(2021年整理)高中数学动点轨迹问题专题讲解
- 格式:doc
- 大小:1.79 MB
- 文档页数:16
高中动点问题知识点动点问题是高中数学中的一个重要概念,涉及到物体在力的作用下运动的相关知识。
下面我们将逐步介绍动点问题的基本概念、解题思路以及常见的应用。
一、动点问题的基本概念 1. 动点:指的是在力的作用下发生运动的物体,通常用“P”表示。
2. 路程:指的是动点从起点到终点所经过的路径长度,通常用“S”表示。
3. 位移:指的是动点从起点到终点的直线距离,通常用“Δx”或“Δs”表示。
4. 速度:指的是动点在单位时间内所运动的距离,通常用“v”表示。
5. 加速度:指的是动点在单位时间内速度的变化率,通常用“a”表示。
二、解题思路在解动点问题时,我们可以采用以下的步骤: 1. 理清问题:仔细阅读题目,理解问题所涉及的物体、力的作用以及所求的内容。
2. 建立坐标系:根据问题的要求,建立合适的坐标系,确定起点和终点的位置。
3. 分析力的作用:通过题目所给的条件,分析力的作用方式以及对动点的影响。
4. 建立运动方程:根据动点的运动情况,建立合适的运动方程,一般包括位移、速度和加速度的关系。
5. 列方程解题:根据问题所求的内容,列出合适的方程,解方程求解所需的未知量。
6. 检查答案:检查所求的答案是否符合实际情况,与问题的要求是否一致。
三、常见应用动点问题在物理学、工程学等领域中有广泛的应用,下面介绍几个常见的应用场景: 1. 自由落体:当物体在重力的作用下自由下落时,可以通过动点问题来求解物体的运动轨迹、速度和加速度等。
2. 弹性碰撞:当两个物体发生完全弹性碰撞时,可以通过动点问题来求解碰撞前后物体的速度和动能的变化等。
3. 简谐振动:当物体在弹簧的作用下做简谐振动时,可以通过动点问题来求解物体的振动周期、振动频率等。
4. 曲线运动:当物体在曲线路径上运动时,可以通过动点问题来求解物体在不同位置的速度和加速度的大小和方向等。
总结:动点问题是高中数学中的重要内容,通过学习动点问题的基本概念、解题思路以及常见的应用,我们可以更好地理解物体在力的作用下的运动规律,掌握解决动点问题的方法和技巧。
2021年高考数学轨迹方程的求解相关知识点知识点总结数学轨迹方程的求解是高考数学试卷中重要的一部分,下面是编辑老师整理的轨迹方程的求解方法,希望对您提高学习效率有所帮助.符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标_,y表示相关点P的坐标_0、y0,然后代入点P 的坐标(_0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标_、y之间的直接关系难以找到时,往往先寻找_、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
_直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(_,y);③列式列出动点p所满足的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于_,Y的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。
第36讲 轨迹方程【知识点总结】求动点的轨迹方程 一、直译法如果动点满足的几何条件本身就是一些几何量的等量关系且这些几何简单明了且易于表达,那么只需把这些关系“翻译”成含,x y 的等式,就可得到曲线的轨迹方程,由于这种求轨迹方程的过程不需要其他步骤,也不需要特殊的技巧,所以被称为直译法。
二、定义法若动点的轨迹符合某一已知曲线(圆,椭圆,双曲线,抛物线)的定义,则 可根据定义直接求出方程中的待定系数,故称待定系数法。
三、相关点法(代入法)有些问题中,所求轨迹上点(),M x y 的几何条件是与另一个已知方程的曲线上点(),M x y '''相关联的,这时要通过建立这两点之间关系,并用,x y 表示,y x '',再,y x ''将代入已知曲线方程,即得,x y 关系式。
【典型例题】例1.(2021·福建·泉州科技中学高三期中)如图,设点A ,B 的坐标分别为(3,0)-,(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为23-.(1)求P 的轨迹方程;(2)设点P 的轨迹为C ,点M 、N 是轨迹为C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求△MON 的面积. 【解析】(1)由已知设点P 的坐标为(),x y , 由题意知(23333AP BP k k x x x ⋅==-≠+-,化简得P 的轨迹方程为(221332x y x +=≠(2)证明:由题意M N 、是椭圆C 上非顶点的两点,且//,//AP OM BP ON , 则直线,AP BP 斜率必存在且不为0,又由已知23AP BP k k =-⋅.因为//,//AP OM BP ON ,所以23OM ON k k =-设直线MN 的方程为x my t =+,代入椭圆方程22132x y +=,得()222324260m y mty t +++-=....①,设,M N 的坐标分别为()()1122,,,x y x y ,则2121222426,3232mt t y y y y m m -+=-=++ 又()2121222221212122636OM ONy y y y t k k x x m y y mt y y t t m -⋅===+++-, 所以222262363t t m -=--,得22223t m =+又1212△MONS t y y =-=,所以△MON S =,即MON △例2.(2022·全国·高三专题练习)动点P 到定点()0,1F 的距离与到定直线4y =的距离之比为定值12.(1)求动点P 的轨迹方程:(2)若直线l 与动点P 的轨迹交于不同的两点M ,N ,且线段MN 被直线210x +=平分,求直线l 的斜率的取值范围. 【解析】(1)设点()P x y ,12=两边平方,整理得22134x y += 所以动点P 的轨迹方程为22134x y +=;(2)联立22210134x x y +=⎧⎪⎨+=⎪⎩,解得12x y ⎧=-⎪⎪⎨⎪=⎪⎩设点()11M x y ,,()22N x y ,,MN 的中点为012Q y ⎛⎫- ⎪⎝⎭,则0y <<1212012x x y y y +=-⎧⎨+=⎩, 又因为点()11M x y ,,()22N x y ,都在椭圆22134x y+=上,则22112222134134x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 将上述两个等式作差得22221212034x x y y --+=.则2212221243y y x x -=-- 则()()()()1212121243y y y y x x x x -+⋅=--+,即()()120122413y y y x x -⋅=---所以()0423k y ⋅-=-,即02233333k y ⎛⎛⎫=∈-∞+∞ ⎪ ⎪⎝⎭⎝⎭,, 所以直线l 的斜率的取值范围是23333⎛⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭,, 例3.(2021·新疆·克拉玛依市教育研究所模拟预测(理))已知圆C :()22116x y ++=,点1,0A ,P 是圆C 上任意一点,线段AP 的垂直平分线交CP 于点Q .(1)求点Q 的轨迹方程;(2)过点()0,1B -作直线MN 交点Q 的轨迹于M 、N 两点,设线段MN 的中点为H ,判断线段AH 与HM 的大小,并证明你的结论. 【解析】(1)∵点Q 在线段AP 的垂直平分线上,∴AQ PQ =. 又4CP CQ QP =+=,∴42CQ QA CA +=>=.∴点Q 的轨迹是以坐标原点为中心,()1,0C -和1,0A 为焦点,长轴长为4的椭圆. 可设方程为22221(0)x y a b a b+=>>,则2a =,221a b -=∴23b =,∴点Q 的轨迹方程为22143x y +=.(2)结论是:AH HM ≤.①当直线MN 的斜率不存在时,1AH =,HM AH HM <; ②当直线MN 的斜率k 存在时,设MN :1y kx =-代入到22143x y +=,化简得()2243880k x kx +--=,设()11,M x y ,()22,N x y 则122843k x x k +=+,122843x x k -=+, 此时()111,AM x y =-,()221,AN x y =-,∴()()()()()()12121212111111AM AN x x y y x x kx kx ⋅=--+=--+--()()()()2212122281811(1)224343k k k k x x k x x k k -⋅+⋅+=+-+++=-+++ 222218882204343k k k k k ⎛⎫-+ ⎪---⎝⎭==≤++. ∴90MAN ∠≥︒,点A 在以MN 为直径的圆上或圆的内部,所以AH HM ≤. 综上所述,AH HM ≤.例4.(2021·全国·高三专题练习)点B 是椭圆22221x y a b+=上的动点,(2,0)A a 为定点,求线段AB 的中点M 的轨迹方程.【详解】设动点M 的坐标为(x ,y ),设B 点坐标为(x 0,y 0), 则由M 为线段AB 中点,可得00002222202x ax x x a y y y y+⎧=⎪=-⎧⎪⇒⎨⎨=+⎩⎪=⎪⎩,即点B 坐标可表示为(2x -2a ,2y ), 因为点B (x 0,y 0)在椭圆22221x y a b+=上,2200221x y a b∴+=, 从而有2222(22)(2)1x a y a b-+=, 整理得动点M 的轨迹方程为22224()41x a y a b-+=.例5.(2021·全国·高三专题练习)已知椭圆2212x y +=,求斜率为2的平行弦中点的轨迹方程. 【详解】设弦的两个端点分别为()()1122,,,P x y Q x y ,PQ 的中点为(),M x y .则221112x y +=,(1)222212x y +=,(2)(1)(2)-得:()2222121202x x y y -+-=,()1212121202x x y yy y x x +-∴++=-.又121212122,2,2y y x x x y y y x x -+=+==-,40x y ∴+=. 由于弦中点轨迹在已知椭圆内, 联立22412340x y x x y ⎧+=⎪∴=±⎨⎪+=⎩故斜率为2的平行弦中点的轨迹方程:4440()33x y x +=-≤≤例6.(2021·广东·石门中学模拟预测)已知动圆P过点(A且与圆(22:12B x y +=相内切.(1)求动圆圆心P 的轨迹方程D .(2)直线l 过原点,且与轨迹D 有两个交点,M N .轨迹D 上是否存在一点Q ,使△QMN 为正三角形,若存在,求出Q 的坐标,若不存在,说明理由. 【详解】设圆的圆心为P (a ,b ),半径为r ,则由条件知:||,||PB r PA r ==,故||||PA PB +=因此,P 的轨迹是以A B ,为焦点,长轴长为.故圆心P 的轨迹方程D 为:2213x y +=.(2)解法一:若直线l 的斜率存在且不为零. 故可设:l y kx =.直线OQ 方程为:1=-y x k由222233313x y x MN k y kx ⎧+=⇒=⇒=⎨+=⎩||MN =同理,得||OQ ==因22|||3913OQ MN k k =⇔=⇔+=+,此时无解. 若直线的斜率为零,此时也无解.若直线的斜率不存在,可求出(Q .故Q的坐标为(0) 解法二:由图形的对称性及正三角形性质,不妨设1122(cos ,sin ),(cos(),sin())22M r r Q r r ππθθθθ++,代入椭圆方程,得222221112cos 3sin 1312sin r r r θθθ+=⇒=+ 同理222312cos r θ=+,由|||OQ OM =得cos 0θ=,故存在这样的点Q,其坐标为(0).例7.(2021·全国·高三专题练习(理))如图,在ABC中,已知||AB =A ,B ,C 满足2sin sin 2sin A C B +=,以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系,求顶点C 的轨迹方程.【详解】由已知得()()22,0,22,0A B -, ∵2sin sin 2sin A C B +=,∴由正弦定理得:22BC AB AC +=, ∴1222AC BC AB AB -==<, ∴由双曲线的定义知,点C 的轨迹以,A B 为焦点,以22为实轴长的双曲线的右支(除去与x 轴的交点), ∴2,22,6a c b ===,∴顶点C 的轨迹方程为()221226x y x -=>.故答案为:()221226x y x -=>.例8.(2012·辽宁·高考真题(文))如图,动圆2221:C x y t +=,1<t<3,与椭圆2C :2219x y +=相交于A ,B ,C ,D 四点,点12,A A 分别为2C 的左,右顶点.(Ⅰ)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积; (Ⅱ)求直线AA 1与直线A 2B 交点M 的轨迹方程.【解析】(1)设00(,)A x y ,则矩形ABCD 的面积004S x y =. 由220019x y +=得220019x y =-,从而 22222200000199(1)()9924x x y x x =-=--+当2092x =,2012y =时,max 6S =.从而t ABCD 的面积最大,最大面积为6.(2)证明:由00(,)A x y ,00(,)B x y -,1(3,0)A -,2(3,0)A 知直线1AA 的方程为0(3)3yy x x =++① 直线2A B 的方程为00(3)3y y x x -=--② 由①②得22020(9)9y y x x -=--③ 又点00(,)A x y 在椭圆C 上,故220019x y =-④将④代入③得2219x y -=(3,0)x y <-<因此点M 的轨迹方程为2219x y -=(3,0)x y <-<.【技能提升训练】1.(2022·全国·高三专题练习)(1)已知椭圆的长轴长是短轴长的3倍,椭圆经过点(3,0)P ,求椭圆的标准方程;(2)ABC 两个顶点,A B 的坐标分别是(6,0),(6,0)-,边,AC BC 所在直线的斜率之积等于49-,求顶点C 的轨迹方程. 【答案】(1)2219x y +=或221819y x+=,(2)2213616x y +=(6x ≠±),【分析】(1)由题意可得3a b =,然后分焦点在x 轴上和焦点在y 轴上两种情况设出椭圆的方程,再将(3,0)P 代入方程中可求出,a b 的值,从而可求出椭圆的标准方程;(2)设点C 的坐标,再由,AC BC 所在直线的斜率之积等于49-,列方程可求出结果【详解】(1)因为椭圆的长轴长是短轴长的3倍,所以3a b =,若焦点在x 轴上,设椭圆的方程为22221(0)9x y b b b+=>,因为椭圆经过点(3,0)P ,所以得1b =,所以椭圆的方程为2219x y +=,若焦点在y 轴上,设椭圆的方程为22221(0)9y x b bb+=>,因为椭圆经过点(3,0)P ,所以得3b =, 所以椭圆的方程为221819y x +=,所以椭圆的标准方程为2219x y +=或221819y x +=,(2)设点C 的坐标为(,)x y (0y ≠), 因为边,AC BC 所在直线的斜率之积等于49-,所以4669y y x x ⋅=-+-,化简得2249144x y +=,即2213616x y +=(6x ≠±), 所以顶点C 的轨迹方程2213616x y +=(6x ≠±), 2.(2021·全国·高三专题练习)在直角坐标系xOy 中,动点M 到定点1,02⎛⎫⎪⎝⎭的距离比到y 轴的距离大12.求动点M 的轨迹方程. 【答案】22(0)y x x =≥和0(0)y x =< 【分析】设出点M 的坐标,根据题意列出,x y 所满足的方程,化简方程可求得M 的轨迹方程. 【详解】设(,)M x y 1||2x =+两边平方可得:211||44x y x -++=+当0x ≥时,化简可得22(0)y x x =≥, 当0x <时,0y =,所以曲线M 的轨迹方程为22(0)y x x =≥和0(0)y x =<.3.(2021·全国·高三专题练习)过点()1,0A -的直线l 与抛物线2:4C y x =交于P 、Q 两点.求线段PQ 的中点B 的轨迹方程.【答案】()2221y x x =+>【分析】设()11,P x y ,()22,Q x y ,(),B x y ,代入抛物线方程中,再根据中点坐标公式可求得以线段PQ 的中点B 的轨迹方程. 【详解】解:设()11,P x y ,()22,Q x y ,(),B x y代入得()()()211121212222444y x y y y y x x y x ⎧=⇒+-=-⎨=⎩, 化简得()224211yy y x x ⋅=⇒=++, 又224122y xx y x ⎧=⇒=⎨=+⎩, 所以线段PQ 的中点B 的轨迹方程为()2221y x x =+>.4.(2021·全国·高三专题练习)已知点P 到直线y =-3的距离比点P 到点A (0,1)的距离多2.(1)求点P 的轨迹方程;(2)经过点Q (0,2)的动直线l 与点P 的轨迹交于M ,N 两点,是否存在定点R 使得∠MRQ =∠NRQ ?若存在,求出点R 的坐标;若不存在,请说明理由. 【答案】(1)x 2=4y ;(2)存在,定点R (0,-2). 【分析】(1)由|P A |等于点P 到直线y =-1的距离,结合抛物线的定义得出点P 的轨迹方程; (2)由对称性确定点R 必在y 轴上,再由∠MRQ =∠NRQ 可得k MR +k NR =0,联立直线l 与抛物线方程,结合韦达定理求出定点R (0,-2). 【详解】(1)由题知,|P A |等于点P 到直线y =-1的距离,故P 点的轨迹是以A 为焦点,y =-1为准线的抛物线,所以其方程为x 2=4y .(2)根据图形的对称性知,若存在满足条件的定点R ,则点R 必在y 轴上,可设其坐标为(0,r )此时由∠MRQ =∠NRQ 可得k MR +k NR =0.设M (x 1,y 1),N (x 2,y 2),则11y r x -+22y rx -=0由题知直线l 的斜率存在,设其方程为y =kx +2,与x 2=4y 联立得x 2-4kx -8=0, 则x 1+x 2=4k ,x 1x 2=-811y r x -+22y r x -=112kx r x +-+222kx r x +-=2k +1212(2)()r x x x x -+=2k -(2)2k r -=0故r =-2,即存在满足条件的定点R (0,-2). 【点睛】关键点睛:解决问题一时,关键是由抛物线的定义得出轨迹方程;解决问题二时,关键是由对称性得出点R 必在y 轴上,进而设出其坐标.5.(2020·全国·高三专题练习(理))如图所示,已知圆A :22(2)1x y ++=与点0(2)B ,,分别求出满足下列条件的动点P 的轨迹方程.(1)PAB △的周长为10;(2)圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3)圆P 与圆A 外切,且与直线1x =相切(P 为动圆圆心).【答案】(1)()221095x y y +=≠;(2)224141152x y x ⎛⎫-=≥ ⎪⎝⎭;(3)28y x =-【分析】(1)由题意可得到64PA PB AB >=+=,再根据椭圆的定义即可求解; (2)由题意可得到14P A B B A P -=<=,再根据双曲线的定义即可求解; (3)根据抛物线的定义即可求解.【详解】解:(1)由题意知:10PA PB AB ++=, 又4AB =,64PA PB AB ∴+=>=,故P 点的轨迹是椭圆去掉左右两个顶点,且26a =,24c =, 即3a =,2c =,5b =∴动点P 的轨迹方程为:()221095x y y +=≠; (2)设圆P 的半径为r ,则1PA r =+,PB r =,114r r A B AB P P ∴-=+-=<=,由双曲线的定义知,P 点的轨迹为双曲线的右支, 且21a =,24c =, 即115,2,2a c b ===,∴动点P 的轨迹方程为:224141152x y x ⎛⎫-=≥ ⎪⎝⎭, (3)由题意知:动点P 到定点A 的距离等于到定直线2x =的距离, 故其轨迹为抛物线,且开口向左,4p =, ∴动点P 的轨迹方程为:28y x =-.【点睛】关键点点睛:本题解题的关键是熟练掌握椭圆、双曲线、抛物线的定义.6.(2020·全国·高三专题练习(理))已知1(0)2A -,,B 是圆:221()42x y -+=(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,求动点P 的轨迹方程. 【答案】22413y x +=.【分析】先根据题意可知PF PB +正好为圆的半径,而PA PB =,进而可知2PF PA +=.根据椭圆的定义可知,点P 的轨迹为以A 、F 为焦点的椭圆,根据A 、F 求得a ,c ,进而求得b ,答案可得. 【详解】作图,则PA PB =,2PF PB +=, ∴2PF PA +=且大于1AF =,即动点P 的轨迹为以A 、F 为焦点的椭圆,1a =,12c =,234b =,所以动点P 的轨迹方程为22413y x +=.7.(2021·全国·高三专题练习(文))如图,已知圆C 1:(x +3)2+y 2=1和圆C 2:(x-3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹方程.【答案】x 2-28y =1(x ≤-1) 【分析】设动圆的半径为R ,根据圆外切的条件得到|MC 1|=R +1,|MC 2|=R +3,消去R ,得到|MC 2|-|MC 1|=2,根据双曲线的定义得到M 的轨迹,并由定义得到,a c 的值,进而得到方程. 【详解】依题意,知圆C 1的圆心为C 1(-3,0),半径为1,圆C 2的圆心为C 2(3,0),半径为3. 设动圆的半径为R ,则|MC 1|=R +1,|MC 2|=R +3, 所以|MC 2|-|MC 1|=2<|C 1C 2|,因此,圆心M 的轨迹是以C 1,C 2为左、右焦点的双曲线的左支, 且1,3a c ==, 所以2228b c a =-=.于是所求动圆圆心M 的轨迹方程为x 2-28y =1(x ≤-1). 【点睛】本题考查双曲线的定义与标准方程,关键是利用圆相外切的条件,转化为动点到两定点的距离之差等于定值,另外要准确全面掌握双曲线的定义,这里表示的是双曲线的一支. 8.(2021·全国·高三专题练习)一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心的轨迹方程,并说明它是什么曲线?【答案】2213627x y +=;椭圆. 【分析】利用动圆分别与两圆的相外切和内切的位置关系,可得动圆圆心与已知两圆圆心间的关系,再根据它们的数量关系结合圆锥曲线的定义,即可判断轨迹为椭圆,并求出轨迹方程. 【详解】设动圆圆心为(,)M x y ,半径为R ,设圆22650x y x +++=和圆226910x y x +--=的圆心分别为1O 、2O , 将圆的方程分别配方得:圆()221:34O x y ++=,圆()222:3100O x y -+= 当动圆M 与圆1O 相外切时,有12O M R =+ …① 当动圆M 与圆2O 相内切时,有210O M R =-…②将①②两式相加,得121212O M O M OO +=>,∴动圆圆心(,)M x y 到点10()3,O -和2()3,0O 的距离和是常数12,所以点M 的轨迹是焦点为点10()3,O -、2()3,0O ,长轴长等于12的椭圆. 设该椭圆的长轴为2a ,短轴为2b ,焦距为2c ; ∴26,212c a ==, ∴3,6c a == ∴236927b =-=∴动圆圆心轨迹方程为2213627x y +=,轨迹为椭圆. 【点睛】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,熟练掌握椭圆的定义是解题关键.9.(2020·全国·高三(理))已知点M 与两个定点00O (,),(30)A ,的距离的之比为12. (1)求点M 的轨迹方程,并说明它是什么图形;(2)求点M 到直线2130x y +-=的距离的最大值和最小值.【答案】(1)点M 的轨迹方程为22(1)4x y ++=,以(1,0)-为圆心,2为半径的圆;(2)max 2d =,min 2d =【分析】(1)设(),M x y ,利用点M 与两个定点()0,0O ,()30A ,的距离的比为12,建立方程,化简可得结果;(2)先求出圆心到直线2130x y +-=的距离d ,最大值为d r +,最小值为d r -. 【详解】(1)设(),M x y ,∵点M 与两个定点()0,0O ,()30A ,的距离的比为12,12=,化简可得()2214x y ++=, 即点M 的轨迹方程为22(1)4x y ++=,以(1,0)-为圆心,2为半径的圆.(2)圆心(1,0)-到直线2130x y +-=距离为d ==点M 到直线2130x y +-=的距离的最大值为2d r +=,最小值为2d r -=. 【点睛】本题主要考查圆的轨迹方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题. 10.(2020·湖南·雅礼中学高三阶段练习(理))已知中心在原点的双曲线C 的渐近线方程为y =±2x ,且该双曲线过点(2,2). (1)求双曲线C 的标准方程;(2)点A 为双曲线C 上任一点,F 1、F 2分别为双曲线的左、右焦点,过其中的一个焦点作∠F 1AF 2的角平分线的垂线,垂足为点P ,求点P 的轨迹方程. 【答案】(1)221312x y -=.(2)223x y += 【分析】(1)根据渐近线方程,设出双曲线方程,根据点在双曲线上,求出参数值,即可得到结果; (2)根据题意,由三角形全等,结合双曲线的定义,推出点P 满足的条件,根据圆的定义,即可写出其轨迹方程. 【详解】(1)根据题意,双曲线的渐近线方程是y =±2x , 则设双曲线方程为:4x 2﹣y 2=λ,(λ≠0), 点(2,2)代入得:λ=12, 则双曲线方程为:4x 2﹣y 2=12, 即22312x y -=1. (2)∵F 1,F 2是双曲线22312x y -=1的左右焦点, 过F 2作角的平分线AB 的垂线,垂足为P , 并且交AF 1于Q ,连接OP , 如下图所示:则11,2OP FQ OP =//1F Q , 显然2AQP AF P ∆≅∆ 故|AQ |=|AF 2|,∴|F 1Q |=|AF 1|﹣|AQ |=|AF 1|﹣|AF 2|=2a , ∴|OP |=a 3=由圆的定义可知,点P 的轨迹是以点O 3 所以P 的轨迹方程为:x 2+y 2=3. 【点睛】本题考查双曲线方程的求解,以及圆方程的求解,涉及双曲线的定义,属综合基础题. 11.(2018·西藏·拉萨中学高三阶段练习(理))已知椭圆M :2222x y a b+=1(a >b >0)的长轴长为220,1)的直线l 与M 交于A ,B 两点,且AP PB =. (1)求M 的方程;(2)求点P 的轨迹方程.【答案】(1)2212x y +=;(2)x 2+2y 2=2y .【分析】(1)根据题意2a =222c a =,解方程组即可求解. (2)当直线AB 的斜率存在且不为0,设直线AB 的方程为y =kx +1,将直线与椭圆联立,求出交点坐标,再根据中点坐标公式消k 即可求出轨迹方程. 【详解】(1)由题意可知,长轴长2a =a =e c a ==, 则c =1,b 2=a 2﹣c 2=1,所以椭圆M 的方程为2212x y +=;(2)当直线AB 的斜率存在且不为0,设直线AB 的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2),P (x ,y ), 联立方程组22112y kx x y =+⎧⎪⎨+=⎪⎩,消去y ,整理得(1+2k 2)x 2+4kx =0, 解得x 1=0,x 22412k k -=+,y 1=1,y 2221212k k -=+,由题意可知,P 为AB 的中点,所以22212112k x k y k -⎧=⎪⎪+⎨⎪=⎪+⎩,消去k ,整理得x 2+2y 2=2y ,当斜率不存在时,A (0,1),B (0,﹣1), 则P (0,0),满足x 2+2y 2=2y , 所以点P 的轨迹方程x 2+2y 2=2y . 【点睛】本题考查了由离心率求椭圆的标准方程,直线与椭圆的位置关系以及求曲线的轨迹方程,属于中档题.12.(2020·全国·高三专题练习)设(1,0)F ,点M 在x 轴上,点P 在y 轴上,且2MN MP =,PM PF ⊥,P 在y 轴上运动时,求点N 的轨迹方程;【答案】24(0)y x x =≠ 【分析】根据且2MN MP =,可得P 为MN 的中点,利用PM PF ⊥,可得0PM PF =,从而可得点N 的轨迹C 的方程; 【详解】解:设(,)N x y ,则由2MN MP =,得P 为MN 的中点, 又因为点M 在x 轴上,点P 在y 轴上, 所以(,0)M x -,0,2y P ⎛⎫⎪⎝⎭,2x PM y ⎛⎫∴=-- ⎪⎝⎭,1,2PF y ⎛⎫=- ⎪⎝⎭又PM PF ⊥,∴0PM PF = 022y y x ⎛⎫⎛⎫∴-+-⋅-= ⎪ ⎪⎝⎭⎝⎭24(0)y x x ∴=≠;【点睛】本题考查求轨迹方程,考查向量知识的运用,属于基础题.13.(2022·全国·高三专题练习)P 是圆224x y +=上的动点,P 点在x 轴上的射影是D ,点M 满足12DM DP =.(1)求动点M 的轨迹C 的方程,并说明轨迹是什么图形;(2)过点(3,0)N 的直线l 与动点M 的轨迹C 交于不同的两点A ,B ,求以OA ,OB 为邻边的平行四边形OAEB 的顶点E 的轨迹方程.【答案】(1)点M 的轨迹C 的方程为2214x y +=,轨迹C 是以(3,0),(3,0)为焦点,长轴长为4的椭圆(2)22846003x y x x ⎛⎫+-=<< ⎪⎝⎭【分析】(1)设(),M x y ,根据12DM DP =可求得(),2P x y ,代入圆的方程可得所求轨迹方程;根据轨迹方程可知轨迹是以()3,0,)3,0为焦点,长轴长为4的椭圆;(2)设():3l y k x =-,与椭圆方程联立,利用0∆>求得215k <;利用韦达定理表示出12x x +与12y y +,根据平行四边形和向量的坐标运算求得OE ,消去k 后得到轨迹方程;根据215k <求得x 的取值范围,进而得到最终结果. 【详解】(1)设(),M x y ,则(),0D x 由12DM DP =知:(),2P x y点P 在圆224x y +=上 2244x y ∴+=∴点M 的轨迹C 的方程为:2214x y += 轨迹C是以(),)为焦点,长轴长为4的椭圆(2)设(),E x y ,由题意知l 的斜率存在设():3l y k x =-,代入2214x y +=得:()222214243640k x k x k +-+-=则()()()2222244143640k k k ∆=--+->,解得:215k <设()11,A x y ,()22,B x y ,则21222414k x x k +=+ ∴()()()31212122224633661414k ky y k x k x k x x k k k k -+=-+-=+-=-=++ 四边形OAEB 为平行四边形∴()2121222246,,,1414k k OE OA OB x x y y k k ⎛⎫-=+=++= ⎪++⎝⎭又(),OE x y = ∴2222414614k x k k y k ⎧=⎪⎪+⎨-⎪=⎪+⎩,消去k 得:22460x y x +-= 215k < ()222226146246860,1414143k k x k k k +-⎛⎫∴===-∈ ⎪+++⎝⎭ ∴顶点E 的轨迹方程为22846003x y x x ⎛⎫+-=<< ⎪⎝⎭【点睛】本题考查圆锥曲线中的轨迹方程的求解问题,关键是能够利用已知中所给的等量关系建立起动点横纵坐标满足的关系式,进而通过化简整理得到结果;易错点是求得轨迹方程后,忽略x 的取值范围.14.(2019·安徽蚌埠·三模(理))已知点(2,0)E -,(2,0)F ,(,)P x y ,是平面内一动点,P 可以与点,E F 重合.当P 不与,E F 重合时,直线PE 与PF 的斜率之积为14-.(1)求动点P 的轨迹方程;(2)一个矩形的四条边与动点P 的轨迹均相切,求该矩形面积的取值范围. 【答案】(1)2214x y +=;(2)[8,10].【分析】(1)当P 与点,E F 不重合时,根据直线PE 与PF 的斜率之积为14-,直接可求出动点P 的轨迹方程;当P 与点,E F 重合时,()2,0P -或()2,0P ,最后写出动点P 的轨迹方程; (2)记矩形面积为S ,当矩形一边与坐标轴平行时,易知8S =. 当矩形各边均不与坐标轴平行时,根据对称性,设其中一边所在直线方程为y kx m =+,则对边方程为y kx m =- 另一边所在的直线为1y x n k =-+,则对边方程为1y x n k=--,联立:2244x y y kx m ⎧+=⎨=+⎩,得()()222148410k x kmx m +++-=,则0∆=,即2241k m +=.矩形的一边长为1d =同理:2241n k +=,矩形的另一边长为2d =12S d d =⋅=(]48,10=,综上:[]8,10S ∈. 【详解】解:(1)当P 与点,E F 不重合时, 14PE PFk k ⋅=-,得1224y y x x ⋅=-+-,即()22104x y y +=≠,当P 与点,E F 重合时,()2,0P -或()2,0P . 综上,动点P 的轨迹方程为2214x y +=.(2)记矩形面积为S ,当矩形一边与坐标轴平行时,易知8S =. 当矩形各边均不与坐标轴平行时,根据对称性,设其中一边所在直线方程为y kx m =+,则对边方程为y kx m =- 另一边所在的直线为1y x n k =-+,则对边方程为1y x n k=--,联立:2244x y y kx m ⎧+=⎨=+⎩,得()()222148410k x kmx m +++-=,则0∆=,即2241k m +=.矩形的一边长为1221m d k =+,同理:2241n k+=,矩形的另一边长为22211nd k =+, 122222111m n S d d k k =⋅=⋅=++()()()222224144411kk mnk k k ++=⋅++()()42222224174944411k k k k k ++=⋅=⋅+++(]229448,1012k k=⋅+∈++, 综上:[]8,10S ∈. 【点睛】本题考查了直译法求曲线的轨迹方程.重点考查了求椭圆外切矩形的面积的取值问题,考查了基本不等式的应用.15.(2017·福建省福州第一中学一模(文))在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心的轨迹方程为曲线.(Ⅰ)求曲线的方程;(Ⅱ)设是曲线上的动点,点的横坐标为,点,在轴上,的内切圆的方程为,将表示成的函数,并求面积的最小值.【答案】(1)(2)面积的最小值为8.【解析】试题分析: (1)由抛物线定义即可得到圆心的轨迹方程; (2)由三角形的内切圆方程可得,圆心与三角形的三条边所在直线相切,根据点线距等于半径,可得关于x 的二次方程,写出韦达定理,可将线段BC 表示成0x 的函数,进而写出三角形的面积表达式,再由基本不等式即可求得面积的最小值.试题解析: 解:(Ⅰ)由题意可知圆心到的距离等于直线的距离,由抛物线的定义可知,曲线的方程为.(Ⅱ)设,,直线的方程为:,又圆心(1,0)到的距离为1,所以.整理得:, 同理可得:,所以,是方程的两根,所以,,依题意,即,则.因为所以.所以.当时上式取得等号, 所以面积的最小值为8.16.(2017·江苏丰县·高三阶段练习)设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E ,求点E 的轨迹方程.【答案】221(0)43x y y +=≠. 【解析】试题分析:借助题设条件运用椭圆的定义及圆的几何性质进行探求. 试题解析:因为||||AD AC =,//EB AC ,故EBD ACD ADC ∠=∠=∠,所以||||EB ED =,故||||||||||EA EB EA ED AD +=+=.又圆A 的标准方程为22(1)16x y ++=,从而||4AD =,所以||||4EA EB +=,题设得(1,0)A -,(1,0)B ,||2AB =,由椭圆定义可得点E 的轨迹方程为221(0)43x y y +=≠. 考点:圆的几何性质及椭圆的定义等有关知识的综合运用.17.(2017·江苏丰县·高三阶段练习)已知点P 是直线230x y -+=上的一个动点,定点(1,2)M -,Q 是线段PM 延长线上的一点,且PM MQ =,求点Q 的轨迹方程.【答案】250x y -+=. 【解析】试题分析:借助题设条件运用代点消元的思想进行探求. 试题解析:由题意知,M 为PQ 中点,设(,)Q x y ,则P 为(2,4)x y ---,代入230x y -+=, 得250x y -+=.考点:代点消元法求轨迹方程的运用.18.(2022·全国·高三专题练习)给定双曲线2212y x -=.过21A (,)的直线与双曲线交于两点1P 及2P ,求线段12PP 的中点P 的轨迹方程. 【答案】22240x y x y --+= 【分析】设()()111222,,,P x y P x y ,代入双曲线方程后相减,再根据中点坐标公式代入即可求得中点P 的轨迹方程.再讨论斜率不存在时是否满足方程即可. 【详解】设()()111222,,,P x y P x y ,代入方程得222212121,122y y x x -=-= 两式相减得:()()()()12121212102x x x x y y y y +--+-= 又设中点P(x y), 将12122,2x x x y y y +=+=代入,当12x x ≠时得12122202y y y x x x --⋅=- 又121212y y y k x x x --==--代入得22240x y x y --+=当弦12P P 斜率不存在时,其中点20P (,)的坐标也满足上述方程 因此所求轨迹方程是 22240x y x y --+= 【点睛】本题考查了直线与曲线相交的中点弦问题,点差法解决中点问题的用法,属于基础题. 19.(2012·河北衡水·高三阶段练习(理))设直线:0l x y m -+=与抛物线2:4C y x =交于不同两点A 、B ,F 为抛物线的焦点. (1)求ABF ∆的重心G 的轨迹方程; (2)如果2,m ABF =-∆求的外接圆的方程. 【答案】解:①设,,,重心,∴△>0<1且(因为A 、B 、F 不共线)故∴重心G 的轨迹方程为(6分)②,则,设中点为∴∴那么AB 的中垂线方程为令△ABF 外接圆圆心为又,C 到AB 的距离为∴∴∴∴所求的圆的方程为(7分)【解析】(1)设A (x 1,y 1),B (x 2,y 2),F (1,0),重心G (x ,y ),24{0y x x y m =,-+=⇒y 2-4y +4m =0, ∴Δ>0⇒m <1且m ≠-1(A ,B ,F 不共线), 故12121212152333{433x x y y m mx y y y +++-+-===,+==∴重心G 的轨迹方程为y =47133x x ⎛⎫>≠ ⎪⎝⎭且.(2)若m =-2,则y 2-4y -8=0,设AB 中点为(x 0,y 0,) ∴y 0=122y y +=2,∴x 0=y 0-m =2-m =4, 那么AB 的中垂线方程为x +y -6=0, 令△ABF 的外接圆圆心为C (a,6-a ), 又|AB |211k+y 1-y 2|=6C 到AB 的距离为d 282a -|CA |=|CF |⇒6)2+22=(a -1)2+(6-a )2⇒a =192, ∴C 点的坐标为197,22⎛⎫- ⎪⎝⎭,∴|CF |2=172⎛⎫ ⎪⎝⎭2+72⎛⎫⎪⎝⎭2=1692,∴所求的圆的方程为192x ⎛⎫- ⎪⎝⎭2+72y ⎛⎫+ ⎪⎝⎭2=1692. 20.(2011·河北·高三专题练习)已知两定点(2,0)A -、(1,0)B ,如果动点P 满足2PA PB =,求点P 的轨迹方程. 【答案】2240x y x +-= 【分析】先设(,)P x y 2222(2)2(1)x y x y ++-+.【详解】 设(,)P x y ,因为(2,0)A -、(1,0)B ,且2PA PB =,= 整理得2240x y x +-=.即点P 的轨迹方程为2240x y x +-=. 【点睛】本题主要考查轨迹方程,熟记求轨迹方程的一般步骤即可,属于基础题型.21.(2021·全国·高二课时练习)已知ABC 的两个顶点坐标()4,0A -,()4,0B ,ABC 的周长为18,求顶点C 的轨迹方程.【答案】221259x y +=(0y ≠). 【分析】根据题意可得10BC AC AB +=>,则点C 的轨迹是以A ,B 为焦点的椭圆,去除直线AB 上的点,求得,,a b c 即可得出答案. 【详解】解:∵ABC 的两个顶点坐标()4,0A -,()4,0B ,周长为18, ∴8AB =,10BC AC +=, ∵108BC AC +=>,∴点C 到两个定点A ,B 的距离之和为定值,且定值大于A ,B 两点间距离, ∴点C 的轨迹是以A ,B 为焦点的椭圆,去除直线AB 上的点, ∵210a =,28c =,∴3b =,∴顶点C 的轨迹方程是221259x y +=(0y ≠).22.(2021·江西·景德镇一中高三阶段练习(理))在平面直角坐标系xOy 中,动圆P 与圆221:28C x y x ++=内切,与圆222:20C x y x +-=外切.(1)求动圆圆心P 的轨迹方程E ;(2)若直线(1)x t t =≠与轨迹E 交于A ,B 两点,直线2BC 交轨迹E 于另一个点M ,连接AM 交x 轴于点N ,试探究;是否存在t ,使得2MC N 的面积等于94?若存在,求出全部的t 值;若不存在,请说明理由. 【答案】(1)221(2)43x y x +=≠(2)存在,137t = 【分析】(1)设动圆P 的半径为r ,根据题意得动点P 的轨迹为以1C ,2C 为焦点,实轴长为24a =的椭圆,再根据圆1C 与圆2C 内切于点()2,0,进而得方程221(2)43x y x +=≠; (2)设直线2BC 的方程为1(0)x my m =+≠,11(,)B x y ,22(,)M x y ,进而根据M ,A ,N 三点共线和221x my =+得121221()N my y x y y =+*+,再联立方程221431x y x my ⎧+=⎪⎨⎪=+⎩并结合韦达定理得4N x =,再结合面积得1=M x ,进而得1M x =-,310AM k =,再求解得存在唯一137t =满足题意.(1)解:221:(1)9C x y ++=,222:(1)1C x y -+=设动圆P 的半径为r ,因为动圆P 与圆221:28C x y x ++=内切,与圆222:20C x y x +-=外切所以1231PC r PC r ⎧=-⎪⎨=+⎪⎩,12124PC PC C C ∴+=>,由椭圆的定义可知,动点P 的轨迹为以1C ,2C 为焦点,实轴长为24a =的椭圆,又因为圆221:28C x y x ++=与圆222:20C x y x +-=内切于点()2,0,所以动圆圆心P 的轨迹方程为:221(2)43x y x +=≠ (2)解:设直线2BC 的方程为1(0)x my m =+≠,11(,)B x y ,22(,)M x y ,则11(,)A x y -∵M ,A ,N 三点共线AM AN k k ∴=,即211211N y y y x x x x +=--,整理得121112()N y x x x x y y -=++ 又221x my =+代入,121221()N my y x y y =+*+ 联立22221(34)690431x y m y my x my ⎧+=⎪⇒++-=⎨⎪=+⎩122634my y m -∴+=+,122934y y m -=+ 代入()*可得4N x =, 又229342MC NSy =⇒=,21x =, 因为1t ≠,所以21x ≠-,故21x =-,11310AM N y k x x ∴==±-,由对称性,不妨取310AM k = 3:(4)10ANl y x ∴=-代入椭圆22143x y +=,得276130x x --=1137M x x ∴⋅=-,1137x ∴=, ∴存在唯一137t =满足题意。
点,求Q 点的轨迹方程,并指出该轨迹的名称.解:设直线OP 的斜率为)(R k k ∈,则点P 的坐标为OP l k ⊥,2,2)(.得l 的方程:0=+ky x ,因为直线m 过A 、P 两点,所以方程)1(2-=x k y 即022=--k y kx .),(y x Q 是l 、m 的交点,所以),(y x Q 满足方程组⎩⎨⎧=--=+0220k y kx ky x ,消去k 得:)1(02222≠=-+x x y x ,即)1(12)21(422≠=+-x y x 可化方程)()(1121)21()22(2222≠=-+x x y ,故轨迹是中心在)0,21(,长半轴长为22,短半轴长为21,焦点在21=x 直线上的椭圆且去掉)0,1(.例4、如图,已知直角坐标平面上点)0,2(Q 和圆122=+y x ,动点M 到圆O 的切线长与MQ 的比等于常数)0(>λλ,求动点M 的轨迹方程,并说明它表示什么曲线.解: 设动点),(y x M ,则M点到圆的切线长2222)2(.1y x MQ y x MN +-=-+=于是由题意得:2222)1(1y x y x +-=-+λ,整理得014)1(4)1(22222=++-+--λλλλy x x . 当1=λ时,方程为45=x ,表示一条直线; 当)(01>≠λλ时,方程为2222222)1(31)12(-+=+--λλλλy x ,表示一个圆例5、设椭圆方程为1422=+y x ,过点)1,0(M 的直线l 交椭圆A 、B 两点,O 是坐标原点,点P 满足【课堂小练】1、已知定点)0,6(A ,B 是曲线1)1(22=-+y x 上的动点,延长BA 到P ,使AB PA =,求动点P 的轨迹方程. 解:设),(y x P ,有条件知点A 为PB 的中点,所以点),12(y x B --,将点B 坐标代人已知曲线方程,得:1)1()12(22=--+-y x .即1)1()12(22=++-y x2、已知△ABC 中,三边a 、b 、c 满足2,=>>b a b c ,且a 、b 、c 成等差数列,求顶点B 的轨迹方程. 解:以边AC 的中点为原点,AC 所在直线为x 轴建立平面直角坐标系,得)0,1(),0,1(C A -.由42==+b c a .知AC BC BA >=+4.则由椭圆定义知点B 的轨迹方程为)20(13422<<=+x y x 3、如图,给出定点)0)(0,(>a a A 和直线l :1-=x ,B 是直线l 上动点,BOA ∠的角平分线交AB 于点C ,求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.解:依题意,记))(,1(R b b B ∈-,则直线OA 和OB 的方程为0=y 和bx y -= 设点),(y x C ,则有a x <≤0,由OC 平分AOB ∠,则点C 到OA 、OB 的距离相等,根据点到线的距离公式得21bbx y y ++=(1) 依题设点C 在直线AB 上,故有)(1a x a b y -+-=,由于0≠-a x 得ax ya b -+-=)1( (2) 将(2)代人(1)得:0,)()1()()1(122222≠⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡-++y a x xy a y a x y a y 则222222)1()1)((2)()1()(x a x a a x a x y a a x +++---=++-,又因01≠+a ,整理得:0),0(0)1(2)1(22=<<=++--y a x y a ax x a ,则0=b .)0,0(C 满足上式.① 当1≠a ,轨迹方程化为)0(11)1()1(22222a x a a y a a a a x ≤≤=-+---(3) 当10<<a ,方程(3)表示椭圆弧段;当1>a ,方程(3)表示双曲线一支弧度.② 当1=a ,轨迹方程化为)10(2<≤=x x y (4),此时方程(4)表示抛物线弧段.【课后练习】1、设抛物线经过定点)2,0(A 且以x 轴为准线,求抛物线顶点M 的轨迹方程.解:设),(y x M ,则焦点)2,(y x F由AO AF = 得2)22()(22=-+-y o x ,整理得:1)1(422=-+y x . (除)0,0( 点外) 2、如图,设1A 、2A 为双曲线12222=-by a x 的两顶点,21P P 是垂直于实轴的弦,求11P A 与22P A 的交点P 的轨迹方程.解:设垂直于实轴的弦的端点分别为),(),,(002001y x P y x P -, 其中)(220222a x ab y -= ① 则直线11P A :)(00a x ax y y ++=; ② ②直线22P A :)(0a x x a y y --=; ③ ③设11P A 与22P A 的交点),(y x P ,②×③得:)(2222202a x ax y y ---=,将①代人并化简得:12222=+b y a x . 3、已知,动椭圆的一个焦点为)0,3(1F ,长轴长为6,且恒过原点,求动椭圆中心的轨迹方程. 解:设椭圆中心),(y x P ,另一焦点),(002y x F由中点公式x x =+230,则y y x x =+-=2,3200,则y y 20=,得)2,32(2y x F - 因621=+OF OF ,则6)2()32(322=+-+y x .整理得:0()23()23(222≠=+-x y x ,且)3≠x .4、已知定点)0,2(A ,P 点在圆122=+y x 上运动,AOP ∠的角平分线交PA 于Q 点,其中O 为坐标原点,求Q 点的轨迹方程,并说明轨迹的形状.解:设),(y x Q ,再设),(11y x P ,则12121=+y x①Q 分PA 的比为21==OA PO QA PQ ,则211021,21122111+⨯+=+⨯+=y y x x , 得:y y x x 23,12311=-=,代人①得点Q 的轨迹为圆,方程为94)32(22=+-y x .5、已知椭圆C 的方程为1222=+y x ,点),(b a P 的坐标满足1222≤+b a ,过点P 的直线交椭圆于A 、B 两点,点。
动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-.当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG . ∵ GM AB λ=,点M 在x 轴上,∴ (,0)3x M .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k-++. ∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+,∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且k ≠. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN x ⋅=……………………………………………3分∵MP MN PN MN ⋅=⋅,∴48y += 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=.1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得54k =±. 故存在直线l :534y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2x M .∵0PM FQ ⋅=,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x FB FA y x FB y x FA841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =. (1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤求直线l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -,(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204y x -+=,即动点N 的轨迹方程为24y x =. (2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=.(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. (2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-, O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得 2222363(31)31t t t =---考虑几何求法!! 解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||20AB =点P 满足OP OA OB =+.记动点P 的轨迹为C . (I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线5y x =和5y x =-上的点,故可设11()A x x,22(,)B x x . ∵OP OA OB =+,∴1212,()5x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,2x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由DN DM λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(3y x =±) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=) 提示:()221212||10()10AB x x y y =⇒-+-=,又1133y x =-,2233y x =, 则12213()3y y x x +=-,21123()3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=,若存在,求出直线l 的方程;若不存在,说明理由.(不存在) 14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知2||2PF d =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b -=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围. 解:(I )依题意有:lxyCGFOPM2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >或1k 2<,且k≠0.∴k 的取值范围是113(,)(,0)(0,)(,)3223-∞--+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM -d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角; (3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。
动点问题知识点讲解什么是动点问题?动点问题指的是在数学和物理学中的一类问题,其中一个或多个物体的位置和速度随时间的变化而变化。
这些问题涉及到了运动和力的概念,因此对于理解运动和力学的基本原理非常重要。
在解决动点问题时,我们需要使用一些数学和物理学的知识,例如速度、加速度、位移和力等。
解决动点问题的步骤下面将介绍解决动点问题的基本步骤,以帮助大家更好地理解和解决这类问题。
第一步:理解问题首先,我们需要仔细阅读问题并确保对问题的要求和条件有清晰的理解。
了解问题的背景和假设条件是解决动点问题的关键。
第二步:绘制示意图为了更好地理解问题和解决方案,我们可以绘制一个示意图来描述物体的运动和相关参数。
示意图可以帮助我们更直观地理解问题,并对物体的运动轨迹和速度变化有更清晰的认识。
第三步:确定已知量和未知量在解决动点问题时,我们需要确定已知量和未知量。
已知量是我们已经知道的物理量,例如初始位置、初始速度、加速度等。
未知量是我们要求解的物理量,例如物体的最终位置、最终速度、加速度的大小等。
第四步:应用运动学方程运动学方程是解决动点问题的关键工具。
根据已知量和未知量的关系,我们可以选择适当的运动学方程来求解未知量。
常用的运动学方程包括位移-时间方程、速度-时间方程和加速度-时间方程等。
第五步:计算和分析在求解出未知量之后,我们需要进行计算和分析,以得出最终的结果。
这包括计算物体的位移、速度和加速度等,并根据问题的要求进行进一步的分析和解释。
第六步:检查和回答问题最后,我们需要检查我们的计算和分析是否符合问题的要求,并回答问题。
我们应该确保我们的结果是合理和准确的,并根据问题的要求给出明确的答案。
动点问题的实际应用动点问题不仅仅是理论上的问题,它们在现实生活和工程领域中也有广泛的应用。
例如,在机械工程中,我们经常需要计算和分析物体的运动和力学特性,以设计和优化机械系统。
在航天工程中,我们需要考虑飞行器的运动和动力学特性,以确保它们的安全和稳定性。
动点轨迹求法一考点分析解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等.二命题趋势解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一.三知识网络四考点对接1 直接法:用直接法求轨迹方程的步骤:(1)恰当地建立直角坐标系(如已经建立,此步可以省略);(2)设动点P(x,y)为轨迹上任意一点;(3)用动点坐标P(x,y)表示问题中的几何关系,列出等式关系;(4)化简并整理得轨迹方程。
注意:如果含有参数,则必须进行讨论。
高考数学知识点:动点的轨迹方程_知识点总结高考数学知识点:动点的轨迹方程动点的轨迹方程:在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。
求动点的轨迹方程的基本方法:直接法、定义法、相关点法、参数法、交轨法等。
1、直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
2、定义法:利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,高考生物,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。
定义法的关键是条件的转化??转化成某一基本轨迹的定义条件;3、相关点法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y 的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。
一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。
4、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。
用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。
要特别注意消参前后保持范围的等价性。
多参问题中,根据方程的观点,引入n 个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。
5、交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。
微专题19立体几何中的动点及其轨迹问题求空间图形中点的轨迹既是中学数学学习中的一个难点,也是近几年高考的一个热点,是立体几何与解析几何相交汇的问题,既考查空间想象能力,同时又考查如何将空间几何的轨迹问题转化为平面几何的轨迹问题来处理的数学思想,常用方法主要有:(1)定义法(如圆锥曲线定义);(2)解析法;(3)交轨法.类型一定性的研究动点的轨迹立体几何中与动点轨迹有关的问题归根还是利用线面的平行、垂直关系,在此类问题中要么容易看出动点符合什么样的轨迹(定义),要么通过计算(建系)求出具体的轨迹表达式.例1 (1)如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P 满足∠P AB=30°,则点P的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支(2)(多选)(2022·济南质检)已知正方体ABCD-A1B1C1D1的棱长为4,M为DD1的中点,N为ABCD所在平面上一动点,则下列命题正确的是()A.若MN与平面ABCD所成的角为π4,则点N的轨迹为圆B.若MN=4,则MN的中点P的轨迹所围成图形的面积为2πC.若点N到直线BB1与直线DC的距离相等,则点N的轨迹为抛物线D.若D1N与AB所成的角为π3,则点N的轨迹为双曲线答案(1)C(2)ACD解析(1)由题可知,当P点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60°角的平面截圆锥,所得图形为椭圆.(2)如图所示,对于A,根据正方体的性质可知,MD⊥平面ABCD,所以∠MND为MN与平面ABCD所成的角,所以∠MND=π4,所以DN=DM=12DD1=12×4=2,所以点N的轨迹为以D为圆心,2为半径的圆,故A正确;对于B,在Rt△MDN中,DN=MN2-MD2=42-22=23,取MD的中点E,因为P为MN的中点,所以PE∥DN,且PE=12DN=3,DN⊥ED,所以PE⊥ED,即点P在过点E且与DD1垂直的平面内,又PE=3,所以点P的轨迹为以3为半径的圆,其面积为π·(3)2=3π,故B 不正确; 对于C ,连接NB ,因为BB 1⊥平面ABCD , 所以BB 1⊥NB ,所以点N 到直线BB 1的距离为NB ,所以点N 到点B 的距离等于点N 到定直线CD 的距离, 又B 不在直线CD 上,所以点N 的轨迹为以B 为焦点,CD 为准线的抛物线,故C 正确;对于D ,以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则A (4,0,0),B (4,4,0),D 1(0,0,4),设N (x ,y ,0), 则AB →=(0,4,0),D 1N →=(x ,y ,-4), 因为D 1N 与AB 所成的角为π3, 所以|cos 〈AB →,D 1N →〉|=cos π3, 所以|4y |4x 2+y 2+16=12,整理得3y 216-x 216=1,所以点N 的轨迹为双曲线,故D 正确.训练1 (1)如图,AB 是平面α的斜线段,A 为斜足,若点P 在平面α内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A.圆B.椭圆C.一条直线D.两条平行直线(2)已知在平行六面体ABCD -A 1B 1C 1D 1中,AA 1与底面A 1B 1C 1D 1垂直,且AD =AB ,E 为CC 1的中点,P 在对角面BB 1D 1D 内运动,若EP 与AC 成30°角,则点P的轨迹为()A.圆B.抛物线C.双曲线D.椭圆答案(1)B(2)A解析(1)由题意知,点P到线段AB的距离为定值,则点P为在以AB为旋转轴的圆柱表面上一点,故平面α斜截圆柱,所得图形为椭圆.(2)因为在平行六面体ABCD-A1B1C1D1中,AA1与底面A1B1C1D1垂直,且AD=AB,所以该平行六面体ABCD-A1B1C1D1是一个底面为菱形的直四棱柱,所以对角面BB1D1D⊥底面ABCD,AC⊥对角面BB1D1D.取AA1的中点F,连接EF,则EF∥AC.因为EP与AC成30°角,所以EP与EF成30°角.设EF与对角面BB1D1D的交点为O,则EO⊥对角面BB1D1D,所以点P的轨迹是以EO为轴的一个圆锥的底面圆周,故选A.类型二定量的研究动点的轨迹当涉及动点轨迹的长度、图形的面积和图形的体积以及体积的最值,一般要用未知变量表示轨迹,然后借助于函数的性质求解.例2 (1)在棱长为22的正方体ABCD-A1B1C1D1中,E,F分别为棱AB,AD的中点,P为线段C1D上的动点,则直线A1P与平面D1EF的交点Q的轨迹长度为()A.2153 B.433C.2133 D.423(2)(多选)(2022·南京质检)如图,在正方体ABCD -A 1B 1C 1D 1中,P 为线段A 1B 上的动点(不包含端点),若正方体棱长为1,则下列结论正确的有( )A.直线D 1P 与AC 所成角的取值范围是⎣⎢⎡⎦⎥⎤π6,π2B.存在P 点,使得平面APD 1∥平面C 1BDC.三棱锥D 1-CDP 的体积为16D.平面APD 1截正方体所得的截面可能是直角三角形 答案 (1)C (2)BC解析 (1)如图,连接B 1D 1,因为E ,F 分别为棱AB ,AD 的中点, 所以B 1D 1∥EF ,则B 1,D 1,E ,F 四点共面.连接A 1C 1,A 1D ,设A 1C 1∩B 1D 1=M ,A 1D ∩D 1F =N ,连接MN , 则点Q 的轨迹为线段MN , 易得A 1D =A 1D 21+DD 21=4,△A 1ND 1∽△DNF ,且A 1D 1FD =2,所以A 1N =23A 1D =83. 易知A 1C 1=C 1D =A 1D =4,所以∠C 1A 1D =60°,又A 1M =2,所以在△A 1MN 中,由余弦定理可得MN 2=A 1N 2+A 1M 2-2A 1N ·A 1M cos ∠MA 1N =529,所以MN =2133,即点Q 的轨迹长度为2133.(2)对于A 选项,如图①,连接AC ,D 1P ,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (1,1,0),A 1(1,0,1),D (0,0,0),D 1(0,0,1),C (0,1,0).则有AC →=(-1,1,0),D 1P →=D 1A 1→+λA 1B →=(1,0,0)+λ(0,1,-1)=(1,λ,-λ),λ∈(0,1), 所以|cos 〈AC →,D 1P →〉|=|-1+λ|2·2λ2+1=(1-λ)24λ2+2.令f (λ)=(1-λ)24λ2+2,λ∈(0,1), f ′(λ)=8λ2-4λ-4(4λ2+2)2=4(2λ+1)(λ-1)(4λ2+2)2<0,所以f (λ)=(1-λ)24λ2+2在(0,1)上单调递减.因为f (0)=12,f (1)=0,所以0<|cos 〈AC →,D 1P →〉|<22,又〈AC →,D 1P →〉∈⎣⎢⎡⎦⎥⎤0,π2, 故〈AC →,D 1P →〉∈⎝ ⎛⎭⎪⎫π4,π2,故A 选项错误.图①对于B选项,当P为A1B的中点时,有AP∥C1D,AD1∥C1B,易证平面APD1∥平面C1BD,故B选项正确.对于C选项,三棱锥D1-CDP的体积VD1-CDP=VP-CDD1=13×S△CDD1×AD=1 3×12×1×1×1=16,故C选项正确.对于D选项,设A1B的中点为O,连接AP,AD1,D1P.当P点在线段OB(不包含端点)上时,此时平面APD1截正方体所得的截面为梯形AEFD1,如图②;当P点在O点时,此时平面APD1截正方体所得的截面为正三角形AB1D1;当P点在线段OA1(不包含端点)上时,此时平面APD1截正方体所得的截面为等腰三角形AD1G,如图③,且AG2+D1G2≠AD21,所以该三角形不可能为直角三角形,故D选项错误.故选BC.训练2 (1)如图所示,正方体ABCD-A1B1C1D1的棱长为2,E,F为AA1,AB的中点,点M是正方形ABB1A1内的动点,若C1M∥平面CD1E,则点M的轨迹长度为()A.22 B.1C. 2D.3(2)(多选)(2022·重庆诊断)如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个结论中,正确的结论是()A.三棱锥A-D1PC的体积不变B.A1P与平面ACD1所成的角大小不变C.DP⊥BC1D.DB1⊥A1P答案(1)C(2)ABD解析(1)如图所示,取A1B1的中点H,B1B的中点G,连接EF,FC,GH,C1H,C1G,EG,HF可得四边形EGC1D1是平行四边形,∴C1G∥D1E,又D1E⊂平面CD1E,C1G⊄平面CD1E,∴C1G∥平面CD1E,同理可得C1H∥CF,又CF⊂平面CD1E,C1H⊄平面CD1E,∴C1H∥平面CD1E,又C1H∩C1G=C1,∴平面C1GH∥平面CD1E,又M点是正方形ABB1A1内的动点,若C1M∥平面CD1E,∴点M在线段GH上,∴M点轨迹的长度GH=12+12= 2.(2)如图,因为BC1∥AD1,AD1⊂平面D1AC,BC1⊄平面D1AC,所以BC1∥平面D1AC,故点P在BC1上运动时,点P到平面D1AC的距离d是定值,所以V A-D1PC =V P-AD1C=13S△AD1C×d是定值,A项正确.连接A1B,A1C1,如图所示.易知平面A1BC1∥平面ACD1,A1P⊂平面A1BC1,所以A1P∥平面ACD1,故A1P与平面ACD1所成的角大小不变,B项正确.易知DP在平面BCC1B1内的射影是CP,若DP⊥BC1,则CP⊥BC1,故点P在BC1上运动时,不一定有DP⊥BC1,C项错误.易知DB1⊥平面A1BC1,而A1P⊂平面A1BC1,所以DB1⊥A1P,D项正确.故选ABD.一、基本技能练1.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与到直线C1D1的距离相等,则动点P的轨迹为()A.直线B.圆C.双曲线D.抛物线答案D解析点P到直线C1D1的距离即为点P到点C1的距离,所以在平面BB1C1C中,点P到定点C1的距离与到定直线BC的距离相等,由抛物线的定义可知,动点P的轨迹为抛物线,故选D.2.如图,正方体ABCD-A1B1C1D1中,P为底面ABCD上的动点.PE⊥A1C于E,且P A=PE,则点P的轨迹是()A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分答案A解析由题意知,△A1AP≌△A1EP,则点P为在线段AE的中垂面上运动,从而与底面ABCD 的交线为线段.3.如图,圆锥的底面直径AB =2,母线VA =3,点C 在母线VB 上,且VC =1,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是( )A.13B.7C.433D.332答案 B解析 在圆锥侧面的展开图中,AA ′=2π,所以∠AVA ′=AA ′︵VA =23π, 所以∠AVB =12∠AVA ′=π3,由余弦定理得AC 2=VA 2+VC 2-2VA ·VC ·cos ∠AVB =32+12-2×3×1×12=7, 所以AC =7.所以这只蚂蚁爬行的最短距离是7,故选B.4.如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 中点轨迹的面积为( )A.4πB.2πC.πD.π2答案 D解析 易知DD 1⊥平面ABCD ,∠MDN =90°,取线段MN 的中点P ,则DP =12MN =1,所以点P 的轨迹是以D 为球心,1为半径的18球面,故S =18×4π×12=π2. 5.已知MN 是长方体外接球的一条直径,点P 在长方体表面上运动,长方体的棱长分别是1,1,2,则PM →·PN →的取值范围为( )A.⎣⎢⎡⎦⎥⎤-12,0B.⎣⎢⎡⎦⎥⎤-34,0 C.⎣⎢⎡⎦⎥⎤-12,1 D.⎣⎢⎡⎦⎥⎤-34,1 答案 B解析 根据题意,以D 为坐标原点,DA →为x 轴正方向,DC →为y 轴正方向,DD 1→为z 轴正方向,建立空间直角坐标系,如图所示.设长方体外接球球心为O , 则DB 1为外接球的一条直径,设O 为DB 1的中点,不妨设M 与D 重合,N 与B 1重合. 则外接球的直径长为12+12+(2)2=2,所以半径r =1,所以PM →·PN →=(PO →+OM →)·(PO →+ON →)=(PO →+OM →)·(PO →-OM →)=|PO →|2-|OM →|2=|PO →|2-1,由P 在长方体表面上运动,所以|PO →|∈⎣⎢⎡⎦⎥⎤12,1,即|PO →|2∈⎣⎢⎡⎦⎥⎤14,1,所以|PO→|2-1∈⎣⎢⎡⎦⎥⎤-34,0, 即PM →·PN →∈⎣⎢⎡⎦⎥⎤-34,0.6.点P 为棱长是25的正方体ABCD -A 1B 1C 1D 1的内切球O 球面上的动点,点M 为B 1C 1的中点,若满足DP ⊥BM ,则动点P 的轨迹的长度为( ) A.π B.2π C.4π D.25π答案 C解析 根据题意知,该正方体的内切球半径为r =5, 如图,取BB 1的中点N ,连接CN ,则CN ⊥BM , 在正方体ABCD -A 1B 1C 1D 1中,CN 为DP 在平面B 1C 1CB 中的射影,∴点P 的轨迹为过D ,C ,N 的平面与内切球的交线, ∵正方体ABCD -A 1B 1C 1D 1的棱长为25, ∴O 到过D ,C ,N 的平面的距离为1, ∴截面圆的半径为(5)2-1=2,∴点P 的轨迹的长度为2π×2=4π.7.(2022·北京卷)已知正三棱锥P -ABC 的六条棱长均为6,S 是△ABC 及其内部的点构成的集合.设集合T ={Q ∈S |PQ ≤5},则T 表示的区域的面积为( ) A.3π4 B.π C.2π D.3π答案 B解析 设顶点P 在底面上的投影为O ,连接BO ,则O 为△ABC 的中心, 且BO =23×6×32=23, 故PO =36-12=2 6.因为PQ =5,故OQ =1,故Q 的轨迹为以O 为圆心,1为半径的圆,而△ABC 内切圆的圆心为O ,半径为2×34×363×6=3>1,故Q 的轨迹圆在△ABC 内部, 故其面积为π.8.如图,三角形P AB 所在的平面α和四边形ABCD 所在的平面β垂直,且AD ⊥α,BC ⊥α,AD =4,BC =8,AB =6,∠APD =∠CPB ,则点P 在平面α内的轨迹是( )A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案 A解析 由条件易得AD ∥BC ,且∠APD =∠CPB ,AD =4,BC =8, 可得tan ∠APD =AD P A =CBPB =tan ∠CPB , 即PB P A =CBAD =2,在平面P AB 内以AB 所在的直线为x 轴,AB 的中点O 为坐标原点,建立直角坐标系(图略),则A (-3,0),B (3,0), 设P (x ,y ),则有PBP A =(x -3)2+y 2(x +3)2+y2=2, 整理可得x 2+y 2+10x +9=0(x ≠0). 由于点P 不在直线AB 上,故此轨迹为圆的一部分,故答案选A.9.已知正方体ABCD -A ′B ′C ′D ′的棱长为1,点M ,N 分别为线段AB ′,AC 上的动点,点T 在平面BCC ′B ′内,则MT +NT 的最小值是( ) A. 2 B.233 C.62 D.1答案 B解析 A 点关于BC 的对称点为E ,M 关于BB ′的对称点为M ′,记d 为直线EB ′与AC 之间的距离,则MT +NT =M ′T +NT ≥M ′N ≥d ,由B ′E ∥D ′C ,d 为E 到平面ACD ′的距离,因为V D ′-ACE =13×1×S △ACE =13×1×1=13,而V D ′-ACE =V E -ACD ′=13×d ×34×(2)2=36d =13,故d =233.10.如图,长方体ABCD -A ′B ′C ′D ′中,AB =BC =2,AA ′=3,上底面A ′B ′C ′D ′的中心为O ′,当点E 在线段CC ′上从C 移动到C ′时,点O ′在平面BDE 上的射影G 的轨迹长度为( )A.2π3B.3π3C.π3D.3π6答案 B解析 如图,以CA ,CC ′分别为x 轴,y 轴正方向建立平面直角坐标系,则有C (0,0),O (1,0),O ′(1,3),设G (x ,y ), 由O ′G ⊥OG ,可得y x -1·y -3x -1=-1,整理可得⎝⎛⎭⎪⎫y -322+(x -1)2=34,所以点O ′在平面BDE 上的射影G 的轨迹是以F ⎝ ⎛⎭⎪⎫1,32为圆心,半径为32的OG ︵.因为tan ∠GOF =O ′C ′OO ′=33, 所以O ′G =O ′O ·sin ∠GOF =32, 所以△O ′GF 是等边三角形, 即∠GFO =2π3,所以圆弧OG 的长l =2π3×32=3π3.11.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为是正确的条件即可).答案 DM ⊥PC (或BM ⊥PC )解析 连接AC ,BD ,则AC ⊥BD ,因为P A ⊥底面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .又P A ∩AC =A ,所以BD ⊥平面P AC ,PC ⊂平面P AC , 所以BD ⊥PC ,所以当DM ⊥PC (或BM ⊥PC )时,有PC ⊥平面MBD ,PC ⊂平面PCD ,所以平面MBD⊥平面PCD.12.如图,P是棱长为1的正方体ABCD-A1B1C1D1表面上的动点,且AP=2,则动点P的轨迹的长度为________.答案3π2解析由已知AC=AB1=AD1=2,在平面BC1,平面A1C1中,BP=A1P=DP=1,所以动点P的轨迹是在平面BC1,平面A1C1,平面DC1内分别以B,D,A1为圆心,1为半径的三段圆弧,且长度相等,故轨迹长度和为π2×3=3π2.二、创新拓展练13.在棱长为3的正方体ABCD-A1B1C1D1中,E是AA1的中点,P是底面ABCD 所在平面内一动点,设PD1,PE与底面ABCD所成的角分别为θ1,θ2(θ1,θ2均不为0),若θ1=θ2,则三棱锥P-BB1C1体积的最小值是()A.92 B.52C.32 D.54答案C解析以D为坐标原点建立如图所示空间直角坐标系,因为正方体的棱长为3, 则E ⎝ ⎛⎭⎪⎫3,0,32,D 1(0,0,3),设P (x ,y ,0)(x ≥0,y ≥0),则PE →=⎝ ⎛⎭⎪⎫3-x ,-y ,32,PD 1→=(-x ,-y ,3). 因为θ1=θ2,平面ABCD 的一个法向量z =(0,0,1), 所以|PE →·z ||PE →|·|z |=|PD 1→·z ||PD 1→|·|z |,得32(3-x )2+y 2+94=3x 2+y 2+9,整理得x 2+y 2-8x +12=0, 即(x -4)2+y 2=4(0≤y ≤2), 则动点P 的轨迹为圆的一部分, 所以点P 到平面BB 1C 1的最小距离为1,所以三棱锥P -BB 1C 1体积的最小值是13×12×3×3×1=32.14.(多选)(2022·武汉模拟)如图,设正方体ABCD -A 1B 1C 1D 1的棱长为2,E 为A 1D 1的中点,F 为CC 1上的一个动点,设由点A ,E ,F 构成的平面为α,则( )A.平面α截正方体的截面可能是三角形B.当点F 与点C 1重合时,平面α截正方体的截面面积为26C.当点D 到平面α的距离的最大值为263D.当F 为CC 1的中点时,平面α截正方体的截面为五边形 答案 BCD解析 如图,建立空间直角坐标系,延长AE 与z 轴交于点P ,连接PF 并延长与y 轴交于点M , 则平面α由平面AEF 扩展为平面APM . 由此模型可知A 错误.当点F 与点C 1重合时,截面是一个边长为5的菱形,该菱形的两条对角线长度分别AC 1=22+22+22=23和22+22=22,则此时截面的面积为12×23×22=2 6.当F 为CC 1的中点时,平面α截正方体的截面为五边形,B ,D 正确.D (0,0,0),A (2,0,0),P (0,0,4),设点M 的坐标为(0,t ,0)(t ∈[2,4]), DA →=(2,0,0),AM →=(-2,t ,0),P A →=(2,0,-4), 则可知点P 到直线AM 的距离为d =|P A →|2-⎪⎪⎪⎪⎪⎪⎪⎪P A →·AM →|AM →|2=20t 2+644+t2, S △APM =12t 2+4·d =5t 2+16.S △P AD =12×2×4=4, 设点D 到平面α的距离为h ,利用等体积法V D -APM =V M -P AD ,即13·S △APM ·h =13·S △P AD ·t ,可得h =4t 5t 2+16,则h =45+16t 2, 由h =45+16t 2在t ∈[2,4]上单调递增,所以当t =4时,h 取到最大值为263.故选BCD.15.已知面积为23的菱形ABCD 如图①所示,其中AC =2,E 是线段AD 的中点.现沿AC 折起,使得点D 到达点S 的位置,此时二面角S -AC -B 的大小为120°,连接SB ,得到三棱锥S -ABC 如图②所示,则三棱锥S -ABC 的体积为________;若点F 在三棱锥的表面运动,且始终保持EF ⊥AC ,则点F 的轨迹长度为________.答案 32 3+32解析 依题意,12AC ·BD =BD =23,点S 到平面ABC 的距离为3sin 60°=32,△ABC 的面积为12×23=3,则三棱锥S-ABC的体积为13×3×32=32.如图,取AC边上靠近点A的四等分点G,取BA的中点为H,连接EH,EG,GH,故点F的轨迹长度即为△EHG的周长,又EG=GH=32,EH=12SB=32,故点F的轨迹长度为3+32.16.如图,三棱锥S-ABC的所有棱长均为1,SH⊥底面ABC,点M,N在直线SH上,且MN=33,若动点P在底面ABC内,且△PMN的面积为212,则动点P的轨迹长度为________.答案6π12解析设P到直线MN的距离为d,由题易得d=6 6,易知H为△ABC的中心,又MN⊥平面ABC,当点P在平面ABC内时,其轨迹是以H为圆心,66为半径的圆.∵△ABC内切圆的半径为3 6,∴圆H的一部分位于△ABC外,结合题意得,点P的轨迹为圆H位于底面△ABC 内的三段相等的圆弧(利用正三角形的性质判断出圆H有一部分在△ABC外,才能正确得到点P的轨迹),如图,过点H作HO⊥AC,垂足为O,则HO=36,记圆H与线段OC的交点为K,连接HK,可得HK=66,∴cos∠OHK=OHHK=3666=22,∴∠OHK=π4,∴点P的轨迹长度为圆H周长的14(利用圆及正三角形的对称性分析求解),∴点P的轨迹长度为14×2π×66=6π12.。
第16讲 求动点轨迹与探索型问题求动点轨迹典型例题动弦中点的轨迹方程【例1】已知椭圆2212x y +=,过点()2,0P 引椭圆的割线,求割线被椭圆截得的弦的中点的轨迹方程.【分析】动弦的中点问题,可以通过设直线法和中点坐标公式,得到中点坐标关于斜率k 的参数方程,消去参数,得到关于弦的中点的普通方程;也可以通过设出弦的端点坐标,代入椭圆方程,并利用中点坐标公式、斜率公式等,列出动点满足的所有关系式,然后消元可得.【解析】解法一(设直线法)设过点()2,0P 的直线方程为()2y k x =-,联立方程()222,1,2y k x x y ⎧=-⎪⎨+=⎪⎩消去y ,整理得222214410.2k x k x k ⎛⎫+-+-= ⎪⎝⎭设弦的两个端点为()()1122,,,A x y B x y ,中点为(),M x y ,得21224212x x k x k +==+,则242x k x=-,代人()2y k x =-,得()22221(2)(2)2,422x y k x x x x x =-=-=--- 即22(1)21x y -+=.又因为过点()2,0P 的直线与椭圆相交,所以()()22221Δ44410,2kk k ⎛⎫=--+-> ⎪⎝⎭解得2102k <,即1422x x <-,亦即01x <. 当k 不存在时,不满足题设要求,舍去.综上可知,割线被椭圆截得的弦的中点的轨迹方程是22(1)21(01)x y x -+=<.解法二(设点法——点差法一)设弦的两个端点为()()1122,,,A x y B x y ,中点为(),M x y ,则221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减,得2222121202x x y y -+-=.整理得()()()()1212121220.x x x x y y y y +-++-=由题意知12x x ≠,所以()12121212.22AB y y x x xk x x y y y-+===--+- 因为2AB yk x =-,所以22y x x y =--,整理得22(1)2 1.x y -+=又因为过点()2,0P 的直线与椭圆相交,与解法一同理可得01x <,所以割线被椭圆截得的弦的中点的轨迹方程是22(1)21(01)x y x -+=<.解法三(设点法——点差法二)设弦AB 的中点为(),M x y ,弦的两个端点为()()1111,,2,2A x y B x x y y --,则()()22112211222222x y x x y y ⎧+=⎪⎨-+-=⎪⎩ 两式相减,得2211220xx yy x y +--=,即()()1120.x x x y y y -+-=因为1x x ≠,所以上式两边同时除以1x x -,得1120.y yx y x x-+⋅=- 又因为AM MP k k =,即112y y yx x x -=--.所以202y x y x +⋅=-,化简得22220x x y -+=,整理得22(1)2 1.x y -+=又因为过点()2,0P 的直线与椭圆相交,与解法一同理可得01x <,所以割线被椭圆截得的弦的中点的轨迹方程是22(1)21(01)x y x -+=<.【点睛】求动点轨迹方程,要特别注意曲线的方程的定义的满足,即:(1)曲线上的点的坐标都是方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.所以,当定点在圆雉曲线外的时候一定要验证直线与圆锥曲线相交的条件Δ0>,并求出x (或)y 的取值范围;验证斜率不存在的情况是否符合题意.在处理有关弦的中点问题时,常常可以借助于“设点代入作差”的方式,在计算上有一定的技巧,可以适当的简化计算. 定义法与参数法【例2】设点A 和B 为抛物线24(0)y px p =>上除原点以外的两个动点,已知,OA OB OM AB ⊥⊥,求点M 的轨迹方程,并说明它表示什么曲线. 【分析】在本题中,动点M 可以看成是动直线OM 与动直线AB 的交点,所以可以用“交轨法”,即引入参数后,表示出交点,但要注意合理消参,计算上有一定的难度,这种解法主要考查“参数法”求曲线的轨迹方程;如果考虑到OM AB ⊥,可联想到动点M 位于以OA 为直径的圆上,又在以OB 为直径的圆上,可写出点M 的轨迹方程;或者由OA OB ⊥,可证明动直线AB 经过x 轴上的定点()4,0N p ,再由2OMN π∠=,可联想到动点M 位于以ON 为直径的圆上,则可写出点M 的轨迹方程.【解析】 解法一 如图10.1所示,设()()1122,,,,(A x y B x y M x ,())0y x ≠.则直线AB 的方程为x my a =+.由OM AB ⊥,得ym x=-.由24y px =及x my a =+,消去x ,得2440.y pmy pa --=所以()2122121224,.(4)y y y y pa x x a p =-==又由OA OB ⊥,得1212x x y y =-.所以244a pa a p =⇒=.故4x my p =+.用ym x=-代人,得()22400.x y px x +-=≠故动点M 的轨迹方程为()22400x y px x +-=≠.它表示以()2,0p 为圆心,2p 为半径的圆,但要去掉坐标原点.解法二 设()(),0,M x y x OA ≠的方程为y kx =,代人24y px =,得244,p p A kk ⎛⎫⎪⎝⎭.则直线OB 的方程为1y x k =-,代人24y px =,得()24,4B pk pk -. 由OM AB ⊥,得M 既在以OA 为直径的圆222440? p px y x y k k+--=①上,又在以OB 为直径的圆222440? x y pk x pky +-+= 2?\*?GB3?=②上(零点除外).由①22?\*?GB3?k ⨯+=②得()22400.x y px x +-=≠故动点M 的轨迹方程为()22400x y px x +-=≠.它表示以()2,0p 为圆心,2p 为半径的圆,但要去掉坐标原点.解法三 设OA 的方程为y kx =,代人24y px =,得244,p p A kk ⎛⎫⎪⎝⎭.则直线OB 的方程为1y x k=-,代人24y px =,得()24,4B pk pk -.因此直线AB 的方程为()241k y x p k =--,过定点()4,0N p . 由OM AB ⊥,得M 在以ON 为直径的圆上(原点除外),故动点M 的轨迹方程为()22400x y px x +-=≠.它表示以()2,0p 为圆心,2p 为半径的圆,但要去掉坐标原点.【点睛】当设()()1122,,,A x y B x y 时,注意对“12x x =”的讨论在交轨法中,注意寻找出动点满足的所有几何(等量)关系,即将动点的坐标,x y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于,x y 的关系.在求解过程中,既要注意消参的等价性,也要注意多联系圆雉曲线的定义,如果动点满足了某种曲线的定义,则可以用待定系数法较快地写出曲线的方程.强化训练1. 斜率为2的直线与双曲线2212x y -=相交于12,P P 两点,求动弦12P P 的中点的轨迹方程.【解析】解法一 (设直线法)设斜率为2的直线方程为2y x b =+,联立方程222,12,y x b x y =+⎧⎨-=⎩消去y ,并整理得2234120.x bx b +++= 设交点为()()111222,,,P x y P x y ,中点为(),M x y ,则12223x x x b +==-,所以32b x =-,代人2y x b =+,可得12y x =.又因为直线与双曲线2212x y -=相交于两点,所以()22Δ(4)43120,b b =-⨯+>解得6b <-或6b >.又因为23x b =-,所以4x <-或4x >.故动弦12P P 中点轨迹方程为1(42y x x =<-或4)x >.解法二(设点法——点差法)设弦的两个端点的坐标分别为()()1122,,,A x y B x y ,中点M 坐标为(),x y ,则2211222212,12.x y x y ⎧-=⎨-=⎩ 两式相减得()222212120,x x y y ---=.整理得()()()()121212120,x x x x y y y y +--+-=由题意知12x x ≠. ,所以12121212.AB y y x x xk x x y y y-+===-+ 因为2AB k =,所以2xy =.则上式整理得12y x =.又因为斜率为2的直线与双曲线相交,与解法一同理可得4x <-或4x >.故动弦12P P 中点的轨迹方程是12y x =(4x <-或4x >). 2. 由点()2,0-向抛物线24y x =引弦,求弦的中点的轨迹方程.【解析】解法一(设点法点差法)设端点为()()1122,,,A x y B x y ,则221124,y x y ==24x .两式相减得()2221214.y y x x -=-将(1)式两边同时除以21x x -,得()2121214.y y y y x x -+⋅=- 设弦的中点坐标为(),x y ,则12122,2x x x y y y +=+= 因为点(),x y 和点()2,0-在直线AB 上,所以2121.2y y yx x x -=+- 将(3)、(4)两式代人(2)式,得242yy x ⋅=+,整理得()222.y x =+ 故中点的轨迹方程是()222y x =+在抛物线24y x =内部的部分. 解法二(设直线法)设弦AB 所在直线的方程为()2y k x =+,则由方程组()224y k x y x ⎧=+⎨=⎩消去x ,并整理得2480.ky y k -+=设()()1122,,,A x y B x y ,中点的坐标为(),x y ,且124y y k +=,则122.2y y y k+== 代人(1)式得()222y x =+.故所求弦中点的轨迹方程是()222y x =+在抛物线24y x =内部的部分.3. 自()4,0A 引圆224x y +=的割线ABC ,求弦BC 中点P 的轨迹方程.2.已知MN 是椭圆22221x y a b+=中垂直于长轴的动弦,,A B 是椭圆长轴的两个端点,求直线MA 和NB 的交点P 的轨迹方程.【解析】解法一(直接法)设动点(),P x y ,连接OP ,则OP BC ⊥.当0x ≠时,1OP AP k k ⋅=-,即14y y x x ⋅=--,亦即2240.x y x +-= 当0x =时,点P 的坐标()0,0是方程(1)的解.综上所述,点P 的轨迹方程为2240x y x +-=(在已知圆内的部分).解法二(定义法)由OP BC ⊥,可知OP AP ⊥.因此点P 位于以OA 为直径的圆上.因为()4,0A ,所以线段OA 的中点为()2,0.故由圆的定义知,点P 的轨迹方程是2(2)x -+24y =(在已知圆内的部分).4.设椭圆方程为2214y x +=,过点()0,1M 的直线l 交椭圆于点,,A B O 是坐标原点,点P 满足()12OP OA OB =+,点N 的坐标为11,22⎛⎫⎪⎝⎭,当l 绕点M 旋转时,求:(1)动点P 的轨迹方程;(2)NP 的最小值与最大值.【解析】解法一(参数法:利用点的坐标作参数)令()11,M x y ,则()11,N x y -,而由题意知()(),0,,0A a B a -.设AM 与NB 的交点为(),P x y 因为,,A M P 三点共线,所以yx a =+11y x a+. 因为,,N B P 三点共线,所以11y yx a x a =---.两式相乘,得22122221y y x a x a =--- 而2211221x y a b +=,即()2221212b a x y a -=,代人(1)式,得22222y b x a a =-即交点P 的轨迹方程为22221x y a b-=.解法二(参数法:利用角作参数)设()cos ,sin M a b θθ,则()cos ,sin N a b θθ-.因此sin cos y b x a a a θθ=++,sin cos y b x a a aθθ=--- 两式相乘消去θ,即可得所求的点P 的轨迹方程为22221x y a b -=.探索型问题典型例题条件探索型问题【例1】已知点,A B 关于坐标原点O 对称,4AB =,圆M 过点,A B 且与直线20x +=相切.(1)若A 在直线0x y +=上,求圆M 的半径;(2)是否存在定点P ,使得当A 运动时,MA MP -为定值?并说明理由.【分析】解析几何中的存在性问题时,对于条件存在探索型问题(或否定性命题,比如不可能是什么的类型),比较常见的处理方式有以下几种:(1)常采用“肯定顺推法”,即假设满足条件的元素(如点、直线、位置或参数等)存在,并用待定系数法设出,然后根据已知条件和几何关系,列出相关的方程组(或不等式),若方程组在相关的定义域(参数的存在范围)内有解,则元素存在;否则,相关元素不存在;(2)先猜后证的方法,即先把条件特殊化(如采用极端原理的方法)在特殊位置(条件)下,进行验证和判断,然后放到一般情况下给予证明(可参考9.2“先猜后证”一节).在条件存在探索型问题中,思考本质上是“执果索因”.【解析】解(1)因为A 在直线0x y +=上,所以设(),A t t -,则(),B t t -.又因为AB =4,所以2816t =,解得t =因为圆M 过点,A B ,所以圆心M 必在直线y x =上.设(),M a a ,圆的半径为r ,因为圆M 与20x +=相切,所以2r a =+.又因为MA MB r ==,即222((a a r +=,所以222(((2),a a a ++=+解得0a =或4a =.当0a =时,2r =;当4a =时,6r =.因此圆M 的半径为2或6.(2)解法一(设直线法,证明点M 的轨迹为抛物线,然后结合抛物线的定义判断定点P 的存在性)结论:存在定点()1,0P ,使得1MA MP -=.证明如下:因为,A B 关于原点对称且4AB =,所以直线AB 必为过原点O 的直线,且2OA =.①当直线AB 斜率存在时,设AB 方程为y kx =,则圆心M 必在直线1y x k=-上.设(),M km m -,圆M 的半径为r ,因为圆M 与20x +=相切,所以2r km =-+.又因为r MA ===所以2km -+=整理可得24km m =-.故点M 的轨迹方程为24y x =,准线方程为1x =-,焦点()1,0F .(说明:这一步很关键,判断出点M 在抛物线上运动,方能结合抛物线的定义来解题.)因为MA r =,即抛物线上的点到2x =-的距离,所以1MA MF =+,即1.MA MF -=因此当P 与F 重合,即点P 的坐标为()1,0时,1MA MP -=.②当直线AB 斜率不存在时,则直线AB 的方程为0x =,所以点M 在x 轴上.设(),0M n ,则2n +=解得0n =,即()0,0M .若()1,0P ,则21 1.MA MP -=-=综上所述,存在定点()1,0P ,使得MA MP -为定值.解法二(设点法,证明点M 的轨迹为抛物线,然后结合抛物线的定义判断定点P 的存在性)结论:存在定点()1,0P ,使得1MA MP -=.证明如下:因为,A B 关于原点对称且4AB =,所以设()00,A x y ,则()00,B x y --,且22004x y +=. (1)当000x y ≠,即直线AB 的斜率存在时,其斜率为y x .则圆心M 必在直线00x y x y =-上.设0110,x M x x y ⎛⎫- ⎪⎝⎭,圆M 的半径为r ,则因为圆M 与20x +=相切,所以12r x =+.又因为r MA ==所以12x +=整理可得220112040x x x y -=,解得10x =或201204y x x =.当201204y x x =时,0104y y x =-.消去00yx ,可得2114y x =;当10x =时,10y =也满足上式.故点M 的轨迹方程为24y x =,准线方程为1x =-,焦点()1,0F .(说明:这一步很关键,判断出点M 在抛物线上运动,方能结合抛物线的定义来解题.) 以下同解法一.【点睛】此题的解题关键在于推断出点M 的运动轨迹为抛物线,然后利用抛物线的定义来探求定点P 的位置,实现MA MP -为定值的目标. 结论探索型问题【例2】已知椭圆2222:1(0)x y C a b a b+=>>且点()2,1T 在椭圆C 上,设与OT 平行的直线l 与椭圆C 相交于,P Q 两点,直线,TP TQ 分别与x 轴正半轴交于,M N 两点. (1)求椭圆C 的标准方程;(2)判断OM ON +的值是否为定值,并证明你的结论.【分析】解析几何中的存在性问题时,对于结论存在探索型问题,比较常见的处理方式有以下几种:(1)把题目条件准确的逐句翻译转化,按部就班,由因到果,一步步进行演绎推理,从而进行结论存在性判断,这是基本的解题素养;(2)先猜后证的方法,即先把条件特殊化(如采用极端原理的方法)在特殊位置(条件)下进行验证和判断,然后放到一般情况下对结论的存在性给予证明(可参考9.2“先猜后证”一节);(3)关于函数的最值是否存在的问题,通常是构建目标函数,通过求值域的通法,来进行判断即可.另外,反证法与验证法也是求解存在性问题常用的方法. 【解析】 解(1)由题意可得22222411,a b a b c c e a ⎧+=⎪⎪⎪-=⎨⎪⎪==⎪⎩解得a b c ===故椭圆C 的标准方程为22182x y +=.(2)假设直线TP 或TQ 的斜率不存在,则点P 或点Q 的坐标为(2,-1),直线l 的方程为()1122y x +=-,即122y x =-.则联立方程得22182122x y y x ⎧+=⎪⎪⎨⎪=-⎪⎩解得2440x x -+=.此时,直线l 与椭圆C 相切,不合题意.故直线TP 和TQ 的斜率存在. 解法一如图11.2所示,设()()1122,,,P x y Q x y ,则直线TP 的方程为()11112.2y y x x --=-- 直线TQ 的方程为 ()22112.2y y x x --=-- 故11221x OM y -=--,2222.1x ON y -=--图11.2由直线OT 的方程12y x =,设直线PQ 的方程为()102y x t t =+≠.则联立方程得22221,822240.12x y x tx t y x t ⎧+=⎪⎪⇒++-=⎨⎪=+⎪⎩当Δ0>时,212122,24x x t x x t +=-=-.因此121222411x x OM ON y y ⎛⎫--+=-+ ⎪--⎝⎭1212224111122x x x t x t ⎛⎫ ⎪--=-+ ⎪ ⎪+-+-⎝⎭()()()()()1212212122414111(1)42x x t x x t x x t x x t +-+--=-+-++-()()()()()()2222422414112412(1)42t t t t t t t t -+----=--+--+-4.=解法二设()()1122,,,P x y Q x y ,直线TP 和TQ 的斜率分别为1k 和2k ,则由直线OT 的方程12y x =,设直线PQ 的方程为()102y x t t =+≠,则联立方程得22221,822240.12x y x tx t y x t ⎧+=⎪⎪⇒++-=⎨⎪=+⎪⎩当Δ0>时,212122,24x x t x x t +=-=-.因此1212121122y y k k x x --+=+-- 121211112222x t x t x x +-+-=+-- ()()()()()12121224122x x t x x t x x +-+--=--()()()()()21224224122t t t t x x -+----=--0.=故直线TP 和直线TQ 的斜率和为零,从而可得TMN TNM ∠∠=,即TM TN =.因此T 在线段MN 的中垂线上,即MN 的中点横坐标为2.故4OM ON +=. 【点睛】在此题中,解法一非常常规,考生只需把题目的条件,逐一准确地翻译转化,按部就班进行,就能得出结论,这就是培养学生基本的、良好的和规范的答题习惯;解法二则充分体现了解析几何中的“数形结合”和“多想少算”的思维层次,通过推测直线TP 和直线TQ 的斜率和为零,证明T 在线段MN 的中垂线上,从而说明OM ON +的值为定值.在解析几何中,掌握一些常见的结论,解题中通过联想,并用特殊值法进行验证和猜想,来帮助解题还是很有必要的.强化训练1.如图11.1所示,椭圆22:1(01)y C x m m+=<<的左顶点为,A M 是椭圆C 上异于点A 的任意一点,点P 与点A 关于点M 对称.(1)若点P 的坐标为9,55⎛ ⎝⎭,求m 的值; (2)若椭圆C 上存在点M ,使得OP OM ⊥,求m 的取值范围.图11.12.【解析】(1)依题意,M 是线段AP 的中点,如图 A.42所示.因为()91,0,5A P ⎛- ⎝⎭,所以点M的坐标为25⎛ ⎝⎭.由点M 在椭圆C 上,得4121,2525m += 解得47m =.图A.42(2)解法一(参变分离-一目标函数法)设点M 的坐标为()00,x y ,则()2200111,y x x m+=-<<因为M 是线段AP 的中点,所以()0021,2P x y +.又因为OP OM ⊥,所以()20002120.x x y ++=由(1)、(2)两式消去0y ,整理得20020222x x m x +=-.因此()001131,6242282m x x =+-++-+当且仅当02x =-时,等号成立.故m 的取值范围是10,24⎛- ⎝⎦.解法二(转化为利用二次函数探求根的分布)设点M 的坐标为()00,x y ,则2201y x m +=()011x -<<因为M 是线段AP 的中点,所以()0021,2P x y +.又因为OP OM ⊥,所以()20002120.x x y ++=由(1)、(2)两式消去0y ,整理得()2002220.m x x m -++=则问题转化为:方程(3)存在实根0x ,且()01,1x ∈-.不妨考虑二次函数()()2000222f x m x x m =-++在()01,1x ∈-上的零点分布. 因为对称轴()011414x m =<--,且()1221210f m m -=--+=> ()1221230f m m =-++=>所以只需对称轴()01141x m =>--.又方程(3)的()Δ142220m m =-⋅-⋅>,解得m124-. 因为01m <<,所以10,2m ⎛∈- ⎝⎦. 2.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,右焦点为F ,右顶点A .在圆F :222(1)(0)x y r r -+=>上. (1)求椭圆C 和圆F 的方程;(2)已知过点A 的直线l 与椭圆C 交于另一点B ,与圆F 交于另一点P .请判断是否存在斜率不为0的直线l ,使点P 恰好为线段AB 的中点.若存在,求出直线l 的方程;若不存在,请说明理由. 【解析】(1)由题意可得11,2c c a ==.因此2222,3a b a c ==-=.故椭圆C 的标准方程为221.43x y += 由椭圆C 的右顶点()2,0A ,代人圆F 的方程可得21r =. 故圆F 的标准方程为()2211x y -+=(2)解法一假设存在直线()():20l y k x k =-≠满足条件,则由()222,1,43y k x x y ⎧=-⎪⎨+=⎪⎩得()2222431616120.k x k x k +-+-=设()11,B x y ,则21216243k x k +=+,由此可得中点22286,4343k k P k k ⎛⎫- ⎪++⎝⎭.又由点P 在圆F 上可得22222861 1.4343k k k k ⎛⎫-⎛⎫-+= ⎪ ⎪++⎝⎭⎝⎭化简整理得20k =.又因为0k ≠,所以不存在满足条件的直线l .解法二假设存在直线l 满足题意.则由(1)可得OA 是圆F 的直径,所以OP AB ⊥.又由点P 是AB 的中点,可得2OB OA ==.设点()11,B x y ,则由题意可得2211143x y +=.又因为直线l 的斜率不为0,所以214x <. 因此22222211111313 4.44x x OB x y x ⎛⎫=+=+-=+< ⎪⎝⎭图A.43这与OA OB =矛盾.因此不存在满足条件的直线l .3.已知抛物线2:4C y x =,点(),0M m 在x 轴的正半轴上,过M 的直线l 与C 相交于,A B 两点,O 为坐标原点.(1)若1m =,直线l 的斜率为1,求以AB 为直径的圆的方程;(2)若存在直线l 使得,,AM OM MB 成等比数列,求实数m 的取值范围. 【解析】(1)由题意得()1,0M ,直线l 的方程为1y x =-则由214y x y x=-⎧⎨=⎩得2610.x x -+=如图 A.43所示,设,A B 两点坐标为()()1122,,,,A x y B x y AB 的中点P 的坐标为()00,P x y ,则1233x x =+=-11221212y x y x =-=+=-=-故点((3,3A B ++--. 因此12032x x x +==,0012y x =-=故圆心为()3,2P ,直径为8AB ==.因此以AB 为直径的圆的标准方程为22(3)(2)16.x y -+-=(2)解法一设,A B 两点的坐标分别为()()1122,,,,(0)A x y B x y MB AM λλ=>. 则()()1122,,,AM m x y MB x m y =--=-.因此()2121,.x m m x y y λλ⎧-=-⎨=-⎩因为点,A B 在抛物线C 上,所以2211224,4.y x y x == 由(1)(2)消去212,,x y y ,得1x m λ=.若此直线l 使得,,AM OM MB 成等比数列, 则2||OM MB AM =⋅即2||OM AM AM λ=⋅,因此()22211.m x m y λ⎡⎤=-+⎣⎦因为21114,y x x m λ==,因此()221114m m x m x x ⎡⎤=-+⎣⎦,整理得 ()2211340.x m x m --+=因为存在直线l 使得,,AM OM MB 成等比数列,所以关于1x 的方程(3)有正根.又因为方程(3)的两根之积为20m >,所以只可能有两个正根.因此222340Δ(34)40.m m m m ->⎧⎪>⎨⎪=--⎩解得4m .故当4m 时,存在直线l 使得,,AM OM MB 成等比数列.解法二设使得,,AM OM MB 成等比数列的直线AB 方程为x m =(0m >)或()()0y k x m k =-≠.当直线AB 的方程为x m =时,((,,A m B m . 因为,AM OM ,MB 成等比数列,所以2,OM MB AM =⋅即24m m =,解得4m =或0m =(舍去).当直线AB 的方程为()y k x m =-时,则由()24y k x m y x⎧=-⎨=⎩得()22222240.k x k m x k m -++=设,A B 两点的坐标分别为()()1122,,,A x y B x y ,则221212224,.k m x x x x m k++== 由0m >,得()222222Δ24416160.k m k k m k m =+-⋅=+> 因为,,AM OM MB 成等比数列,所以2OM MB AM =⋅.于是2m =又因为,A B 两点在抛物线C 上,所以2211224,4.y x y x == 由(1)(2)(3)三式消去1122,,,x y x y ,得2141m k ⎛⎫=+ ⎪⎝⎭.因为存在直线l 使得,AM OM ,MB 成等比数列,所以21414m k⎛⎫=+> ⎪⎝⎭. 综上所述,当4m 时,存在直线l 使得,,AM OM MB 成等比数列.4.已知椭圆2222:1(0)x y G a b a b+=>>的离心率为经过点()0,1B .设椭圆G 的右顶点为A ,过原点O 的直线l 与椭圆G 交于,P Q 两点(点Q 在第一象限),且与线段AB 交于点M . (1)求椭圆G 的标准方程;(2)是否存在直线l ,使得BOP 的面积是BMQ 的面积的3倍?若存在,求直线l 的方程;若不存在,请说明理由.【解析】(1)由题意可知2221b ca ab c=⎧⎪⎪=⎨⎪=+⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩因此椭圆G 的标准方程为2214x y +=(2)解法一(设点法)设()00,Q x y ,则()00,P x y --,易知0002,01x y <<<<. 若使BOP 面积是BMQ 面积的3倍, 只需使得3OQ MQ =,即23OM OQ ==0022,33x y ⎛⎫ ⎪⎝⎭,亦即0022,33M x y ⎛⎫ ⎪⎝⎭.由()()2,0,0,1A B ,得直线AB 的方程为220x y +-=.因为点M 在线段AB 上,所以00242033x y +-=,整理得0032.x y =-因为点Q 在椭圆G 上,所以2200 1.4x y +=把(1)式代人(2)式,可得2081250y y -+=.因为判别式小于零,所以该方程无解. 因此不存在直线l ,使得BOP 的面积是BMQ 面积的3倍. 解法二(设直线法)由题意,设直线l 的方程为(0)y kx k =>.则联立2244y kx x y =⎧⎨+=⎩消去y ,整理得()22414,k x += 即22441x k =+.因此Q ⎛⎫. 由()()2,0,0,1A B ,得直线AB 的方程为220x y +-=.因为点M 在线段AB 上,则联立220y kxx y =⎧⎨+-=⎩消去y ,解得221x k =+.因此22,2121k M k k ⎛⎫ ⎪++⎝⎭. 若使BOP 的面积是BMQ 面积的3倍,只需使得3OQ MQ = 即OM =23OQ ,则22213k =+ 化简整理得2201650k k -+=.因为判别式小于零,所以该方程无解.因此不存在直线l ,使得BOP 的面积是BMQ 面积的3倍. 解法三(设直线法)由题意,设直线l 的方程为(0)y kx k =>则联立22,44,y kx x y =⎧⎨+=⎩消去y ,整理得()22414,k x += 直线AN 与椭圆交于点()0,1N -.因此直线MN 也过点()0,0. 综上所述,直线MN 过定点()0,0. 解法二(设点法)设()()1122,,,M x y N x y ,则由题意可知1210,22y y x ≠-<<,222x -<<,且2222112244,44x y x y +=+=. 因为直线,AM AN 的斜率之积等于14-, 所以14AM AN k k ⋅=-,即12121.224y y x x ⋅=---将上式平方,得()()2212221211622y y x x ⋅=--,即()()2212221211441.?1622x x x x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⋅=-- 整理得()()()()2212221244122x x x x --⋅=--,化简得1212221,22x xx x ++⋅=--从而可得()()()()12122222.x x x x ++=-- 解得120x x +=,即12x x =-.代入12121224y y x x ⋅=---,得 ()()()()22212111111112244.?444y y x x x y y =----=-=-=- 因为10y ≠,所以21y y =-.因此()()1111,,,M x y N x y --,从而可知,M N 两点关于原点对称. 故直线MN 过定点()0,0.5.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,且过点()2,0A .(1)求椭圆C 的方程;(2)设,M N 是椭圆C 上不同于点A 的两点,且直线,AM AN 的斜率之积等于14-.试问直线MN 是否过定点?若是,求出该点的坐标;若不是,请说明理由.【解析】(1)因为12c e a ==,又因为222a b c =+,所以22224,3a c b c ==. 设椭圆的标准方程为2222143x y c c +=,代人点()2,3,得2224,16,12c a b ===.因此椭圆的标准方程为2211612x y +=.(2)解法一当APQ BPQ ∠∠=时,,PA PB 的斜率之和为0.设直线PA 的斜率为k ,则直线PB 的斜率为k -. 设直线PA 的方程为()32y k x -=-,与椭圆联立,得()22323448y k x x y ⎧-=-⎨+=⎩代入化简得 ()()()22223483244912480.k xk k x k k ++-++--=设()()1122,,,A x y B x y ,代人点()2,3P ,可得()12823234k k x k -+=+.同理可得22x +=()282334k k k ++,所以2122161234k x x k -+=+,1224834kx x k--=+ 因此()1221211241.2AB k x x k y y k x x x x +--===-- 即直线AB 的斜率为定值12.解法二由题意可知,直线AB 的斜率存在, 不妨设直线AB 的方程为y kx m =+则联立223448y kx mx y =+⎧⎨+=⎩化简整理得()2223484480.k x kmx m +++-=设()()1122,,,A x y B x y ,则122834kmx x k-+=+,2122448.34m x x k -=+ 当APQ BPQ ∠∠=时,,PA PB 的斜率之和为0.因此1212330,22y y x x --+=-- 即()()()()211223230,x y x y --+--=亦即()()()()211223230,x kx m x kx m -+-+-+-= 整理得()()()1212223430,kx x m k x x m +--+--=所以()()22244882234303434m km k m k m k k --⎛⎫⋅+----= ⎪++⎝⎭ 整理得()()21230k m k -+-=,解得12k =或23m k =-+. 当23m k =-+时,直线AB 的方程为()23y k x =-+,经过()2,3P ,与已知不符,舍去,因此直线AB 的斜率为定值12.6.已知椭圆2222:1(0)x y C a b a b +=>>离心率等于()()1,2,3,2,32P Q -是椭圆上的两点.(1)求椭圆C 的方程;(2),A B 是椭圆上位于直线PQ 两侧的动点.当,A B 运动时,满足APQ BPQ ∠∠=,试问直线AB 的斜率是否为定值?如果为定值,求出此定值;如果不是定值,请说明理由.【解析】(1)设椭圆的半焦距为c .因为点()0,1在椭圆C 上,所以1b =,因此221a c -=.又因为2c e a ==,所以2c a ==. 故椭圆C 的标准方程为2214x y +=.(2)解法一(首先求出点B 的坐标,然后直接计算,B N 两点间的距离)设()11,A x y ,()22,C x y ,线段AC 的中点为()00,M x y .联立12y x m =+和22440x y +-=,得22x mx ++2220m -=.则由 ()222Δ(2)422840,m m m =--=->可得m <因此212122,22x x m x x m +=-=-.故AC 的中点为1,2M m m ⎛⎫- ⎪⎝⎭.由题意,点B 位于线段AC 的中垂线上,且BA BC ⊥. 因为线段AC 的中垂线方程为()22m y x m -=-+,即322my x =--. 所以不妨设003,22m B x x ⎛⎫-- ⎪⎝⎭,又因为0BA BC ⋅=,所以 1010202033,2,20,22m m x x y x x x y x ⎛⎫⎛⎫-++⋅-++= ⎪ ⎪⎝⎭⎝⎭ 即1210020055,2,20.2222x x m m x x x x x x ⎛⎫⎛⎫-++⋅-++= ⎪ ⎪⎝⎭⎝⎭ 整理得()2212120055255100,444m x x m x x x mx +++++=代人韦达定理,得()()2220055252225100,444m m m m x mx -+-+++=化简整理得220025551042m x mx ++=.又因为直线l 与x 轴的交点为()2,0N m -,所以()222220000325522510.242m BN x m x m x mx ⎛⎫=+++=++= ⎪⎝⎭因此,,B N . 解法二(利用平面几何知识转化)设()()1122,,,A x y C x y ,线段AC 的中点为()00,M x y .联立12y x m =+和22440x y +-=,得222220x mx m ++-=.则由()222Δ(2)422840,m m m =--=->可得m <因此212122,22x x m x x m +=-=-.故AC 的中点为1,2M m m ⎛⎫- ⎪⎝⎭.于是弦长AC 的长为AC ==又因为直线l 与x 轴的交点为()2,0N m -,所以MN ==因此2222215||||.42BN BM MN AC MN =+=+=故,B N .7.已知椭圆2222:1(0)x y E a b a b+=>>过点()0,1,(1)求椭圆E 的方程; (2)设直线1:2l y x m =+与椭圆E 交于,A C 两点,以AC 为对角线作正方形ABCD ,记直线l 与x 轴的交点为N .问:,B N 两点间的距离是否为定值?如果是,求出定值;如果不是,请说明理由.【解析】(1)由题设知c e a ==因此222221.2c a b a a -== 即222b a =.又因为点()2,1P 在椭圆上,所以224112b b +=,解得223,6b a ==.故椭圆C 的标准方程为22163x y +=.(2)(1)若直线AB 的斜率不存在,则((()0,,,1,2A B M ,直线BM 的方程为.y x =令1y =,得()1D -.因此1AD k ==-.又因为31102PQ k -==--,所以AD k =PQ k .故//AD PQ . (2)若直线AB 的斜率存在,则设直线AB 的方程为()()11223,,,,y kx A x y B x y =+.于是由223,26,y kx x y =+⎧⎨+=⎩得()222112120.k x kx +++= 则1212221212,.2121k x x x x k k -+==++ 设直线BM 的方程为()222211y y x x --=--,令1y =,得()2212,11k x D kx ⎛⎫-+⎪+⎝⎭.于是 ()()()()121212121221112121AD kx kx y k k x kx x x k x x kx ++-==-++----+()2122112122212k x x kx kx kx x x k x +++=+--- ()()2121221212222k x x k x x kx kx x x x kx ++++=++--2222222121222121121222121kk k kx k k k k kx k k -⋅+⋅++++=-⋅+--++ 22212kx kx +==---因此AD PQ k k =.故//AD PQ . 综上所述,//AD PQ .8.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为(),2,12P 在椭圆上,过()0,3Q 的直线交椭圆C 于,A B 两点,M 为PQ 中点,直线BM 与直线1y =交于点D . (1)求椭圆C 的标准方程;(2)判断直线AD 与直线PQ 的位置关系,并证明你的结论.【解析】(1)由题设知1b =.因为c e a ==,所以222223,4c a b a a -==即22134a a -=,解得24a =.故椭圆E 的标准方程为2214x y +=.(2)解法一由题意知,直线PQ 的斜率k 存在.设直线PQ 的方程为()21y k x =--()()1122(0),,,,k P x y Q x y <则由()221,421,x y y k x ⎧+=⎪⎨⎪=--⎩得()2222142440.4k x k k x k k ⎛⎫+-+++= ⎪⎝⎭因此221212224244,.1144k k k kx x x x k k +++==++因为111111121122,AP y kx k kx k k x x x ------=== 所以直线AP 的方程为11221kx k y x x --=+.当1y =-时,11222M x x m kx k -==--, 即1112211.22kx k k k m x x --+==-+- 同理2112k k n x +=-+.于是()()()121212111111.x x k k k k m n x x x x +⎛⎫+=-+++=-++ ⎪⎝⎭代人1212,x x x x +,得()()221421111.4422k k k k k k m n k k +++=-+=-++=+ 解法二(先猜后证)由(1)猜想:当直线AB 的斜率存在时,//AD PQ .证明如下:()()121211211AD PQ y k k k x x kx --=-+---+()()()12121221112kx kx kx x x k x ++=++--- ()()2122112121212221212k x x kx kx kx x x k x kx x x k x +++++---=+---()()()()212121212112k k x x k x x kx x x k x ++++=+---因为上式分子()()()212121k k x x k x x =++++()()222121212121kk k k k k =+⋅-+⋅++ 22212121212021k k k kk +--==+所以0AD PQ k k -=,即AD PQ k k =.故//AD PQ .。
高中数学动点轨迹问题专题讲解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学动点轨迹问题专题讲解)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学动点轨迹问题专题讲解的全部内容。
动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有:(1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可.(5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D)221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y ++=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y +=6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >)变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时,弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时, 立,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-. 当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y , 当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG .∵ GM AB λ=,点M 在x 轴上,∴ (,0)3xM .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法)(2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=. ∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k +=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++,∴ 223(,)1313kb bN k k -++.∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k++=--+, ∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠. ∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且k ≠. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN ⋅=,……………………………………………3分∵MP MN PN MN ⋅=⋅, ∴48y += 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=;(2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=. 1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=. 即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k kk k +⋅-+⋅-++ 90+=.2516k =,得54k =±. 故存在直线l :534y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程; B ,(II)若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、范令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值围.建解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,立平面直角坐标系xoy ,设点(,)P x y , 则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2xM .∵0PM FQ ⋅=,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得1242121-==+∴x x kx x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y (8)分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x FB FA y x FB y x FA841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k 解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =. (1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤≤l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -,(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204yx -+=,即动点N程为24y x =.(2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=. (1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =.(2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-,O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为 又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-, 由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得 2222363(31)31t t t =---考虑几何求法!! 解之得:2115t = ,满足2103t <<. 故所求直线l0y --=0y +-=. 12.设A,B分别是直线5y x =和5y x =-上的两个动点,并且||20AB =,动点P 满足OP OA OB =+.记动点P 的轨迹为C .(I) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线y x =和y x =上的点,故可设11()A x x,22(,)B x x . ∵OP OA OB =+,∴1212,)x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=.(II)设N(s,t),M(x,y),则由λ=,可得(x,y-16)=λ (s,t—16).故x sλ=,16(16)y tλ=+-.∵ M、N在曲线C上,∴⎪⎪⎩⎪⎪⎨⎧=+-+=+1.16)1616t(25s1,16t25s22222λλλ消去s得116)1616t(16)t16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得17152tλλ-=.又4t≤,∴421517≤-λλ.解得3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ).13.设双曲线22213y xa-=的两个焦点分别为1F、2F,离心率为2.(1)求此双曲线的渐近线1l、2l的方程;(3y x=±)(2)若A、B分别为1l、2l上的动点,且122||5||AB F F=,求线段AB的中点M的轨迹方程,并说明是什么曲线.(22317525x y+=)提示:||1010AB=⇒=,又113y x=-,223y x=,则1221()3y y x x+=-,2112()3y y x x-=+.又122x x x=+,122y y y=+代入距离公式即可.(3)过点(1, 0)N是否存在直线l,使l与双曲线交于P、Q两点,且0OP OQ⋅=,若存在,求出直线l的方程;若不存在,说明理由.(不存在)到直线l的距离14.已知点(1, 0)F,直线:2l x=,设动点P为d ,已知2||2PF d =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB(O 为坐标原点).(1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =) (2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b-=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围. 解:(I )依题意有: 2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D(00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >1k 2<,且k≠0. ∴k的取值范围是113(,(,0)(0,)(,)3223-∞--+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM —d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角;(3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >), 则直线MF 的斜率为k -,方程为200()y y k x y -=-. ∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=,∴002200022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值). 所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=- 由2002y y x y y x⎧-=-⎪⎨=⎪⎩得200((1),1)E y y -- 同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->.20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。