半导体激光器的光学特性测试
- 格式:doc
- 大小:96.00 KB
- 文档页数:6
半导体激光器实验报告摘要:本文旨在通过对半导体激光器的实验研究,探索其基本原理、结构和性能,并分析实验结果。
通过实验,我们了解了激光器的工作原理、调制和控制技术以及其应用领域。
在实验过程中,我们测量了激光器的输出功率、光谱特性和波长调制特性等参数,并对实验结果进行了分析和讨论。
1.引言半导体激光器是一种利用半导体材料作为活性介质来产生激光的器件。
由于其小尺寸、高效率和低成本等优点,半导体激光器被广泛应用于通信、光存储、医学和科学研究等领域。
本实验旨在研究不同结构和参数的半导体激光器的性能差异,并通过实验数据验证理论模型。
2.实验原理2.1 半导体激光器的基本结构半导体激光器由活性层、波导结构和光学耦合结构组成。
活性层是激光器的关键部分,其中通过注入电流来激发电子和空穴复合形成激光。
波导结构用于限制光的传播方向,并提供反射面以形成光腔。
光学耦合结构用于引导激光光束从激光器中输出。
2.2 半导体激光器的工作原理半导体激光器利用注入电流激发活性层中的电子和空穴,使其发生复合并产生激光。
通过适当选择材料和结构参数,使波导结构中的光在垂直方向形成反射,从而形成光腔。
当光经过活性层时,激发的电子和空穴产生辐射跃迁,并在激光器中形成激光。
随着光的多次反射和放大,激光逐渐增强,最终从光学耦合结构中输出。
3.实验步骤3.1 实验器材本实验使用的主要器材有半导体激光器装置、电源、光功率计、多道光谱仪等。
3.2 实验过程首先,将半导体激光器装置与电源连接,并通过电源控制激光器的注入电流。
然后,使用光功率计测量激光器的输出功率,并记录相关数据。
接下来,使用多道光谱仪测量激光器的光谱特性,并记录各个波长的输出光功率。
最后,调节激光器的注入电流,并测量波长调制特性。
完成实验后,对实验数据进行分析和讨论。
4.实验结果与分析通过实验测量,我们得到了半导体激光器的输出功率、光谱特性和波长调制特性等数据,并对其进行了分析。
实验结果显示,随着注入电流的增加,激光器的输出功率呈现出递增趋势,但当电流达到一定值后,增长速度逐渐减慢。
太原理工大学学生实验报告
1.根据实验记录数据,算出半导体激光器驱动电流,画出相应的光功率与注入电
流的关系曲线。
(测得电阻为Ω)
2.根据所画的P-I特性曲线,找出半导体激光器阈值电流I th的大小。
3.根据P-I特性曲线,求出半导体激光器的斜率效率。
七、注意事项
1.半导体激光器驱动电流不可超过40mA,否则有烧毁激光器的危险。
2.由于光功率计,光跳线等光学器件的插头属易损件,使用时应轻拿轻放,切忌
用力过大。
八、思考题
1.试说明半导体激光器发光工作原理。
半导体激光器工作原理是激励方式,利用半导体物质(既利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。
半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射
2.环境温度的改变对半导体激光器P-I特性有何影响
随着温度的上升,阈值电流越来越大,功率随电流变化越来越缓慢。
3.分析以半导体激光器为光源的光纤通信系统中,半导体激光器P-I特性对系统。
半导体激光器特性测量一、实验目的:1.通过本实验学习半导体激光器原理。
2.测量半导体激光器的几个主要特性。
3.掌握半导体激光器性能的测试方法。
二、实验仪器:半导体激光器装置、WGD-6型光学多道分析器、电脑等。
三、实验原理:WGD-6 型光学多道分析器,由光栅单色仪,CCD 接收单元,扫描系统,电子放大器,A/D 采集单元,计算机组成。
该设备集光学、精密机械、电子学、计算机技术于一体。
光学系统采用C-T 型,如图M1 反射镜、M2 准光镜、M3 物镜、M4 转镜、G 平面衍射光栅、S1 入射狭缝、S2 光电倍增管接收、S3 CCD 接收。
入射狭缝、出射狭缝均为直狭缝,宽度范围0-2mm 连续可调,光源发出的光束进入入射狭缝S1、S1 位于反射式准光镜M2 的焦面上,通过S1 射入的光束经M2 反射成平行光束投向平面光栅G 上,衍射后的平行光束经物镜 M3 成像在S2 上。
四、实验内容及数据分析1.半导体激光器输出特性的测量:a)将各仪器按照要求连接好;b)打开直流稳压电源,打开光多用仪;c) 将激光器的偏置电流输入插头接于稳压电源的电流输出端;d) 将激光器与光多用仪的输入端相连并使探头正好对激光器输出端,打开光多用仪; e) 缓慢增加激光器输入电流(0mA~36mA ),注意电流不要超过LD的最大限定电流(实验中不超过38mA )。
从功率计观察输出大小随电流变化的情况; f) 记录数据; g) 绘图绘成曲线。
实验数据及结果分析: I (mA ) 1.02.03.04.05.06.07.0 8.09.010.011.0 12.0 P (uW) 0.40 0.80 1.25 1.75 2.25 2.85 3.54.255.05 5.956.98.0I (mA ) 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 P (uW) 9.310.7512.4514.5517.8522.941.0311.5753.51179.51594.51845.0根据以上实验数据绘制I —P 曲线:半导体激光器输出特性2004006008001000120014001600180020000510152025I(mA)P(uW)实验结果分析:通过半导体激光器的控制电源改变它的工作电流I ,测量对应的发光功率P ,以P 为纵轴,I 为横轴作图,描成曲线。
一种半导体激光器的结温测试方法说实话半导体激光器的结温测试方法这事,我一开始也是瞎摸索。
我试过不少方法呢。
最开始我就想,能不能直接用温度计去测,后来发现这简直太傻了,就像你想测量一个密封盒子里面东西的温度,你在盒子外面用普通温度计根本就不准确啊,半导体激光器的内部结构跟这有点像,有各种封装啥的,这外部温度计根本测不到它真正的结温。
后来我就寻思从电流电压这个方向入手。
我知道啊,半导体激光器的一些电特性是和结温有关系的。
我就开始测它在不同工作时间下的电流和电压。
过程可麻烦了,要连接各种测试仪器,电源呀、电压表呀、电流表呀,就像拼凑一个复杂的乐高模型一样,线多得我都头疼。
我还得保证这些仪器的数据都能稳定准确地读取,有时候稍微有点干扰,数据就乱了。
在测的时候呢,我犯了一个错误,我一开始没有考虑到周围环境温度的影响。
就好比你要知道一杯水真正因为加热变热了多少度,但是你忽略了在喝这杯水之前太阳已经晒了好一会这个因素。
周围环境温度的波动会影响我测量得到的电流电压关系,从而让我对结温的判断出现误差。
然后我就改善这个方法。
每次测量前,我都会先测量下当前的环境温度,并且尽可能地让测量环境温度保持稳定。
我会在一个相对封闭的空间里进行测试,还加上了一些温度控制的设备,像小的加热或者散热装置,这样就能尽量减少环境温度的干扰。
再后来,我发现可以利用激光器的一些光学特性来辅助判断结温。
有些激光输出的波长或者光功率等指标会随着结温的改变而发生一定的变化。
不过这个说真的有一些复杂,我自己不太确定到底在不同结温情况下这个变化的规律是完全怎样的,但我知道这个方向是有很大潜力的。
我尝试了用光谱仪来测量激光器发出的光的波长,想找出和结温之间的关系。
可这中间也有问题,就是测量过程中光路的校准特别麻烦,只要光路有点偏差,测到的数据就完全不对了。
就像你射箭,稍微偏一点,就射不到靶心了。
我感觉要测试半导体激光器的结温啊,一定得综合各种方法。
从电特性方面入手,严谨地控制环境温度去测电流电压是比较靠谱的方法,同时再尝试从光学特性那边找到更多的辅助判断依据,虽然这个路不太好走,但多方面尝试总归会更准确一些。
实验一半导体激光器P-I特性曲线测量一、实验目的:1.了解半导体光源和光电探测器的物理基础;2.了解发光二极管(LED)和半导体激光二极管(LD)的发光原理和相关特性;3.了解PIN光电二极管和雪崩光电二极管(APD)的工作原理和相关特性;4.掌握有源光电子器件特性参数的测量方法;二、实验原理:光纤通信中的有源光电子器件主要涉及光的发送和接收,发光二极管(LED)和半导体激光二极管(LD)是最重要的光发送器件,PIN光电二极管和APD光电二极管则是最重要的光接收器件。
1.发光二极管(LED)和半导体激光二极管(LD):LED是一种直接注入电流的电致发光器件,其半导体晶体内部受激电子从高能级回复到低能级时发射出光子,属自发辐射跃迁。
LED为非相干光源,具有较宽的谱宽(30~60nm)和较大的发射角(≈100°),常用于低速、短距离光波系统。
LD通过受激辐射发光,是一种阈值器件。
LD不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄,与单模光纤的耦合效率高(约30%—50%),辐射光谱线窄(Δλ=0.1-1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速(>20GHz)直接调制,非常适合于作高速长距离光纤通信系统的光源。
使粒子数反转从而产生光增益是激光器稳定工作的必要条件,对于处于泵浦条件下的原子系统,当满足粒子数反转条件时将会产生占优势的(超过受激吸收)受激辐射。
在半导体激光器中,这个条件是通过向P型和N型限制层重掺杂使费密能级间隔在PN结正向偏置下超过带隙实现的。
当有源层载流子浓度超过一定值(称为透明值),就实现了粒子数反转,由此在有源区产生了光增益,在半导体内传播的输入信号将得到放大。
如果将增益介质放入光学谐振腔中提供反馈,就可以得到稳定的激光输出。
(1) LED和LD的P-I特性与发光效率:图1是LED和LD的P-I特性曲线。
LED是自发辐射光,所以P-I曲线的线性范围较大。
半导体激光器光学特性测量实验学号:姓名:班级:日期:【摘要】激光器的三个基本组成部分是:增益介质、谐振腔、激励能源。
本实验通过测量半导体激光器的输出特性、偏振度和光谱特性,进一步了解半导体激光器的发光原理,并掌握半导体激光器性能的测试方法。
【关键词】半导体激光器、偏振度、阈值、光谱特性一、实验背景激光是在有理论准备和实际需要的背景下应运而生的。
光电子器件和技术是当今和未来高技术的基础之一。
受激辐射的概念是爱因斯坦于1916年在推导普朗克的黑体辐射公式时提出来的, 从理论上预言了原子发生受激辐射的可能性,这是激光的理论基础。
直到1960年激光才被首次成功制造(红宝石激光器)。
半导体激光(Semiconductor laser)在1962年被成功发明,在1970年实现室温下连续输出。
半导体激光器的结构从同质结发展成单异质结、双异质结、量子阱(单、多量子阱)等多种形式,制作方法从扩散法发展到液相外延(LPE)、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE) 等多种工艺。
由于半导体激光器的体积小、结构简单、输入能量低、寿命较长、易于调制及价格低廉等优点, 使得它目前在各个领域中应用非常广泛。
半导体激光器已经成功地用于光通讯和光学唱片系统,还可以作为红外高分辨率光谱仪光源,用于大气检测和同位素分离等;同时半导体激光器成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。
半导体激光器与调频器、放大器集成在一起的集成光路将进一步促进光通讯和光计算机的发展。
半导体激光器主要发展方向有两类,一类是以传递信息为目的的信息型激光器,另一类是以提高光功率为目的的功率型激光器。
本实验旨在使学生掌握半导体激光器的基本原理和光学特性,利用光功率探测仪和CCD光学多道分析器,测量可见光半导体激光器输出特性、不同方向的发散角、偏振度,以及光谱特性,并熟悉光路的耦合调节及CCD光学多道分析器等现代光学分析仪器的使用,同时进一步了解半导体激光器在光电子领域的广泛应用。
LD/LED光源特性测试实验1. 实验目的通过测量LED发光二极管和LD半导体激光器的输出功率-电流(P-I)特性曲线和P-I特性随器件温度的变化,理解LED发光二极管和LD半导体激光器在工作原理及工作特性上的差异。
2. 实验原理2.1 LD工作原理从激光物理学中我们知道,半导体激光器的粒子数反转分布是指载流子的反转分布。
正常条件下,电子总是从低能态的价带填充起,填满价带后才能填充到高能态的导带;而空穴则相反。
如果我们用电注入等方法,使p-n结附近区域形成大量的非平衡载流子,即在小于复合寿命的时间内,电子在导带,空穴在价带分别达到平衡,如图1所示,那么在此注入区内,这些简并化分布的导带电子和价带空穴就处于相对反转分布,称之为载流子反转分布。
注入区称为载流子分布反转区或作用区。
结型半导体激光器通常用与p-n结平面相垂直的一对相互平行的自然解理面构成平面腔。
在结型半导体激光器的作用区内,开始时导带中的电子自发地跃迁到价带和空穴复合,产生相位、方向并不相同的光子。
大部分光子一旦产生便穿出p-n结区,但也有一部分光子在p-n结区平面内穿行,并行进相当长的距离,因而它们能激发产生出许多同样的光子。
这些光子在平行的镜面间不断地来回反射,每反射一次便得到进一步的放大。
这样重复和发展,就使得受激辐射趋于占压倒的优势,即在垂直于反射面的方向上形成激光输出。
图1半导体激光器的能带图2.2 LED 工作原理发光二极管是大多由Ⅲ-Ⅳ族化合物,如GaAs (砷化镓)、GaP (磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN 结。
因此它具有一般P-N 结的I-N 特性,即正向导通,反向截止、击穿特性。
此外,在一定条件下,它还具有发光特性。
在正向电压下,电子由N 区注入P 区,空穴由P 区注入N 区。
进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图2所示。
由于复合是在少子扩散区内发光的,所以光仅在靠近PN 结面数μm 以内产生。
一、实验目的1. 了解半导体激光器的基本原理和光学特性;2. 掌握半导体激光器耦合、准直等光路的调节;3. 根据半导体激光器的光学特性考察其在光电子技术方面的应用;4. 熟悉WGD6光学多道分析器的使用。
二、实验原理1. 半导体激光器的基本结构半导体激光器,全称为半导体结型二极管激光器,是一种利用半导体材料作为工作物质的激光器。
其基本结构包括工作物质、谐振腔和激励能源。
工作物质通常采用V族化合物半导体,如GaAs、MoSb等;谐振腔由两个平行端面构成,起到反射镜的作用;激励能源有电注入、光激励、高能电子束激励和碰撞电离激励等。
2. 半导体激光器的阈值条件半导体激光器的阈值电流是各种材料和结构参数的函数。
在满足阈值条件时,半导体激光器才能产生激光。
阈值电流表达式为:\[ I_{th} = \frac{L}{\eta} \frac{P}{h\nu} \]其中,\( I_{th} \) 为阈值电流,\( L \) 为有源层长度,\( \eta \) 为内量子效率,\( P \) 为注入功率,\( h \) 为普朗克常数,\( \nu \) 为发射光的真空波长。
3. 半导体激光器的光学特性半导体激光器的光学特性主要包括单色性好、高亮度、体积小、重量轻、结构简单、效率高、寿命长等。
三、实验仪器与设备1. 半导体激光器及可调电源;2. WGD6型光学多道分析器;3. 可旋转偏振片;4. 旋转台;5. 多功能光学升降台;6. 光功率指示仪。
四、实验步骤1. 搭建实验系统,连接各仪器设备;2. 调节可旋转偏振片,观察偏振光的变化;3. 调节旋转台,观察光斑在屏幕上的变化;4. 调节多功能光学升降台,观察光功率指示仪的读数;5. 使用WGD6型光学多道分析器,对半导体激光器的光谱进行测量;6. 记录实验数据,分析实验结果。
五、实验结果与分析1. 通过调节可旋转偏振片,观察到偏振光的变化,验证了半导体激光器的偏振特性;2. 通过调节旋转台,观察到光斑在屏幕上的变化,验证了半导体激光器的准直特性;3. 通过调节多功能光学升降台,观察到光功率指示仪的读数变化,验证了半导体激光器的功率特性;4. 使用WGD6型光学多道分析器,对半导体激光器的光谱进行测量,得到激光波长、线宽等参数,进一步验证了半导体激光器的光学特性。
光信息专业实验指导材料(试用)实验5-1 半导体激光器的特性测试[实验目的]1、通过测量半导体激光器工作时的功率、电压、电流,画出P-V、P-I、I-V曲线,让学生了解半导体的工作特性曲线;2、学会通过曲线计算半导体激光器的阈值,以及功率效率,外量子效率和外微分效率,并对三者进行比较;3、内置四套方波信号或者外加信号直接调制激光器,通过调整不同的静态工作点,和输入信号强度大小不同,观察到截至区,线性区,限流区的信号不同响应(信号畸变,线性无畸变),了解调制工作原理。
[实验仪器]实验室提供:半导体激光器实验箱(内置三个半导体激光器),示波器,两根电缆线。
[实验原理]半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。
常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。
激励方式有电注入、电子束激励和光泵浦三种形式。
半导体激光器件,可分为同质结、单异质结、双异质结等几种。
同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。
半导体激光器具有体积小、效率高等优点,广泛应用于激光通信、印刷制版、光信息处理等方面。
一、半导体激光器的结构与工作原理1.半导体激光器的工作原理。
半导体材料多是晶体结构。
当大量原子规则而紧密地结合成晶体时,晶体中那些价电子都处在晶体能带上。
价电子所处的能带称价带(对应较低能量)。
与价带对应的高能带称导带,价带与导带之间的空域称为禁带。
当加外电场时,价带中电子跃迁到导带中去,在导带中可以自由运动而起导电作用。
同时,价带中失掉一个电子,相当于出现一个带正电的空穴,这种空穴在外电场的作用下,也能起导电作用。
因此,价带中空穴和导带中的电子都有导电作用,统称为载流子。
没有杂质的纯净半导体,称为本征半导体。
如果在本征半导体中掺入杂质原子,则在导带之下和价带之上形成了杂质能级,分别称为施主能级和受主能级。
实验八半导体激光器的光学特性测试
[实验目的]
1、通过实验熟悉半导体激光器的光学特性。
2、掌握半导体激光器耦合、准直等光路的调节。
3、根据半导体激光器的光学特性考察其在光电子技术方面的应用。
[实验仪器]
1、半导体激光器及可调电源
2、光谱仪
3、可旋转偏振片
4、旋转台
5、光功率计
图1. 半导体激光器的结构
[实验原理]
1、半导体激光器的基本结构
至今,大多数半导体激光器用的是GaAs或Ga1-x Al x As材料,p-n结激光器的基本结构如图1所示。
P—n结通常在n型衬底上生长p型层而形成。
在p区和n区都要制作欧
姆接触,使激励电流能够通过,这电流使结区附近的有源区内产生粒子数反转,还需要制成两个平行的端面起镜面作用,为形成激光模提供必须的光反馈。
图1中的器件是分立的激光器结构,它可以与光纤传输线连接,如果设计成更完整的多层结构,可以提供更复杂的光反馈,更适合单片集成光路。
2、半导体激光器的阈值条件:
当半导体激光器加正向偏置并导通时,器件不会立即出现激光振荡。
小电流时发射光大都来自自发辐射,光谱线宽在数百唉数量级。
随着激励电流的增大,结区大量粒子数反转,发射更多的光子。
当电流超过阈值时,会出现从非受激发射到受激发射的突变。
实际上能够 观察到超过阈值电流时激光的突然发生,只要观察在光功率对激励电流曲线上斜率的急速突变,如图2所示;这是由于激光作用过程的本身具有较高量子效率的缘故。
从定量分析,激光的阈值对应于:由受激发射所增加的激光模光子数(每秒)正好等于由散射、吸收激光器的发射所损耗的光子数(每秒)。
据此,可将阈值电流作为各种材料和结构参数的函数导出一个表达式:
)]1(121[8202R
n a D
en J Q th +∆=ληγπ (1) 这里,Q η是内量子效率,O λ是发射光的真空波长,n 是折射率,γ∆是自发辐射线宽,e 是电子电荷,D 是光发射层的厚度,α是行波的损耗系数,L 是腔长,R 为功率反
射系数。
3、横膜和偏振态
半导体激光器的共振腔具有介质波导的结构,所以在共振腔中传播光以模的形式存在。
每个模都由自己的传播常数
β和横向电场分布,这些模就构成了半导体激光器中的横模。
m
横膜经端面出射后形成辐射场。
辐射场的角分布沿平行于结面方向和垂直于结面方向分别成为侧横场和正横场。
辐射场的角分布和共振腔的几何尺寸密切相关,共振腔横向尺寸越小,辐射场发射角越大。
由于共振腔平行于结平面方向的宽度大于垂直于结平面方向的厚度。
所以侧横场小于正
θ≈,d表示共振腔宽度。
共横场发散角,如图3所示;侧横场发散角可近似表示为:d/λ
振腔厚度通常只有mμ1左右,和波长同量级,所以正横场发射角较大,一般为300~400。
辐射场的发散角还和共振腔长度成反比,而半导体激光器共振腔一般只有几百微米,所以其远场发射角远远大于气体激光器和晶体激光器的远场发射角。
图3 半导体激光器的发散角
半导体激光器共振腔面一般是晶体的解理面,对常用的GaA S异质结激光器,GaA S晶面对TE模的反射率大于对TM模的反射率。
因而TE模需要的阈值增益低,TE模首先产生受激发射,反过来又抑制了TM模;另一方面形成半导体激光器共振腔的波导层一般都很薄,这一层越薄对偏振方向垂直于波导层的TM模吸收越大。
这就使得TE模增益大,更容易产
生受激发射。
因此半导体激光器输出的激光偏振度很高。
P %90////>--=⊥
⊥I I I I (2) 4、纵模特性
激光二极管端面部分反射的光反馈导致建立单个或多个纵光学模。
由于它类似于法布里—珀罗干涉仪的平行镜面,激光器的端面也常称为法布里—珀罗面。
当平行面之间为半波长的整数倍时,在激光器内形成驻波。
模数m 可由波长的数值得出。
O Ln
m λ2= (3)
式中, L 是两端面之间的距离,n 是激光器材料的折射率,O λ是发射在真空中的波长,模的间隔由O d dm λ/确定:
020022λλλλd dn L Ln d dm +-= (4) 对应1-=dm ,模的间隔0λd 为
)
/(22O O O O d dn n L d λλλλ-= (5)
半导体激光器典型的光谱如图4所示;通常同时存在几个纵模,其波长接近自发辐射
峰值波长。
GaA S 激光器的模间间隔的典型值为。
o O A d 3≈λ为了实现单模工作,必须改进
激光器的结构,抑制主模以外的所有其他模。
图5 半导体激光器实验光路图 mA LD D 电源 光功率计
L
PD
图4 半导体激光器的光谱
[实验步骤和内容]
实验中所使用的半导体激光器是可见光半导体激光器,最大功率为5mw, 中心波长为650nm 左右。
1、半导体激光器的输出特性
实验光路如图5所示;用电流表(mA )观察半导体激光器LD 的注入电流,调节半导体激光器的准直透镜L 把光耦合进光电探测器PD ,用光功率计读出半导体激光的输出功率。
把半导体激光器注入电流I 从零逐渐增加到85mA ,观察半导体激光器输出功率P 的变化,重复2次,将试验数据列表,并做出P —I 曲线,P 为平均功率。
2、半导体激光器的发散角测定
测定半导体激光发散角的试验装置如图6所示;半导体激光器置于转盘中心,硅光
二极管PD 距离半导体激光器LD 为L ,当转盘处于不同角度时,记下光功率计所测到的输出值,做出在不同的注入半导体激光器电流时,其输出值随角度变化的曲线。
3、半导体激光器的偏振度测量
测量半导体激光器的偏振度的光路如图7所示,偏振器是带有角度读数的旋转偏振片,读出偏振片处于不同角度时,对应的半导体激光器的输出值,将实验值列表,并计算出其偏振度。
4、 半导体激光远场光斑的观测
观察半导体远场光斑的光路如图8所示;透镜L 是带可变光栏的短焦距的组合透镜,G 是毛玻璃屏,当LD 是可见光的半导体激光器时,可以用肉眼直接在毛玻璃屏上观察光斑图样。
若LD 是近红外的半导体激光器,可以用上转换片观察光斑图样,也可以用红外观测仪观察。
5、半导体激光器的光谱特性测试
图8 半导体激光远场光斑的观测。