中考数学 易错题分析总结 数形结合 人教新课标版
- 格式:doc
- 大小:913.00 KB
- 文档页数:5
第九讲数形结合思想【中考热点分析】数形结合思想是数学中重要的思想方法,它根据数学问题中的条件和结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙的结合起来,并充分利用这种结合,探求解决问题的思路,使问题得以解决的思考方法。
几何图形的形象直观,便于理解;代数方法的一般性,解题过程的操作性强,便于把握。
【经典考题讲练】例1.(2015衢州)如图,已知直线334y x =-+分别交x 轴、y 轴于点A 、B ,P 是抛物线21252y x x =-++的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ =BQ 时,a 的值是 .例2.(2014•广州)已知平面直角坐标系中两定点A (-1,0),B (4,0),抛物线()过点A 、B ,顶点为C .点P (m ,n )(n <0)为抛物线上一点.(1)求抛物线的解析式与顶点C 的坐标. (2)当∠APB 为钝角时,求m 的取值范围. (3)若,当∠APB 为直角时,将该抛物线向左或向右平移t ()个单位,点P 、C 移动后对应的点分别记为、,是否存在t ,使得首尾依次连接A 、B 、、所构成的多边形的周长最短?若存在,求t 值并说明抛物线平移的方向;若不存在,请说明理由.解析:(1)待定系数法求解析式即可,求得解析式后转换成顶点式即可.(2)因为AB 为直径,所以当抛物线上的点P 在⊙C 的内部时,满足∠APB 为钝角,所以-1<m <0,或3<m <4.(3)左右平移时,使A ′D+DB ″最短即可,那么作出点C ′关于x 轴对称点的坐标为C ″,得到直线P ″C ″的解析式,然后把A 点的坐标代入即可.答案:(1)解:依题意把的坐标代入得: ;解得:抛物线解析式为顶点横坐标,将代入抛物线得(2)如图,当时,设,则过作直线轴,(注意用整体代入法)解得,当在之间时,或时,为钝角.(3)依题意,且设移动(向右,向左)连接则又的长度不变四边形周长最小,只需最小即可将沿轴向右平移5各单位到处沿轴对称为∴当且仅当、B、三点共线时,最小,且最小为,此时,设过的直线为,代入∴即将代入,得:,解得:∴当,P、C向左移动单位时,此时四边形ABP’C’周长最小。
中考专题48 中考专题数学数形结合思想数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。
中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。
作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。
“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。
1.数形结合思想的含义数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
2.数形结合思想应用常见的四种类型(1)实数与数轴。
实数与数轴上的点具有一一对应关系,借助数轴观察数的特点,直观明了。
(2)在解方程(组)或不等式(组)中的应用。
利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;利用数轴或函数图象解有关不等式(组)的问题直观,形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解。
(3)在函数中的应用。
借助于图象研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
(4)在几何中的应用。
对于几何问题,我们常通过图形,找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等。
3.数形结合思想解题方法“数”和“形”是数学中两个最基本的概念, 每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的知识,解决几何的问题.实现了抽象概念与具体图形的联系和转化,化难为易,化抽象为直观.【经典例题1】(2020年•遵义)构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°=AC CD =12+√3=2−√3(2+√3)(2−√3)=2−√3.类比这种方法,计算tan22.5°的值为( )A .√2+1B .√2−1C .√2D .12 【标准答案】B【分析】在Rt △ACB 中,∠C =90°,∠ABC =45°,延长CB 使BD =AB ,连接AD ,得∠D =22.5°,设AC =BC =1,则AB =BD =√2,根据tan22.5°=AC CD 计算即可. 【答案剖析】在Rt △ACB 中,∠C =90°,∠ABC =45°,延长CB 使BD =AB ,连接AD ,得∠D =22.5°,设AC =BC =1,则AB =BD =√2,∴tan22.5°=AC CD =11+√2=√2−1 【知识点练习】(2019•湖北省仙桃市)不等式组的解集在数轴上表示正确的是( )A. B.C.D.【标准答案】C【解答】解:解不等式x﹣1>0得x>1,解不等式5﹣2x≥1得x≤2,则不等式组的解集为1<x≤2【经典例题2】(2020年•济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b 相交于点P,根据图象可知,方程x+5=ax+b的解是( )A.x=20 B.x=5 C.x=25 D.x=15【标准答案】A【分析】两直线的交点坐标为两直线答案剖析式所组成的方程组的解.【答案剖析】∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴直线y=x+5和直线y=ax+b相交于点P为x=20.【知识点练习】(2020年株洲模拟)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于.【标准答案】4【答案剖析】本题考查了一次函数与坐标轴的交点以及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为4,∴OA•OB+=4,∴+=4,解得:b1﹣b2=4.【经典例题3】(2020年通化模拟)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE 与△BHD面积之和的最大值,并简要说明理由.【标准答案】见答案剖析。
中考数学专题 数形结合知识梳理数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的.华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休.”这充分说明了数形结合数学学习中的重要性,是中考数学的一个最重要数学思想.典型例题一、在数与式中的应用【例1】实数a 、b 在数轴上的位置如图所示,化简2a ab +-=_________.【分析】 由数轴上a ,b 的位置可以得到a 〈0,b>0且a <b .∴2a a =-,a b b a -=-.【解】()22a a b a b a a b +-=-+-=-+【例2】 如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴_________根.【分析】 由图形可知,搭1条金鱼需要8根火柴棒,后面每多一条就多6根火柴棒,所以搭n 条金鱼共需8+6(n -1)=(6n+2)根火柴棒. 【解】6n+2二、在方程、不等式中的应用【例3】 (08聊城)已知关于x 的不等式组020x a x ->⎧⎨->⎩的整数解共有2个,则a 的取值范围是___________.【分析】解不等式组得解集为2x ax >⎧⎨<⎩,我们可以将x<2标注在数轴上,要使得不等式组有2个整数解,由图象可知整数解为0,1,则a 应在-1~0之间,且可以等于-1,但不能为0,所以以的取值范围是-l ≤a <0.【解】 1≤n 〈0【例4】(08南通)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.203210x yx y+-=⎧⎨--=⎩B.2103210x yx y--=⎧⎨--=⎩C.2103250x yx y--=⎧⎨+-=⎩D.20210x yx y+-=⎧⎨--=⎩【分析】根据图象我们可以知道这个方程组的解为11xy=⎧⎨=⎩,只要将解进行代入检验即可.【解】D【例5】已知二次函数y=a x2+bx+c的图象如图所示,若关于x的方程a x2+bx+c-k=0有两个不相等的实数根,则k的取值范围为()A.k〉3 B.k=3 C.k<3 D.无法确定【分析】如果根据b2-4a c的符号来判别解的情况,本题将无从入手,可将原方程变形为a x2+bx+c=k,从而理解成是两个函数的交点问题,即2y ax bx cy k⎧=++⎨=⎩,由图象可知只要y=k〈3就一定定与抛物线有两个不同的交点,所以答案选C.【解】C三、在函数中的应用【例6】(08安徽)如图为二次函数y=a x2+bx+c的图象,在下列说法中:①a c<0 ②方程a x2+bx+c=0的根是x1=-1,x2=3 ③a+b+c>0 ④当x>1时,y随x的增大而增大正确的说法有__________.(把正确的答案的序号都填在横线上)【分析】由图象可知,开口向上,与x轴交于-1和3两点,与y轴交于负半轴,则a>0,c〈0;由对称性知对称轴x=1,所以结论①②④正确.【解】①②④【例7】某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线如图所示,为经过原点O 的一条抛物线(图中标出的数据为已知条件).要跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面2103米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误, (1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中运动路线是如图抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3导米,问此次跳水会不会失误?并通过计算说明理由.【分析】(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),入水点(2,-10),最高点的纵点标为23. (2)求出抛物线的解析式后,要判断此次跳水会不会失误, 就是要看当该运动员在距池边水平距离为335米,3332155x =-=时, 该运动员距水面高度与5米的关系.【解】(1)在给定的直角坐标系下,设最高点为A ,入水点为B ,抛物线的解析式为y=a x 2+bx+c ,由图可知,O ,B 两点的坐标依次为(0,0)(2,-10),且顶点A 的纵坐标为23,则2042104243c a b c ac b a ⎧⎪=⎪⎪++=-⎨⎪-⎪=⎪⎩,解得2561030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩或3220a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩抛物线的对称轴在y 轴右侧,∴02b a ->.又抛物线开口向下,∴256a =-,103b =,c=0,∴2251063y x x =-+.(2)当运动员在空中距池边距离为335米时,即383255x=-=时,63y=-,∴此时运动员距水面高为16410533-=<.因此,试跳会出现失误.四、在概率统计中的应用【例8】(05江西)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图所示的条形统计图:(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全扇形统计图,并说明这两幅统计图各有什么特点;(3)请你根据上述数据,对该报社提出一条合理的建议.【分析】观察条形统计图可以计算出调查总人数,画扇形统计图需计算出第一版、第二版的百分比和圆心角,分别为15003601085000⨯︒=︒,500360365000⨯︒=︒,建议可从不足的方面提出.【解】(1)参加调查的人数为5000人;(2)如图所示:条形统计图能清楚地表示出喜欢各版面的读者人数.扇形统计图能清楚地表示出喜欢各版面的读者人数占所调查的总人数的百分比.(3)如:建议改进第二版的内容,提高文章质量,内容更贴近生活,形式更活泼些.综合训练1.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2",这种说明问题的方式体现的数学思想方法叫做( )A .代入法B .数形结合C .换元法D .分类讨论2.(08大连)如图,两温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这天的最高气温比最低气温高 ( )A .5℃B .7℃C .12℃D .-12℃3.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,此后每加1分钟加收1元,则表示电话费y(元)与通话时间(分)之间的关系的图象正确的是( )4.若M 112y ⎛⎫- ⎪⎝⎭,,N 214y ⎛⎫- ⎪⎝⎭,,312y ⎛⎫ ⎪⎝⎭,三点都在函数ky x=(k<0)的图象上,则y 1,y 2,y 3的大小关系为( )A .y 2>y 3>y 1B .y 2〉y 1>y 3C .y 3>y 1〉y 2D .y 3〉y 2〉y 15.关于x 的一元二次方程x 2-x -n=0没有实数根,则抛物线y=x 2-x -n 的顶点在A .第一象限B .第二象限C .第三象限D .第四象限( )6.(08临沂)若不等式组302741x a x x +<⎧⎨+>-⎩的解集为x 〈0,则a 的取值范围为 ( )A .a 〉0B .a =0C .a >4D .a =47.(08镇江)福娃们在一起探讨研究下面的题目:函数y=x 2-x+m (m 为常数)的图象如图所示,如果x=a 时,y<0;那么x=a -1时,函数值( )下面是福娃们的讨论,请你解答该题.贝贝:我注意到当x=0时,y=m〉0.晶晶:我发现图象的对称轴为x=1 2欢欢:我判断出x1<a〈x2.迎迎:我认为关键要判断a-1的符号.妮妮:m可以取一个特殊的值.A.y<0 B.0<y<m C.y〉m D.y=m8.如图,在平面直角坐标系中,∠AOB=150°,OA=OB=2,则点A、B的坐标分别是_________和_________.9.在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b)如图1,把余下的部分剪拼成一个矩形如图2,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是_______________.10.(08绍兴)如图,已知函数y=x+b和y=a x+3的图象交点为P,则不等式x+b>a x+3的解集为__________.11.方程组211y xy x=-⎧⎨=--⎩的解是__________.12.(08广州)如图,为实数a 、b 在数轴上的位置,化简()222a b a b ---.13.(02南京)(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,AB OB b a b ===-; 当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边AB OB OA b a b a a b =-=-=-=-; ②如图3,点A 、B 都在原点的左边,()AB OB OA b a b a a b =-=-=---=-; ③如图4,点A 、B 在原点的两边,()AB OB OA a b a b a b =+=+=+-=-.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是_______,数轴上表示-2和-5的两点之间的距离是_______,数轴上表示1和-3的两点之间的距离是________;②数轴上表示x 和-1的两点A 和B 之间的距离是_________,如果2AB =,那么x 为__________; ③当代数式12x x ++-取最小值时,相应的x 的取值范围是____________.14.(08苏州)某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.根据上述信息,回答下列问题:(1)该厂第一季度_________月份的产量最高.(2)该厂一月份产量占第一季度总产量的_______%.(3)该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格的产品?(写出解答过程)15.(08恩施)如图所示,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB=5,DE=1,BD=8;设CD=x .(1)用含x 的代数式表示AC+CE 的长;(2)请问点C 满足什么条件时,AC+CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式()224129x x ++-+的最小值.16.如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。
新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:数与式综合复习—知识讲解(基础)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数.有理数和无理数统称实数.2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系.要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础.3.相反数实数a和-a叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等.要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a和b互为相反数,那么a+b=0;反过来,如果a+b=0,那么a和b互为相反数.4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即如果a>0,那么|a|=a;如果a<0,那么|a|=-a;如果a=0,那么|a|=0.要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数.5.实数大小的比较在数轴上表示两个数的点,右边的点所表示的数较大.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c =a+(b+c); 乘法交换律 ab =ba ;乘法结合律 (ab)c =a(bc); 分 配 律 a(b+c)=ab+ac .(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减. 算式里如果有括号,先进行括号内的运算. 如果只有同一级运算,从左到右依次运算. 7.平方根如果x 2=a ,那么x 就叫做a 的平方根(也叫做二次方根). 要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根. 8.算术平方根正数a 的正的平方根,叫做a 的算术平方根.零的算术平方根是零. 要点诠释:从算术平方根的概念可以知道,算术平方根是非负数. 9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字. 10.科学记数法把一个数记成±a ×10n的形式(其中n 是整数,a 是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念及性质 1.二次根式的概念≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式. 常用的二次根式的有理化因式:(1(2)a a +-互为有理化因式;一般地a a +-(3. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a aa b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变.要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m mm ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1pp a a-=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简. (2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式; ②考虑所给多项式是否能用公式法分解. 要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数; (3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的有关概念及运算1.实数2-,0.3,172,π-中,无理数的个数是( ) A .2 B .3 C .4 D .5【思路点拨】常见的无理数有以下几种形式:(1)字母型:如π是无理数,24ππ、等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;(33256、、,…都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.【答案】A ;【解析】本题主要考查无理数的概念.无理数是指无限不循环小数,2,π-都是无限不循环小数, 故共有2个无理数.【总结升华】无理数通常有以下几类:①开方开不尽的数;②含π的数;③看似循环但实际不循环的小数;④三角函数型:sin35°、tan27°、cos29°等.抓住这几类无理数特征,则可以轻松解决有关无理数的相关试题. 举一反三:【课程名称:数与式综合复习 402392 :例1—2】【变式】如图,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ).A .32--B .-31-C .32+-D .31+【答案】A.2.计算:(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦; (2)85(2)25-⨯ .【思路点拨】注意在第(1)题中,32-与3(2)-的不同运算顺序和4499÷⨯的运算顺序. 【答案与解析】(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦480.2549409⎛⎫=-⨯-÷⨯- ⎪⎝⎭9249402(8140)4⎛⎫=--⨯⨯-=--- ⎪⎝⎭24143=--=-.(2)85(2)25-⨯444442525(425)25100252500000000=⨯⨯=⨯⨯=⨯=.【总结升华】在进行有理数运算时,要注意运算的顺序,要有灵活运用运算律、运算法则和相反数、倒数、0、1的运算特性的意识,寻求简捷的运算途径.举一反三: 【变式】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭;【答案】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭21.50.4 1.4 1.5 1.42.95=--+-=--=- .3. 若x-3+x-y+1=0,计算322x y+xy +4y .【思路点拨】几个非负数相加和为0,则这几个非负数必定同时为0,进而求出x 、y 的值. 【答案与解析】依题意得30,10,x x y -=⎧⎨-+=⎩解得3,4,x y =⎧⎨=⎩∴3222224x y+xy +y(x +xy+)y(x+)(x+)(3)410.44222y y y y y ====+⨯=【总结升华】2a ,(a 0)a a ≥,这三个非负数中任意几个相加得0,则每一个都得0.举一反三:【变式】已知|1|80a b ++-=,则a b -= .【答案】本题考查绝对值与算数平方根的非负性,两个非负数的和为0,所以这两数都为0.因为|1|80a b ++-=,所以a=-1,b=8. a b -=﹣9.类型二、分式的有关运算4.对于分式211x x -+,当x 取何值时,(1)分式有意义? (2)分式的值等于零?【思路点拨】当分母等于零时,分式没有意义,此外,分式都有意义;当分子等于零,并且分母不等于零时,分式的值等于零. 【答案与解析】(1)由分母x+1=0,得x =-1.∴ 当x ≠-1时,分式211x x -+有意义.(2)由分子210x -=,得1x =或1x =-. 而当x =-1时,分母x+1=0; 当x =1时,分母10x +=.∴ 当x =l 时,分式211x x -+的值等于零.【总结升华】讨论分式有无意义时,一定要对原分式进行讨论,而不能讨论化简后的分式.类型三、二次根式的运算5.(2014春•平泉县校级期中)已知a=,求﹣的值.【思路点拨】先利用因式分解原式进行化简,再进行约分和利用二次根式的性质计算,由于a==4﹣2,则a ﹣4<0,所以原式可化简为a ﹣3+,然后把a 的值代入计算即可. 【答案与解析】 解:原式=﹣=a ﹣3﹣, ∵a==4﹣2, ∴a ﹣4<0, ∴原式=a ﹣3+=a ﹣3+, =4﹣2﹣3+=2﹣.【总结升华】本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.也考查了分式的混合运算.举一反三:【变式】计算:2(1848)(212)(23)+---;【答案】2(1848)(212)(23)+---(3243)(223)(2263)=+---+646662452623=+---+=-.6.当x 为何值时,下列式子有意义? (1)32x -; (2)125xx -+. 【思路点拨】第(1)题中,根号外的负号与根号是否有意义无关;第(2)题中,因为与分式有关,因此要综合考虑x 的取值范围.【答案与解析】(1)320x -≥,即32x ≤. ∴ 当32x ≤时,32x --有意义. (2)120x -≥,且x+5≠0,∴ 当12x ≤,且x ≠-5时,125x x -+有意义.【总结升华】要使偶次根式有意义,被开方数为非负数;分式有意义分母不为0.举一反三:【课程名称:数与式综合复习 402392 :例1—2】 【变式】下列说法中,正确的是( )A .3的平方根是3B .5的算术平方根是5C .-7的平方根是7-±D .a 的算术平方根是a【答案】B.类型四、数与式的综合运用7.(2014秋•崂山区校级期末)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表:图形 (1) (2) (3)… 黑色瓷砖的块数 4 7… 黑白两种瓷砖的总块数 15 25… (2)依上推测,第n 个图形中黑色瓷砖的块数为 ;黑白两种瓷砖的总块数为 (都用含n 的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.【思路点拨】找规律题至少要推算出三个式子的值,再去寻求规律,考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力. 【答案与解析】解:(1)填表如下:图形 (1) (2) (3)… 黑色瓷砖的块数 4 7 10… 黑白两种瓷砖的总块数 15 25 35 …(2)第n 个图形中黑色瓷砖的块数为3n+1;黑白两种瓷砖的总块数为10n+5; (3)能,理由如下:10n+5﹣(3n+1)﹣(3n+1)=2015,精品文档 用心整理资料来源于网络 仅供免费交流使用 解得:n=503答:第503个图形.【总结升华】本题考查数形结合、整理信息,将图形转化为数据,猜想规律、探求结论.抓住其中的黑色瓷砖数目的变化规律,结合图形,观察其变化规律.举一反三:【变式】如图所示的是一块长、宽、高分别为7cm ,5cm 和3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面爬到和顶点A 相对的顶点B 处吃食物,那么它要爬行的最短路径的长是多少?22(57)3153++=(cm).【答案】路径①的长为路径②的长为22(37)5125++=22(35)7113++=(cm). 113。
中考数学易错题解析解方程的常见错误及纠正方法解方程是中学数学中的重要内容,也是容易出错的一个知识点。
在中考数学中,解方程题经常会出现,并且常常成为学生们易错的地方。
本文将从解方程的常见错误入手,探讨解方程题的正确解法和纠正方法,帮助同学们在中考数学中避免这些错误。
一、常见错误1. 忽略分配律:在解方程问题中,常常会有分配律的运算。
例如:2(x + 1) = 3(x - 2)。
有些同学会漏掉分配律,直接将2乘以x和1,3乘以x和2,导致最后得到的方程错误。
2. 步骤混乱:解方程是一个需要有条不紊进行的过程,但有些同学容易在解题过程中步骤混乱。
例如:直接代入计算,没有按照顺序进行合并同类项、消元等步骤,导致最后答案错误。
3. 求解范围错误:解方程的过程中,有时会得到可行解和不可行解。
但有些同学没有注意到这一点,将不可行解作为最后的解答,造成错误。
二、纠正方法1. 仔细阅读题目:解方程题在中考中常常伴随着实际问题。
在解答问题之前,要仔细阅读题目,理解问题的要求和条件。
只有明确了方程的意义和所求的未知数,才能正确解题。
2. 列方程时注重细节:在列方程时,要注意各项系数的符号、操作的顺序等细节。
特别是运用分配律时,要确保每项都正确进行了乘法运算。
3. 使用合适的解法:解方程可以采用多种方法,如消元法、配方法、因式分解等。
不同方程适用不同的方法,需要根据具体情况灵活选择。
在解题过程中,同学们可以多进行练习,熟悉各种解法的应用场景。
4. 检验答案的可行性:在解得方程的根之后,需要进行合理性检验。
将解代入原方程,看是否符合题目条件和要求。
如果不符合,则需要回顾解题过程,找出可能出错的地方。
5. 多进行归纳总结:经常遇到的错误,需要进行归纳总结,并进行自我纠正。
同学们可以将错题整理出来,反复分析错误的原因,并总结出解题的经验和技巧。
三、解方程题的练习方法为了提高解方程的能力,同学们可以进行以下练习:1. 多做基础题:基础题目是掌握解方程的关键。
专题二:数形结合简要分析数形结合思想是一种重要的数学思想方法。
近几年各地中考试题中都体现了这种数学思想方法。
数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
典型例题例1、小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还。
”如果用纵轴y 表示父亲与儿子进行中离家的距离,用横轴x 表示父亲离家的时间,那么下面的图像与上述诗的含义大致吻合的是()A B C D例2、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( )A .a >0B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根【分析】从二次函数的图象可知,图象开口向下,a <0;当x >1时,y 随x 的增大而减小; x=0时,y =c >0;函数的对称轴为x=1,函数与x 轴的一个交点的横坐标为-1,函数与x 轴的另一个交点的横坐标为3。
例3、如图所示,点A 的坐标为(2,0),点B 在直线上运动,当线段AB 最短时,点B 的坐标为例4、如图,直线b x k y +=1与反比例函数xk y 2=的图象 交于A )6,1(,B )3,(a 两点. (1)求1k 、2k 的值; (2)直接写出021>-+xk b x k 时x 的取值范围; (3)如图,等腰梯形OBCD 中,BC //OD ,OB =CD ,OD 边在x 轴上,过点C 作CE ⊥OD 于点E ,CE 和反比例函数的图象交于点P ,当梯形OBCD 的面积为12时,请判断PC 和PE 的大小关系,并说明理由.OPE DCBAyx【分析】(1)略(2)021>-+xk b x k 的x 的范围,就是当y 1>y 2时,自变量的x 的范围,从图象上看:直线在双曲线上方,即x 的范围是在点A 、B 的横坐标之间,这是“以形助数” (3)要判断PC 和PE 的大小关系,只需要分别求出它们的长度,“以数助形”.设点P 的坐标为(m ,n ),易得C (m ,3),点的坐标转化成线段长度CE=3,BC=m-2,OD=m+2,利用梯形的面积是12列方程,可求得m 的值,从而求得点P 的坐标,根据线段的长度关系可知PC=PE .考 点 训 练一、填空题1、已知二次函数c bx ax y ++=2的图象如图所示,则0___42,0____,0___,0___ac b c b a -2、如图,抛物线y =-x 2+2x +m (m <0)与x 轴相交于点A (x 1,0)、B (x 2,0),点A 在点B 的左侧.当x =x 2-2时,y ______0(填“>”“=”或“<”号).3、如图所示,矩形AOCB 的两边OC 、OA 分别位于x 轴,y 轴上,点B 的坐标为B,D 是AB 边上的一点。
中考数学图形与几何专题知识易错题50题含答案一、单选题1.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从点A出发爬到点B,只考虑路径、时间、路程等因素,下列结论正确的为()A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定哪只蚂蚁先到2.一张长方形纸片长10厘米、宽6厘米,以它的宽边为轴旋转一周得到一个圆柱体,下面关于这个圆柱描述正确的是()A.底面直径6厘米,高10厘米B.底面直径10厘米,高6厘米C.底面半径6厘米,高10厘米D.底面半径10厘米,高6厘米3.下列说法正确的是()A.213的倒数是52B.计算弧长的公式是2180πnl r=⨯C.1是最小的自然数D.1的因数只有14.在长方体中,与一条棱异面的棱有()A.2条B.3条C.4条D.5条5.学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要()平方米的铁皮.A.18πB.27πC.0.27πD.1.8π6.将下图沿着虚线折起来,可折成一个正方体,这时正方体的5号面所对的面是()A.1B.2C.3D.47.如图,线段AB是图中最大的半圆的直径,而AA1、A1A2、A2A3、A3A4、A4B分别是另外五个小的半圆的直径,有两只小虫以相同的速度同时从点A出发到点B,甲虫沿着用实线表示的大的半圆爬行,乙虫沿用虚线表示的五个小的半圆爬行,则下列结论正确的是()A.甲先到点B B.乙先到点BC.甲、乙同时到点B D.无法确定8.一个圆柱和一个圆锥的底面积相等,圆柱的高是圆锥高的2倍,则圆锥的体积是圆柱体积的()A.12B.13C.16D.2倍9.比较下图长方形内阴影部分面积的大小,甲()乙A.>B.<C.=D.无法确定10.下列语句中正确的是()A.线段AB就是A、B两点间的距离B.如果AB=BC,那么B是线段AC的中点C.比较两个角的大小的方法只有度量法D.长方形纸片能检测平面与平面平行11.如图,一圆柱形油桶中恰好装有半桶油,现将油桶由直立状态放倒成水平放置状态,在整个过程中,桶中油面的形状不可能是()A.B.C.D.12.已知小圆半径是2cm,大圆半径是4cm,小圆周长是大圆周长的()A.12B.14C.16D.1813.与长方体中任意一条棱既不平行也不相交的棱有()A.2条B.4条C.6条D.8条14.小圆的半径是2,大圆的半径是4,小圆的面积是大圆面积的()A.18B.14C.12D.215.用同样长的铁丝分别围成长方形、圆形和正方形,围成()的面积最大.A.长方形B.正方形C.圆D.无法确定16.圆的半径由3厘米增加了6厘米,圆的面积增加了()平方厘米A.72πB.27πC.36πD.82π17.一个拧紧瓶盖的瓶子里装有一些水(如右图),根据图中的数据,可以计算瓶子的容积是()立方厘米.A.24πB.28πC.32πD.40π18.如果一个扇形的半径扩大到原来的3倍,圆心角缩小到原来的13,那么这个扇形的面积()A.扩大到原来的3倍B.不变C.缩小为原来的13D.扩大到原来的9倍19.一个铁环直径是60厘米,从操场东端滚到西端转了90圈,另一个铁环的直径是40厘米,它从东端滚到西端要转的圈数是().A.270B.135C.100D.12020.一个圆形花坛周围围上了一圈栅栏,栅栏长18.84米,又沿栅栏一周砌有一条宽1米的鹅卵石小路.若每平方米约需鹅卵石100颗,则共需鹅卵石()A.1570颗B.1884颗C.2198颗D.2512颗二、填空题21.用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是______厘米.(π取3.14)22.如图,是将一个长方体沿它的底面切去一刀后剩下的部分.(1)与棱HD 平行的棱有______________________________________. (2)与棱EF 异面的棱有______________________________________. (3)与棱NQ 相交的棱有______________________________________.23.数学老师的教具里有一个圆柱和一个圆锥,老师告诉大家,圆柱和圆锥的体积相等,底面积也相等,已知圆锥的高是2厘米.请你算一算,这个圆柱的高是_______厘米.24.如图所示,在长方体1111ABCD A B C D 中与棱BC 垂直的平面是_________.25.在一个边长为6cm 的正方形里画一个最大的圆,这个圆的面积占正方形面积的____.26.将一个正方体放在桌面上,且已知正方体的边长为4厘米,那么与桌面垂直的平面面积之和为________.27.一个圆柱的侧面展开图是正方形,这个圆柱底面周长与高的比是__________. 28.将一个圆分割成三个扇形,它们的面积之比为2:3:4,则这三个扇形中最大的圆心角的度数为_________.29.半径为r ,圆心角为n°的扇形面积S 扇=______.30.一扇形面积是所在圆面积的23,扇形的圆心角是=_________.31.将一个长为4厘米,宽为3厘米的长方形,绕它的一边所在的直线旋转一周,得到的圆柱体的体积是___________.32.一个圆锥的高不变,底面半径扩大到原来的2倍,底面积扩大到原来的( )倍,体积扩大到原来的( )倍.33.一个圆环,外圆的半径是内圆半径的3倍,这个圆环的面积和内圆面积的比是( ).34.一个正方体的棱长是12cm,把它削成一个最大的圆柱体,圆柱体的体积是_____ 3cm,再把这个圆柱体削成一个最大的圆锥体,圆锥体的体积是_____3cm.35.时钟的分针长3厘米,从9点到9点40分;分针扫过区域的面积是_______平方厘米,分针的针尖走的路程长_______厘米.36.如果一个扇形的圆心角扩大为原来的3倍,半径长缩小为原来的13,那么所得的扇形的面积与原来扇形的面积的比为____.37.如右下图所示,长方体按如图方式截去一个角之后,余下的几何体有_________个面,_________个顶点,_________条棱.38.如图,在长方体ABCD-EFGH中(1)长方体中棱AB与___________个面平行,分别是____________长方体中棱BC与___________个面平行,分别是____________长方体中棱AE与___________个面平行,分别是____________通过观察思考可以得到:长方体中每条棱都与__________个面平行.(2)长方体中面ABCD与___________条棱平行,分别是____________长方体中面ADHE与___________条棱平行,分别是____________长方体中面ABFE与___________条棱平行,分别是____________通过观察思考可以得到:长方体中每个面都与____________条棱平行(3)长方体中一共可以写出多少对棱与面的平行关系?39.如图,已知在矩形ABCD 中,AB =1,BC P 是AD 边上的一个动点,连结BP ,点C 关于直线BP 的对称点为1C ,连接C 1C .当点P 运动时,点1C 也随之运动.若点P 从点A 运动到点D ,则线段C 1C 扫过的区域的面积是_______.三、解答题40.如图,在长方体ABCD EFGH 中,分别写出与棱EH 相交、平行、异面的所有的棱.41.补画长方体(被遮住的线段用虚线表示).42.小磊房间窗户的装饰物如图阴影部分所示,它们由两个半径相同的四分之一圆组成(单位:米).(1)请用字母表示装饰物的面积(结果保留π):_.(2)请用字母表示窗户能射进阳光的部分面积(结果保留π):_.(3)若23a=,2b=时,请求出窗户能射进阳光的面积(π取3).43.如图,准备在一个广场中心建一个直径为24m的圆形花坛,并将圆形花坛分割成面积相等的四个部分.(1)请你求出花坛中小圆部分的周长;(2)如果在花坛中小圆以外的三个区域内种上不同品种的花卉,已知A品种与B品种的费用之比为25:0.5,B品种和C品种的费用之比为2:3,如果购买C品种花卉比购买A品种花卉多花了7000元,那么购买三种花卉总费用多少元?44.求出如图图形的体积.45.一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形,量得圆柱底面的周长是62.8米,高2米,圆锥的高是1.2米.这个粮囤能装稻谷多少立方米?如果每立方米稻谷重500千克,这个粮囤最多能装稻谷多少吨?46.如图是用两个正方形(边长如图所示)和一个直角三角形拼成的五边形,(1)用含a的代数式表示阴影部分的面积.(结果要化简)(2)求当a=2时,阴影部分的面积.47.如图,是一个长为x米,宽为y米的长方形休闲广场,在它的四角各修建一块半径均为r米的四分之一圆形的花坛(阴影部分),其余部分作为空地.(1)用代数式表示空地的面积;(2)若长方形休闲广场的长为50米,宽为20米,四分之一圆形花坛的半径为8米,求长方形广场空地的面积.( 取3)48.用斜二测画法画长方体直观图:(1)补全长方体ABCD﹣A1B1C1D1;(2)量得B1C1的长度是cm,所表示的实际长度是cm.(3)与平面A1ABB1,平行的平面是.49.(1)如图1,ABC是等边三角形,曲线CDEFGH……叫做“等边三角形的渐开线”,曲线的各部分均为圆弧.设ABC的边长为3厘米,求前5段弧长的和(即曲线CDEFGH的长)是多少厘米?(2)如图2,有一只狗被拴在一建筑物的墙角上,这个建筑物是边长为400厘米的正方形,拴狗的绳子长18米.现狗从点A出发,将绳子拉紧按顺时针方向跑,可跑多少米?参考答案:1.C【分析】根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.【详解】根据平移可得出两蚂蚁行程相同,∵甲乙两只蚂蚁的行程相同,且两只蚂蚁的爬行速度也相同,∵两只蚂蚁同时到达点B.故选C.【点睛】本题考查了生活中的平移现象,结合图形找出甲、乙两只蚂蚁的行程相等是解题的关键.2.D【分析】根据题意可知,以长方形的宽边为周旋转一周得到一个圆柱,这个圆柱的底面半径是10厘米,高是6厘米.据此解答.【详解】解:一张长方形纸片长10厘米、宽6厘米,以它的宽边为轴旋转一周得到一个圆柱体,关于这个圆柱描述正确的是底面半径是10厘米,高是6厘米.故选:D.【点睛】此题主要考查了圆柱的特征及应用.3.D【分析】依次对各选项进行分析.【详解】A选项:213的倒数是35,故错误;B选项:计算弧长的公式是180πnl r=⨯,故错误;C选项:0是最小的自然数,故错误;D选项:1的因数只有1,故正确.故选:D.【点睛】考查了倒数、弧长的公式、自然数和因数,解题关键是熟记相关概念、计算公式.答案第1页,共21页【分析】直接根据长方体棱与面的位置关系可直接排除选项.【详解】如图所示:假设与棱AB 异面的棱有:111111A D B C DD CC 棱、棱、棱、棱;所以棱在长方体中,与一条棱异面的棱有4条,故选C .【点睛】本题主要考查长方体的棱与棱之间的位置关系,熟记概念是解题的关键. 5.D【分析】根据横截面的半径可求出地面圆的周长,用底面圆的周长乘以圆柱的高可得展开图形的面积.【详解】解:3分米=0.3米,∵横截面半径是3分米即0.3米,∵横截面的圆的周长为:2×0.3×π=0.6π,故长方形铁皮的面积为:3×0.6π=1.8π,故选:D .【点睛】本题考查圆柱题的展开图,与侧面积,圆柱体的横截面,能够利用圆柱的横截面的半径以及高求出圆柱的侧面积是解决本题的关键.6.B【分析】如图,属于正方体展开图的“1-3-2”型,折成一个正方体后,1号面与4号面相对,2号面与5号面相对,3号面与6号面相对.【详解】折成一个正方体后,1号面与4号面相对,2号面与5号面相对,3号面与6号面相对.故选:B .【点睛】正方体展开图分四种类型,11种情况,每种情况折成正方体后哪些面相对是有规律的,可自己动手操作一下并记住,能快速解答此类题.【详解】解:1123243411()22AA A A A A A A A B AB ππ++++=⨯,因此乙虫走的四段半圆的弧长正好和甲虫走的大半圆的弧长相等,因此甲、乙同时到点B .故选:C . 【点睛】本题考查的是弧长的计算,解题的关键是掌握弧长公式:180n R l π=(弧长为l ,圆心角度数为n ,圆的半径为R)是解题的关键.8.C【分析】由一个圆柱和一个圆锥的底面积相等,可设圆柱和圆锥的底面积为S ,由圆柱的高是圆锥高的2倍,可设圆锥的高为h ,圆柱的高为2h ,根据圆柱与圆锥的体积公式,分别求出它们的体积,利用比的意义,即可求解.【详解】解:设圆柱和圆锥的底面积为S ,设圆锥的高为h ,圆柱的高为2h , 圆柱的体积=S ×2h = 2Sh ,圆锥的体积=13Sh , 则圆锥的体积是圆柱体积的比是:11:2:61:636Sh Sh Sh Sh , 答:圆锥的体积是圆柱体积的16. 故选C .【点睛】本题考查了圆柱与圆锥的体积计算以及比的意义的应用,灵活应用圆柱与圆锥的体积计算公式是解题的关键.9.C【分析】如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据两个大三角形的面积相等,即甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,即可求得甲的面积等于乙的面积.【详解】解:如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据长方形的对边相等,则长方形对角线分成的两个三角形面积等相等,所以甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,则甲的面积等于乙的面积.故选:C.【点睛】此题考查了三角形的面积,等底等高的两个三角形的面积相等是解答此题的关键.10.D【分析】根据线段的性质,中点的性质,面与棱之间的关系,角的比较方法逐项分析判断即可.【详解】A选项:线段AB的长度就是A、B两点间的距离,则此选项语句错误,不符合题意,故A错误;B选项:如果AB=BC,且点B在线段AB上,那么B是线段AC的中点,则此选项语句错误,不符合题意,故B错误;C选项:比较两个角的大小的方法常用的有叠合法和度量法,则此选项语句错误,不符合题意,故C错误;D选项:长方形纸片有直角,则可以使用长方形纸片检测平面与平面是否平行,则此选项语句正确,符合题意,故D正确;故选D.【点睛】本题考查了线段的性质,中点的性质,面与棱之间的关系,角的比较方法,掌握以上知识是解题的关键.11.C【分析】根据油桶由直立状态放倒成水平放置状态的整个过程,从不同方向观察油桶中的油的形状,即可.【详解】A、油桶处于水平放置状态时,从油桶的上方向下看,得到,不符合题意;B、油桶处于倾斜状态,从油桶的开口观察,可以得到,不符合题意;C、油桶由直立状态放倒成水平放置状态,在整个过程中无法得到,符合题意;D、油桶处于直立状态时,可以得到,不合题意.故选:C.【点睛】本题考查圆柱的截面的认识,解题的关键是从油桶的不同状态,观察油桶中油面的形状.12.A【分析】根据圆的面积公式计算即可.【详解】∵小圆半径是2cm ,大圆半径是4cm ,∵小圆的周长是2×2π=4π(cm ),大圆周长的周长是2×4π=8π(cm ),∵小圆周长是大圆周长的4π÷8π=12, 故选:A .【点睛】本题考查了圆的面积的计算,熟练掌握圆的面积公式是解题的关键.13.B【分析】根据题意,画出图形即可得出结论.【详解】解:看图以AB 为例,与它既不平行也不相交的棱有HD 、GC 、HE 和GF ,共有4条,故选B .【点睛】此题考查的是长方体的特征,根据题意画出图形是解决此题的关键.14.B【分析】根据圆的面积公式分别计算出小圆和大圆的面积,从而得出答案.【详解】解:根据题意知,小圆的面积为22=4ππ⨯,大圆的面积为2416ππ⨯=, 所以小圆的面积是大圆的面积的41=164,故B 正确. 故选:B .【点睛】本题主要考查圆的面积公式的应用,比值的计算,解题的关键是掌握圆的面积公式2S r π=.15.C【分析】要比较周长相等的正方形、长方形和圆形,谁的面积最大,谁面积最小,可以先假设这三种图形的周长是多少,再利用这三种图形的面积公式,分别计算出它们的面积,最后比较这三种图形面积的大小.【详解】解:为了便于理解,假设正方形、长方形和圆形的周长都是16,则圆的半径为:()8162ππ÷=, 面积为:2864π20.38ππ⎛⎫⨯=≈ ⎪⎝⎭; 正方形的边长为:1644÷=,面积为:4416⨯=;长方形的长、宽越接近面积越大,就取长为5宽为3,面积为:5315⨯=,当长方形的长和宽最接近时面积也小于16;所以周长相等的正方形、长方形和圆形,圆面积最大.故选:C .【点睛】此题主要考查长方形、正方形、圆形的周长、面积公式,根据周长求出面积是解题的关键.16.A【分析】根据题意可得半径增加后圆增加的面积等于半径增加后圆的面积减去原来圆的面积,即可求解.【详解】解:根据题意得:圆的面积增加了22363 2293819 72.故选∵A【点睛】本题主要考查求圆环的面积,熟练掌握圆的面积公式是解题的关键.17.C【分析】由图可知瓶子底部的半径是2厘米,然后求出水的体积和空余部分的体积即可得出答案.【详解】解:由图得:瓶子底部的半径是2厘米,∵水的体积是:22624ππ⋅⨯=(立方厘米),空余部分的体积是:()221088ππ⋅⨯-=(立方厘米),∵瓶子的容积是24π+8π=32π(立方厘米),故选:C .【点睛】本题考查了圆柱的体积计算,有理数的混合运算,正确计算是解题的关键.18.A【分析】πR 2是圆的面积公式,圆可以当作非常特别的扇形(360°),扇形的面积公式根据圆的面积公式来算的,圆心角缩小到原来的13,面积缩小到原来的13,(圆心角缩小的基础上)半径扩大3倍面积扩大9倍,总的算起来面积扩大到原来3倍.【详解】原扇形面积=圆心角÷360°×π×R 2,新扇形面积=(圆心角×13)÷360°×π×(3R )2=圆心角÷360×13×π×9R 2 =圆心角÷360°×π×R 2×3,所以新扇形面积:原扇形面积=3:1=3.故选:A【点睛】考核知识点:扇形面积.理解扇形面积计算方法是关键.19.B【分析】已知一个铁环直径是60厘米,可计算的其周长,再结合滚动的圈数即可计算得操场东端滚到西端长度,再根据另一个铁环的直径,即可求出其周长和它从东端滚到西端要转的圈数.【详解】∵一个铁环直径是60厘米∵铁环周长=π⨯直径=60π∵铁环从操场东端滚到西端转了90圈∵操场东端滚到西端长度=6090=5400ππ⨯∵另一个铁环的直径是40厘米∵另一个铁环周长=π⨯直径=40π∵另一个铁环从东端滚到西端要转的圈数=操场东端滚到西长度÷铁环周长∵另一个铁环从东端滚到西端要转的圈数=540040135ππ÷=故选:B .【点睛】本题考查了圆的周长的知识;求解的关键是熟练掌握圆的周长计算方法,从而完成求解.20.C【分析】由题意知,要求这条小路的面积就是求圆环的面积,已知内圆的周长是18.84米,利用C=2πr 可求得内圆半径,用内圆半径加上环宽1米就是外圆半径,再利用S 圆环=π(R 2-r 2)求得环形的面积,最后再乘以100即可.【详解】内圆半径:18.84÷3.14÷2=3(米),外圆半径:3+1=4(米);小路的面积:3.14×(42-32)=3.14×(25-9)=3.14×7=21.98(平方米);⨯=(颗) .则共需鹅卵石:10021.982198答:共需鹅卵石2198颗.故选:C.【点睛】本题考查了圆环的面积公式的灵活应用,解答关键是把实际问题转化成数学问题中,再把对应的数据代入圆环公式计算即可.解答此题要注意:求圆环的面积要先知道内、外圆的半径,再用外圆面积减去内圆面积.21.2【分析】先求解圆的半径,从而可得答案.【详解】解:一个周长是12.56厘米的圆的半径为:12.562 3.14=12.56 6.28=2,所以用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是2厘米.故答案为:2【点睛】本题考查的是利用圆的周长求解圆的半径,理解圆的周长公式是解本题的关键. 22.(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ、棱PQ;(3)棱MN、棱NF、棱BQ、棱PQ【分析】(1)根据长方体的棱与棱之间的位置关系解答即可;(2)根据长方体棱与面之间的位置关系直接解答即可;(3)根据长方体棱与棱之间的位置关系解答即可.【详解】由题意及图形可得:(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ、棱PQ;(3)棱MN、棱NF、棱BQ、棱PQ.故答案为(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ 、棱PQ ;(3)棱MN 、棱NF 、棱BQ 、棱PQ .【点睛】本题主要考查长方体的棱与面的位置关系,熟记概念是解题的关键.23.4【分析】根据圆锥的体积公式、圆柱的体积公式计算即可.【详解】解:设圆锥和圆柱的底面积都是s ,圆柱的高为h ,则圆锥的体积=13sh =13s ×12=4s ,圆柱的体积=sh , 由题意得,sh =4s ,解得,h =4,即圆柱的高是4厘米,故答案为:4.【点睛】本题考查的是圆锥、圆柱的计算,解题的关键是掌握圆锥的体积公式、圆柱的体积公式.24.面11ABB A 、面11CDD C【分析】根据长方体的认识,即可求解.【详解】解:由图可知,与棱BC 垂直的平面为面11ABB A 、面11CDD C .故答案为:面11ABB A ,面11CDD C【点睛】本题主要考查了长方体的认识,熟练掌握长方体的特征是解题的关键. 25.4π 【分析】在一个边长为6cm 的正方形纸片上剪下一个最大的圆,则这个最大的圆的直径就是这个正方形的边长即6厘米,由此利用圆的面积=πr 2和正方形的面积=a 2代入数据即可解决问题.【详解】解:π(6÷2)2÷(6×6)=9π÷364π=, 故答案为:4π 【点睛】本题考查了圆的面积与正方形的面积,掌握圆的面积公式与正方形的面积公式是解题的关键.26.64平方厘米【分析】根据正方体的边长为4厘米,可得到正方形的每个面的面积,而与桌面垂直的平面有4个,即可求解.【详解】解:∵正方体的边长为4厘米∵该正方形的每个面:S4416=⨯=(平方厘米)∵与桌面垂直的平面面积之和为:16464⨯=(平方厘米)故答案为:64平方厘米.【点睛】此题主要考查正方形的面积,正确理解与桌面垂直的平面有4个是解题关键.27.1:1【分析】根据圆柱的侧面展开图是正方形,即可知道圆柱底面周长与高相等,即可得出答案.【详解】解:设圆柱底面周长为a,高为h,∵圆柱的侧面展开图是正方形,∵a h=,∵:1:1a h=,故答案为:1:1.【点睛】本题考查了圆柱的展开图,求比值,数形结合得出圆柱的侧面展开图是本题的关键.28.160°【分析】根据面积之比即为圆心角度数之比进行求解即可.【详解】解:由题意可知,三个圆心角的和为360°,∵三个扇形的面积比为2:3:4,∵三个扇形的圆心角度数之比为2:3:4,∵最大的圆心角度数为:4360160234︒⨯=︒++.故答案为:160°.【点睛】本题考查了扇形圆心角的度数问题,掌握周角的度数即三个扇形圆心角的和是360°是解题关键.29.2 360 n rπ【分析】根据扇形的面积公式即可填写本题.【详解】解:半径为r ,圆心角为n°的扇形面积2360n r S π=扇. 故答案为:2360n r π. 【点睛】本题考查了扇形的面积公式的字母表示形式,熟记和掌握公式是解题的关键. 30.240° 【分析】扇形的面积是它所在圆面积的23,那么扇形的圆心角就是它所在圆的圆心角的23,圆的圆心角为360°,那么可用圆心角乘扇形的圆心角占它所在圆的圆心角的分率即可得到答案.【详解】解:360°×23=240°, 故答案为:240°.【点睛】此题主要考查的是:扇形面积与它所在圆的面积的比等于扇形的圆心角与它所在圆的圆心角的比,掌握知识点是解题关键.31.36π或48π立方厘米【分析】根据圆柱体的体积=底面积×高,由于没有说清楚是绕长方形的哪条边旋转,所以分两种情况讨论.【详解】解:绕长所在的直线旋转一周得到圆柱体积为:23436ππ⨯⨯=(立方厘米); 绕宽所在的直线旋转一周得到圆柱体积:24348ππ⨯⨯=(立方厘米).故得到的几何体的体积是36π或48π立方厘米,故答案为:36π或48π立方厘米.【点睛】本题考查圆柱体的体积的求法及面动成体的知识,注意分两种情况讨论,不要漏解.32. 4 4【分析】根据圆锥的体积公式:213V r h π=,圆锥的高不变,底面半径扩大到原来的2倍,底面积就扩大到原来的4倍,体积扩大到原来的4倍,据此解答即可.【详解】解:∵圆的面积公式为2S r π=,∵圆锥的高不变,底面半径扩大到原来的2倍,底面积就扩大到原来的4倍,∵圆锥的体积公式:213V r h π=,∵圆锥的体积扩大到原来的4倍. 故答案为:4;4.【点睛】本题主要考查圆锥体积公式和圆的面积公式的灵活运用,解题的关键关键是熟记圆的面积公式2S r π=和圆锥的体积公式213V r h π=.33.8∵1【分析】设内圆的半径为a ,则外圆的半径为3a ,圆环的面积等于外圆的面积减去内圆的面积,则问题得解.【详解】设内圆的半径为a ,则外圆的半径为3a , 则外圆的面积为:()2239S a a ππ==外圆,内圆的面积为:22S a a ππ==内圆,则圆环的面积为:22298S S S a a a πππ=-=-=圆环外圆内圆, ∵()22881S S a a ππ==圆环内圆:::, 故答案为:8:1.【点睛】本题考查了比的知识、圆的面积以及圆环面积的计算,掌握圆面积的计算公式是解答本题的关键. 34. 1356.48 452.16【分析】由题意知,削成的最大圆柱体的底面直径是12cm ,高也是12cm ,可利用V =sh 求出它的体积,再把圆柱削成最大的圆锥体,则圆锥是与圆柱等底等高的,圆锥的体积就是圆柱体积的13,其要求圆锥的体积可用圆柱的体积乘13即可.【详解】()233.1412212 3.1436121356.48cm ⨯÷⨯=⨯⨯= 311356.48452.16cm 3⨯=故答案为:1356.48;452.16.【点睛】本题考查圆柱、圆锥的体积计算,正确理解题意并熟练掌握体积公式是解题的关键.35. 18.84 12.56【分析】分析:因为从上午9点到9点40分,经过了40分钟,则分针的针尖扫过区域为。
中考数学 易错题分析总结 数形结合 人教新课标版2010中考数学 易错题分析总结——数形结合部分1.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点 E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△ 2cm .2 .5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是( )3. 如图,将ABC △沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB ∥且12EF AB =;②BAF CAF ∠=∠; ③12ADFE S AF DE =四边形;④2BDF FEC BAC ∠+∠=∠,正确的个数是( )A .1B .2C .3D .44 如图,在四边形ABCD 中,动点P 从点A 开始沿A B C D的路径匀速前进到D 为止。
在这个过程中,△APD 的面积S 随时间t 的变5如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合.展开后,折痕DE 分别交AB 、AC 于点E 、G.连接GF.下列结论:①∠AGD=112.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG 是菱形;⑤BE=2OG.其中正确结论的序号是 .6 福娃们在一起探讨研究下面的题目:ADCEF GBt t A . B. C . D .F第20题图参考下面福娃们的讨论,请你解该题,你选择的答案是( )贝贝:我注意到当0x =时,0y m =>.晶晶:我发现图象的对称轴为12x =. 欢欢:我判断出12x a x <<.迎迎:我认为关键要判断1a -的符号. 妮妮:m 可以取一个特殊的值.7 正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半圆与以A 为圆心, AB 为半径的圆弧外切,则sin EAB ∠的值为( ) A .43B .34 C .45D .358 一个函数的图象如图,给出以下结论: ①当0x =时,函数值最大;②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0. 其中正确的结论是( )A .①② B .①③ C .②③ D .①②③9.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )10 如图,水平地面上有一面积为230cm π的扇形AOB ,半径OA=6cm ,且OA 与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB 与地面垂直为止,则O 点移动的距离为( )A 、20cm B 、24cm C 、10cm π D 、30cm π11 在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( ) A 、b a c =+ B 、b ac =C 、222b ac =+ D 、22b a c ==12 古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即函数2y x x m =-+(m 为常数)的图象如左图, 如果x a =时,0y <;那么1x a =-时, 函数值( ) A .0y < B .0y m <<C .y m >D .y m =x yO x 1 x 2在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x ,根据题意,可列方程( ) A .2π(6010)2π(6010)68x +++=B .2π(60)2π6086x +⨯=C .2π(6010)62π(60)8x +⨯=+⨯D .2π(60)82π(60)6x x -⨯=+⨯13 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2, 则该半圆的半径为( ).A . (45)+ cmB . 9 cmC . 45cmD . 62cm14 如图,A B C D ,,,为O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )15 如图,边长为a 的正ABC △内有一边长为b 的内接正DEF △,则AEF △的内切圆半径为 .16 如图,⊙O 的半径为2,点A 的坐标为(2,32),直线AB 为⊙O 的切线,B 为切点.则B 点的坐标为( )A .⎪⎪⎭⎫ ⎝⎛-5823,B .()13,-C .⎪⎭⎫ ⎝⎛-5954,D .()31,-17 如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点P 依次落在点1232008P P P P ,,,,的位置,则点2008P 的横坐标为 .18 如图①,1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线A B C DOP B .ty 045 90 D .ty 045 90 A .ty45 90 C .y 045 90 (第12题)x yO 1 1 BA 1P A O y x (第19题)P 1o 2o3o 4o C B D A 第(18)题图① 第(18)题图② 1o 2o 3o 4o 5o A B C E D 112 111021 1413 5 4 96经过的两个点是 .19 课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( )A .第3天B .第4天C .第5天D .第6天 20 如图所示,AB 是⊙O 的直径,AD =DE ,AE 与BD交于点C ,则图中与∠BCE 相等的角有( )A .2个B .3个C .4个D .5 个21.有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y 升与时间x 分之间的函数关系如图所示.则在第7分钟时,容器内的水量为 升.A.15 B.16 C.17 D.1821.如图,⊙O 1、⊙O 2内切于P 点,连心线和⊙O 1、⊙O 2分别交于A 、B 两点,过P 点的直线与⊙O 1、⊙O 2分别交于C 、D 两点,若∠BPC=60º,AB=2,则CD= .A.1B.2C.21 D.4123.已知:如图所示,抛物线y=ax 2+bx+c 的对称轴为x=-1,与x 轴交于A 、B 两点,交y 轴于点C ,且OB=OC ,则下列结论正确 的个数是 . ①b=2a ②a-b+c>-1 ③0<b 2-4ac<4 ④ac+1=bA.1个B.2个C.3个D.4个24.已知:如图,∠ACB=90º,以AC 为直径的⊙O 交AB 于D 点,过D 作⊙O 的切线交BC 于E 点,EF ⊥AB 于F 点, 连OE 交DC 于P ,则下列结论:其中正确的有 .①BC=2DE ; ②OE ∥AB; ③DE=2PD ; ④AC•DF =DE•CD .A.①②③B.①③④C.①②④D.①②③④第21题图 第22题图 第23题图 第24题图25 已知:如图,直线MN 切⊙O 于点C ,AB 为⊙O 的直径,延长BA 交直线MN 于M 点,AE ⊥MN ,BF ⊥MN ,E 、F 分别为垂足,BF 交⊙O 于G ,连结AC 、BC ,过点C 作 CD ⊥AB ,D 为垂足,连结OC 、CG. 下列结论:其中正确的有 . ①CD=CF=CE ; ②EF 2=4AE •BF; ③AD •DB=FG •FB ; ④MC •CF=MA •BF.A.①②③B.②③④C.①③④D.①②③④26 如图,M 为⊙O 上的一点,⊙M 与⊙O 相交于A 、 B 两点,P 为⊙O 上任意一点,直线PA 、PB 分别交 ⊙M 于C 、D 两点,直线CD 交⊙O 于E 、F 两点,连• •DPO 1O 2A C)•ACDFBP O E•MABFOGCDENADPE CBE DA CO结PE 、PF 、BC ,下列结论:其中正确的有 .①PE=PF ; ②PE 2=PA ·PC; ③EA ·EB=EC ·ED ; ④rRBC PB =(其中R 、r 分别为⊙O 、⊙M 的半径). A.①②③ B.①②④ C.②④ D.①②③④27 如图,菱形OABC 中,120A =∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转90,则图中由BB ',B A '',A C ',CB 围成的阴影部分的面积是 .部分参考答案:1.9 2.D 3.B 4.B 5.(1,4,5) 6 .C 7.D 8. C 9. C 10 .C11 .A 12. A 13.C 14 .C 15.)6a b - 16.D 17 .2008 18.1O ,3O ,如图① (提示:答案不惟一,过31O O 与42O O 交点O 的任意直线都能将四个圆分成面积相等的两部分);5O ,O ,如图② (提示:答案不惟一,如4AO ,3DO ,2EO ,1CO 等均可).19.C 20.D 25.2π3第(18)题图②'(第18题)。