八年级物理上册《物态变化》知识点归纳
- 格式:docx
- 大小:11.65 KB
- 文档页数:3
八年级物理上册第三章《物态变化》知识点归纳第一节温度1、温度:用来表示物体冷热程度的物理量。
注意:热的物体我们说它的温度高,冷的物体我们说它的温度低。
若两个物体冷热程度一样,它们的温度亦相同;我们凭感觉判断物体的冷热程度一般不可靠。
2、摄氏温度:(1)温度常用的单位是摄氏度,用符号“℃”表示;(2)摄氏温度的规定:把一个大气压下,冰水混合物的温度规定为0℃;把一个标准大气压下沸水的温度规定为100℃;然后把0℃和100℃之间分成100等份,每一等份代表1℃。
(3)摄氏温度的读法:如“5℃”读作“5摄氏度”;“﹣20°C”读作“零下20摄氏度”或“负20摄氏度”。
3、测量——温度计(常用液体温度计)①温度计构造:下有玻璃泡,里盛水银、煤油、酒精等液体;有粗细均匀的细玻璃管,在外面的玻璃管上均匀地刻有刻度。
②温度计的原理:利用液体的热胀冷缩进行工作。
③分类及比较:分类实验用温度计寒暑表体温计用途测物体温度测室温测体温量程﹣20℃~110℃﹣30℃~50℃35℃~42℃分度值1℃1℃0.1℃所用液体水银、煤油(红)酒精(红)水银特殊构造玻璃泡上方有缩口使用方法使用时不能甩,测物体时不能离开物体读数使用前甩,可离开人体读数④常用温度计的使用方法:使用前:观察它的量程,判断是否适合待测物体的温度;并认清温度计的分度值(每个小刻度表示多少温度),以便准确读数。
同时要估测液体的温度,不能超过温度计的量程(否则会损坏温度计)使用时:温度计的玻璃泡全部浸入被测液体中,不要碰到容器底或容器璧;温度计玻璃泡浸入被测液体中稍候一会儿,待温度计的示数稳定后再读数;读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。
4、物态变化物态变化:指物质在固、液、气三种状态之间的变化;固态、液态、气态在一定条件下可以相互转化。
物质以什么状态存在跟物体的温度有关。
第二节熔化和凝固物质从固态变为液态叫熔化;从液态变为固态叫凝固。
初中物理《物态变化》知识点总结与习题解析一.教学内容:物态变化及物态变化中的吸热与放热二.知识框架与知识串线(一)知识框架(1)六个物态变化过程。
固态=液态液态=气态固态=气态(2)六个物态变化现象。
熔化、凝固、汽化、液化、升华、凝华(3)箭头向上的线表示:①物体放出热量;②物体温度降低;③物质密度逐渐增大。
箭头向下的线表示:①物体吸收热量;②物体温度升高;③物质密度逐渐减小。
(强调:汽化的两种形式:蒸发和沸腾都要吸热)(4)六个三:三种状态:①固态,②液态,③气态三个吸热过程:①熔化,②汽化,③升华三个放热过程:①凝固,②液化,③凝华三个互逆过程:①溶解与凝固,②汽化与液化,③升华与凝华三个特殊(温度)点:①熔点:晶体熔化时的温度;②凝固点:晶体凝固时的温度:③沸点:液体沸腾时的温度。
三个不变温度:①晶体溶解时温度;②晶体凝固时温度;③液体沸腾时温度。
(5)两个条件①晶体熔化时的充分必要条件:A、达到熔点;B、继续吸热。
②液体沸腾时的充分必要条件:A、达到沸点;B、继续吸热。
(一)物质的三态1、物质的状态:物质通常有固态、液态和气态三种状态。
2、自然界中水的三态:冰、雪、霜、雹是固态;水、露、雾是液态,烧水做饭时见到的“白汽”也是液态;水蒸气是气态。
(二)温度的测量1、物体的冷热程度叫温度。
2、摄氏温度:通常情况下的冰水混合物的温度作为0度,1标准大气压下沸水的温度作为100度,0 度到100度之间等分成100份,每一份叫1摄氏度或(1℃)。
正常人的体温为37℃,读作37摄氏度;-4.7℃读作负4.7摄氏度或零下4.7摄氏度。
3、温度的测量(1)家庭和物理实验室常用温度计测量温度。
它是利用水银、酒精、煤油等液体的热胀冷缩的性质制成的。
(2)温度计的正确使用方法a、根据待测物体温度变化范围选择量程合适的温度计。
b、使用前认清温度计最小刻度值。
c、使用时要把温度计的玻璃泡全部浸入液体中,不要碰到容器底部或容器壁。
八年级物理物态变化的知识点知识点1:物质的三态及相互转化物质一般存在于三种状态,即固态、液态和气态。
这些状态之间可以通过物态变化相互转化。
1.1 固态在固态下,物质的分子相对稳定地固定在一起。
固态物质的分子间有较强的相互作用力。
固态物质具有固定的形状和体积,原子或分子只能做微小的振动运动。
1.2 液态在液态中,物质的分子之间的相互作用力比在固态中要弱,分子之间能够互相滑动。
液态物质具有较强的流动性和一定的体积。
1.3 气态在气态下,物质的分子之间的相互作用力很弱,分子之间几乎没有相互吸引力。
气态物质具有很高的流动性和变化的体积。
1.4 相互转化物质之间可以通过加热或降温、加压或减压等方法实现相互转化。
以下是常见的物态变化:•固态向液态的变化称为熔化。
在熔化过程中,物质吸收热量,温度保持不变。
•液态向固态的变化称为凝固。
在凝固过程中,物质释放热量,温度保持不变。
•液态向气态的变化称为蒸发。
在蒸发过程中,物质吸收热量,温度保持不变。
•气态向液态的变化称为冷凝。
在冷凝过程中,物质释放热量,温度保持不变。
•固态向气态的变化称为升华。
在升华过程中,物质吸收热量,温度保持不变。
•气态向固态的变化称为凝华。
在凝华过程中,物质释放热量,温度保持不变。
知识点2:测量物质状态变化的指标2.1 温度温度是测量物质热运动程度的物理量。
常用的温度单位有摄氏度(℃)和开氏度(K)。
在物态变化过程中,温度的变化能够反映物质状态的改变。
2.2 热量热量是物质内部或与外界交换的能量。
在物态变化时,热量的吸收或释放可以引起物质的相互转化。
2.3 无定形态部分物质在某些条件下可呈现无定形态。
无定形物质没有固定的形状和体积。
知识点3:物态变化与压强的关系物态变化一般与压强有关。
以下是一些常见的物态变化与压强的关系:3.1 气体的压强气体的压强与气体的体积和温度有关,可通过下列关系来描述:•压强与体积成反比:当气体的温度不变时,气体的压强和体积成反比关系,即压强越大,体积越小。
第三章物态变化§3.1 温度一、温度⑴定义:物理学中通常把物体的冷热程度叫做温度。
(2)物理意义:反映物体冷热程度的物理量。
二、温度计——测量温度的工具1.工作原理:依据液体热胀冷缩的规律制成的。
......温度计中的液体有水银、酒精、煤油等.2.常见的温度计:实验室用温度计、体温计、寒暑表。
三、摄氏温度(℃)——温度的单位1. 规定:在标准大气压下冰水混合物的温度定为0摄氏度,沸水的温度定为100摄氏度,分别记作0℃、100℃,平均分为100等份,每一等份代表1℃。
2. 读法:(1)人的正常体温是37℃——37摄氏度;(2)水银的凝固点是-39℃——零下39摄氏度或负39摄氏度.四、温度计的使用方法1.使用前“两看”——量程和分度值;I .实验室用温度计:-20℃~110℃、1℃;(一般) 11.体温计:35℃~42℃、0.1 ℃;III.寒暑表:-35℃~50℃、1℃.2.根据实际情况选择量程适当的温度计;如果待测温度高于温度计的最高温度,就会涨破温度计;反之则读不出温度。
3.温度计使用的几个要点⑴温度计的玻璃泡要全部浸泡在待测液体中,不能碰容器底或容器壁;⑵温度计的玻璃泡浸入被测液体后要稍等一会,不能在示数上升时读数,待示数稳定后再读数;⑶读数时温度计的玻璃泡要继续留在液体中;视线要与温度计中液柱的液面相平.五、体温计1.量程:35℃~42℃;分度值:0.1℃.2.特殊结构:玻璃泡上方有很细的缩口。
使用方法:用前须甩一甩。
(否则只升不降)☆典型例题图11.如右图所示,图1中温度计的示数为36℃;图2中的示数为二9℃。
分析:首先判断液柱的位置:可顺着液柱上升的方向观察,若数字越来越大,则说明液面在0℃以上,应该从0℃向上读;反之则说明液面在0℃以下,应该从0℃向下读。
2. 用体温计测量小强同学的体温是37.9℃,若没有甩过,用它只能测出以下哪位同学的体温( C )A.小红:37.6℃ ;B :小刚:36.9℃ ;C :小明:38.2℃ ;D :小华:36.5℃分析:体温计只升不降的特点。
2.凝华:物质由气态直接变为固态,凝华过程放热常见实例:◆北方秋冬两季早晨出现霜◆窗玻璃上出现冰花◆树枝上出现雾凇九.常见的自然现象◆云:白天气温较高,地表水大量蒸发,因此空气中含有大量的水蒸气。
这时候水蒸气上升到冷的高空以后,一部分液化成为小水滴,一部分凝华成小冰晶,天空中的云就是由大量的小水滴和小冰晶组成的。
(液化以及凝华)◆露:天气较热时,空气中的水蒸气清晨前遇到温度较低的树叶、花草等,液化成小水珠附在它们的表面,这就是露。
(液化)◆雹:在夏季,上升气流很强,也很不稳定。
小水滴在空气对流中受冷凝固成小冰雹块,小冰雹块在流动过程中又与小冰晶、小水滴合并,形成大冰块,当这样的大冰块增大到一定程度时,气流无法支持,就降落到地面形成冰雹。
(凝固)◆霜:夜晚,气温降到0℃以下时,地面附近的水蒸气遇到地面上冷的物体,凝华为冰花附在物体上,这就是霜。
(凝华)◆雪:当云中的小水滴不断蒸发成水蒸气再凝华成小冰晶,下落过程中温度低于或接近0℃就形成六角形的冰花,冰花聚集在一起,形成雪片或者雪团降落下来,这就是雪。
(凝华)◆雾:空气中如果有较多的浮尘,水蒸气遇冷液化成小水珠附在浮尘上,和浮尘一起漂浮在空气中,这就是雾(液化)。
◆雨:当云越聚越多,越聚越厚的时候,就要开始下落,在下落过程当中随着温度升高,云中的小冰晶熔化成小水滴,与云中原有的小水滴一起降落到地面上,这就是雨。
(熔化)十.生活中常见的物态变化现象1、冬天嘴呼出的“白气”的形成—液化2、雾的形成—液化3、露的形成—液化4、霜的形成—凝华5、用久日光灯管变黑—先升华后凝华6、冰镇啤酒瓶“冒汗”—液化7、用久的电灯的灯丝变细—升华 8、天空中云的形成—液化和凝华9、舞台上干冰形成的白雾—先升华后液化 10、冰棒冒“白气”—液化11、烧开水时,水面冒出的“白气”—先汽化后液化12、冰棒纸上结的“霜”—凝华 13、碘变成紫色的气体—升华14、卫生球变小了—升华 15、夏天衣服被晒干—汽化。
第三章物态变化第一节温度知识点(一)温度与温度计1、温度物体的冷热程度叫温度。
热的物体温度高,冷的物体温度低。
2、测量温度的工具——温度计(1)常用温度计的原理:家庭和实验室里常用的温度计是根据液体热胀冷缩的规律制成的。
(2)常用温度计的基本构造常用的液体温度计的主要部分是一根内径很细并且均匀的玻璃管,管下端是一个玻璃泡,泡内装有适量的测温物质,如水银、染成红色的煤油、酒精等,玻璃管外标有均匀的刻度和所用单位的符号。
长刻度线旁标着数字,两个长刻度线之间还有短刻度线,相邻两刻度线之间的温度叫它的分度值。
(3)常用温度计的分类①液体温度计:根据测温物质的不同分为酒精温度计、水银温度计、煤油温度计;根据用途的不同分为实验室用温度计、体温计、寒暑表。
②固体温度计如根据不同金属连接时的温差现象制成的热电偶温度计,根据不同温度下电路导电性不同制成的电子体温计,利用红外线原理制成的非接触红外线温度计,利用不同金属膨胀率不同制成的双金属片温度计等。
③气体温度计:多用氢气或氦气作测温物质,精确度很高,多用于精密测量。
知识点(二)摄氏温度1、摄氏温度的单位:摄氏度,符号是℃。
温度计上的符号℃表示该温度计采用的是摄氏温度。
2、摄氏温度的规定:把在标准大气压下冰水混合物的温度定为0 ℃,沸水的温度定为100 ℃;0℃和100 ℃之间分成100个等份,每个等份代表1℃。
注:0 ℃表示物体的冷热程度与标准大气压下冰水混合物的冷热程度相同,而不是说物体没有温度。
3、摄氏温度的表示方法:在书写摄氏温度时,0摄氏度以下的温度,在数字的前面加“﹣”号,如﹣10 ℃,读作“负10摄氏度”或“零下10摄氏度”;0摄氏度以上的温度,省略数字前面的“+”号,如10 ℃,读作“10摄氏度”或“零上10摄氏度”。
注:热力学温度热力学温度,又称开尔文温标、绝对温标。
理论上宇宙中的最低温度是绝对零点温度-273.15℃,热力学温标将-273.15℃定义为0K,分度方法与摄氏温标相同,表达式为T=t+273.15℃,使用热力学温标时冰水混合物温度为273.15K。
一、熔化和凝固:熔化是物质从固体向液体的变化,凝固是物质从液体向固体的变化。
一般情况下,升高温度物质会熔化,降低温度物质会凝固。
物质的熔点是其由固态转变为液态的温度,凝固点则是由液态转变为固态的温度。
二、蒸发和沸腾:蒸发是物质从液体向气体的变化,而沸腾是物质在一定条件下迅速蒸发。
在常温下,液体分子的速度不同,有些分子具有足够的能量从液体表面逸出成为了气体,这个现象就是蒸发。
而沸腾则是在一定温度下,液体中的分子足够运动,形成了大量的气泡,从而大量蒸发出气体。
三、凝结:凝结是气体变为液体或固体的过程。
当气体冷却到一定温度时,气体分子的速度下降,分子间的相互作用使气体分子逐渐聚集在一起,形成液体。
如果继续降温,液体分子的速度进一步下降,分子间的相互作用变得非常强烈,形成了固体。
四、分子间相互作用:分子间相互作用是物质物态变化的重要因素之一、根据分子间相互作用力的强弱,物质有不同的特性。
氢键是分子间作用力的一种,比如水分子之间的氢键使得水具有高的沸点和凝固点。
五、压力对物态变化的影响:温度是物态变化的主要影响因素,但压力也会对物质的物态变化产生影响。
例如,提高压力可以使液体沸腾点升高,降低压力可以使液体沸腾点降低。
六、露点和冷凝:露点是指空气中的水蒸气冷却到饱和时所达到的温度。
当空气中的水蒸气冷却到露点温度以下时,水蒸气会凝结成水滴,这个过程称为冷凝。
七、气体的压缩和展开:气体分子之间存在着很大的间距,气体可压缩性较大,所以气体可以被压缩成较小的体积。
而展开则是指气体占用的体积增大,气体分子间的间距变大。
八、物态变化的能量变化:物态变化时,物质所吸收或释放的能量与物态变化有关。
例如,熔化和沸腾吸收热量,凝固和凝结释放热量。
总结:物态变化是物质由一种状态转变为另一种状态的过程,包括熔化和凝固、蒸发和沸腾、凝结、分子间相互作用、压力对物态变化的影响、露点和冷凝、气体的压缩和展开以及物态变化的能量变化等。
掌握这些知识点,可以帮助我们更好地理解和应用物质的物态变化过程。
八年级物理物态变化的知识点一、物态变化的概念物态变化是指物质在不同的温度和压强条件下,由一个物态转变为另一个物态的过程。
常见的物态包括固态、液态和气态。
二、固态的特征和变化固态是指物质的分子或原子紧密排列,具有固定形状和体积的状态。
固态的特征包括硬度大、形状稳定、不易流动等。
固态物质在温度升高时会发生熔化,即固态转变为液态;在温度降低时会发生凝固,即液态转变为固态。
三、液态的特征和变化液态是指物质的分子或原子较为松散排列,具有固定体积但没有固定形状的状态。
液态的特征包括流动性强、不易压缩等。
液态物质在温度升高时会发生汽化,即液态转变为气态;在温度降低时会发生凝固,即液态转变为固态。
四、气态的特征和变化气态是指物质的分子或原子间距离较大,无固定形状和体积的状态。
气态的特征包括可压缩性强、流动性好等。
气态物质在温度降低时会发生液化,即气态转变为液态;在温度升高时会发生气化,即液态转变为气态。
五、气体的物理性质气体的物理性质包括体积、压强和温度等。
根据理想气体状态方程PV=nRT(P为压强,V为体积,n为物质的物质的摩尔数,R为气体常数,T为温度),我们可以得出以下结论:气体的体积与温度成正比,温度升高则体积增大;气体的体积与压强成反比,压强增大则体积减小;气体的体积与物质的摩尔数成正比,物质的摩尔数增加则体积增大。
六、相变的热量变化物态变化过程中会伴随着热量的吸收或释放。
固态转变为液态时吸热,称为熔化;液态转变为固态时放热,称为凝固;液态转变为气态时吸热,称为汽化;气态转变为液态时放热,称为液化。
这些相变过程中的热量变化与物质的性质有关,并且在相变过程中温度保持不变。
七、物态变化的应用物态变化在日常生活和工业生产中有着广泛的应用。
例如,固态转变为液态的熔化过程被应用于熔化金属、制作冰淇淋等;液态转变为气态的汽化过程被应用于烧开水、发电等;气态转变为液态的液化过程被应用于液化石油气等。
八、物态变化与气候变化的关系物态变化对气候变化有着重要影响。
人教版八年级物理上册第三章物态变化知识点总结《人教版八年级物理上册第三章物态变化知识点总结》物态变化这章可太有趣啦。
咱先说说物质的三种状态,固态、液态和气态。
固态的东西啊,就像冰,它有固定的形状,硬邦邦的。
液态呢,像水,没个固定形状,到处流。
气态的话,像水蒸气,到处跑,还看不见摸不着呢。
温度和温度计可是这章的重点。
温度表示物体的冷热程度。
温度计那花样可多了,有体温计,专门量人的体温的,量程比较小,但是刻度可精确啦。
还有实验室温度计,量程大一些,能测不同温度范围的东西。
使用温度计的时候可得小心,要让玻璃泡和被测物体充分接触,读数的时候还得平视呢。
物态变化里,熔化和凝固是一对。
晶体熔化可有特点啦,像冰是晶体,它熔化的时候温度不变,这个温度就叫熔点。
非晶体就不一样啦,像石蜡,熔化的时候温度一直上升,没有固定熔点。
凝固呢,晶体凝固的时候也有凝固点,和熔点温度一样。
非晶体凝固的时候也是没有固定温度的。
汽化和液化也很奇妙。
汽化有两种方式,蒸发和沸腾。
蒸发在任何温度下都能发生,像晾衣服,水慢慢就没了,就是蒸发。
蒸发还会吸热,所以夏天出汗的时候,风一吹就觉得凉快,因为汗水蒸发吸热啦。
沸腾就不一样啦,得达到沸点,还得继续吸热才能沸腾呢。
水的沸点在标准大气压下是100℃。
液化是汽化的逆过程,气体变成液体。
像冬天哈出的白气,就是嘴里的水蒸气液化成的小水滴。
升华和凝华也很神奇。
升华就是固体直接变成气体,像冬天的冰雕,有时候会慢慢变小,那就是冰直接升华成水蒸气了。
凝华呢,就是气体直接变成固体,像冬天窗户上的冰花,就是屋里的水蒸气遇冷直接凝华成的小冰晶。
这章的知识点在生活里到处都能看到呢。
像冰箱制冷就是利用物态变化的原理,制冷剂在里面不断地汽化、液化,把热量带出去。
还有人工降雨,把干冰撒到云层里,干冰升华吸热,让云层里的水蒸气液化或者凝华,就下雨啦。
我觉得这章的知识点虽然看起来有点杂,但是只要理解了每种物态变化的本质和特点,就特别容易掌握。
八年级物理上册《物态变化》知识点归纳
1. 物质的物态变化
1.1 什么是物态变化?
物质的物态变化是指物质在不同的温度和压力下,由一种物态转变为另一种物态的过程。
常见的物态变化包括固态、液态和气态之间的转变。
1.2 固态、液态和气态
1.固态:物质在低温下具有固定形状和体积,分子之间相对稳定并具有规律排列。
固态物质的分子振动较小,几乎不具备流动性。
2.液态:物质在适中的温度下具有一定的流动性,分子之间较固态物质更为松散,但仍有一定的相互吸引力。
液态物质的体积是不固定的,根据容器的形状而变化。
3.气态:物质在高温下或低压下具有高度流动性,分子之间距离较大,几乎没有相互吸引力。
气态物质的体积可适应容器的形状,并且具有较大的体积。
1.3 物质的凝固、汽化和熔化
1.凝固:液态物质通过降温逐渐转变为固态物质的过程。
凝固点是液态物质转变为固态物质的温度。
2.汽化:液态物质通过加热逐渐转变为气态物质的过程。
饱和蒸气压是液态物质转变为气态物质的压力。
3.熔化:固态物质通过加热逐渐转变为液态物质的过程。
熔点是固态物质转变为液态物质的温度。
2. 物质存在的形式和能量转化
2.1 物质存在的形式
物质可以存在于不同的形式,主要包括:
•固态:如冰、木材等。
•液态:如水、酒精等。
•气态:如氧气、氢气等。
2.2 能量转化与物态变化
物质在不同的物态变化过程中会伴随能量的转化,主要有以下几种情况:
1.凝固过程中的能量转化:当液态物质在凝固过程中转变为固态物质时,会
释放出一定的凝固热,导致周围环境温度降低。
2.汽化过程中的能量转化:当液态物质在汽化过程中转变为气态物质时,会
吸收一定的汽化热,导致周围环境温度升高。
3.熔化过程中的能量转化:当固态物质在熔化过程中转变为液态物质时,会
吸收一定的熔化热,导致周围环境温度升高。
3. 物态变化的影响因素
物态变化的过程受到以下条件的影响:
1.温度:温度是物态变化的重要因素,温度的升高或降低可以促使物质的物
态发生转变。
2.压力:气态物质的压力较大时,可以将气态物质压缩为液态物质或固态物质。
液态物质的压力较大时,可以将液态物质压缩为固态物质。
3.外界条件:外界环境对物质的物态变化也有一定影响,如周围温度的变化、压力的变化以及周围环境的影响等。
4. 物态变化的应用
物态变化的应用在日常生活中非常广泛,主要包括以下方面:
1.换热技术的应用:利用物质的物态变化特性进行换热,如空调、冰箱等设
备通过液态物质的汽化和凝固来吸收和释放热量。
2.制冷技术的应用:通过液态物质的汽化过程吸收热量,将温度降低,实现
制冷效果,如制冷剂的应用。
3.干燥技术的应用:利用固态物质的升华过程,将物质从固态直接转变为气态,达到干燥的效果,如食品加工中的食品干燥。
4.物质分离技术的应用:利用物质的沸点、熔点等特性,对混合物进行分离,如蒸馏、结晶等分离技术。
通过学习物质的物态变化,我们可以更好地理解和应用自然界中各种物质存在的方式,进一步提高生活和工作的质量。