输电线路电流电压保护
- 格式:ppt
- 大小:4.71 MB
- 文档页数:78
输电线路保护讲义一、引言输电线路是电力系统中起着重要作用的组成部分,它将发电厂产生的电能通过变压器传送到各个消费者。
为了确保电力系统的正常运行和保护线路设备的安全性,输电线路保护显得极为重要。
本讲义将介绍输电线路保护的基本概念、原理和常见方法,以帮助读者更好地理解和应用相关知识。
二、输电线路保护的目的输电线路保护的主要目的是迅速、准确地检测出故障,切断受故障影响的部分,保护其他正常运行的设备。
同时,还需要保证线路的可靠运行,减少因故障而造成的停电时间和损失。
三、输电线路保护的原理1. 故障检测:输电线路保护装置通过对线路电流、电压进行测量和比较,检测故障的发生。
常见的故障包括短路故障、接地故障等。
2. 故障判断:一旦检测到故障,保护装置需要判断故障的类型和位置。
常见的故障类型有单相接地故障、两相接地故障、两相短路故障等。
保护装置需要根据故障的特征进行准确判断。
3. 故障切除:保护装置在判断故障后,需要通过断路器等开关设备,切断故障电路,以防止故障继续影响线路的其他部分。
四、输电线路保护的常见方法1. 过电流保护:通过对线路电流进行监测,一旦发现超过额定电流的情况,保护装置会迅速切断故障部分。
采用不同的过电流保护装置,可以实现不同的保护策略,例如差动保护、相邻线路保护等。
2. 距离保护:距离保护是一种常见的保护方法,它通过测量线路电流和电压之间的相位差来判断故障的位置。
距离保护装置可以根据设置的保护范围,迅速切除故障部分。
3. 差动保护:差动保护是一种针对线路电流的保护方法,它通过比较线路各处电流的差异来检测故障。
差动保护主要用于检测短路故障。
4. 接地保护:接地保护是一种用于检测接地故障的保护方法。
它通过测量线路接地电流或接地电压来判断故障的发生,并迅速采取切除措施。
五、总结输电线路保护是电力系统中至关重要的环节,它保证了电力系统的稳定运行和设备的安全运行。
本讲义简要介绍了输电线路保护的目的、原理和常见方法。
输电线路电流电压保护设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN电力系统保护与控制课程设计设计题目二:输电线路电流电压保护设计(2)课程设计任务书一、系统接线图如图:二、课程设计的内容及技术参数参见下表三、工作计划:第一天:收集资料,确定设计方案。
第二天:等值电抗计算、短路电流计算。
第三天:电流I段整定计算及灵敏度校验。
第四天:电流II段整定计算及灵敏度校验。
第五天:电流III段整定计算及灵敏度校验。
第六天:绘制保护原理图。
第七、八天:MATLAB建模仿真分析。
第九天:撰写说明书。
第十天:课设总结,迎接答辩。
摘要电力系统的输、配电线路因各种原因可能会发生相间或相地短路故障,因此,必须有相应的保护装置来反映这些故障,并控制故障线路的断路器,使其跳闸以切除故障。
本任务书研究的是不带方向判别的相间短路电流电压保护。
该线路相间短路电流电压保护又称为三段式电流电压保护,确定出最大、最小运行方式下的等值电抗,进行相间短路的最大、最小短路电流的计算。
绘制三段式电流保护原理接线图,并分析动作过程。
电流电压保护在单电源辐射网中一般有很好的选择性和灵敏度。
而且电流电压保护的电路构成、整定计算及调试维护都较简单,因此,它是最可靠的一种保护。
但是,三段式电流电压保护在多电源或单电源环网灯复杂网络中无法保证其选择性,另外在系统运行方式变化很大、线路很短和线路长而负荷重等情况下,其灵敏度可能不满足要求,甚至出现保护范围为零的情况。
因此主要用于35kV及以下单电源辐射网络作为线路保护,也可以作为电动机和小型变压器等元件的保护。
关键词:电流电压保护、三段式、选择性、灵敏度目录一、绪论 ......................................................................................... 错误!未定义书签。
电流电压保护概述 ........................................................................ 错误!未定义书签。
输电线路电流电压保护分析摘要:为了防止电力系统事故的扩大,保证非故障部分仍能可靠供电,通过继电保护装置准确迅速地识别并切除故障。
本文从相间短路的电流电压保护、相间短路的方向电流电压保护两个方面对输电线路电流电压保护进行了详细探讨。
关键词:输电线路、电流电压保护、整定计算引言电力系统继电保护是随着电力系统的发展和科学技术的进步而不断发展起来的,为电力系统建立了一个安全保障体系。
电力系统故障和不正常运行状态是不可避免的,为了防止电力系统事故的扩大,保证非故障部分仍能可靠供电,通过继电保护装置准确迅速地识别并切除故障可以保持供电的连续性、保障人身的安全、防止或减轻设备的损坏。
一、相间短路的电流电压保护线路相间短路电流电压保护主要用于35kV及以下的小接地电流系统中。
包括两种保护:(1)反应电流增大而动作的电流测量元件为基础构成的电流保护;(2)由反应电流增大而动作的电流测量元件和由反应电压下降而动作的电压测量元件为基础构成的电流电压保护。
1、无时限电流速断保护(电流保护第I段)(1)无时限电流速断保护整定计算整定计算的基本原则:电流测量元件的动作电流总必须躲过外部短路(包括双电源网络和环形网络中正方向与反方向短路)时流过保护的最大短路电流(一般按保护最大运行方式下的三相短路考虑)以保证保护的选择性。
电流测量元件的灵敏度则应按流过保护可能的最小短路电流(一般取保护最小运行方式下流过保护的最小两相短路电流)进行校验并满足灵敏度(即保护范围)的要求。
在对无时限电流速断保护整定计算时,无时限电流速断保护依靠动作电流值保证选择性,不必外加延时元件即可保证保护的选择性。
无时限电流速断保护的灵敏度可用保护范围即它所保护的线路的长度的百分数来表示。
当系统在最大运行方式下三相短路时保护范围最大,为Lmax,而系统在最小运行方式下两相短路时保护范围最小,为Lmin;无时限电流保护不能保护线路全长,应采用最不利情况下保护的保护范围来校验保护的灵敏度,一般要求保护范围不少于线路长度的15%。
输电线路电流电压常规保护实验常规继电器特性实验实验目的1)了解继电器基本分类方法及其结构。
2)熟悉几种常用继电器,如电流继电器、电压继电器、时间继电器、中间继电器、信号继电器等的构成原理。
3)学会调整、测量电磁型继电器的动作值、返回值和计算返回系数。
4)测量继电器的基本特性。
5)学习和设计多种继电器配合实验。
实验内容电流继电器特性实验电流继电器动作、返回电流值测试实验。
实验电路原理图如下图所示:实验步骤如下:(1)按图接线,将电流继电器的动作值整定为2A ,使调压器输出指示为0V ,滑线电阻的滑动触头放在中间位置。
(2)查线路无误后,先合上三相电源开关(对应指示灯亮),再合上单相电源开关和直流电源开关。
(3)慢慢调节调压器使电流表读数缓慢升高,记下继电器刚动作(动作信号灯X D 1亮)时的最小电流值,即为动作值。
(4)继电器动作后,再调节调压器使电流值平滑下降,记下继电器返回时(指示灯XD 1灭)的最大电流值,即为返回值。
(5)重复步骤(2)至(4),测三组数据。
(6)实验完成后,使调压器输出为0V ,断开所有电源开关。
-(7)分别计算动作值和返回值的平均值即为电流继电器的动作电流值和返回电流值。
(8)计算整定值的误差、变差及返回系数。
误差=[ 动作最小值-整定值 ]/整定值变差=[ 动作最大值-动作最小值 ]/动作平均值 ⨯ 100% 返回系数=返回平均值/动作平均值表1-1 电流继电器动作值、返回值测试实验数据记录表电压继电器特性实验电压继电器动作、返回电压值测试实验(以低电压继电器为例)。
低电压继电器动作值测试实验电路原理图如下图所示:实验步骤如下:(1)按图接线,检查线路无误后,将低电压继电器的动作值整定为60V ,使调压器的输出电压为0V ,合上三相电源开关和单相电源开关及直流电源开关(对应指示灯亮),这时动作信号灯XD1亮。
35Kv输电线路的继电保护设计在电力系统中,35kV输电线路扮演着重要的角色,负责将发电厂产生的电能传输到各个用电点。
然而,由于外部环境、设备老化等原因,输电线路可能会出现故障,导致电力系统的不稳定甚至瘫痪。
为了确保电力系统的安全稳定运行,35kV输电线路的继电保护设计至关重要。
本文将深入探讨35kV输电线路继电保护的设计原则、方法和应用。
首先,我们需要了解什么是继电保护。
继电保护是电力系统中一种自动保护装置,它通过检测电力系统中的异常信号,如电流、电压、功率等,来判断系统是否存在故障。
一旦检测到故障,继电保护会发出信号,触发断路器等设备,切断故障点与系统的连接,从而保护电力系统的安全运行。
在35kV输电线路的继电保护设计中,我们需要遵循以下原则:1. 快速响应:继电保护应能够迅速响应输电线路的故障,切断故障点与系统的连接,避免故障扩大。
2. 准确判断:继电保护应能够准确判断输电线路的故障类型和位置,避免误判和漏判。
3. 可靠操作:继电保护应具备高度可靠性,确保在任何情况下都能正常工作。
4. 易于维护:继电保护应具备易维护性,便于日常检查、调试和更换。
在35kV输电线路的继电保护设计中,常用的方法包括电流保护、电压保护、距离保护和差动保护等。
这些方法各自有其特点和适用场景。
1. 电流保护:电流保护是通过检测输电线路中的电流变化来判断故障的存在。
当电流超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
2. 电压保护:电压保护是通过检测输电线路中的电压变化来判断故障的存在。
当电压超过或低于设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
3. 距离保护:距离保护是通过检测输电线路中的阻抗变化来判断故障的存在。
当阻抗超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
4. 差动保护:差动保护是通过比较输电线路两端的电流和电压差异来判断故障的存在。
当差动电流或差动电压超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
超高压输电线路继电保护方法超高压输电线路继电保护方法是保护超高压输电线路的重要手段,其目的是在出现故障或异常情况时,及时采取措施维持线路的安全运行,保护设备不受损坏,确保供电的可靠性和稳定性。
下面将介绍几种常用的超高压输电线路继电保护方法。
1.过电流保护:过电流保护是超高压输电线路继电保护的基本方法之一、它通过安装在线路两端和关键位置的继电器来检测电流异常情况。
当电流超过额定值或超过设定的限制范围时,继电器会发出信号,将线路断开,以避免进一步损坏设备或线路。
2.距离保护:距离保护是一种常用的超高压输电线路继电保护方法。
它通过测量线路长度和当前电流,利用计算和比较的方法,确定故障距离,并定位故障位置。
一旦故障发生,距离保护会及时切断故障点所在的线路段,从而保护线路的其他部分。
3.差动保护:差动保护是一种对超高压输电线路进行全线保护的方法。
它基于电流差动原理,通过将线路两端的电流进行比较,来检测线路是否存在故障。
当差动电流超过设定值时,差动保护会发出信号,将故障线路与电网隔离。
4.非电量保护:非电量保护是一种基于非电量信号进行故障检测和判别的超高压输电线路保护方法。
它包括频率保护、振动保护和温度保护等。
频率保护可以检测到输电线路振荡频率的异常情况,温度保护可以监测线路的温度变化,振动保护可以检测到线路振动的异常情况。
这些信号一旦达到设定阈值,就会触发保护动作。
5.微机继电保护:随着计算机技术的发展,微机继电保护逐渐应用于超高压输电线路。
微机继电保护系统能够实现数字化、智能化管理和控制,提高保护可靠性和操作灵活性。
它可以通过对线路信息进行实时监测,快速准确地判断故障类型和位置,并采取相应的保护措施。
综上所述,超高压输电线路继电保护方法包括过电流保护、距离保护、差动保护、非电量保护和微机继电保护等。
不同的保护方法可以互补和配合使用,从而提高超高压输电线路的安全性和可靠性。