 (3)2.1 方案一电桥法 (3)2.2 方案二振荡法 (4)三、系统硬件电路设计 (4)3.1 电路方框图及说明 (4)3.2 各部分电路设计 (4)3.2.1 电阻测量电路 (5)3.2.2 电容测量电路 (5)3.2.3 电感测量电路 (6)3.3 测量数据 (7)3.3.1 电阻值及误差 (7)3.3.2 电容值及误差 (8)3.3.3 电感值及误差 (9)四软件实现 (10)4.1主程序流程图 (10)4.2用软件补偿后的测量值 (11)4.2.1 电阻值及误差 (11)4.2.2 电容值及误差 (12)4.2.3 电感值及误差 (12)4.2.4 分析 (13)五心得 (13)1.1 设计要求设计并制作一台数字显示的电阻、电容和电感参数测试仪,示意框图如下:1.基本要求(1)测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。
简易电阻、电容和电感测试仪1.1 基本设计要求(1)测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。
(2)测量精度:±5% 。
(3)制作4位数码管显示器,显示测量数值。
示意框图1.2 设计要求发挥部分(1)扩大测量范围;(2)提高测量精度;(3)测量量程自动转化。
摘要:本系统是依赖单片机MSP430建立的的,本系统利用555多谐振荡电路将电阻,电容参数转化为频率,而电感则是根据电容三点式振荡转化为频率,这样就能够把模拟量近似的转换为数字量,而频率f是单片机很容易处理的数字量,一方面测量精度高,另一方面便于使仪表实现自动化,而且单片机构成的应用系统有较大的可靠性。
系统扩展、系统配置灵活。
容易构成何种规模的应用系统,且应用系统较高的软、硬件利用系数。
单片机具有可编程性,硬件的功能描述可完全在软件上实现,而且设计时间短,成本低,可靠性高。
综上所述,利用振荡电路与单片机结合实现电阻、电容、电感测试仪更为简便可行,节约成本。
所以,本次设计选定以单片机为核心来进行。
关键词:430单片机,555多谐振荡电路,,电容三点式振荡一、系统方案电阻测量方案:555RC多谐振荡。
利用RC和555定时器组成的多谐振荡电路,通过测量输出振荡频率的大小即可求得电阻的大小,如果固定电阻值,该方案硬件电路实现简单,通过选择合适的电容值即可获得适当的频率范围,再交由单片机处理。
综合比较,本设计采用方案三,采用低廉的NE555构建RC多谐振荡电路,电路简单可行,单片机易控制。
电容测量方案:555RC多谐振荡同样利用RC和555定时器组成的多谐振荡电路,通过测量输出振荡频率的大小即可求得电容的大小,如果固定电阻值,该方案硬件电路实现简单,能测出较宽的电容范围,能够较好满足题目的要求。
采用低廉的NE555构建RC多谐振荡电路,电路简单可行,单片机易控制。
电感测量方案:电容三点式采用LC配合三极管组成三点式震荡振荡电路,通过测输出频率大小的方法来实现对电感值测量。
电子技术课程设计报告——简易数字电容测量仪的设计设计题目:简易数字电容测量仪班级学号:学生姓名:目录一、预备知识.................... 错误!未定义书签。
二、课程设计题目:简易数字电容测量仪的设计错误!未定义书签。
三、课程设计目的及基本要求...... 错误!未定义书签。
四、设计内容提要及说明.......... 错误!未定义书签。
4.1设计内容........................................ 错误!未定义书签。
4.2设计说明........................................ 错误!未定义书签。
五、原理图及原理说明 ........................ 错误!未定义书签。
5.1功能模块电路原理图..................... 错误!未定义书签。
5.2模块工作原理说明 ........................ 错误!未定义书签。
六、调试...........................................................................错误!未定义书签。
七、设计中涉及的实验仪器和工具.... 错误!未定义书签。
八、课程设计心得体会 ........................ 错误!未定义书签。
九、参考文献 ........................................ 错误!未定义书签。
一、预备知识关于数字式简易数字电容测试仪的设计,我们提出了三种设计方法和思路。
在具体操作中,经过对资料的收集、分析,研究与对比,最终选择了简单易懂,而且精度较高的方法,即门控法。
本方法的基本理论是单稳态触发器电路的输出脉宽wt与电容C成正比,再通过一系列的控制,计数,锁存,显示电路实现了对电容的一般测试与数字显示。
在本次数电课程设计的同时,对于中大规模集成电路从认识到分析、再到整体框图设计、单元模块设计、最终到电路的模拟和实际电路的成形有了一定的认识,同时使我们在电子设计方面有了一定的实际动手能力,也为这次数电课程设计打下了坚实的基础。
元器件参数测量仪的设计一、课程目的1.加深对电路分析、模拟电路、数字逻辑电路、微处理器等相关课程理论知识的理解;2.掌握电子系统设计的基本方法和一般规则;3.熟练掌握电路仿真方法;4.掌握电子系统的制作和调试方法;二、设计任务1.设计并制作一个元器件参数测量仪。
2.(基本要求)电阻阻值测量,范围:100欧~1M欧;3.(基本要求)电容容值测量,范围:100pF~10 000pF;4.(基本要求)测量精度:正负5% ;5.(基本要求)4位显示对应数值,并有发光二极管分别指示所测器件类型;6.(提高要求)增加电感参数的测量;7.(提高要求)增加三极管直流放大倍数的测量;8.(提高要求)扩大量程;9.(提高要求)提高测量精度;10.(提高要求)测量量程自动切换;三、任务说明:电阻电容电感参数测量常用电桥法,该方法测量精度,但是电路复杂。
也可为简化起见,电阻测量也可采用简单的恒流法,电容采用555定时电路;1、绪论在现代化生产、学习、实验当中,往往需要对某个元器件的具体参数进行测量,在这之中万用表以其简单易用,功耗低等优点被大多数人所选择使用。
然而万用表有一定的局限性,比如:不能够测量电感,而且容量稍大的电容也显得无能为力。
所以制作一个简单易用的电抗元器件测量仪是很有必要的。
现在国内外有很多仪器设备公司都致力于低功耗手持式电抗元器件测量仪的研究与制作,而且精度越来越高,低功耗越来越低,体积小越来越小一直是他们不断努力的方向。
该类仪器的基本工作原理是将电阻器阻值的变化量,电容器容值的变化量,电感器电感量的变化量通过一定的调理电路统统转换为电压的变化量或者频率的变化量等等,再通过高精度AD采集或者频率检测计算等方法来得到确定的数字量的值,进而确定相应元器件的具体参数。
2、电路方案的比较与论证2.1电阻测量方案方案一:利用串联分压原理的方案V CC GNDR x R0图2-1串联分压电路图根据串联电路的分压原理可知,串联电路上电压与电阻成正比关系。
R、L、C测量仪概述R、L、C测量仪是一种用于测试电阻(Resistance)、电感(Inductance)、电容(Capacitance)等元件参数的仪器。
它广泛应用于电子、通讯、航空、机械、医疗等领域的元器件测试。
测试原理R、L、C测量仪实际上是一个简化的LCR桥电路。
LCR电桥(或简称LCR桥)是一种测量电阻、电感和电容的电路。
在LCR电桥中,通过调节电桥的四个电阻(其中三个为已知值),可以使电桥平衡,测量未知元件的参数。
R、L、C测量仪通过内置的LCR桥电路,结合微处理器和LCD显示屏,实现了对元器件参数的高精度测量。
使用方法使用R、L、C测量仪时,应首先将元件连接到测试接口上,选择相应类型和范围,并按下测试键开始测量。
测试结果将显示在LCD显示屏上。
下面是具体的使用步骤:1.连接被测试元件:将待测元件的两个端即正负极分别插到测试接口的两个插槽中。
一些R、L、C测量仪可能包含多个测试接口,应注意正确选择接口和插槽。
一般情况下,测试接口的插槽分别标有L/C/R等字母,需要根据被测试元件的类型选择相应的插槽。
2.选择参数类型:根据被测试元件的类型选择相应的测试参数类型。
一些常见的测试类型包括电阻、电感、电容、品质因数(Q值)、损耗因数(D 值)等。
不同的R、L、C测量仪可能具有不同的测试类型和测试范围,应根据实际需求进行选择。
3.设定测试范围:根据被测试元件的参数,设定相应的测试范围。
一般情况下,测试范围越小,测试精度越高。
一些R、L、C测量仪可能具有自动范围选择功能,可以根据被测试元件的参数自动选择测试范围。
4.开始测试:按下测试键(通常为“test”或“measure”),开始进行测试。
测试时间一般为几秒钟到几分钟不等,具体时间根据被测试元件的大小和测试类型而定。
5.查看测试结果:测试结果将在LCD显示屏上显示。
不同的R、L、C测量仪可能在显示方式和数据格式上存在差异,应根据使用手册或说明书进行查看和分析。
历届全国大学生电子设计竞赛试题第一届(1994年)全国大学生电子设计竞赛题目(1)简易数控直流电源(A题)(2)多路数据采集系统(B题)第二届(1995年)全国大学生电子设计竞赛题目(1)实用低频功率放大器(A题)(2)实用信号源的设计和制作(B题)(3)简易无线电遥控系统(C题)(4)简易电阻、电容和电感测试仪(D题)第三届(1997年)全国大学生电子设计竞赛题目(1)直流稳压电源(A题)(2)简易数字频率计(B题)(3)水温控制系统(C题)(4)调幅扩播收音机(D题)第四届(1999年)全国大学生电子设计竞赛题目(1)测量放大器设计(A题)(2)数字式工频有效值多用表(B题)(3)频率特性测量仪设计(C题)(4)短波调频接收机设计(D题)(5)数字化语音存储与回放系统(E题)第五届(2001年)全国大学生电子设计竞赛题目(1)波形发生器(A题)(2)简易数字存储示波器(B题)(3)自动往返电动小汽车(C题)(4)高效率音频功率放大器(D题)(5)数据采集与传输系统(E题)(6)调频收音机(F题)第六届(2003年)全国大学生电子设计竞赛题目(1)电压控制LC振荡器(A题)(2)宽带放大器(B题)(3)低频数字式相位测量仪(C题)(4)简易逻辑分析仪(D题)(5)简易智能电动车(E题)(6)液体点滴速度监控装置(F题)第七届(2005年)全国大学生电子设计竞赛题目(1)正弦信号发生器(A题)(2)集成运放测试仪(B题)(3)简易频谱分析仪(C题)(4)单工无线呼叫系统(D题)(5)悬挂运动控制系统(E题)(6)数控恒流源(F题)(7)三相正弦波变频电源(G题)第八届(2007年)全国大学生电子设计竞赛题目(1)音频信号分析仪(八)【本科组】(2)无线识别(B)【本科组】(3)数字示波器(C)【本科组】(4)程控滤波器(D)【本科组】(5)开关稳压电源(E)【本科组】(6)电动车跷跷板(F)【本科组】(7)积分式直流数字电压表(G)【高职高专组】(8)信号发生器(三)【高职高专组】(9)可控放大器(D【高职高专组】(10)电动车跷跷板(J)【高职高专组】第九届(2009年)全国大学生电子设计竞赛题目(1)光伏并网发电模拟装置(A题)【本科组】(2)声音导引系统(B题)【本科组】(3)宽带直流放大器(C题)【本科组】(4)无线环境监测模拟装置(D题)【本科组】(5)电能收集充电㈱(E题)【本科组】(6)数字幅频均衡的功率放大器(F题)【本科组】(7)低频功率放大器(G题【高职高专组D(8)LED点阵书写显示屏(H题【高职高专组D (9)模拟路灯控制系统Q题【高职高专组】)。
简易数字式电阻、电感、电容测试仪设计报告学校:西安科技大学设计成员:。
指导老师:朱代先时间:2010年8月13日简易数字式电阻、电感和电容测量仪摘要本系统主控制部分采用TI公司的16位超低功耗单片机MSP430F149。
以自制电源作为LRC测量模块和各个主要控制芯片的输入电源,测量原理是通过测量电阻、电容或者电感和标准电阻各自的引起的频率变化,利用频率与电阻、电容、电感的函数关系推算出电阻值、电容值或者电感值。
测量的原理是LM311组成的LC震荡器的震荡回路的频率由单片机采样,然后再依据震荡频率计算出对应的电容或电感值,以及由NE555多谐振荡电路实现对电阻的测量。
软件设计部分使用C语言编程编写了包括控制测量程、按键处理、电阻电感电容计算、液晶显示程序。
利用MSP430F149单片机控制测量和计算结果,测量结果采用12864液晶模块实时显示。
关键词: MSP430F149、NE555芯片、LRC测量、12864液晶目录1 系统总体方案设计 (1)1.1系统方案选择 (1)1.2系统软硬件总体设计 (1)1.2.1硬件部分 (1)1.2.2软件部分 (2)2系统模块设计 (3)2.1硬件模块设计 (3)2.1.1电感电容测量模块 (3)2.1.2电阻测量模块 (4)2.1.3主控制模块 (5)2.1.4 AD采样模块 (5)2.1.5 液晶显示模块 (5)2.2软件模块设计 (5)2.2.1 控制测量程序模块 (5)2.2.2按键处理程序模块 (6)2.2.3电阻电感电容计算程序 (7)2.2.4液晶显示程序模块 (7)3系统测试 (8)3.1测试原理 (8)3.2测试方法 (8)3.3测试结果 (8)3.4测试分析 (9)4系统总结 (9)参考文献: (10)1 系统总体方案设计1.1系统方案选择方案一.基于模拟电路的测量仪利用模拟电路,电阻可用比例运算器法和积分运算器法,电容可用恒流法和比较法,电感可用时间常数法和同步分离法等,虽然避免了编程的麻烦,但电路复杂,所用器件较多,灵活性差,测量精度低,现在已较少使用。
方案二.可编程逻辑控制器(PLC)采用PLC对硬件进行控制,应用较为广泛。
它能够非常方便地集成到工业控制系统中。
其速度快,体积小,可靠性和精度都较好,在设计中可采用PLC对硬件进行控制,但是用PLC实现价格相对昂贵,成本过高。
方案三.利用LRC振荡电路与单片机结合利用LRC振荡电路将电阻、电容和电感参数转化为频率模拟信号,此模拟量由高精度AD转换芯片转换为数字量。
这样由单片机处理数字量,能够满足测量精度高、易于实现自动化测量等设计需要,而且单片机构成的应用系统有较大的可靠性、系统扩展、系统配置灵活,容易构成各种规模的系统。
通过对上述方案的比较,利用LRC振荡电路与单片机结合实现电阻、电容、电感测试仪更为简便可行,节约成本。
所以,本系统选定已MSP430F149单片机为核心来实现对电阻、电容和电感测量的设计。
1.2系统软硬件总体设计1.2.1硬件部分硬件设计主要分为四部分:(1)用RC和RL电路实现LRC振荡电路的功能,测量电阻、电容、电感模块。
(2)利用MSP430F149单片机自带的AD实现模拟信号转换为数字信号的功能。
(3) MSP430F149单片机接收转换后的数字信号并做相应的处理,根据按键状态控制测量的类型和单位。
(4)测量结果显示部分,采用的是12864液晶显示器。
系统硬件设计总体框图如下:图1-1 系统硬件框图1.2.2软件部分软件设计主要分为四部分:(1) 控制测量程序,单片机控制测量程序不仅担负着量程的识别与转换,而且还负责数据的修正和传输; (2) 按键处理程序,根据按键的状态做相应的功能设置; (3) 电阻电感电容计算程序,单片机根据A/ D 转换得到的电压值计算出电阻、电感或者电容值; (4) 液晶显示程序。
本系统的程序总体框图如下:图1-2 系统软件框图2系统模块设计2.1硬件模块设计2.1.1电感电容测量模块电路图2-1的核心是由LM311组成的LC 振荡器。
图2-1电感电容测量测量的原理是由单片机通过对LM311输出端进行频率的采样,然后依据采集到的频率再计算出对应的电容或电感值。
为了提高测量的精度,采用了以一个已知的标准电容L2为基准。
由一个1000PF 的聚苯乙烯电容和一个20PF 的瓷介质电容并联而成,精度低,当C2未接入电路时,由L1、C1组成的振荡器的频率然后将C2与C1并联,这时,由L1和C1+C2组成的振荡器的频率通过计算得:()FFC FC22212221-÷⨯=(2-1)和C FL1212141⨯⨯⨯=∏ (2-2)可以看出L1和C1是基于已知的标准电容C2和两次测量的频率F1和F2计算出来的因此及准确性主要取决于标准电容的精度。
测算出F1、L1和C1之后,再用待测的电容Cx 代替出C2接入回路中,测出的由L1和C1+Cx 组成的振荡器的频率F2,由公式C F F CX122211⨯⎪⎪⎭⎫⎝⎛-= (2-3)就可以求出Cx 。
同理也可以用公式L F F LX⨯⎪⎪⎭⎫⎝⎛-=122211(2-4)测出Lx 。
2.1.2电阻测量模块电路图2-2是一个由555电路构成的多谐振荡电路。
图2-2电阻测量它的振荡周期T=(㏑2)(R4+2Rx )C8 ,故可以导出 R4+2Rx=1/((㏑2)C8f )可以求得Rx为使振荡频率保持在10kHz-100kHz 这一段单片机计数的高精度范围内,需选择合适的C8值和R4值。
同时不使电阻功耗过大,在第一个量程选择R4=200欧姆,C8=0.22uf ;第二个量程R4=20k 欧姆,C8=1000pf 。
这样,第一个量程中,Rx=100欧姆时(下限),有一个相应的频率输出。
第二个量程中,Rx=1M Ω时(上限)时,有一个相应的频率输出。
因为RC 振荡的稳定度可达10ˉ³,单片机测量频率最多误差一个脉冲,所以由单片机测频率值引起的误差在百分之一以下。
量程自动转换原理,单片机在第一频率的记录中发现频率过小,即通过继电器转换量程。
再测频率。
求出Rx 的值。
2.1.3主控制模块本模块采用低功耗的MSP430F149微处理器控制AD装换,并对转换结果数据进行接收和处理;通过按键控制测量的类型和单位。
2.1.4 AD采样模块本模块利用MSP430F149单片机自带的AD转换功能把整流滤波后的模拟信号转换为单片机能够处理的数字信号,并传送给处理器。
2.1.5 液晶显示模块通过LCD驱动程序对MSP430F149处理后的结果数据进行稳定显示,在测试期间显示能够保持稳定状态,当离开测试能够迅速归零。
2.2软件模块设计2.2.1 控制测量程序模块单片机控制测量程序不仅担负着量程的识别与转换,而且还负责数据的修正和传输;因此主控制器的工作状态直接决定着整个测量系统能否正常工作,所以控制测量程序对整个测量来说至关重要。
控制测量流程图如图3-1所示。
图3-1 控制测量程序流程图2.2.2按键处理程序模块按键处理程序的主要功能是设置测量的类型和测量的档位,当有按键被按下时就执行相应的按键功能,流程如图3-2所示。
无图3-2按键处理程序流程图2.2.3电阻电感电容计算程序单片机根据A/ D 转换得到的电压值计算出电阻、电感或者电容值,该程序流程图如图3-3所示。
图3-3电阻电感电容计算程序流程图2.2.4液晶显示程序模块该程序模块只有一个功能,就是对测量结果清晰正确的显示出来,并能够保持稳定。
程序流程图如图3-4所示。
图3-4液晶显示程序模块流程图3系统测试3.1测试原理在系统设计中,以MSP430F149单片机为核心的电阻、电容、电感测试仪,将电阻,电容,电感,使用对应的振荡电路转化为电压实现各个参数的测量。
将频率模拟电压信号送入AD采样,通过AD把模拟信号转换为数字信号,再把数字信号送入MSP430F149单片机处理。
以IAR Embedded Workbench为仿真平台,使用C语言编写了系统应用软件;包括主控制模块、显示模块、电阻测试模块、电容测试模块和电感测试模块。
3.2测试方法在测试时将被测参数通过本系统测量出来的示值与参数的标称值进行对比,得到本系统的测量精度。
测试仪器为示波器和万用表。
3.3测试结果通过按键操作,实现测量类型和量程的选择,根据测量结果对设计进一步进行校正和对实现功能的可靠性的确认。
测试结果如下:1.电阻测试数据如表1所示。
2.电容测试数据如表3.电感测试数据如表3所示3.4测试分析在实际测量中,由于测试环境,测试仪器,测试方法等都对测试值有一定的影响,都会导致测量结果或多或少地偏离被测量的真值。
为了减小本设计中误差的大小,主要利用修正的方法来减小本测试仪的测量误差。
所谓修正的方法就是在测量前或测量过程中,求取某类系统误差的修正值。
在测量的数据处理过程中选取合适的修正值很关键,修正值的获得有三种途径。
第一种途径是从相关资料中查取;第二种途径是通过理论推导求取;第三种途径是通过实验求取。
本测试修正值选取主要通过实验求取,对影响测量读数的各种影响因素,如温度、湿度、电源电压等变化引起的系统误差。
通过对相同被测参数的多次测量结果和不同被测参数的多次测量选取平均值,最后确定被测参数公式的常数K值,从而达到减小本设计系统误差的目的。
由于振荡电路外围器件由电容电阻分立元件搭接而成,所以由振荡电路产生的被测参数对应的频率有一定的误差,所以只能通过多次实验测量,选取合适的修正值来尽可能的减少本测试系统的误差。
4系统总结本系统采用单片机和LRC数字电桥结合的方式实现了一个简易数字式电阻、电容和电感测量仪,到达了系统基本要求。
本仪器利用单片机技术实现了电感电容测量的智能化设计,而且系统性能稳定,测量精度较高,相对误差小,操作简单,具有较强的实用性。
当然本系统还存在着许多需要改进的地方,比如还可以继续提高测量的精度和加大测量的范围。
因为是采用单片机实现的,利用其可以编程的特性,使测量的值结合一些数据处理方式使测量更加接近真实值。
本系统也还有许多可以扩展的功能,可以增加语音功能,每次测量值稳定的时候就通过语音报告出来;也可以增加在线测量的功能,这样就更能够测量出元件工作时的正常值,而不仅仅是静态时的值。
参考文献:[1] 刘树林,程红丽.低频电子线路[M].北京:机械工业出版社,2007.8.[2]蓝和慧,宁武,闫晓金.全国大学生电子设计竞赛单片机应用技能精讲[M]. 北京:电子工业出版社,2009.4.[3]唐吉祥,高频电子线路设计[M]. 北京:电子工业出版社,[4] 唐竞新,数字电子电路[M].北京:清华大学出版社,2007.5[5] 秦龙,MSP430单片机常用模块与综合系统实例精讲[M]. 北京:电子工业出版社,2007.7[6]/[7] /。