经纬仪i角误差校正
- 格式:docx
- 大小:40.45 KB
- 文档页数:2
如何校正经纬仪的i角误差经纬仪是三大常规测量仪器之一,广泛应用于各建设行业。
经纬仪经过维修后,有五项主要误差,即:(1)安平水准器轴垂直于竖轴的校正;(2)十字丝竖丝与铅垂线平行的校正;(3)视准轴垂直于横轴的校正;(4)横轴垂直于竖轴——i角误差的校正;(5)竖盘指标差的校正。
以上校正,是在不存在度盘偏心差前提下进行的、否则需先校正度盘偏心差。
本文仅对上述第(4)项i角误差校正作简要介绍。
当仪器置平时,若横轴垂直于竖轴,则望远镜视准轴绕横轴旋转所划之圆切面为铅垂面,否则该圆切面与铅垂方向会产生一个夹角,称之i角误差。
i角误差对测量成果有很大影响,比如在高上较大的地形测量、高层建筑和大型设备的安装测量,如仪器存在i角误差,便会带来较大的高程测量误差和导致高层楼房倾抖。
校正i角误差的方法是:首先安平仪器,再用望远镜仰视高处一个固定点M(仰角以30°为宜)。
固定仪器,将望远镜旋至水平位置,同时在水平位置放一支垂直于仪器视准轴的横尺,这时在横尺上读数m1(如图1)。
再将望远镜倒镜旋转照准部180°,仍瞄准M点;将望远镜旋转至水平位置,在横尺上读数m2。
若m1=m2,则横轴垂直于竖轴,反之需予校正。
校正时先算出望远镜视准轴在横尺上的正确位置m3,使m3=(m1+m2)/2。
继而用水平方向微动螺旋将望远镜十字丝竖丝照准m3,再将望远镜旋转瞄准M点,这时十字丝竖丝与M点不再重合,就要利用仪器本身的校正机件进行校正。
仪器结构不同,校正方法也不同。
比如电子经纬仪、全站仪都有自动消除误差功能,有的光学经纬仪有横轴偏心环,后者可令偏心环左右偏移进行校正。
有的仪器(如北光经纬仪)没有校正机件,便要用垫高竖轴一边,也就是将竖轴倾斜一个角度进行校正。
垫高竖轴一般没有标准,且需对仪器拆装并反复多次,非常繁琐。
我们经过摸索和实践,找到一个快捷简单的办法。
操作过程是:升降仪器的脚螺旋A或B,如图2将望远镜十字丝竖丝移到M点与m3点之中央,这时再用仪器水平微动螺旋将望远镜十字丝竖丝移到M点。
经纬仪的检验和校正本次检验经J2光学经纬仪1台,需用花杆2根、三角板1个、皮尺1把、记录板1个。
一、仪器各部件的检验仪器的表面洁净无灰尘、锈蚀,望远镜成像清晰,光学零件表面无油迹、霉点等缺陷。
仪器各运动机构转动灵活,制动螺旋没有松动、卡滞和影响操作的现象。
基座的3个脚螺旋及三角架均无松紧不适、晃动或卡死的现象。
二、照准部水准管轴的检验和校正检验方法:1、调节脚螺旋,使水准管气泡居中;2、将照准部旋转180°看气泡是否居中,如果仍然居中,说明满足条件,无需校正,否则需要进行校正。
校正方法:1、在检验的基础上调节脚螺旋,使气泡向中心移动偏移量的一半。
2、用拨针拨动水准管一端的校正螺旋,使气泡居中。
此项检验和校正需反复进行,直到气泡在任何方向偏离值在1/2格以内。
另外,经纬仪上若有圆水准器,也应对其进行检校,当管水准器校正完善并对仪器精确整平后,圆水准器的气泡也应该居中,如果不居中,应拨动其校正螺丝使其居中。
检验结果:用脚螺旋使照准部水准管气泡居中后,将经纬仪的照准部旋转180度,照准部水准管气泡偏离不到1格,因此不需校正。
三、十字丝的检验和校正检验方法:1、精确整平仪器,用竖丝的一端瞄准一个固定点,旋紧水平制动螺旋和望远镜制动螺旋。
2、转动望远镜微动螺旋,观察固定点是否始终在竖丝上移动,若始终在竖丝上移动,说明满足条件,否则需要进行校正。
校正方法:1、拧下目镜前面的十字丝的护盖,松开十字丝环的压环螺丝;2、转动十字丝环,使竖丝到达竖直位置,然后将松开的螺丝拧紧。
此项检验校正工作需反复进行。
检验结果:在墙上找一固定点,使其恰好位于经纬仪望远镜十字丝上端的竖丝上,旋转望远镜上下微动螺旋,该点一直位于十字丝的竖丝上,因此不需校正。
四、视准轴的检验和校正检验方法:1.度盘读数法安置仪器,盘左瞄准远处与仪器大致同高的一点A,读水平度盘读数为b1;2.倒转望远镜,盘右再瞄准A点,读水平度盘读数为b2;3.若b1-b2=±180°则满足条件,无需校正,否则需要进行校正。
经纬仪的检验与校正图2-22 经纬仪轴系关系图2-23 水准管轴检验与校正经纬仪的主要轴线有:照准部水准管轴LL、仪器竖轴VV、望远镜视准轴CC和仪器横轴HH。
根据经纬仪的测角原理,经纬仪的各轴线间应满足以下几何条件(如图2-22所示):(1)照准部水准管轴LL应垂直于仪器竖轴VV;(2)视准轴CC应垂直于仪器横轴HH;(3)仪器横轴HH应垂直于仪器竖轴VV。
(4)经纬仪望远镜十字丝竖丝应垂直于横轴HH经纬仪各轴线或部件间的上述关系,在使用过程中会经常发生变化,因此在使用经纬仪前应对经纬仪的轴线关系进行上述有关进行检验,必要时还应进行校正。
(一)照准部水准管轴应垂直于仪器竖轴的检验和校正照准部水准管轴不垂直于仪器竖轴时,表现在难以整平仪器。
此时水平度盘也就不水平,势必影响测角精度。
检验方法:用圆水准器首先将仪器大致整平,转动照准部,使水准管平行于一对脚螺旋的连线,调节脚螺旋使水准管气泡居中。
再转动照准部180º,若气泡仍居中,说明此条件成立。
反之,若气泡的偏离量超过一格,则应进行校正。
校正方法:设水准管轴水平,竖轴倾斜并与铅垂线间的夹角为α(即水准管轴与水平度盘面之间的夹角为α),如图2-23b所示。
转动照准部180”,坚轴位置不变,水准管轴与水平度盘面之间的夹角仍为α,但水准管轴不再水平,而与水平线间的夹角为2α(图2-23c),并通过气泡偏离水准管零点的格数反映出来。
校正时,先用校正针拨动水准管校正螺丝,升高或降低水准管一端,使气泡退回偏离量的一半(图2-23d。
),再通过调节脚螺旋使气泡居中(图2-23e)。
这时,照准部水准管轴与仪器竖轴就垂直。
此项检验与校正须反复进行,直至满足要求。
(二)十字丝竖丝垂直于仪器横轴的检验图2-24 十字丝校正检验方法:用十字丝交点精确瞄准远处一清晰目标P。
旋紧照准部制动螺旋和望远镜制动螺旋,转动望远镜微动螺旋,如果P点不离开竖丝则条件满足。
否则须校正(图2-24)。
经纬仪的检验和校正经纬仪应满足的条件根据观测水平角的原理,要测出水平角的准确数值,经纬仪的水平度盘必须处于水平位置;望远镜上下转动时,其视准轴所旋转的视准面应为一垂直平面。
为了保证上述要求,经纬仪各轴线之间要满足下列三项几何条件(图4-228):图4-228 经纬仪各轴线间几何条件1.上盘上的水准管轴垂直于竖轴(仪器旋转轴);2.视准轴垂直于水平轴(即望远镜旋转轴或横轴);3.水平轴垂直于竖轴。
在测量工作中,常需要用十字丝的竖丝来瞄准标杆。
因此还要满足竖丝应垂直于望远镜的旋转轴这项条件。
但此项检验与校正应在二、三两项之间进行,以免影响主要条件的满足。
经纬仪的检验与校正1.上盘水准管轴应垂直于竖轴检验:将仪器大致置平,使上盘水准管和任意两脚螺旋平行,调整脚螺旋,使气泡居中。
然后将上盘旋转180°(可利用度盘读数),若气泡仍然居中,则表示条件满足,否则应进行校正。
校正:用校正针拨动水准管校正螺丝,使水准管的一端抬高或降低,让气泡退回偏离中点的一半,另一半调整脚螺旋使其居中。
此项检验须反复进行,直至水准管不论轮到任何方向,气泡偏离中央不超过半格为止。
为了便于仪器整平,有的仪器上装有圆水准器。
圆水准器的校正可根据已校正好的水准管进行,即利用水准管将仪器置平,拨动圆水准器校正螺丝(一松一紧),使气泡居中。
圆水准器亦可单独进行校正,其方法见水准仪的检验与校正。
2.十字丝的竖丝应垂直于横轴检验:将仪器安平,使望远镜十字丝交点对准远方一点目标,旋紧度盘制动螺旋(如为游标经纬仪,则旋紧游标盘及度盘制动螺旋),然后旋转望远镜微动螺旋,使其上下微动,若该点始终都在竖丝上移动,则表示条件满足。
如果偏离竖丝(图4-229),说明竖丝不垂直于横轴。
图4-229 十字丝检验校正:松开十字丝的两相邻校正螺丝,并转动十字丝环使满足条件。
校正好以后,将松动的螺丝旋紧。
由于各种仪器望远镜目镜整套的结构各不相同,故校正方法亦稍有差异。
光电经纬仪动态误差修正方法
光电经纬仪,是一种用于度量几何变换的精密测量设备。
它可以用于定位和测量角度。
它主要由激光器、照相机、反射镜、光学组件等组成,并运用光电技术测量几何变换。
它可以用于准确记录旋转和平移等基本变换参数,从而提供准确的测量结果。
但是,它们也受到运动误差的影响,导致测量准确度降低,因此必须采用一种方法来修正运动误差,以提高测量结果的准确性。
为了修正运动误差,可以采用滤波和参数校正的方法。
滤波方法的基本思想是使用低通滤波器的响应来抑制经纬仪的时变变化,从而消除误差。
通常,会使用卡尔曼滤波对误差进行抑制。
另一种方法是参数校正,即使用反馈控制对控制参数进行校正,以实现测量更加准确。
此外,光电经纬仪还可以采用门控技术来修正动态误差。
门控技术不仅可以消除经纬仪的动态误差,而且还可以消除因激光照射、视觉中断等因素引起的动态误差。
门控技术主要包括增强门控和滤波门控,其中增强门控是一种非线性修正技术,它具有较高的精度和修正效果;滤波门控是一种线性修正技术,它是一种在测量过程中消除误差的有效方法。
上述几种光电经纬仪动态误差修正方法都可以提高经纬仪测量准确度,但最终的修正效果仍取决于各自的参数设置。
因此,在使用这些技术的过程中,要尽量使参数设置尽可能准确,从而使得结果修正的更加准确。
总之,光电经纬仪动态误差修正方法主要有滤波、参数校正和门控技术等三种,其中滤波方法可以抑制误差,参数校正可以较好地控制参数,门控技术可以消除动态误差。
无论采用哪种方法,最终的修正效果都取决于参数设置,因此事先应对参数进行设置,以保证最终的结果准确性。
经纬仪的检验与校正一、照准部水准管的检校1、目的:使照准部水准管轴垂直于竖轴(LLVV)当照准部水准管气泡居中时,仪器的竖轴处于铅垂状态。
2、检验:初平经纬仪,旋转照准部使水准管平行于一对脚螺旋,调脚螺旋使气泡严格居中,然后将照准部旋转1800,如果气泡不再居中,说明LL不垂直于VV。
3、校正:相对旋转这一对脚螺旋使气泡向中间退回偏移格数的一半,然后用校正针拨动水准管一端的校正螺丝,使气泡*居中,反复几次,直到在任何位置气泡偏离中心小于半格为止。
二、十字丝的检校1、目的:使十字丝纵丝垂直于横轴HH观测角度时,可用纵丝或横丝的任意部位代替十字丝交点照准目标。
2、检验:整平经纬仪,用十字丝交点照准一固定目标,旋转望远镜的微动螺旋,观察目标是否一直在十字丝纵丝上移动。
3、校正:卸下十字丝的保护盖,松开四个固定螺丝,微微转动十字丝环,使条件满足,旋紧固定螺丝,装上十字丝的保护盖。
三、视准轴的检校1、目的:使望远镜视准轴CC垂直于横轴HH使视准面成为平面,否则视准面成为锥面。
2、原因:十字丝交点处于不正确的位置。
视准轴是物镜光心与十字丝交点的连线。
仪器的物镜光心固定的,十字丝交点的位置可以变动的。
3、视准轴误差:视准轴不垂直于横轴所偏离的角度C,视准轴与横轴的交角与90度的差值。
2C差:同一目标盘左、盘右读数差为2倍视准轴误差。
4、检验:整平经纬仪,选择一个与望远镜的视准轴大致水平的点为目标。
盘左照准此目标,得水平度盘的读数,盘右照准此目标,得水平度盘的读数,。
5、校正:此时,仪器仍为盘右位置,计算,转动照准部微动螺旋,使水平度盘的读数为,此时目标偏离十字丝交点,卸下十字丝的保护盖,松开四个固定螺丝,调节十字丝环左右两个校正螺丝,使条件满足,旋紧固定螺丝,装上十字丝的保护盖。
四、横轴的检验1、目的:横轴HH垂直于竖轴VV整平仪器,横轴水平,竖轴铅直,视准面为铅垂面,否则视准面为倾斜面。
2、检验方法:B1与B2重合,横轴HH垂直于竖轴VVB1与B2不重合,横轴HH不垂直于竖轴VV横轴HH与水平线的夹角i为横轴误差。
水准仪“i”角误差的三种校准方法及结果比较设备维护水准仪"i"角误差的三种校准方法及结果比较高明陈士连(同济大学测量与国土信息工程系)【摘要】本文使用同一校准对象,采用三种方法校准水准仪"i"角误差,对其测量结果进行不确定度评定,并通过分析测量结果的显着性差异和校准结果的比较,三种方法的测量结果是可靠和有效的.--【关键词】:计量校准;不确定度;角误差ThethreecalibrationmethodsandresultscomparisoninLevelIIj"error[Abstract]Usingthesamecalibratedinstrument,threemethodsareusedinthecalibrationofL evel"i"errorinthepaper.Itevaluatestheuncertaintyoftheresultsofitsmeasurement,andanalysest hesig—nificantdifferenceoftheresultsofthesurveyandcomparesthecalibrationresults,thenitconcl udedthat theuncertaintyofassessingthemeasurementresultsinthreemethodsarereliableandeffectiv e.[Keywords]CalibrationUncertainty"i"error'【中图分类号]TU190【文献标识码】A【文章编号11674—3954(2010)O8—0077—04水准仪是进行水准测量,测定点高程的仪器,为了消除仪器对测量成果的影响,水准仪在进行测量前一般都需进行检验,而在水准仪的检验项目中,"i"角误差的检验最为重要.所谓"i"角误差指的是水准管轴不平行于视准轴,两者的交角为i,当水准管气泡居中,视准轴不水平而倾斜i角,从而引起读数的误差.由此在水准尺上引起的读数误差与距离成正比[1].除了传统的在野外进行检验的方法外,水准仪"i"角的校准在室内常用以下三种方法.1校准方法方法一,如图1所示,将A,B两平行光管相对安置,其中A带高斯目镜,调整B光管+字丝与A光管+字丝重合.被校仪器置于A,B两光管路中,视准轴与A,B的光管光轴同高,整平,瞄准A光管+字丝,准确吻合仪器水准气泡,读数为d,然后瞄准B光管+字丝,读数为d:].盥l水准仪与平行光管安盔圈方法二,被校仪器安置于精密水准仪经纬仪综合检验仪上,视准轴与光管光轴同高,整平,将测量标准的补偿器处于I位置,水准仪望远镜对准主光管c×3目标,转动i角测微器使横丝重合,直接在测微器上读数为d,转动测量标准的补偿器处于Ⅱ位置,直接在测微器上读数为d:.方法三,被校仪器安置于高精度经纬仪水准仪检定装置上,视准轴与光管光轴同高,整平,水准仪望远镜对准主光管..目标,在分划板竖丝上读数为d,然后检定仪的卧式多齿分度台转动180.,水准仪转动180.,对准主光管..目标,在分划板竖丝上读数为d.评定的数学模型(三种方法的评定模型相同)为i一(dl+d.)/Z(1)其中,d的灵敏系数C-一1/2dz的灵敏aU1系数C2一了ill1/2dUZ2不确定度来源测量d值引起的标准不确定度由下列三部分构成:(1)由被测水准视准线的读数重复性引起的标准不确定度u(标准不确定度A类评定);(2)估读误差引入的标准不确定度U.(标准不确定度B类评定);(3)适用于第一种方法为标准平行光管水平准线偏差引起的标准不确定度分量U..(B类评定),适77设备维护用于第二种方法为精密水准仪经纬仪综合检验仪引起的标准不确定度分量(B类评定),适用于第三种方法为高精度经纬仪水准仪检定装置引起的标准不确定度分量U.(B类评定).3标准不确定度分量评定3.1由被测水准视准线的读数重复性引起的标准不确定度:使用C32型仪器,通过做1O次实验求得d读数的标准不确定度.将水准仪放在工作台上,升降到适当位置调平后,瞄准光管连续读数1O 次,取其标准偏差.按不确定度评定的(JJF1O59—1999)规范之4.1节的规定,采用单次测量结果的实验标准差可作为测量结果的标准不确定度A类估计[引.方法一:u1一s===0.67"自由度vl1:9方法二:ul1一s一0.55自由度v1l===9方法三:u.1一s===O『47"自由度v一93.2估读误差引人的标准不确定度u.方法一:估读误差为1.5",按均匀分布估计,取K=42;u12=1.5/√3=0.87方法二:估读误差为1.0",按均匀分布估计,取K=42;Ul2—1.0/√3—0.56"方法三:估读误差为1.5,按均匀分布估计,取K一√;U12—1.5142=o.87"估算其相对不确定度1o,则自由度vz一503.3标准平行光管水平准线偏差引起的标准不确定度分量U.(标准不确定度B类评定)方法一:根据水准仪检定装置的检定结果,水平准线偏差的稳定性A:2.0,扩展不确定度U=1. 0",k一2,则由此引起的标准不确定度:u.√(舍).+().一~/f研一.2"自由度取v13一oo方法二:根据精密水准仪综合检验仪的检定结果,水平准线偏差的稳定性A=1.0",扩展不确定度U=1.0",k=2,则由此引起的标准不确定度:u.√(含).+().一~/丽一..7自由度取v13一o.方法三:根据高精度经纬仪水准仪检定装置的检定结果,水平准线偏差△一1.0",按均匀分布估计, 则K----4~,则由此引起的标准不确定度:U.:1.o142=o.58"估算其相对不确定度10,78则自由度v.一50裘l标准不确定度一览衰标准不确方法不确定度来源标准不确定度值是t系数自由度定度分量由被测水准视准线的o.679ul1读数重复性引起的o.55/29标准不确定度o.479o.875O估读误差引入的Ul2o.56/25O标准不确定度o.875O际准平行光臂水平准线1.12偏差引起的标准o.71/Z不确定度分置o.585O4扩展标准不确定度4.1合成标准不确定度的计算方法一:u2一U1一~/u+ui2+u=-二F]一1.57"(2)u一蕊:=干r_=1.厶11"(3)同理:方法二:u2一u1===l_12",u一O.79同理:方法三:U2一U1—1.15",U一0.81"4.2扩展不确定度计算方法一:u—U×k一1.11"×2—2.3"(置信概率p—O.95,k一2)(4)方法二:U=u×k一0.79"×2—1.6"方法三:U—u×k一0.81"X2—1.75实验验证甲,乙,丙三人采用上述三种方法各进行三次观测,得到的结果如表2所示.表2i角测量观测值校准人员田乙丙次数方法温度℃i角(")温度℃i角(")温度℃i角(") 231.o251.o25一1.5127O.426O28一1.123o.525025O24——1.o251.524一1.5227一O.929一o.527o.524O25o.524025—1.o24一O.524O327—1.328o.i24一i.o25—1.o24O24O5.1采用单因子方差分析方法r进行比较:假定Xik一(+ai)+e|kk一1…,IIi,i:1,…a其中,e",E1n,…,虮|是独立同分布的随机变设备维护量,且每一个£jk都服从于N(O,).这里,,tt,al…a,dz均未知,因子A在a个不同水平下的效应al,…a 满足关系式∑1"1iai一0检验假设H0-a1一…一a一0设第i个样本均值为一∑X,1,…,aa个样本的总均值为叉一∑∑Xik一∑ni叉iSS=∑∑(Xik-X)SSA:∑∑ni(又i一艾)SS一∑∑(Xik一叉i)取检验统计量:F--(6)SS/(n—a)…当H.成立时,F~F(a一1,n—a).因此,在显着水平a下,若F>F.一(a一1,n—a)则拒绝原假设,认为因子A在a个不同水平下有显着差异.若F<F.一(a一1,n—a)则接受原假设,认为因子A在a个不同水平下没有显着差异.按照此检验假设来考查不同人员采用方法一所获得的观测值的显着性差异情况,取显着水平一0.1,计算见表3.表3不同人员采用方法一所获得的观测值的显着性差异表人员观测值角()平均值SSSSSSA田1.o——1.o——1.o—o.332.7O32.67o.04乙1.o1.5—0.5o.674.5432.172.37丙一1.5—1.5O一1.O03.313l_501.81一o.221o.5596.344.22F一2.0OF0.90(2.6)一3.46结论无显着性差异F:2.00<F卜.(a~1,n~a)===Fo.9.(2,6)一3.46因此,可以说不同人员采用方法一所获得的观测值的没有显着差异.按照此检验假设来考查不同人员采用方法二所获得的观测值的显着性差异情况,取显着水平a一0.1,计算见表4.裹4不同人员采用方法二所获得的观测值的显着性差异表人员观测值角(")平均值SSSss^田O.4—0.9—1.3一o.661.6731.58o.09乙0~o.5O.1一o.13o.463o.21o.Z5丙一1.10.5—1.0—0.531.6431.610.04一O.423.7893.390.38F一0.34F0.90(2,6)一3.46结论无显着性差异F一0.34<F1~(a一1,n—a)一Fo.9o(2,6)一3.46因此,可以说不同人员采用方法二所获得的观测值的也没有显着差异.按照此检验假设来考查甲用不同方法所获得的观测值的显着性差异情况,计算见表5.表5甲用不同方法所获得的观测值的显着性差异情况方法观测值I角(")平均值SSnSS,ss^方法iI.o~1.O一1.o一0.33Z.6732.67o.oo方法2o.4~o.9—1.3一o.60lI7431.58O.16方法30.5O一1.o——o.171.2931.17o.12—0.375.7095.41o.29F一0.16F0.9O(2,6)一3.46结论无显着性差异F=0.16<F1~(a一1,n—a)一Fo.90(2,6)一3.46因此,可以说甲用不同方法所获得的观测值也没有显着差异..按照此检验假设来考查乙用不同方法所获得的观测值的显着性差异情况,计算见表6.表6乙用不同方法所获得的观测值的显着性差异情况方法观测值I角()平均值SSSSSSA方法11.01.5—0.50.672.7332.170.56方法2O—O.5O.1—0.130.613O.210.40方法3OO.500.170.1830.170.010.233.5292.540.98F一1.16F0.90(2,6)一3.46结论无显着性差异F=1.16<F卜(a一1,n—a)一F0.90(2,6)=3.46因此,可以说乙用不同方法所获得的观测值也没有显着差异.按照此检验假设来考查丙用不同方法所获得的79设备维护观测值的显着性差异情况,计算见表7.裹7丙用不同方法所获得的观测值的显着性差异情况方法观测值I角()乎均值SSSSSSa方法1—1.5—1.5O一1.0C2.2231.500.72方法2—1_10.5~1.0一O.531.6l31.610.00方法3O0O0.000.7830.000.78—0.514.6193.111.5OF=1.45FO.90(2.6)一3.46结论无显着性差异F=1.45<F1一(a一1,n—a)=F0.90(2,6)一3.46因此,可以说丙用不同方法所获得的观测值也没有显着差异.5.2采用E值或比对方法【5]对不同人员的测量结果进行比较假定实验室的计量标准器具有相同准确度等级,采用各实验室得到的测量结果的平均值作为被测量的最佳估计值.此时,甲,乙,丙三人采用相同的方法进行测量所得到的测量值,可视为具有相同准确度等级的观测,可取三人的测量值的平均值作为测量的最佳估计值.因而,E值判断的公式,即:4-n"UIl<(8)式中:x——不同人员测量值的平均值;——不同人员间测量值的平均值;U—测量不确定度;r二_=—一若E<1或IX--一XI^/u,则相互间的测量Y■1结果满意,可靠.按照此检验方法来考查甲,乙,丙三人用相同方法所获得的观测值比较情况,计算见表8.衰8甲,乙,丙三人采用相同方法所得测量值的比较表8O方法1(u一2.3)方法z(U;1.6)方法3(U=1.7)人员Ea值En值En值测量值平均值()测量值平均值()量值平均值()甲1.00.36一l_30.8Z一1.00.64乙1.50.620.10.260.50.51丙一1.50.970.S0.5600.13均值0.330.230.17从表8可知,E值均小于1,因而甲,乙,丙三人采用方法一,方法二,方法三所得到的测量值都获得满意的结果.6结论从表2到表8可知,采用单因子方差分析方法和值方法来对甲,乙,丙三人所采用三种校准方法而得到的测量值进行比较是可行的.通过此方法对校准结果进行的验证,证明了角的不确定度评定是可靠的,并且此方法既考查了不同的人采用同一种方法所获得的测量结果又考查了同一人采用不同方法所获得的测量结果.这样,既可验证人员的校准能力,又可验证不同设备,不同方法之问的校准差异.通过上述方法,本文验证了甲,乙,丙三人所采用三种校准方法而得到的i角校准结果是可靠和有效的.参考文献[1]顾孝烈,鲍峰,程效军.测量学[M].上海:同济大学出版社,2006.[2]国家质量监督检验检疫总局.JJG425—2003,水准仪计量检定规程[s].北京:中国计量出版社,2003.[3]国家质量监督检验检疫总局.JJF1059—1999,测量不确定度评定与表示[s].北京:中国计量出版社,1999.E4]同济大学应用数学系.:I2程数学[-M-].上海:同济大学出版社,2004.[5]国家质量监督检验检疫总局.JJFlo33—2008,计量标准考核规范[s].北京:中国计量出版社,2008.。
经纬仪的检验和校正经纬仪是一种测量地表上各点位置和高程的仪器,具有高精度和高度的测量精度,广泛应用于建筑、测量、地理、地质等领域。
然而,经纬仪随着使用时间的增加,会出现误差和漂移,在保证测量精度的前提下,需要进行检验和校正。
一、经纬仪的检验经纬仪的检验是指通过一系列的检测和测试,对经纬仪的性能进行评估,以确定其是否符合设计要求和测量精度要求的程序。
具体的检验过程如下:1、仪器外观检验:首先需要检查仪器外观是否完好无损。
包括仪器表面有无划痕、变形、裂纹等;望远镜是否清晰、畸变、不正。
2、目镜准直检验:将目镜朝向参照点,在参照点上按照一定的顺序打点,并记录位置,重复3次,记录和计算偏差值。
3、平面度检验:将仪器放在10m以上的水平台面上,检测仪器水平度误差,方法是在不同位置放置参比物,一旦误差过大,就需要进行重新校正。
4、仪器尺度检验:仪器的尺度主要包括水平位移尺度和竖直位移尺度,用专门的长度校准器进行校准。
5、操作手感检验:检测仪器的调节手感应平稳,容易调节,并且不会有抖动等现象。
6、误差分析:通过以上的检验过程,需要对检验结果进行统计和分析,分析误差来源,查找问题,提出改进和修正措施。
通过以上的检验过程,可以确定经纬仪的性能是否正常,是否满足测量要求。
二、经纬仪的校正经纬仪的校正是指在检验的基础上,通过一系列的校正方法,消除误差和偏差,提高仪器的精度和灵敏度的过程。
具体的校正过程如下:1、水平气泡校正:在水平放置的经纬仪上,水平气泡应当位于表中心,如果气泡偏离中心,就要进行气泡调整,使其回到中心位置。
2、望远镜准直校正:将望远镜对准目标点,通过调节垂直圆锥镜的位置,使目标点经过十字线的中心,从而实现准直。
3、平面度校正:将仪器放在水平平台上,打在不同位置取平均值,调节平压螺丝和水平仪,使仪器水平。
4、激光校正:现代经纬仪通常带有红色或绿色激光器,通过激光器的平行光线,可以校正仪器的准直和垂直度。
第六讲经纬仪的检验校正与误差分析作者:本站来源:本站原创发布时间:2009-6-1 23:18:56 发布人:gyl减小字体增大字体第 6 次课首页本课主题经纬仪的检验校正与误差分析授课日期目的通过本次课的学习,使学员掌握经纬仪的各项检验校正的原理与方法,理解经纬仪仪器误差对角度测量的影响规律。
了解水平角观测误差来源,逐步掌握利用误差分析指导自己的测量实践活动。
讲授内容与时间分配序号讲授内容时间1 上次课回顾8分2 §4.4 经纬仪的检验校正42分3 §4.5 经纬仪仪器误差对角度测量的影响20分4 §4.6 水平角观测值的归算15分5 本节课小结、布置作业5分678910重点难点重点:•经纬仪检校的原则与方法•照准部偏心差和三照误差分析•水平角观测值的归算难点:•横轴误差分析•竖轴误差分析•照准轴检校、横轴应与竖轴正交检校方法手段1.采用启发式教学方法2.利用多媒体课件,采用讲授方式上课3. 实物演示教学实习实验无教案正文备注上次课回顾角度测量的概念光学经纬仪水平角和垂直角观测与记录实习情况分析§4-4经纬仪的检验校正引言三轴关系:照准轴和横轴正交,横轴与竖轴正交。
经纬仪应满足的条件:1.仪器的竖轴铅垂2.照准轴和横轴正交3.横轴与竖轴正交4.竖轴与水平度盘正交,且过其中心5.横轴与垂直度盘正交,且过其中心6.十字丝纵丝应处于铅垂面内7.垂直度盘指标差近于零仪器检校原则:不受未检校项目的影响;不破坏已检校项目的结果。
一、管水准器检校1、检校目的管水准器水准轴与水平度盘平行2、检验原理若仪器满足条件,管水准器水准轴与水平度盘平行从经纬仪应满足的条件引出经纬仪的检验校正的概念、意义、内容和步骤提问:为什么检验校正一定要按照一定步骤进行用动画演示管水准器检校方法3、检校方法二、十字丝检校检校目的:十字丝纵丝与横轴正交检验方法:1.照准一点状目标A,固定照准部及望远镜;2.用望远镜微动螺旋使望远镜纵转,若目标点A离开十字丝,仪器条件不满足。
相交于一点的两方向线在水平面上的垂直投影所形成的夹角,称为水平角。
水平角一般用β表示,角值范围为0º~360 º。
如图所示,A、O、B是地面上任意三个点,OA和OB两条方向线所夹的水平角,即为OA和OB垂直投影在水平面H上的投影O1A1和O1B1所构成的夹角β。
如图所示,可在O点的上方任意高度处,水平安置一个带有刻度的圆盘,并使圆盘中心在过O点的铅垂线上;通过OA和OB各作一铅垂面,设这两个铅垂面在刻度盘上截取的读数分别为a和b,则水平角β的角值为:β= b - a用于测量水平角的仪器,必须具备一个能置于水平位置度盘,且水平度盘的中心位于水平角顶点的铅垂线上。
仪器上的望远镜不仅可以在水平面内转动,而且还能在竖直面内转动。
经纬仪就是根据上述基本要求设计制造的测角仪器。
在同一铅垂面内,观测视线与水平线之间的夹角,称为垂直角,又称倾角,用α表示。
其角值范围为0º~±90º。
如图所示,视线在水平线的上方,垂直角为仰角,符号为正(+α);视线在水平线的下方,垂直角为俯角,符号为负(-α)。
垂直角测量原理:同水平角一样,垂直角的角值也是度盘上两个方向的读数之差。
如图所示,望远镜瞄准目标的视线与水平线分别在竖直度盘上有对应读数,两读数之差即为垂直角的角值。
所不同的是,垂直角的两方向中的一个是水平方向。
无论对哪一种经纬仪来说,视线水平时的竖盘读数都应为90º的倍数,所以,测量垂直角时,只要瞄准目标读出竖盘读数,即可计算出垂直角。
1.经纬仪简介经纬仪可以分为光学经纬仪和电子经纬仪,光学经纬仪采用光学度盘,借助光学放大和光学测微器读数的一种经纬仪;电子经纬仪的轴系、望远镜和制动、微动构件和光学经纬仪类似,它与光学经纬仪的根本区别在于用于微处理机控制的电子测角系统代替光学读数系统,能自动显示测量数据。
电子经纬仪测角系统有编码读盘测角系统和光栅读盘侧角系统。
在光学玻璃读盘的径向上均匀地刻制明暗相等的等角距细线条就构成光栅度盘。
普通经纬仪的校正项目及方法校正方法:当需要校正照准部管状水准器时,先在Ⅰ位置处,旋转脚螺旋A、B将气泡置平,旋转仪器照准部,在Ⅱ位置处,观察气泡偏离置中的偏差,设其偏差量为e,则校正时,先相对方向旋转两只脚螺旋A、B,改正偏差值的一半(e / 2),其余一半用水准器的校正螺钉进行校正。
经反复在Ⅰ、Ⅱ位置处进行校正后,气泡已较接近置中位置处时,则应将管状水准器安置于Ⅲ位置处,旋转脚螺旋C,使气泡居中。
然后再于Ⅰ、Ⅱ位置精细校正气泡,直至偏差值不大于1 / 2水准器格值为止。
同时,应再安置于Ⅲ位置处.旋转脚螺旋C,使气泡居中。
此项校正须经反复调整直至正确位置。
图3水准器轴不垂直于竖轴的检校图3为经纬仪照准部水准器轴不垂直于竖轴的检校原理示意图。
如果水准器轴与竖轴不垂直时见图3(a)所示,虽然水准器轴安置水平,但竖铀不处于铅垂方向,设其偏差角值为α,当带水准器的照准部绕此不铅垂的竖轴旋转180°时,水准器气泡就不再居中了.移动了2α的角值,如图3(b)所示,也就是说水准器轴存在2α的倾斜角,此2α值即为竖轴偏离铅垂方向一个α值和水准器轴不垂直于竖轴的α值的和,采用图3(c)和 (d)的校正,即可以消除此项偏差。
本顶目校正完成后,应同时将仪器上的圆形水准器气泡校正居中。
普通经纬仪的校正项目及方法经纬仪是一种精密的测绘仪器,由于使用于外界条件比较复杂的环境中,仪器结构上的几何关系必然受到不同程度的影响,因此,在作业前,使仪器处于良好的工作状态是完全必要的,有关的测量规中,对经纬仪的校正顶目和要求,以及校正的周期,均有明确的规定,检修后的仪器必须按照相应等级的规进行校正。
一般普通经纬仪的校正项目为:一、照准部水准器轴垂直于竖轴的校正;二、望远镜十字丝竖丝垂直于水平轴的校正;三、视准轴垂直于水平轴的校正;四、水平轴垂直于竖轴的校正;五、竖盘指标的校正;六、光学对点器的校正。
在进行上述校正之前还必须对仪器的各部分主要性能进行仔细的检验和调整,使之满足仪器相应等级标准的要求,如望远镜鉴别率、调焦、运行正确性、目镜屈光度零位、光学读数系统视差、测微器或带尺行差的检验与调整。
§3.4 精密光学经纬仪的仪器误差及其检验和校正前面几节具体介绍了光学经纬仪的主要部件及其相互关系。
仪器的制造和安装不论如何精细,也不可能完全满足理论上对仪器各部件及其相互几何关系的要求,加之在仪器使用过程中产生的磨损、变形,以及外界条件对仪器的影响,必然给角度测定结果带来误差影响。
这种因仪器结构不能完全满足理论上对各部件及其相互关系的要求而造成的测角误差称为仪器误差。
仪器误差包括三轴误差(视准轴误差、水平轴倾斜误差、垂直轴倾斜误差),照准部旋转误差,分划误差(水平度盘分划误差、测微盘分划误差)以及光学测微器行差等。
本节将介绍这些误差的产生原因,消除或减弱其影响的措施及检验方法。
3.4.1 三轴误差由§3.1知,经纬仪的三轴(视准轴、水平轴、垂直轴)之问在测角时应满足一定的几何关系,即视准轴与水平轴正交,水平轴与垂直轴正交,垂直轴与测站铅垂线一致。
当这些关系不能满足时,将分别引起视准轴误差、水平轴倾斜误差、垂直轴倾斜误差。
1.视准轴误差(1)视准轴误差及其产生原因望远镜的物镜光心与十字丝中心的连线称为视准轴。
假设仪器已整置水平(即垂直轴与测站铅垂线一致),且水平轴与垂直轴正交,仅由于视准轴与水平轴不正交——即实际的视准轴与正确的视准轴存在夹角C ,称为视准轴误差。
如图3—26。
当实际的视准轴偏向垂直度盘一侧时,C 为正值,反之C 为负值。
产生视准轴误差的原因是由于安装和调整不正确,使望远镜的十字丝中心偏离了正确的位置,造成视准轴与水平轴不正交,从而产生了视准轴误差。
此外,外界温度的变化也会引起视准轴的位置变化,产生视准轴误差。
(2)视准轴误差对观测方向值的影响及消除影响的方法视准轴误差C 对观测方向值的影响C ∆为αcos C C =∆ (3-10) 式中:α为观测目标的垂直角。
由C ∆的表达式可知:1)C ∆的大小不仅与C 的大小成正比,而且与观测目标的垂直角α有关。
当α越大时,△C 也越大,反之就越小;当α=0时,C ∆=C 。
如何校正经纬仪的i角误差
经纬仪是三大常规测量仪器之一,广泛应用于各建设行业。
经纬仪经过维修后,有五项主要误差,即:(1)安平水准器轴垂直于竖轴的校正;(2)十字丝竖丝与铅垂线平行的校正;(3)视准轴垂直于横轴的校正;(4)横轴垂直于竖轴——i角误差的校正;(5)竖盘指标差的校正。
以上校正,是在不存在度盘偏心差前提下进行的、否则需先校正度盘偏心差。
本文仅对上述第(4)项i角误差校正作简要介绍。
当仪器置平时,若横轴垂直于竖轴,则望远镜视准轴绕横轴旋转所划之圆切面为铅垂面,否则该圆切面与铅垂方向会产生一个夹角,称之i角误差。
i角误差对测量成果有很大影响,比如在高上较大的地形测量、高层建筑和大型设备的安装测量,如仪器存在i角误差,便会带来较大的高程测量误差和导致高层楼房倾抖。
校正i角误差的方法是:首先安平仪器,再用望远镜仰视高处一个固定点M(仰角以30°为宜)。
固定仪器,将望远镜旋至水平位置,同时在水平位置放一支垂直于仪器视准轴的横尺,这时在横尺上读数m1(如图1)。
再将望远镜倒镜旋转照准部180°,仍瞄准M点;将望远镜旋转至水平位置,在横尺上读数m2。
若m1=m2,则横轴垂直于竖轴,反之需予校正。
校正时先算出望远镜视准轴在横尺上的正确位置m3,使m3=(m1+m2)/2。
继而用水平方向微动螺旋将望远镜十字丝竖丝照准m3,再将望远镜旋转瞄准M点,这时十字丝竖丝与M点不再重合,就要利用仪器本身的校正机件进行校正。
仪器结构不同,校正方法也不同。
比如电子经纬仪、全站仪都有自动消除误差功能,有的光学经纬仪有横轴偏心环,后者可令偏心环左右偏移进行校正。
有的仪器(如北光经纬仪)没有校正机件,便要用垫高竖轴一边,也就是将竖轴倾斜一个角度进行校正。
垫高竖轴一般没有标准,且需对仪器拆装并反复多次,非常繁琐。
我们经过摸索和实践,找到一个快捷简单的办法。
操作过程是:升降仪器的脚螺旋A或B,如图2将望远镜十字丝竖丝移到M点与m3点之中央,这时再用仪器水平微动螺旋将望远镜十字丝竖丝移到M点。
然后将望远镜旋转到横尺上读m1,再倒镜180°将望远镜旋转到横尺上读数m2,这时应m1=m2,若不等,再重复以上操作。
直到相
等为止。
最后观察长水准器偏离中心位置的格值,并按每偏一个格值即在偏离侧的竖轴方向垫高0.01mm,依次类推,便可对经纬仪的i角误差进行快速校正。