数学建模优秀论文范文全国一等奖
- 格式:doc
- 大小:130.50 KB
- 文档页数:17
全国大学生数学建模国家奖优秀论文在当今高度数字化和信息化的时代,数学建模已经成为解决各种实际问题的重要工具。
全国大学生数学建模竞赛作为一项具有高度影响力的赛事,每年都吸引着众多优秀学子参与,而能够获得国家奖的优秀论文更是代表着学生在数学建模领域的卓越成就。
数学建模的本质是将实际问题转化为数学问题,并通过建立数学模型来求解,从而为实际问题提供有效的解决方案。
这些获奖论文通常具有一些显著的特点。
首先,它们能够准确地把握问题的关键。
在面对复杂的实际问题时,参赛学生需要迅速理清问题的核心,明确问题的约束条件和目标。
例如,在研究城市交通拥堵问题时,关键可能在于分析车流量、道路容量、信号灯设置等因素之间的关系,并确定如何优化交通流量以减少拥堵。
其次,优秀论文中的模型建立具有创新性和合理性。
学生们不会拘泥于传统的模型和方法,而是敢于尝试新的思路和技术。
他们可能会结合多种数学方法,如概率论、线性规划、微分方程等,构建一个综合性的模型,以更精确地描述问题。
再者,数据处理和分析能力也是至关重要的。
为了验证模型的有效性,需要收集大量的数据,并进行有效的清洗、整理和分析。
在这个过程中,学生们需要运用统计学知识,判断数据的可靠性和代表性,运用合适的方法对数据进行拟合和预测。
以一篇关于电商平台商品推荐系统的数学建模论文为例。
在这篇论文中,学生们深入研究了用户的购买历史、浏览行为、评价等数据,通过构建协同过滤模型和基于内容的推荐模型,为用户提供个性化的商品推荐。
他们不仅考虑了用户的兴趣偏好,还考虑了商品的热门程度、时效性等因素,使得推荐结果更加准确和实用。
在模型求解方面,他们采用了高效的算法和计算工具,如 Python 中的相关库和机器学习框架,快速得到模型的解。
并且,通过大量的实验和对比分析,验证了模型的性能和优越性。
此外,优秀的论文还注重结果的解释和应用。
模型求解得到的结果不是孤立的数字,而是需要结合实际情况进行合理的解释和分析。
交巡警服务平台的设置与调度摘要由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。
设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。
用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。
对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。
发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。
其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。
最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。
建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。
此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。
如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。
对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。
得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。
D、E、F区分别需新增4、2、2个平台。
利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。
其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。
在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。
最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。
优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。
建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。
本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。
从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。
但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。
其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。
他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。
同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。
但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。
因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。
建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。
把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。
地下储油罐的变位分析与罐容表标定摘要加油站地下储油罐在使用一段时间后,由于地基变形等原因会发生纵向倾斜及横向偏转,导致与之配套的“油位计量管理系统”受到影响,必须重新标定罐容表。
本文即针对储油罐的变位时罐容表标定的问题建立了相应的数学模型。
首先从简单的小椭圆型储油罐入手,研究变位对罐容表的影响。
在无变位、纵向变位的情况下分别建立空间直角坐标系,在忽略罐壁厚度等细微影响下,运用积分的方法求出储油量和测量油位高度的关系。
将计算结果与实际测量数据在同一个坐标系中作图,经计算得误差均保持在3.5%以内。
纵向变位中,要分三种情况来进行求解,然后将三段的结果综合在一起与变位前作比较,可以得到变位对罐容表的影响。
通过计算,具体列表给出了罐体变位后油位高度间隔为1cm 的罐容表标定值。
进一步考虑实际储油罐,两端为球冠体顶。
把储油罐分成中间的圆柱体和两边的球冠体分别求解。
中间的圆柱体求解类似于第一问,要分为三种情况。
在计算球冠内储油量时为简化计算,将其内油面看做垂直于圆柱底面。
根据几何关系,可以得到如下几个变量之间的关系:测量的油位高度0h 实际的油位高度h 计算体积所需的高度H于是得到罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。
再利用附表2中的数据列方程组寻找α与β最准确的取值。
αβ一、问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。
许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。
按照有关规定,需要定期对罐容表进行重新标定。
题目给出了一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。
数学建模全国⼀等奖论⽂系列(27)乘公交,看奥运摘要由于可供选择的车次很多,各种车辆的换乘⽅式也很多,为了避免上下⾏站点不⼀样的车次等对路线产⽣的影响,我们以由易到难的思路来完成模型。
⾸先分析⼀辆车可以直接到达的情况,在这其中⼜考虑到环线的特殊性对其单独进⾏判断讨论;由于⼀辆车可使乘客到达⽬的地的可能性太⼩,我们接下来讨论要进⾏⼀次换乘的情况,在这⾥巧妙地利⽤矩阵来判断两辆车是否含有共同站这个思想,避免了⾄少两重循环,使运算速度⼤⼤提⾼;虽然这样就已经能够解决不少的问题,但并不完全,因此我们继续计算换乘两次的乘车路线,经过⼤量的运算,我们发现基本所有的站点间都可以通过换乘两次到达,⾄此对公交线路的讨论基本完成。
对加⼊地铁的讨论与只有公交车时类似,从最简单的两辆地铁换乘的情况开始考虑,由浅⼊深。
论⽂中并没有运⽤⼤量的符号,⽽是⽤⽂字来说明程序的主要步骤,这样可以让不了解程序的读者也清楚地知道模型的思路,⽽且,只要知道起始与终点,利⽤程序就可以计算所有可能路线,并可以在结果中为读者提供路线的相关信息,⽐如路费及所需时间,以供选择。
对于最优的解释,我们除了以时间最少、车费最省为原则,还对时间与车费进⾏了加权平均,⽽权数便是乘客对时间与⾦钱的偏好程度,当输⼊⾃⼰愿⽤1元钱去换多少分钟乘车时间时,程序会根据个⼈的不同喜好,来选择出适合每个⼈的最优路线。
这样将程序⼈性化,可以更符合实际中⼈们的需要。
关键词:公交线路选择最优化矩阵加权平均数组分类讨论⾃主查询问题重述北京是中国的⾸都,是政治、⽂化中⼼,同时也是国际交往的中⼼。
在成功取得2008年第29届夏季奥运会的举办权后,北京市城市建设的步伐将进⼀步加快。
众所周知,可靠的交通保障是成功举办奥运会的关键之⼀,公共客运交通服务系统尤为重要。
在保持公车票价⼀直相对较低的情况下,北京市⼜已经实⾏机动车单双号出⾏,⽬的就是为了⿎励⼈们乘公共汽车出⾏,缓解交通阻塞状况。
根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。
数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。
---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。
关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。
广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。
一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。
如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。
一、二年级是学生初步感知数学得重要时期。
低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。
数学建模全国优秀论文范文随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,数学建模全国优秀论文1:《浅谈数学建模教育的作用与开展策略》数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文范文,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。
数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。
因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。
一般来说",数学建模"包含五个阶段。
1.准备阶段主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。
如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
地面搜索问题的优化模型摘要本文针对地面搜索过程中人员安排和路线选择问题,建立了优化模型,并给出了相应算法,用LINGO软件编程,在确保所有地点都不遗漏且不重复的情况下,合理安排人员和线路,使得搜索用时最短。
问题一的求解中,把20个搜索队员排成一行,向前搜索。
从局部和总体两个方面对人员行进和路线选择。
在局部方面,考虑到人员行进中90度和180度转弯的情况,给出了两种转弯策略,并计算出这两种转弯的情况需要多耗费的时间;在总体方面,把需要进行搜索的区域分割成的126个方格,利用一笔画原理,判断出这些方格可以用一条不重复的线路走完。
考虑到转弯需要多耗费时间,建立了以转弯次数最少,并且从起始点开始不重复行走到达集结点的模型,利用LINGO软件进行编程求解,得到了最少转弯的模型。
考虑到具体情况,对上述模型得到的路线进行适当调整,得到最终的搜索线路安排图。
根据图表,计算出20个队员进行搜索需要50.117小时,无法在48内完成搜索任务。
考虑到队员和组长距离不超过1000米,设计一种让20名搜索队员组成的队伍和新增人员组成的队伍进行交替行进的模型,以确保让整个搜索过程控制在48小时以内。
最后给出了该行进模型的相应算法,通过计算,得出增加2个队员可以确保搜索在48小时内完成。
问题二的求解中,首先对50名人员分3组进行分析,由于矩形区域被分割后形成的小区域恰好能被20人组成的一个队列一次搜索覆盖,以及10人组成的一个队列一个来回的搜索覆盖,于是3组可分为:2个队伍为20人,1个队伍为10人。
随后进行队伍搜索区域的划分,根据各个队伍人数确定该组分配到的方格的数量,划分出各个队伍的搜索区域。
然后对三个区域进行搜索路径的优化求解,改进问题一的模型,求出三个区域的搜索路径。
再根据实际情况,对路径进行适当修改,得出20人的2个队伍,需要19.816小时,10人的队伍需要20.294小时。
根据先完成搜索任务的队伍能否有足够的时间来帮助未完成搜索任务的队伍提早完成任务的时间要求,判断出该解是可以接受的。
数学建模竞赛获奖论文范文数学的运用越来越广泛了,利用建立数学模型解决实际问题的数学建模活动也应运而生了。
下面是店铺为大家推荐的数学建模论文,供大家参考。
数学建模论文范文篇一:《高中开设数学建模课程的意义与定位》1、高中开设数学建模课程的背景在高中设置的课程中,数学是一门必修课程,也是高考比重最大的一门课程,其最终目标是将数学知识融入现实问题中去,从而解决问题,这也是教育教学的最终目的。
要达到教育教学的最终目的,必须改革高中的数学课程教学,建设高中数学建模课程。
高中数学建模课程可以根据简单的现实问题设置,针对实际生活中的一些简单问题进行适当的假设,建立高中数学知识能解决该问题的数学模型,进而解决该实际问题。
因此,可以说高中数学建模课程是利用所学高中数学知识解决实际问题的课程,是将高中数学知识应用的一门课程,是培养出高技能人才的基础课程。
国家教育部制定的高中数学课程标准,重点强调:"要重视高中学生从自己的生活经验和所学知识中去理解数学、学习数学和应用数学,通过自己的感知和实际操作,掌握基本的高中数学知识和数学逻辑思维能力,让高中生体会到数学的乐趣,对数学产生兴趣,让其感觉到数学就在身边。
"但是现实中高中数学的教学情况堪忧,基本上都是满堂灌的教学,学生不会应用,对数学毫无兴趣可言,主要体现在三个方面。
第一,虽然有很多学生以高分成绩进入高中学习,但是其数学应用的基础非常差,基本上是会生搬硬套,不会解决实际问题,更不会将数学知识联系到生活中来;也有少数学生数学基础差,没有养成好的数学学习习惯,导致产生厌恶数学的情绪,数学基础知识都没学好,更不用说是用数学解决实际问题。
这少数学生就是上课睡觉混日子,根本不去学习,这与高中数学课程的开设目标截然不符。
第二,高中数学课程的教学内容与实际问题严重脱节,高中的数学教材中涉及的数学知识基本上都是计算内容,而不是用来处理和解决生活问题的,更是缺少数学与其他学科(比如化学、物理、生物、地理等)的相互渗透,即便高中数学课程中有一些数学应用的例子,也属于选学内容,教师根本不去讲、不涉及,这样导致高中数学课的教学达不到其教学目的,发挥不出功能。
数学建模获奖论文(优秀范文10篇)11000字数学建模竞赛从1992年始,到现如今已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。
本篇文章就为大家介绍一些数学建模获奖论文,供给大家欣赏和探讨。
数学建模获奖论文优秀范文10篇之第一篇:高中数学核心素养之数学建模能力培养的研究摘要:数学建模是一种比较重要的能力,教师在进行高中数学教学的过程中应该让学生们学习这种能力,这对于解决高中数学问题是比较有效的,而且对于学生们未来接受高等教育有更重要的意义。
教师在进行高中数学教学的过程中需要让学生们的能力得到锻炼,提升能力是教学的主要目的,学习知识是比较基础的教学目的,教师如果想让学生们的能力得到锻炼应该对教学方法进行更新,高中数学对于很多学生们来说都是比较困难的,所以教师应该不断更新教学方法,让学生们能理解教师的教学目的,而且找到适合自己的学习方法,这也是核心素养的基本内涵。
本文将对高中数学核心素养之数学建模能力培养进行研究。
关键词:高中数学; 核心素养; 数学建模; 能力培养; 应用研究;建模活动是一项比较有创造性的活动,学生们在学习的过程中一定要具备创新思维和自主学习能力,建模活动进行过程中可以让学生们独立,自觉运用数学理论知识去探索以及解决问题,构建模型解决实际问,教学活动中,让学生们的基础知识更加牢固、基本技能得到锻炼是最根本的目的。
学生们的运算能力以及逻辑思维能力也能在建模活动中得到锻炼,提升学生们的空间观念以及增强应用数学意识是延伸目的。
一、对数学建模的基本理解概述高中数学建模最简单的解释就是利用学生们学习过的理论知识来建立数学模型解决遇到的问题。
数学建模的基本过程就是对生活中或者课本中比较抽象问题解决的过程。
通过抽象可以建立刻画出一种较强的数学手段,通过运用数学思维也能观察分析各种事物的基本性质和特点。
学生们可以从复杂的问题中抽离出自己熟悉的模型,然后在利用好数学模型去解决实际问题基本就是事半功倍。
高教社杯全国大学生数学建模竞赛获奖论文(精品)2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):关于2010年上海世博会影响力的评估——从历史文化交流方面进行讨论摘要本文从各国人民在历史文化方面的交流评估了2010年上海世博会的影响力。
根据题意以及互联网收集到的数据,建立了数学模型并定量估计了上海世博会的影响力,突出上海世博的主题“城市,让生活更美好”的基本理念。
首先,运用灰色聚类法对互联网收集到的数据进行灰类等级划分,再对数据进行无量纲化处理。
其次,建立各灰类白化函数,再对各组数据进行聚类权F运算,进而得出各因素的相应数据。
最后,通过白化函数得到的矩阵和聚类n权运算得到的函数,应用求聚类公式,求得各聚类对象的,,,fd*,LjjLLj,,,jL,1j各灰色聚类系数及结果。
然后应用层次分析法,推导出一种进行加权分析的方法,利用本方法对影响世博会的各个因素进行加权,得出了各个世博城市关于T,通过比较得到上海世博会影影响力的组合权重数据为(0.3634,0.3620,0.2743)响力均高于爱知、汉诺威世博会。
合适的评估体系是本课题的关键。
我们充分利用互联网收集到的数据进行分析及统计,并考虑到方案的可操作性。
通过组合权重数据,得到了三个世博城市关于影响力的权重。
由于此模型不受指数的影响,有很好的灵活性,使得我们可以根据实际情况灵活选取指数,减少模型的工作量,增加模型精度。
关键字:定量估计、层次分析法、灰色聚类法1一、问题重述2010年上海世博会是首次在中国举办的世界博览会。
从1851年伦敦的“万国工业博览会”开始,世博会正日益成为各国人民交流历史文化、展示科技成果、体现合作精神、展望未来发展等的重要舞台。
可以从我们感兴趣的某个侧面,建立数学模型,利用互联网数据,定量评估2010年上海世博会的影响力。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A题:出版社的资源配置摘要本文根据题目的要求建立了合理的有限资源分配优化模型,我们借助多种数学软件的优势挖掘出大量数据潜在的信息,并将其合理运用,在此基础上,以利润最大为目标,长远发展为原则,制定出信息不足条件下的量化综合评价体系,并为出版社在2006年如何合理有效地分配有限的书号资源提供了最佳的分配方案。
在本文所建立的模型中,我们采取了层次分析法(AHP)、数据统计拟合以及整数线性规划相结合的手段,这样既借鉴了层次分析法综合评价的优势,又克服了该法中主观因素的不确定性,使模型更具有科学性,作出了出版社2006年的分配方案,如下表经过对模型的检验,单从生产计划准确度一项来看,模型所得出的结果就比以往的高,这样就首先保证了出版社获得年度稳定利润的前提,其他几个评价指标也都可以得出相似的结论。
以2006年与2005年生产计划的准确度为例,作比较:2005年的各分社平均生产计划的准确度为0.702006年的各分社平均生产计划的准确度为0.85平均准确度提高约21%从数据的对比中,我们很容易看出本模型具有较高的有效性和合理性。
系泊系统的设计摘要本文详细对系泊系统的各个机构进行了力学分析,针对系泊系统的要求,建立优化模型,求解系泊系统在多种环境下的最优解,使得浮标游动范围,吃水程度和钢桶倾斜角度尽可能的小。
针对问题一,本文对系泊系统的受力及力矩进行了分析,基于浮标倾斜的考虑,得到了平衡状态下关于受力平衡及力矩平衡的方程组。
由于方程组数量较多及相互影响的特点,直接求解十分困难。
因此我们考虑以浮标两边的浸水长度,h h为变量,12利用搜索算法对方程组进行求解,并得到相应的结果。
如当风速为12m/s时,钢桶的倾斜角度1.0405°,从上到下钢管的倾斜角度分别为1.0086°、1.0146°、1.0206°、1.0267°,浮标吃水深度0.735m,浮标游动区域半径14.4429m。
针对问题二,首先将风速为36m/s的情况代入问题一建立的模型中,但是得到的结果不满足题目所给定的要求。
则考虑在重物球质量一定的条件下,以浮标的吃水深度和游动区域及钢桶的倾斜角为目标,建立了一个单决策变量的多目标最优系泊模型,相比于问题一,此问的变量更多,更加难于求解,故考虑将多目标转化成单目标的问题进行求解,并继续使用搜索法对问题进行求解。
最后找到了三组可行解,其中最优解是重力球的质量为2102kg.针对问题三,本文中有三个决策变量以及三个变系数,相比于前两问,无论是计算量还是计算维数,难度更大。
为了求解该问,建立了一个多决策变量的多目标变系数的最优系泊系统模型,为了简便运算,我们建立了变步长的搜索算法,并最终求解得到结果,得到的一组解为:选用了III型号的锚链,重物球质量为2800kg,锚链长度为23.4m。
针对论文的实际情况,对论文的优缺点做了评价,文章最后还给出了其他的改进方向,以用于指导实际应用。
关键词:系泊系统设计;力的平移定理;多目标;优化模型;搜索算法1.问题的重述一个由浮标系统、系泊系统和水声通讯系统组成的近浅海观测网的传输节点。
数学建模论文六篇数学建模论文范文1那么当前我国高中同学的数学建模意识和建模力量如何呢?下面是节自有关人士对某次竞赛中的一道建模题目同学的作答状况所作的抽样调查。
题目内容如下:某市教育局组织了一项竞赛,聘请了来自不同学校的数名老师做评委组成评判组。
本次竞赛制定四条评分规章,内容如下:(1)评委对本校选手不打分。
(2)每位评委对每位参赛选手(除本校选手外)都必需打分,且所打分数不相同。
(3)评委打分方法为:倒数第一名记1分,倒数其次名记2分,依次类推。
(4)竞赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。
本次竞赛中,选手甲所在学校有一名评委,这位评委将不参与对选手甲的评分,其他选手所在学校无人担当评委。
(Ⅰ)公布评分规章后,其他选手觉得这种评分规章对甲更有利,请问这种看法是否有道理?(请说明理由)(Ⅱ)能否给这次竞赛制定更公正的评分规章?若能,请你给出一个更公正的评分规章,并说明理由。
本题是一道开放性很强的好题,给同学留有很大的发挥空间,不少同学都有精彩的表现,例如关于评分规章的修正,就有下列几种方案:方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数其次名记2+,…依次类推;(评分标准)方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;然而也有不少同学为空白,究其缘由可能除了时间因素,同学对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。
同时,一些同学由于不能正确理解规章(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少同学消失“甲所在学校的评委会有意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。
有些同学在正确理解题意的基础上,提出了“规章对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。
数学建模优秀论文(精选范文10篇)2021一、基于数学建模的空气质量预测研究本文以某城市为研究对象,通过数学建模方法对空气质量进行预测。
通过收集历史空气质量数据,构建空气质量预测模型。
运用机器学习算法对模型进行训练和优化,提高预测精度。
通过对预测结果的分析,为城市环境管理部门提供决策支持,有助于改善城市空气质量。
二、数学建模在物流优化中的应用本文针对某物流公司配送路线优化问题,运用数学建模方法进行求解。
建立物流配送模型,考虑配送成本、时间、距离等因素。
运用线性规划、遗传算法等优化算法对模型进行求解。
通过对求解结果的分析,为物流公司提供优化配送路线的建议,降低物流成本,提高配送效率。
三、基于数学建模的金融风险管理研究本文以某银行为研究对象,通过数学建模方法对金融风险进行管理。
构建金融风险预测模型,考虑市场风险、信用风险、操作风险等因素。
运用风险度量方法对模型进行评估。
通过对预测结果的分析,为银行提供风险控制策略,降低金融风险,提高银行稳健性。
四、数学建模在能源消耗优化中的应用本文针对某工厂能源消耗优化问题,运用数学建模方法进行求解。
建立能源消耗模型,考虑设备运行、生产计划等因素。
运用优化算法对模型进行求解。
通过对求解结果的分析,为工厂提供能源消耗优化策略,降低能源消耗,提高生产效益。
五、基于数学建模的交通流量预测研究本文以某城市交通流量为研究对象,通过数学建模方法进行预测。
收集历史交通流量数据,构建交通流量预测模型。
运用时间序列分析方法对模型进行训练和优化。
通过对预测结果的分析,为城市交通管理部门提供决策支持,有助于缓解城市交通拥堵。
数学建模优秀论文(精选范文10篇)2021六、数学建模在医疗资源优化配置中的应用本文以某地区医疗资源优化配置问题为研究对象,通过数学建模方法进行求解。
建立医疗资源需求模型,考虑人口分布、疾病类型等因素。
运用线性规划、遗传算法等优化算法对模型进行求解。
通过对求解结果的分析,为政府部门提供医疗资源优化配置策略,提高医疗服务质量。
精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。
本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。
实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。
二、基于优化算法的智能交通信号控制策略研究随着城市化进程的加快,交通拥堵问题日益严重。
本文提出了一种基于优化算法的智能交通信号控制策略,通过优化信号灯的配时方案,实现交通流量的均衡分配,提高道路通行能力。
实验结果表明,该策略能够有效缓解交通拥堵,提高交通效率。
三、基于数据挖掘的电商平台用户行为分析电商平台在电子商务领域发挥着重要作用,用户行为分析对于电商平台的发展至关重要。
本文提出了一种基于数据挖掘的电商平台用户行为分析模型,通过分析用户购买行为、浏览行为等数据,挖掘用户偏好和需求。
实验结果表明,该模型能够有效识别用户行为特征,为电商平台提供个性化的推荐服务。
四、基于机器学习的疾病预测模型研究疾病预测对于公共卫生管理具有重要意义。
本文提出了一种基于机器学习的疾病预测模型,通过分析历史疾病数据,预测未来疾病的发生趋势。
实验结果表明,该模型具有较高的预测精度和可靠性,为疾病预防控制提供了一种有效的手段。
五、基于模糊数学的农业生产决策支持系统研究农业生产决策对于提高农业效益和农民收入具有重要意义。
本文提出了一种基于模糊数学的农业生产决策支持系统,通过分析农业环境、市场需求等因素,为农民提供合理的生产决策建议。
实验结果表明,该系统能够有效提高农业生产效益,促进农业可持续发展。
精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。
本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。
实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。
Haozl觉得数学建模论文格式这么样设置版权归郝竹林所有,材料仅学习参考版权:郝竹林备注☆ ※§等等字符都可以作为问题重述左边的。
一级标题所有段落一级标题设置成段落前后间距13磅二级标题设置成段落间距前0.5行后0.25行Excel中画出的折线表字体采用默认格式宋体正文10号图标题在图上方段落间距前0.25行后0行表标题在表下方段落间距前0行后0.25行行距均使用单倍行距所有段落均把4个勾去掉注意Excel表格插入到word的方式在Excel中复制后,粘贴,word2010粘贴选用使用目标主题嵌入当前Dsffaf所有软件名字第一个字母大写比如E xcel所有公式和字母均使用MathType编写公式编号采用MathType编号格式自己定义公式编号在右边显示农业化肥公司的生产与销售优化方案摘 要 要求总分总 本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab 软件编程得出合理的结论,最终对模型的结果做出了误差分析。
针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。
我们作图分析出实验储油罐出现纵向倾斜 14.时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。
针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB 软件推导出了所测油位高度与实际罐容量的关系式。
并且给出了罐体倾斜变位后油位高度间隔为1cm 的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为4103878.2-⨯,这充分说明残差波动不大。
我们得出结论:罐体倾斜变位后,在同一油位条件下倾斜变位后罐容量比变位前罐容量少L 243。
表 1.1针对问题二要求对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。
利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。
进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。
我们根据实际储油罐的特殊构造将实际储油罐分为三部分,左、右球冠状体与中间的圆柱体。
运用积分的知识,按照实际储油罐的纵向变位后油位的三种不同情况。
利用MATLAB 编程进行两次积分求得仅纵向变位时油量与油位、倾斜角α的容积表达式。
然后我们通过作图分析油罐体的变位情况,将双向变位后的油位h 与仅纵向变位时的油位0h 建立关系表达式01.5(1.5)cos h h β=--,从而得到双向变位油量与油位、倾斜角α、偏转角β的容积表达式。
利用附件二的数据,采用最小二乘法来确定倾斜角α、偏转角β的值,用matlab 软件求出03.3=α、04=β α=3.30,β=时总的平均相对误差达到最小,其最小值为0.0594。
由此得到双向变位后油量与油位的容积表达式V ,从而确定了双向变位后的罐容表(见表2)。
本文主要应用MATLAB 软件对相关的模型进行编程求解,计算方便、快捷、准确,整篇文章采取图文并茂的效果。
文章最后根据所建立的模型用附件2中的实际检测数据进行了误差分析,结果可靠,使得模型具有现实意义。
关键词:罐容表标定;积分求解;最小二乘法;MATLAB ;误差分目录1 背景知识 (6)1.1 相关数据 (6)1.2 相关数据 (6)1.3 问题概括 (6)2 问题分析 (7)3 模型假设 (7)4 名词解释和符号说明 (8)4.1 名词解释 (8)4.2 符号说明 (8)5 模型建立与求解 (9)数据预处理 (9)5.1 问题一的分析与求解 (11)5.1.1 问题分析 (11)5.1.2 模型Ⅰ0-1线性规划模型 (11)5.1.3 模型求解 (11)5.2 问题二的分析与求解 (11)5.2.1 问题分析 (11)5.2.2 模型Ⅱ客户满意度最优模型 (12)5.2.3 模型求解 (12)5.3 问题三的分析与求解 (12)5.3.1 问题分析 (12)5.3.2 模型Ⅲ价格波动模型 (12)5.3.3 模型求解 (12)6 误差分析 (13)6.1 误差分析 (13)6.1.1 问题一的误差分析 (13)6.1.2 问题二的误差分析 (13)6.2 灵敏度分析 (13)6.2.1 问题三的误差分析 (13)6.2.2 问题四的误差分析 (13)7 模型评价与推广 (14)7.1 模型优点 (14)7.2 模型缺点 (14)7.3 模型推广 (14)参考文献 (15)附录 (16)附录1 (16)附录2 (16)附录3 (16)附录4 (16)Equation Chapter (Next) Section 1★1问题重述1.1 背景知识1.随着红外仪器技术的发展,更加稳定的电源、信号放大器、更灵敏的光子探测器、微型计算机等的发展使得近红外光谱区作为一段独立的且有独特信息特征的谱区得到了重视和发展。
2.近红外光谱 (Near infrared spectroscopy,NIRS)分析技术是近年来用于制药行业的过程分析技术(Process analytical technology,PAT),可直接对固体药品进行快速、无损检测。
3.样品中的特征吸收峰均来自于片芯和包衣材料,包衣材料与样品均有相同的特征吸收,所以建立的方法对肠溶片包衣厚度建模中的包衣材料定量分析具有专属性。
1.2 相关数据(1) 同一条件下肠溶片片芯、样品及包衣各辅料的近红外光谱肠溶片近红外光谱图。
(2) 近红外检测包衣过程中选取的不同时间点对应的特征吸收值。
(3) 素片、最优包衣和包衣过程15个样本品、10种不同时刻共150样本点的吸收值。
1.3 问题概括1.以肠溶片为研究对象,对近红外光谱的吸收波峰提取有效特征峰。
2.在提取的有效特征峰基础上,对素片、最优包衣和包衣过程三类所有样本点分类。
3.在已经分好类的前提下,对未知某一时刻包衣样本进行识别,以判别包衣厚度是否合适。
Equation Chapter (Next) Section 1★2问题分析总:分:问题分析中不给出结果,摘要中给出如下范例:本题是基于近红外线光谱以此来建立肠溶片最优包衣厚度终点判别,而本题提供了10个时刻和15个样本品共150个样本点的近红外线光谱图。
首先对样本进行划分,针对每个时刻的15个样本,我们将每个时刻的前面10个样本乘以10种时刻共100个样本作为训练集,而每个时刻剩下的5种样本10种时刻共50个样本作为测试集,其次需要通过一种方法对近红外光谱的吸收波峰的训练集和测试集中提取有效特征峰,然后通过聚类分析方法对对素片、最优包衣和包衣过程三类的训练集进行分类。
然后通过未知某一时刻包衣样本即测试集进行识别属于哪一类来检验我们的判别分析方法可行性。
对于问题一,采用主成分分析法针对测试集和训练集进行提取特征峰,为了便于分析,一般情况下提取2到3个主成分即特征峰,但是对于提取特征峰2还是3个,需要分2种情况进行讨论,以此建立模型Ⅰ。
对于问题二,先对每个时刻的所有样品点进行求平均值,得到共10个时刻的样本点,然后针对平均值样本和总体训练集样本,分别采用加权模糊C均值分类法进行分类,通过平均值样本点的分类和总体训练集样本的分类,讨论分2类、3类、4类、5类、6类共5种情况。
然后选取波长范围5407.65-3795.381cm 吸收波值画出每个样本点的折线趋势图进行整体趋势分析,从光谱图的趋势图可以看出,吸收峰的强度与波长的长度成正相关,可以判断出大致的最优包衣厚度是105分钟时刻,以此验证聚类效果,从而建立模型Ⅱ。
对于问题三,在解决问题二的前提下,在已经分好类的前提下,建立模型Ⅲ,对测试集进行验证分类,观察分类效果。
Equation Chapter (Next) Section 1★3模型假设1.所有数据均为原始数据,来源真实可靠。
2.近外红光谱的肠溶片包衣厚度在当前条件下不可测量,只能确定何时包衣厚度合适。
3.样品中的特征峰均来自于片心和包衣材料,不来源于其他物质。
4.包衣材料和样品均有相同的特征吸收。
5.近红外光谱在测量吸收峰时,吸收峰没有其他耗损。
6.素片就是样品的片心,而样品=片心+包衣材料,样品不含其它不相关物质。
Equation Chapter (Next) Section 1★4名词解释和符号说明4.1 名词解释样本点:某一个时刻的各个近红外线所有波长对应的吸收值。
样品点:一个样品对应的所有时刻的各个近红外线所有波长对应的吸收值。
训练集:提取经过波长降序处理的原始数据集X的每时刻前面10个样本共100个样本。
测试集:提取经过波长降序处理的原始数据集X的每时刻剩下的5个样本共50个样本。
平均训练集:训练集的每一时刻的所有样品平均值(10个样本点)4.2 符号说明表 4.1 这是表符号意义对原始数据近红外线波长降序处理和按时刻、素片、最优分组的数据集标准化处理的训练集标准化处理的测试集标准化处理的平均训练集某一个吸收峰的标准差某一个样本点在某一个吸收峰上的值某一个吸收峰的平均值第一有效特征峰原始数据协方差得分向量即有效特征峰矩阵有效特征峰矩阵对原始数据的解释程度有效特征峰对应的特征值训练集的聚类中心测试集的聚类中心平均训练集每个时刻对应隶属度的矩阵训练集每个时刻对应的隶属度矩阵Equation Chapter (Next) Section 1★5模型建立与求解数据预处理在建立模型之前,我们首先对题目提供的数据进行如下预处理:1.单位转换为一致,各种化肥的标准单位为千吨(kt),销售额以及利润标准单位均为万元。
2.表格数据转换将excel表格中的原始数据进行整理,首先将近红外线的波长进行降序处理,再将最优包衣样品放在一起,共150行,分为10个组:分别是15个肠溶片包衣15分钟至120分钟和最优包衣组,按15分钟等差分成的八个组、一个15片素片(未包衣)组和一个15片最优包衣组,经过过降序和分组后的数据集记为X,便于包衣时间段的数据进行趋势分析。
并且,用excel软件分别算出各个组中15个样本数据的均值,用来分析包衣总体趋势。
3.对于题目提供数据:表2(10种农业化肥产量与成本关系表)、表3(每种农业化肥的宣传费用随着销售量变化表)、表4(每种农业化肥的销售额随订购量变化表)、表13(企业向销售部发放计划内销售产品的经费表)以及表14(计划外销售部分销售部向企业缴纳利润表)提供的数据进行多项式拟合,通过做折线图如下:。