物理中涉及的数学知识
- 格式:doc
- 大小:550.53 KB
- 文档页数:5
物理竞赛中的数学知识一、重要函数 1. 指数函数 2. 三角函数 3. 反三角函数反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x 这些函数的统称,各自表示其正弦、余弦、正切、余切为x 的角;二、数列、极限1. 数列:按一定次序排列的一列数称为数列,数列中的每一个数都叫做这个数列的项;排在第一位的数称为这个数列的第1项通常也叫做首项,排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n 项; 数列的一般形式可以写成 a 1,a 2,a 3,…,a n ,a n+1,… 简记为{an },通项公式:数列的第N 项a n 与项的序数n 之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式;2. 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示;通项公式a n =a 1+n-1d,前n 项和11(1)22n n a a n n S n na d +-==+ 等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列;这个常数叫做等比数列的公比,公比通常用字母q 表示;通项公式a n =a 1qn-1,前n 项和11(1)(1)11n n n a a q a q S q q q--==≠-- 所有项和1(1)1n a S q q=<- 3. 求和符号4. 数列的极限:设数列{}n a ,当项数n 无限增大时,若通项n a 无限接近某个常数A ,则称数列{}n a 收敛于A ,或称A 为数列{}n a 的极限,记作A a n n =∞→lim否则称数列{}n a 发散或n n a ∞→lim 不存在.三、函数的极限:在自变量x 的某变化过程中,对应的函数值fx 无限接近于常数A ,则称常数A 是函数fx 当自变量x 在该变化过程中的极限;设fx 在x>aa >0有定义,对任意>0,总存在X >0,当x>X 时,恒有| fxA |<,则称常数A 是函数fx 当x +时的极限;记为+∞→x lim fx =A ,或fx Ax +;运算法则lim x x →fx gx =0lim x x →fx 0lim x x →gxlim x x →fx gx =0lim x x →fx 0lim x x →gx)(lim )(lim )()(lim 00x g x f x g x f x x xx x x →→→=,其中0lim x x →gx 0. 四、无穷小量与无穷大量1.若0)(lim 0=→x f x x ,则称)(x f 是0x x →时的无穷小量;若,)(lim 0∞=→x g x x 则称)(x f 是0x x →时的无穷大量;或:若0lim x x →x =0 ,则称x 当x x 0时为无穷小;在自变量某变化过程中,|fx |无限增大,则称fx 在自变量该变化过程中为无穷大;记为 lim ().f x =∞ 2.无穷小量与无穷大量的关系无穷小量的倒数是无穷大量;无穷大量的倒数是无穷小量; 3.无穷小量的运算性质i 有限个无穷小量的代数和仍为无穷小量; ii 无穷小量乘有界变量仍为无穷小量; iii 有限个无穷小量的乘积仍为无穷小量; 4.无穷小的比较定义:设0lim →x x =0,0lim →x x =0,1若)()(lim0x x x αβ→=0,则称当x x 0时 x 是比 x 高阶无穷小;2若)()(lim0x x x αβ→=,则称当x x 0时 x 是比 x 低阶无穷小;3若)()(lim0x x x αβ→=CC 0,则称当x x 0时 x 与 x 是同阶无穷小,4若)()(lim0x x x αβ→=1,则称当x x 0时 x 与 x 是等价无穷小;5.常用的等价无穷小为:当x0时: sin xx ,tan xx ,arcsin xx ,arctan xx ,1cos x 221x , 11-+n x x n1; 等价无穷小可代换 五、二项式定理1. 阶乘: n=1×2×3×……×n2. 组合数:从m 个不同元素中取出nn≤m 个元素的所有组合的个数,叫做从m 个不同元素中取出n 个元素的组合数 3. 二项式定理即六、常用三角函数公式sinπ+α=-sinαcosπ+α=-cosαtanπ+α=tanαsinπ/2+α=cosα cosπ/2+α=—sinα tanπ/2+α=-cotα和差化积公式积化和差公式万能公式典型物理问题数列极限等应用1.蚂蚁离开巢穴沿直线爬行,它的速度与到蚁巢中心的距离成反比,当蚂蚁爬到距巢中心距离L1=1m的A点处时,速度是V1=2cm/s; 试问蚂蚁继续由A点到距巢中心L2=2m的B点需要多长时间2.常见近似处理1.人在岸上以v0速度匀速运动,如图位置时,船的速度是多少2.如图所示,顶杆AB可在竖直滑槽K内滑动,其下端由凹轮M推动,凸轮绕O轴以匀角速度ω转动.在图示的瞬时,OA=r,凸轮轮缘与A接触,法线n与OA之间的夹角为α,试求此瞬时顶杆AB的速度.第十一届全国中学生物理竞赛预赛试题3.三个芭蕾舞演员同时从边长为L的正三角形顶点A,B,C出发,速率都是v,运动方向始终保持着A朝着B,B朝着C,C朝着A;经过多少时间三人相遇每人经过多少路程4.如图所示,半径为R2的匀质圆柱体置于水平放置的、半径为R1的圆柱上,母线互相垂直,设两圆柱间动摩擦因数足够大,不会发生相对滑动,试问稳定平衡时,R1与R 2应满足什么条件5.一只狐狸以不变的速度1υ沿着直线AB 逃跑,一只猎犬以不变的速率2υ追击,其运动方向始终对准狐狸.某时刻狐狸在F 处,猎犬在D 处,FD ⊥AB,且FD=L,如图14—1所示,求猎犬的加速度的大小.解析:猎犬的运动方向始终对准狐狸且速度大小不变,故猎犬做匀速率曲线运动,根据向心加速度r ra ,22υ=为猎犬所在处的曲率半径,因为r 不断变化,故猎犬的加速度的大小、方向都在不断变化,题目要求猎犬在D 处的加速度大小,由于2υ大小不变,如果求出D 点的曲率半径,此时猎犬的加速度大小也就求得了.猎犬做匀速率曲线运动,其加速度的大小和方向都在不断改变.在所求时刻开始的一段很短的时间t ∆内,猎犬运动的轨迹可近似看做是一段圆弧,设其半径为R,则加速度 =a R22υ其方向与速度方向垂直,如图14—1—甲所示.在t ∆时间内,设狐狸与猎犬分别到达D F ''与,猎犬的速度方向转过的角度为=α2υt ∆/R 而狐狸跑过的距离是:1υt ∆≈L α 因而2υt ∆/R ≈1υt ∆/L,R=L 2υ/1υ所以猎犬的加速度大小为=a R22υ=1υ2υ/L6.如图所示,半径为R,质量为m 的圆形绳圈,以角速率ω绕中心轴O 在光滑水平面上匀速转动时,绳中的张力为多大解析 取绳上一小段来研究,当此段弧长对应的圆心角θ∆很小时,有近似关系式.sin θθ∆≈∆若取绳圈上很短的一小段绳AB=L ∆为研究对象,设这段绳所对应的圆心角为θ∆,这段绳两端所受的张力分别为AT 和BT方向见图14—3—甲,因为绳圈匀速转动,无切向加速度,所以A T 和B T 的大小相等,均等于T . A T 和B T 在半径方向上的合力提供这一段绳做匀速圆周运动的向心力,设这段绳子的质量为m ∆,根据牛顿第二定律有:R m T 22sin 2ωθ∆=∆; 因为L ∆段很短,它所对应的圆心角θ∆很小所以22sin θθ∆=∆将此近似关系和πθπθ22∆=⋅∆⋅=∆m R m R m代入上式得绳中的张力为πω22Rm T =7. 在某铅垂面上有一固定的光滑直角三角形细管轨道ABC,光滑小球从顶点A 处沿斜边轨道自静止出发自由地滑到端点C 处所需时间,恰好等于小球从顶点A 处自静止出发自由地经两直角边轨道滑到端点C 处所需的时间.这里假设铅垂轨道AB与水平轨道BC 的交接处B 有极小的圆弧,可确保小球无碰撞的拐弯,且拐弯时间可忽略不计.在此直角三角形范围内可构建一系列如图14—4中虚线所示的光滑轨道,每一轨道是由若干铅垂线轨道与水平轨道交接而成,交接处都有极小圆弧作用同上,轨道均从A 点出发到C 点终止,且不越出该直角三角形的边界,试求小球在各条轨道中,由静止出发自由地从A 点滑行到C 点所经时间的上限与下限之比值.解析 直角三角形AB 、BC 、CA 三边的长分别记为1l 、2l 、3l ,如图14—4—甲所示,小球从A 到B 的时间 记为1T ,再从B 到C 的时间为2T ,而从A 直接沿斜边到C所经历的时间记为3T ,由题意知321T T T =+,可得1l :2l :3l =3:4:5, 由此能得1T 与2T 的关系.因为21121121T gT l gT l ==所以21212T T l l = 因为1l :2l =3:4,所以 1232T T =小球在图14—4—乙中每一虚线所示的轨道中,经各垂直线段所需时间之和为11T t =,经各水平段所需时间之和记为2t ,则从A 到C 所经时间总和为21t T t +=,最短的2t 对应t 的下限min t ,最长的2t 对应t 的上限.m ax t小球在各水平段内的运动分别为匀速运动,同一水平段路程放在低处运动速度大,所需时间短,因此,所有水平段均处在最低位置即与BC 重合时2t 最短,其值即为2T ,故min t =.35121T T T =+2t 的上限显然对应各水平段处在各自可达到的最高位置,实现它的方案是垂直段每下降小量1l ∆,便接一段水平小量2l ∆,这两个小量之间恒有αcot 12l l ∆=∆,角α即为∠ACB,水平段到达斜边边界后,再下降一小量并接一相应的水平量,如此继续下去,构成如图所示的微齿形轨道,由于1l ∆、2l ∆均为小量,小球在其中的运动可处理为匀速率运动,分别所经的时间小量)(1i t ∆与)(2i t ∆之间有如下关联:于是作为)(2i t ∆之和的2t 上限与作为)(1i t ∆之和的1T 之比也为.cot α故2t 的上限必为1T αcot ,即得:.37cot 111max T T T t =+=α这样:max t min t =7:5求导与微分一、导数的概念1.导数定义设y=fx 在x 0的某邻域内有定义,在该邻域内给自变量一个改变量x ∆,函数值有一相应改变量)()(00x f x x f y -∆+=∆,若极限存在,则称此极限值为函数y=fx 在x 0点的导数,此时称y=fx 在x 0点可导,用⎥⎦⎤⎢⎣⎡===''000)(,,)(x x dx x df x x dyx dyx x y x f 或或或表示.若)(x f y =在集合D 内处处可导这时称fx 在D 内可导,则对任意D x ∈0,相应的导数)(0x f '将随0x 的变化而变化,因此它是x 的函数,称其为y=fx 的导函数,记作⎪⎭⎫⎝⎛''dx x df dxdy y x f )(,,)(或或或. 2.导数的几何意义若函数fx 在点x 0处可导,则)(0x f '就是曲线y=fx 在点x 0,y 0处切线的斜率,此时切线方程为))((000x x x f y y -'=-.当)(0x f '=0,曲线y=fx 在点x 0,y 0处的切线平行于x 轴,切线方程为)(00x f y y ==.若fx 在点x 0处连续,又当0x x →时∞→')(x f ,此时曲线y=fx 在点x 0,y 0处的切线垂直于x 轴,切线方程为x=x 0.1.几个基本初等函数的导数⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- 2.导数的四则运算 1)(])([x u c x u c '⋅='⋅;2)()(])()([x v x u x v x u '+'='±;3)()()()()]()([x v x u x v x u x v x u '⋅+'⋅'=⋅;4)()()()()()()(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡ 二、微分1.微分的概念设)(x f y =在0x 的某邻域内有定义,若在其中给0x 一改变量x ∆,相应的函数值的改变量y ∆可以表示为其中A 与x ∆无关,则称)(x f 在0x 点可微,且称A x ∆为)(x f 在0x 点的微分,记为 x A ∆是函数改变量y ∆的线性主部.)(x f y =在0x 可微的充要条件是)(x f 在0x 可导,且)(00x x f x x dy ∆'==.当x x f =)(时,可得x dx ∆=,因此由此可以看出,微分的计算完全可以借助导数的计算来完成.2微分的几何意义 当x 由0x 变到x x ∆+0时,函数纵坐标的改变量为y ∆,此时过0x 点的切线的纵坐标的改变量为dy.如图2-1所示.当dy <y ∆时,切线在曲线下方,曲线为凹弧. 当dy >y ∆时,切线在曲线上方,曲线为凸弧. 2.微分运算法则设)(),(x v x u 可微,则三、不定积分1.不定积分概念定义原函数 若对区间I 上的每一点x ,都有 则称Fx 是函数fx 在该区间上的一个原函数.原函数的特性 若函数fx 有一个原函数F x ,则它就有无穷多个原函数,且这无穷多个原函数可表示为Fx+C 的形式,其中C 是任意常数.定义不定积分 函数fx 的原函数的全体称为fx 的不定积分,记作⎰dx x f )(.若Fx 是fx 的一个原函数,则2.不定积分的性质1积分运算与微分运算互为逆运算. 2⎰⎰≠=)0()()(k dxx f k dx x kf 常数3⎰⎰⎰±=±.)()()]()([dx x g dx x f dx x g x f 3.基本积分公式四、定积分定义定积分 函数)(x f 在区间a,b 上的定积分定义为∑⎰=→∆∆==ni iix ba xf dx x f I 1)(lim)(ξ,定理牛顿-莱布尼茨公式 若函数)(x f 在区间a,b 上连续,)(x F 是)(x f 在a,b上的一个原函数,则)()()()(a F b F abx F dx x f ba-==⎰.上述公式也称为微积分基本定理,是计算定积分的基本公式. 常见应用1. 一石砌堤,堤身在基石上,高为h,宽为b,如图所示;堤前水深等于堤高h,谁和堤身的单位体积重量分别为q 和γ,问欲防止堤身绕A 点翻倒,比值b/h 应等于多少2.一个半径为四分之一的光滑球面置于水平桌面上.球面上有一条光滑均匀的匀质铁链,一端固定于球面顶点A,另一段恰好与桌面不接触,且单位长度铁链的质量为p,求铁链A 端所受到拉力以及铁连所受球面的支持力.3.质量为m 的均匀橡皮圈处于自然状态下的半径为r 1,弹性系数为k;现将它保持水平套在半径为r 2的竖直圆柱上r 2>r 1,套上后橡皮圈的质量分布仍是均匀的,橡皮圈与柱面之间的静摩擦因数为μ;现在圆柱体绕竖直轴转动起来,如图所示:问要保持橡皮圈不滑下,圆柱转动的角速度ω不能超过多少常用数学知识汇总一、三角函数公式 1.两角和公式 2.二倍角公式 3.半角公式 4.和差化积公式 5.积化和差公式 6.万能公式 7.平方关系 8.倒数关系 9.商数关系二、重要公式10sin lim 1x xx→= 2()10lim 1x x x e →+= 3)1n a o >=41n = 5lim arctan 2x x π→∞=6lim tan 2x arc x π→-∞=-7limarccot 0x x →∞= 8lim arccot x x π→-∞= 9lim 0x x e →-∞=10lim x x e →+∞=∞ 110lim 1x x x +→=三、下列常用等价无穷小关系0x → 四、导数的四则运算法则 五、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x'= ⑿()1log ln x a x a '=⒀()arcsin x '= ⒁()arccos x '= ⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=八、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x= ⑿()1log ln x a d dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 九、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu =⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫=⎪⎝⎭ 十、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰ ⑾arcsin x c =+。
高中物理学习中常用的数学知识一、角度的单位1、常用单位:“度”,如角θ等于60度,写成θ=600。
圆一周是360度。
2、国际通用:“弧度”,符号:rad 。
如θ=π21rad 。
即为θ为90度。
圆一周为2π rad ,即2π rad =360度。
弧度定义式:θ=R l 如:一周的角度θ=R l =RRπ2=2π (rad)3、几个特殊角的弧度值:A.300=6π(rad) B. 450=4π(rad)C.600=3π(rad)D. 900=2π(rad)E. 1200=32π(rad)F. 1800=π (rad)G.2700=23π(rad) H. 3600=2π(rad) 二、三角函数知识 1、几种三角函数的定义在直仍三角形Δ中,如下图所示,∠C 是直角,∠A 、∠B 都是锐角。
则AC 、BC 叫做直角边,AB 叫做斜边。
对于∠A 来说,AC 叫做∠A 的邻边,BC 叫做∠A 的对边。
正弦为对边比斜边,余弦为邻边比斜边。
正切为对边比邻边,余切为邻边比对边。
正弦:sin ac θ= 余弦:cos bc θ=正切:tan abθ=2、几个特殊角的三角函数值:角度θ 正弦(sin θ)余弦(cos θ)正切(tan θ)1301232 334522 22160321239001 0 +∞ 18001+∞初中很少遇到的370和530角,在高中物理试题中经常要用到它们。
其实这两个角也是大家很熟悉的,还记得“勾3股4弦必5”吧?在这个直角三角形中,长为5的边所对的是直角,长为3的边所对的锐角就是370,长为4的边对的角就是530。
Sin370=53 cos370=54 sin530=54 cos530=533、当0<α<90°时,正弦与正切函数为增函数,余弦与余切函数为减函数。
4、平方和关系: Sin 2α+Cos 2α=1 即:(Sin α)2+( Cos α)2=1。
三、正比函数形如y=kx (k 是常数,且k≠0 )的函数,如:y=3x 、y=-2x ,均是正比例函数。
初中物理知识归纳总结第一章机械运动一、长度和时间的测量1、测量某个物理量时用来进行比较的标准量叫做单位。
为方便交流,国际计量组织制定了一套国际统一的单位,叫国际单位制(简称SI )。
2、长度的单位:在国际单位制中,长度的基本单位是米(m),其他单位有:千米(km)、分米(dm)、厘米(cm)、毫米(mm)、微米(μm)、纳米(nm)。
1km=1000m ;1dm=0.1m ;1cm=0.01m ;1mm=0.001m ;1μm=0.000001m ;1nm=0.000000001m 。
测量长度的常用工具:刻度尺。
刻度尺的使用方法:①注意刻度标尺的零刻度线、最小分度值和量程;②测量时刻度尺的刻度线要紧贴被测物体,位置要放正,不得歪斜,零刻度线应对准所测物体的一端;③读数时视线要垂直于尺面,并且对正观测点,不能仰视或者俯视。
3、国际单位制中,时间的基本单位是秒(s)。
时间的单位还有小时(h)、分(min)。
1h=60min 1min=60s 。
4、测量值和真实值之间的差异叫做误差,我们不能消灭误差,但应尽量减小误差。
误差的产生与测量仪器、测量方法、测量的人有关。
减少误差方法:多次测量求平均值、选用精密测量工具、改进测量方法。
误差与错误区别:误差不是错误,错误不该发生能够避免,误差永远存在不能避免。
二、运动的描述1、运动是宇宙中最普遍的现象,物理学里把物体位置变化叫做机械运动。
2、在研究物体的运动时,选作标准的物体叫做参照物。
参照物的选择:任何物体都可做参照物,应根据需要选择合适的参照物(不能选被研究的物体作参照物)。
研究地面上物体的运动情况时,通常选地面为参照物。
选择不同的参照物来观察同一个物体结论可能不同。
同一个物体是运动还是静止取决于所选的参照物,这就是运动和静止的相对性。
三、运动的快慢1、物体运动的快慢用速度表示。
在相同时间内,物体经过的路程越长,它的速度就越快;物体经过相同的路程,所花的时间越短,速度越快。
八年级物理数学知识点总结物理和数学是我们学生不可避免的两个学科,物理和数学知识的掌握不仅对于我们的学习和未来的发展很有帮助,也能帮助我们更好的理解世界。
在八年级,我们已经学习了很多关于物理和数学的知识点。
在此,我将为大家总结一些八年级物理数学知识点,希望对大家的学习有所帮助。
一、物理知识点1. 运动的描述在物理学中,我们需要描述物体的运动状态,进行运动的描述时,需要注意以下几个方面:- 距离和位移:距离是指物体运动的轨迹长度,位移是指物体运动结束后,从开始点到结束点的直线距离。
- 速度和加速度:速度是指单位时间内物体运动的路程,加速度是指单位时间内速度的增加量。
- 运动图像表示:可以用位移、速度、加速度和时间等变量来描述不同类型的运动。
2. 力学力学是物理学中的一个重要分支,探讨物体的力和运动状态之间的关系,它包括以下几个方面:- 牛顿定律:第一定律说明物体在为零力的情况下会保持运动状态,第二定律表明物体在受到力的作用下会发生加速度,第三定律说明每个物体的作用力会有一个相等大小的反作用力。
- 重力:物体在地球表面或其他天体表面上受到的大小为重力,可以使用万有引力定律来计算重力大小。
- 摩擦力:摩擦力是一种阻碍物体相对运动的力,可以分为静摩擦力和滑动摩擦力。
- 常见力学题目:题目可以涉及一些常见的物理量,如速度、重量、摩擦系数等。
3. 热学热学是研究热量和温度的科学,它包括以下几个方面:- 热传递方式:包括传导、对流和辐射三种方式。
- 热力学规律:包括冷凝水滴成的形成、沸腾等规律。
- 热量计算:热力学中热量是一个重要的物理量,可以通过热传递方式计算热量。
二、数学知识点1. 代数代数是数学一个重要的分支,在八年级中,我们学过以下知识:- 一次方程和二次方程:通过代数式表达出来的方程。
- 解方程:通过代数方法求出方程中的未知变量。
- 因式分解:把一个代数式分解成两个或多个代数式的乘积。
- 算式简化:通过整理代数式,以简化计算,减少错误的发生。
高一数学物理知识点总结归纳一、数学知识点总结1. 代数与函数1.1 一次函数及其图像、性质和应用1.2 二次函数及其图像、性质和应用1.3 指数、对数及其运算性质2. 几何与三角2.1 基本图形及其性质(如正方形、矩形等)2.2 相似与全等三角形的性质2.3 圆、圆周角及其性质3. 概率统计3.1 基本概率问题的求解3.2 随机事件的独立性和相关性3.3 数据的收集和处理方法二、物理知识点总结1. 力学1.1 牛顿运动定律1.2 力的合成与分解1.3 受力分析与静力平衡条件2. 电磁学2.1 电荷、电场与电势2.2 电流、电阻与电势差2.3 磁场与电磁感应3. 光学3.1 光的反射与折射3.2 镜子和透镜的成像规律3.3 光的干涉与衍射现象以上仅为高一数学物理知识点的简要总结,下面将对各个知识点进行更详细的介绍和归纳。
一、数学知识点详解1. 代数与函数1.1 一次函数及其图像、性质和应用一次函数又称线性函数,其表示形式为y = kx + b,其中k称为斜率,b称为截距。
一次函数的图像为一条直线,斜率决定了直线的倾斜程度,截距表示了直线与y轴的交点。
一次函数的性质和应用包括函数的增减性、定义域和值域、函数图像的平移和伸缩变换等。
在实际问题中,一次函数常常用于描述线性关系,如速度、利润等。
1.2 二次函数及其图像、性质和应用二次函数的一般表示形式为y = ax^2 + bx + c,其中a、b、c为常数且满足a ≠ 0。
二次函数的图像为抛物线,其开口方向由a的正负决定。
二次函数的性质和应用包括二次函数的图像特征、顶点坐标、对称轴、零点和最值等。
在实际问题中,二次函数常用于描述抛射运动、几何问题等。
1.3 指数、对数及其运算性质指数和对数是一种数学运算方法,指数表示底数连乘的次数,对数表示在指数运算中的未知数。
指数和对数具有一系列运算性质,如指数运算和对数运算的互逆性、指数法则和对数法则等。
指数和对数的应用广泛,常用于解决指数增长问题、科学计数法、复利计算等。
解物理题时常用的数学知识及技法物理与数学密切相关,数学是物理解题的工具,若恰当运用数学知识及技法,可使物理推导过程简单明了,合乎逻辑,下面举例介绍物理题中常用的数学知识及技法。
一、合比、分比、等比定理【数学知识概述】合比定理:若a/b=c/d则:(a+b)/b=(c+d)/d分比定理:若a/b=c/d则:(a-b)/b=(c-d)/d等比定理:若a/b=c/d则:a/b=c/d=(a±b)/(c±d)【应用】例1:飞机设计师为减轻飞机的质量将一钢制零件改为铝制零件,使其质量减少了104kg则所用铝的质量为(ρ钢=7.9g/cm3,ρ铝=2.7g/cm3)a.35.5kgb.54kgc.104kgd.158kg分析:由于零件体积不变可以列式找到各用钢、铝的质量比,再运用分比定理求解。
解:设所用钢时质量为m1,用铝时质量为m2,则m1/ρ钢=m2/ρ铝m1/m2=ρ钢/ρ铝由分比定理可知(m1-m2)/m2=(ρ钢-ρ铝)/ρ铝=(7.9-2.7)/2.7 104/m2=5.2/2.7故m2=54kg。
例2:一个定值电阻两端的电压增加2v,此时通过定值的电流由0.4a增大到0.8a,问该定值电阻所消耗的电功率增大了多少?分析:r=u1/i1=u2/i2则由等比定理可得r再利用p=i2r求解。
解:r=u1/i1=u2/i2=(u1-u2)/(i1-i2)=2v/(0.8a-0.4a)=5ωp1=i12r p2=i22r △p=p2-p1=(i22-i12)r=(0.82-0.42)×5=2.4w 二、相似三角形的基本性质【数学知识概述】若两三角形相似则对应边成比例,如△abc∽△a′b′c′则有ab/a′b′=bc/b′c′=ac/a′c′【应用】例1:某人高1.7m为了测试路灯高度,他从路灯正下方沿平直公路以1m/s的速度匀速走开,某时刻它的影子长是1.3m,再经过2s它的影子长是1.8m,问路灯距地面高度是多少?分析:本题只要先画出示意图,就会发现利用相似三角形的基本性质可列出相应比例式,即能求解。
物理竞赛中的数学知识一、重要函数1.指数函数2.三角函数3.反三角函数反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x 的角。
二、数列、极限1.数列:按一定次序排列的一列数称为数列,数列中的每一个数都叫做这个数列的项。
排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n项。
数列的一般形式可以写成a1,a2,a3,…,a n,a(n+1),… 简记为{an},通项公式:数列的第N项a n 与项的序数n之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式。
2. 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
通项公式a n =a 1+(n-1)d ,前n 项和11(1)22n n a a n n S n na d +-==+ 等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。
这个常数叫做等比数列的公比,公比通常用字母q 表示。
通项公式a n =a 1q (n-1),前n 项和11(1)(1)11n n n a a q a q S q q q --==≠-- 所有项和1(1)1n a S q q=<- 3. 求和符号 4. 数列的极限: 设数列{}n a ,当项数n 无限增大时,若通项n a 无限接近某个常数A ,则称数列{}n a 收敛于A ,或称A 为数列{}n a 的极限,记作Aa n n =∞→lim 否则称数列{}n a 发散或nn a ∞→lim 不存在.三、函数的极限:在自变量x 的某变化过程中,对应的函数值f (x )无限接近于常数A ,则称常数A 是函数f (x )当自变量x 在该变化过程中的极限。
高一物理所需的数学知识点高一学年,是物理学学习的重要时期。
在学习物理的过程中,数学作为物理学的基础,扮演着至关重要的角色。
以下是高一物理所需的数学知识点:1. 基本数学概念:高一物理学习需要掌握基本的数学概念,如数的分类、数的性质、数的运算规则等。
这些基础概念将有助于理解和解析物理问题。
2. 代数运算:代数运算是高一物理学习中常见的数学工具。
包括代数式的展开、因式分解、配方法等。
这些技巧可用于简化复杂的物理方程,提高解题效率。
3. 函数:高一物理中,我们经常会用到各种函数,如线性函数、二次函数、指数函数、对数函数等。
理解函数的概念、性质和图像将有助于分析物理问题,拓展思路。
4. 物理量与单位:学习物理需要掌握各种物理量及其单位的概念,如长度、时间、速度、加速度等。
学生应能够进行物理量之间的换算和运算。
5. 图像与图表的解析:高一物理实验中常涉及数据的收集和图像的绘制。
学生需要通过数学知识解读图像和图表,分析变化规律,找出物理规律。
6. 几何运算:在物理学中,几何运算有时是必不可少的。
例如,通过几何分析可以理解光线的传播、物体的运动轨迹等。
学生需要掌握几何线段、角度、三角函数等概念。
7. 微积分:微积分是物理学中重要的数学工具之一。
物理学中的运动、力学、电磁学等问题,往往需要运用微积分知识进行分析和求解。
8. 方程和不等式:高一物理学习中常遇到各种方程和不等式。
学生需要掌握解方程和不等式的方法,以便解决与物理相关的问题。
9. 概率与统计:物理学的实验数据处理常涉及到概率与统计的知识。
学生需要了解概率与统计的基本概念和运算方法,以便分析实验数据和得出结论。
总结起来,高一物理所需的数学知识点包括了基本数学概念、代数运算、函数、物理量与单位、图像与图表的解析、几何运算、微积分、方程和不等式、概率与统计等。
掌握这些数学知识,将有助于学生更好地理解和应用物理学知识,提高物理学习的效果。
物理解题中涉及的数学知识物理和数学是联系最密切的两门学科。
运用数学工具解决物理问题的能力,是中学物理教学的最基本的要求。
高中物理中用到的数学方法有:方程函数的思维方法,不等式法,极限的思维方法,数形结合法,参数的思维方法,统计及近似的思维方法,矢量分析法,比例法,递推归纳法,等等。
现就“力学”与“电磁学”中常用数学知识进行归纳。
Ⅰ.力学部分:静力学、运动学、动力学、万有引力、功和能量与几何、代数知识相结合,从而增大题目难度,更注重求极值的方法。
Ⅱ.电磁学部分:电磁学中的平衡、加速、偏转及能量与圆的知识、三角函数,正余弦定理、相似三角形的对应比、扇形面积、二次函数求极值(配方法或公式法)、均值不等式 、正余弦函数、积化和差、和差积化、半角倍角公式、直线方程(斜率,截距)、对称性、)sin(cos sin 22ϕθθθ++=+b a b a ab =ϕtan 、数学归纳法及数学作图等联系在一起。
第一章 解三角形 三角函数1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,则有2sin sin sin a b cR C===A B (R 为C ∆AB 的外接圆的半径) 变形公式: ::sin :sin :sin a b c C =A B ;2、三角形面积公式:111sin sin sin 222CSbc ab C ac ∆AB =A ==B . 3、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,推论:222cos 2b c a bc+-A =4、均值定理: 若0a>,0b >,则a b +≥2a b+≥.()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;2a b+称为正数a 、b a 、b 的几何平均数. 5、均值定理的应用:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值. 1、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα=. 2、弧度制与角度制的换算公式:2360π=,1180π=.3、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.4、角三角函数的基本关系:()221sin cos 1αα+=;()sin 2tan cos ααα=.5、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-=⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 6、函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.第二章 三角恒等变换8、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sinsin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;9、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-.10、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的B x A y ++=)sin(ϕϖ形式。
()22sin cos sin αααϕA +B =A +B +,其中tan ϕB=A.第三章 平面向量1、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:ab a b a b-≤+≤+.⑷运算性质:①交换律:a b b a +=+;2tan 12tan 1 cos ;2tan 12tan2sin :222αααααα万能公式+-=+=②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,ax y =,()22,b x y =,则()1212,a b x x y y +=++.2、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,ax y =,()22,b x y =,则()1212,a b x x y y -=--.设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--.第四章 导数及其应用1、定义:()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim)(00000;.2、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.3、常见函数的导数公式:①'C 0=;②1')(-=n n nxx ;③x x cos )(sin '=;4、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.5、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.第五章 函数一元二次不等式的解法判别式24bac ∆=-0∆> 0∆= 0∆<二次函数的图象2(0)y ax bx c a =++>O一元二次方程的根20(0)ax bx c a ++=> 21,242b b acx a-±-=122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-RbaC BAa b C C -=A -AB =B(1)求函数的值域或最值①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数2()(0)f x ax bx c a =++≠图象的性质①二次函数的图象是一条抛物线,对称轴方程为,2bx a =-顶点坐标是24(,)24b ac b a a --. ②当0a >时,抛物线开口向上,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,当2bx a=-时,2max 4()4ac b f x a -=.③当240bac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-.方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x叫做函数))((D x x f y ∈=的零点。
2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点. 3、求函数)(x f y =的零点:○1 (代数法)求方程0)(=x f 的实数根;○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点: )0(2≠++=a c bx ax y .1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点. 2)△=0,方程02=++c bx ax 有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点. 3)△<0,方程02=++c bx ax无实根,二次函数的图象与x 轴无交点,二次函数无零点.空间几何1、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,就是 k = tan α⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在. 2、 直线的斜率公式: k=y2-y1/x2-x1两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直 球的表面积24R Sπ= 球体的体积 334R Vπ=。