2014年高考数学复习第一轮专题:立体几何判定方法汇总
- 格式:doc
- 大小:99.50 KB
- 文档页数:3
立体几何有关概念与公式一、判定两线平行的方法1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面内的两条直线,可依据平面几何的定理证明二、判定线面平行的方法1、据定义:如果一条直线和一个平面没有公共点2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行3、两面平行,则其中一个平面内的直线必平行于另一个平面4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面三、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行四、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面五、判定线面垂直的方法1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面六、判定两线垂直的方法1、定义:成90角2、直线和平面垂直,则该线与平面内任一直线垂直3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直七、判定面面垂直的方法1、 定义:两面成直二面角,则两面垂直2、 一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、 二面角的平面角为︒902、 在一个平面内垂直于交线的直线必垂直于另一个平面3、 相交平面同垂直于第三个平面,则交线垂直于第三个平面九、各种角的范围1、异面直线所成的角的取值范围是:︒≤<︒900θ 0,2π⎛⎤⎥⎝⎦2、直线与平面所成的角的取值范围是:︒≤≤︒900θ 0,2π⎡⎤⎢⎥⎣⎦3、斜线与平面所成的角的取值范围是:︒≤<︒900θ 0,2π⎛⎤⎥⎝⎦4、二面角的大小用它的平面角来度量;取值范围是:︒≤<︒1800θ (]0,π 十、三角形的心 1、 内心:内切圆的圆心,角平分线的交点 2、 外心:外接圆的圆心,垂直平分线的交点 3、 重心:中线的交点 4、垂心:高的交点十一、棱柱及有关概念(一) 棱柱的判断:看面:有两个面互相平行,其余各面为四边形.看线:每相邻两个四边形的公共边都互相平行.(二)棱柱的分类棱柱根据侧棱和底面的关系分为两种:一种当侧棱与底面不垂直时,称为斜棱柱;另一种当侧棱与底面垂直时,称为直棱柱.直棱柱的面若为正多边形则称为正棱柱.十二、棱锥及有关概念一)正棱锥的概念有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.二)正棱锥的性质.(1)各侧棱相等,各侧面都是全等的等腰三角形.(2)正棱锥的斜高相等.(3)正棱锥中的几个重要直角三角形及两类角:①正棱锥的高、侧棱和侧棱在底面上的射影(正多边形的半径)组成一个直角三角形.②正棱锥的高、斜高和斜高在底面上的射影(正多边形的边心距)组成一个直角三角形.③正棱锥的侧棱、斜高和正多边形边长的一半组成一个直角三角形.④正棱锥底面内,正多边形的半径、边心距和边长的一半组成一个直角三角形.⑤正棱锥的侧棱与底面所成的角;侧面与底面所成的角.十三、球的有关概念1、 半圆以它的直径为旋转轴,旋转所成的曲面叫做球面。
§8.4空间中的平行关系2014高考会这样考 1.考查空间平行关系的判定及性质有关命题的判定;2.解答题中证明或探索空间的平行关系.复习备考要这样做 1.熟练掌握线面平行、面面平行的判定定理和性质,会把空间问题转化为平面问题,解答过程的叙述步骤要完整,避免因条件书写不全而失分;2.学会应用“化归思想”进行“线线问题、线面问题、面面问题”的互相转化,牢记解决问题的根源在“定理”.1.平行直线(1)平行公理:过直线外一点有且只有一条直线和已知直线平行.(2)基本性质4(空间平行线的传递性):平行于同一条直线的两条直线互相平行.(3)定理:如果一个角的两边与另一个角的两边分别对应平行,并且方向相同,那么这两个角相等.(4)空间四边形:顺次连接不共面的四点A、B、C、D所构成的图形,叫做空间四边形.2.直线和平面平行的判定(1)定义:直线和平面没有公共点,则称直线平行于平面;(2)判定定理:a⊄α,b⊂α,且a∥b⇒a∥α;(3)其他判定方法:α∥β,a⊂α⇒a∥β.3.直线和平面平行的性质定理:a∥α,a⊂β,α∩β=l⇒a∥l.4.两个平面平行的判定(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:a⊂α,b⊂α,a∩b=M,a∥β,b∥β⇒α∥β;(3)推论:a∩b=M,a,b⊂α,a′∩b′=M′,a′,b′⊂β,a∥a′,b∥b′⇒α∥β. 5.两个平面平行的性质定理(1)α∥β,a⊂α⇒a∥β;(2)α∥β,γ∩α=a,γ∩β=b⇒a∥b.[难点正本疑点清源]1.平行问题的转化关系:2.证明线面平行是高考中常见的问题,常用的方法就是证明这条线与平面内的某条直线平行.但一定要说明一条直线在平面外,一条直线在平面内.3.辅助线(面)是解(证)线面平行的关键.为了能利用线面平行的判定定理及性质定理,往往需要作辅助线(面).1.已知不重合的直线a,b和平面α,①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α.上面命题中正确的是________.(填序号)答案④解析①若a∥α,b⊂α,则a,b平行或异面;②若a∥α,b∥α,则a,b平行、相交、异面都有可能;③若a∥b,b⊂α,则a∥α或a⊂α.2.已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p是q的____________条件.答案必要不充分解析∵a与b没有公共点,不能推出α∥β,而α∥β时,a与b一定没有公共点,即pD⇒/q,q⇒p,∴p是q的必要不充分条件.3.已知平面α∥平面β,直线a⊂α,有下列命题:①a与β内的所有直线平行;②a与β内无数条直线平行;③a与β内的任意一条直线都不垂直.其中真命题的序号是________.答案②解析因为α∥β,a⊂α,所以a∥β,在平面β内存在无数条直线与直线a平行,但不是所有直线都与直线a平行,故命题②为真命题,命题①为假命题.在平面β内存在无数条直线与直线a垂直,故命题③为假命题.4.(2011·浙江)若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交答案 B解析由题意知,直线l与平面α相交,则直线l与平面α内的直线只有相交和异面两种位置关系,因而只有选项B是正确的.5.(2012·四川)下列命题正确的是() A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行答案 C解析A错误,如圆锥的任意两条母线与底面所成的角相等,但两条母线相交;B错误,△ABC的三个顶点中,A、B在α的同侧,而点C在α的另一侧,且AB平行于α,此时可有A、B、C三点到平面α的距离相等,但两平面相交;D错误,如教室中两个相邻墙面都与地面垂直,但这两个面相交,故选C.题型一直线与平面平行的判定与性质例1正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.思维启迪:证明直线与平面平行可以利用直线与平面平行的判定定理,也可利用面面平行的性质.证明方法一如图所示.作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN.∵正方形ABCD 和正方形ABEF 有公共边AB ,∴AE =BD .又AP =DQ ,∴PE =QB ,又PM ∥AB ∥QN ,∴PM AB =PE AE =QB BD =QN DC , ∴PM AB =QN DC, ∴PM 綊QN ,即四边形PMNQ 为平行四边形,∴PQ ∥MN .又MN ⊂平面BCE ,PQ ⊄平面BCE ,∴PQ ∥平面BCE .方法二如图,连接AQ ,并延长交BC 延长线于K ,连接EK ,∵AE =BD ,AP =DQ ,∴PE =BQ ,∴AP PE =DQ BQ, 又AD ∥BK ,∴DQ BQ =AQ QK, ∴AP PE =AQ QK,∴PQ ∥EK . 又PQ ⊄平面BCE ,EK ⊂平面BCE ,∴PQ ∥平面BCE .方法三如图,在平面ABEF 内,过点P 作PM ∥BE ,交AB 于点M ,连接QM .∴PM ∥平面BCE ,又∵平面ABEF ∩平面BCE =BE ,∴PM ∥BE ,∴AP PE =AM MB, 又AE =BD ,AP =DQ ,∴PE =BQ ,∴AP PE =DQ BQ ,∴AM MB =DQ QB, ∴MQ ∥AD ,又AD ∥BC ,∴MQ ∥BC ,∴MQ ∥平面BCE ,又PM ∩MQ =M ,BE ∩BC =B ,∴平面PMQ ∥平面BCE ,又PQ ⊂平面PMQ .∴PQ ∥平面BCE .探究提高 判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α);(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).如图,在四棱锥P —ABCD 中,底面ABCD 是菱形,∠BAD =60°,AB =2,P A =1,P A ⊥平面ABCD ,E 是PC 的中点,F 是AB 的中点.求证:BE ∥平面PDF .证明 取PD 中点为M ,连接ME ,MF ,∵E 是PC 的中点,∴ME 是△PCD 的中位线,∴ME 綊12CD . ∵F 是AB 的中点且四边形ABCD 是菱形,AB 綊CD ,∴ME 綊FB ,∴四边形MEBF 是平行四边形,∴BE ∥MF .∵BE ⊄平面PDF ,MF ⊂平面PDF ,∴BE ∥平面PDF .题型二 平面与平面平行的判定与性质例2 如图,在三棱柱ABC —A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面;(2)平面EF A 1∥平面BCHG .思维启迪:要证四点共面,只需证GH ∥BC ;要证面面平行,可证一个平面内的两条相交直线和另一个平面平行.证明 (1)∵GH 是△A 1B 1C 1的中位线,∴GH ∥B 1C 1. 又∵B 1C 1∥BC ,∴GH ∥BC ,∴B ,C ,H ,G 四点共面.(2)∵E 、F 分别为AB 、AC 的中点,∴EF ∥BC ,∵EF ⊄平面BCHG ,BC ⊂平面BCHG ,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.探究提高证明面面平行的方法:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.证明:若一条直线与两个相交平面都平行,则这条直线平行于两个平面的交线.解已知:直线a∥平面α,直线a∥平面β,α∩β=b.求证:a∥b.证明:如图所示,过直线a作平面γ,δ分别交平面α,β于直线m,n(m,n不同于交线b),由直线与平面平行的性质定理,得a∥m,a∥n,由平行线的传递性,得m∥n,由于n⊄α,m⊂α,故n∥平面α.又n⊂β,α∩β=b,故n∥b.又a∥n,故a∥b.题型三平行关系的综合应用例3如图所示,在四面体ABCD中,截面EFGH平行于对棱AB和CD,试问截面在什么位置时其截面面积最大?思维启迪:利用线面平行的性质可以得到线线平行,可以先确定截面形状,再建立目标函数求最值.解∵AB∥平面EFGH,平面EFGH与平面ABC和平面ABD分别交于FG、EH.∴AB∥FG,AB∥EH,∴FG ∥EH ,同理可证EF ∥GH ,∴截面EFGH 是平行四边形.设AB =a ,CD =b ,∠FGH =α (α即为异面直线AB 和CD 所成的角或其补角).又设FG =x ,GH =y ,则由平面几何知识可得x a =CG BC ,y b =BG BC ,两式相加得x a +y b=1,即y =b a(a -x ), ∴S ▱EFGH =FG ·GH ·sin α=x ·b a ·(a -x )·sin α=b sin αax (a -x ). ∵x >0,a -x >0且x +(a -x )=a 为定值,∴当且仅当x =a -x 时,b sin αa x (a -x )=ab sin α4,此时x =a 2,y =b 2. 即当截面EFGH 的顶点E 、F 、G 、H 为棱AD 、AC 、BC 、BD 的中点时截面面积最大. 探究提高 利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面P AO?解当Q为CC1的中点时,平面D1BQ∥平面P AO.证明如下:∵Q为CC1的中点,P为DD1的中点,∴QB∥P A.∵P、O分别为DD1、DB的中点,∴D1B∥PO.又∵D1B⊄平面P AO,PO⊂平面P AO,QB⊄平面P AO,P A⊂平面P AO,∴D1B∥平面P AO,QB∥平面P AO,又D1B∩QB=B,D1B、QB⊂平面D1BQ,∴平面D1BQ∥平面P AO.立体几何中的探索性问题典例:(12分)如图所示,在正方体ABCD—A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成的角的正弦值;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.审题视角(1)可过E作平面ABB1A1的垂线、作线面角;(2)先探求出点F,再进行证明B1F∥平面A1BE.注意解题的方向性.规范解答解(1)如图(a)所示,取AA1的中点M,连接EM,BM.因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD. [2分]图(a)又在正方体ABCD —A 1B 1C 1D 1中,AD ⊥平面ABB 1A 1,所以EM ⊥平面ABB 1A 1,从而BM 为直线BE 在平面ABB 1A 1上的射影,∠EBM 为BE 和平面ABB 1A 1所成的角.[4分] 设正方体的棱长为2,则EM =AD =2,BE =22+22+12=3.于是,在Rt △BEM 中,sin ∠EBM =EM BE =23, [5分] 即直线BE 和平面ABB 1A 1所成的角的正弦值为23.[6分] (2)在棱C 1D 1上存在点F ,使B 1F ∥平面A 1BE .事实上,如图(b)所示,分别取C 1D 1和CD 的中点F ,G ,连接B 1F ,EG ,BG ,CD 1,FG .图(b)因A 1D 1∥B 1C 1∥BC ,且A 1D 1=BC ,所以四边形A 1BCD 1是平行四边形,因此D 1C ∥A 1B . 又E ,G 分别为D 1D ,CD 的中点,所以EG ∥D 1C ,从而EG ∥A 1B .这说明A 1,B ,G ,E 四点共面.所以BG ⊂平面A 1BE .[8分]因四边形C 1CDD 1与B 1BCC 1皆为正方形,F ,G 分别为C 1D 1和CD 的中点,所以FG ∥C 1C ∥B 1B ,且FG =C 1C =B 1B ,因此四边形B 1BGF 是平行四边形,所以B 1F ∥BG ,[10分]而B 1F ⊄平面A 1BE ,BG ⊂平面A 1BE ,故B 1F ∥平面A 1BE .[12分]对于探索类问题,书写步骤的格式有两种:一种:第一步:探求出点的位置.第二步:证明符合要求.第三步:给出明确答案.第四步:反思回顾.查看关键点,易错点和答题规范.另一种:从结论出发,“要使什么成立”,“只需使什么成立”,寻求使结论成立的充分条件,类似于分析法.温馨提醒(1)本题属立体几何中的综合题,重点考查推理能力和计算能力.(2)第(1)问常见错误是无法作出平面ABB1A1的垂线,以致无法确定线面角.(3)第(2)问为探索性问题,找不到解决问题的切入口,入手较难.(4)书写格式混乱,不条理,思路不清晰.方法与技巧1.在判定和证明直线与平面的位置关系时,除熟练运用判定定理和性质定理外,切不可丢弃定义,因为定义既可作判定定理使用,亦可作性质定理使用.2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.失误与防范1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3.解题中注意符号语言的规范应用.A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.若直线m⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的() A.充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件答案 D 2. 已知直线a ,b ,c 及平面α,β,下列条件中,能使a ∥b 成立的是( )A .a ∥α,b ⊂αB .a ∥α,b ∥αC .a ∥c ,b ∥cD .a ∥α,α∩β=b 答案 C 解析 由平行公理知C 正确,A 中a 与b 可能异面.B 中a ,b 可能相交或异面,D 中a ,b 可能异面.3. 在梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是( ) A .平行B .平行和异面C .平行和相交D .异面和相交 答案 B解析 ∵ ⎭⎪⎬⎪⎫AB ∥CD AB ⊂αCD ⊄α⇒CD ∥α,∴CD 和平面α内的直线没有公共点.4. 设m 、n 表示不同直线,α、β表示不同平面,则下列结论中正确的是( )A .若m ∥α,m ∥n ,则n ∥αB .若m ⊂α,n ⊂β,m ∥β,n ∥α,则α∥βC .若α∥β,m ∥α,m ∥n ,则n ∥βD .若α∥β,m ∥α,n ∥m ,n ⊄β,则n ∥β答案 D解析 D 中,易知m ∥β或m ⊂β,若m ⊂β,又n ∥m ,n ⊄β,∴n ∥β,若m ∥β,过m 作平面γ交平面β于直线p ,则m ∥p ,又n ∥m ,∴n ∥p ,又n ⊄β,p ⊂β,∴n ∥β.二、填空题(每小题5分,共15分)5. 过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.答案 6解析 过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,记AC ,BC ,A 1C 1,B 1C 1的中点分别为E ,F ,E 1,F 1,则直线EF ,E 1F 1,EE 1,FF 1,E 1F ,EF 1均与平面ABB 1A 1平行,故符合题意的直线共6条.6. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a 3, 过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.答案 223a 解析 ∵平面ABCD ∥平面A 1B 1C 1D 1,∴MN ∥PQ .∵M 、N 分别是A 1B 1、B 1C 1的中点,AP =a 3, ∴CQ =a 3,从而DP =DQ =2a 3,∴PQ =223a .7.如图所示,在正四棱柱ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足条件______________时,有MN∥平面B1BDD1.答案M∈线段HF解析由题意,得HN∥面B1BDD1,FH∥面B1BDD1.∵HN∩FH=H,∴面NHF∥面B1BDD1.∴当M在线段HF上运动时,有MN∥面B1BDD1.三、解答题(共22分)8.(10分)如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面,交平面BDM 于GH.求证:P A∥GH.证明如图,连接AC交BD于点O,连接MO,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴AP∥OM.则有P A∥平面BMD.∵平面P AHG∩平面BMD=GH,∴P A∥GH.9.(12分)如图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.(1)求证:GH∥平面CDE;(2)若CD=2,DB=42,求四棱锥F—ABCD的体积.(1)证明方法一∵EF∥AD,AD∥BC,∴EF∥BC.又EF=AD=BC,∴四边形EFBC是平行四边形,∴H为FC的中点.又∵G是FD的中点,∴HG∥CD.∵HG⊄平面CDE,CD⊂平面CDE,∴GH∥平面CDE.方法二连接EA,∵ADEF是正方形,∴G是AE的中点.∴在△EAB中,GH∥AB.又∵AB∥CD,∴GH∥CD.∵HG⊄平面CDE,CD⊂平面CDE,∴GH∥平面CDE.(2)解∵平面ADEF⊥平面ABCD,交线为AD,且F A⊥AD,∴F A⊥平面ABCD.∵AD=BC=6,∴F A=AD=6.又∵CD=2,DB=42,CD2+DB2=BC2,∴BD⊥CD. ∵S▱ABCD=CD·BD=82,∴V F—ABCD=13S▱ABCD·F A=13×82×6=16 2.B组专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是() A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2答案 B解析对于选项A,不合题意;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α,故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选B;对于选项C,由于m,n不一定相交,故是必要非充分条件;对于选项D,由于n∥l2可转化为n∥β,同选项C,故不符合题意.综上选B.2.下面四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A .①②B .①④C .②③D .③④ 答案 A解析 由线面平行的判定定理知图①②可得出AB ∥平面MNP .3. 给出下列关于互不相同的直线l 、m 、n 和平面α、β、γ的三个命题:①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β;②若α∥β,l ⊂α,m ⊂β,则l ∥m ;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题的个数为( ) A .3B .2C .1D .0答案 C解析 ①中当α与β不平行时,也能存在符合题意的l 、m .②中l 与m 也可能异面. ③中 ⎭⎬⎫l ∥γl ⊂ββ∩γ=m ⇒l ∥m ,同理l ∥n ,则m ∥n ,正确.二、填空题(每小题5分,共15分)4. 已知平面α∥平面β,P 是α、β外一点,过点P 的直线m 与α、β分别交于A 、C ,过点P 的直线n 与α、β分别交于B 、D 且P A =6,AC =9,PD =8,则BD 的长为________.答案 24或245解析 根据题意可得到以下如图两种情况:可求出BD 的长分别为245或24. 5. 空间四边形ABCD 的两条对棱AC 、BD 的长分别为5和4,则平行于两条对棱的截面四边形EFGH 在平移过程中,周长的取值范围是 ______________________________________________________. 答案 (8,10)解析 设DH DA =GH AC =k ,∴AH DA =EH BD=1-k , ∴GH =5k ,EH =4(1-k ),∴周长=8+2k .又∵0<k <1,∴周长的范围为(8,10).6. 已知正方体ABCD -A 1B 1C 1D 1,下列结论中,正确的结论是________.(只填序号)①AD 1∥BC 1;②平面AB 1D 1∥平面BDC 1;③AD 1∥DC 1;④AD 1∥平面BDC 1.答案 ①②④三、解答题7. (13分)如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形,PD =DC =4,AD =2,E 为PC 的中点.(1)求三棱锥A —PDE 的体积;(2)AC 边上是否存在一点M ,使得P A ∥平面EDM ?若存在,求出AM 的长;若不存在,请说明理由.解 (1)因为PD ⊥平面ABCD ,所以PD ⊥AD .又因ABCD 是矩形,所以AD ⊥CD .因PD ∩CD =D ,所以AD ⊥平面PCD ,所以AD 是三棱锥A —PDE 的高.因为E 为PC 的中点,且PD =DC =4,所以S △PDE =12S △PDC =12×⎝⎛⎭⎫12×4×4=4. 又AD =2,所以V A —PDE =13AD ·S △PDE =13×2×4=83. (2)取AC 中点M ,连接EM ,DM ,因为E 为PC 的中点,M 是AC 的 中点,所以EM ∥P A .又因为EM ⊂平面EDM ,P A ⊄平面EDM ,所以P A∥平面EDM.所以AM=12AC= 5.即在AC边上存在一点M,使得P A∥平面EDM,AM的长为 5.。
高考数学-立体几何证明方法总结及经典3例例1:平行类证明【平行类证明方法总结】线线平行的证明方法:三线间平行的传递性,三角形中位线,平行四边形对边平行且相等,梯形的上下底平行,棱柱圆柱的侧棱平行且相等,两平行面被第三面所截交线平行,成比例(相似)证平行等等。
线面平行的证明方法:面外线与面内线平行,两面平行则面内一线与另面平行等等面面平行的证明方法:面内相交线与另面平行则面面平行,三面间平行的传递性等等。
【例】正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥面BCE.证法一:如图(1),作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN,因为面ABCD∩面ABEF=AB,则AE=DB. 又∵AP=DQ, ∴PE=QB.又∵PM ∥AB ∥QN, ∴AE PE AB PM =,BD BQDC QN =. ∴DCQNAB PM =. ∴PM ∥QN.四边形PMNQ 为平行四边形. ∴PQ ∥MN.又∵MN ⊂面BCE ,PQ ⊄面BCE , ∴PQ ∥面BCE. 证法二:如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC, ∴QKAQQB DQ =.又∵正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ , ∴PEAPQK AQ =.则PQ ∥EK.∴EK ⊂面BCE ,PQ ⊄面BCE. ∴PQ ∥面BCE. 例2:垂直类证明 【垂直类证明方法总结】证垂直的几种方法:勾股定理、等腰(边)三角形三线合一、菱形对角线、矩形(含正方形)、90o 、相似三角形(与直角三角形)、圆直径对的圆周角、平行线、射影定理(三垂线定理)、线面垂直、面面垂直等【例】如图所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交SB SC SD ,,于E F G ,,. 求证:AE SB ⊥,AG SD ⊥.证明:∵SA ⊥平面ABCD ,∴SA BC ⊥. ∵AB BC ⊥, ∴BC ⊥平面SAB . 又∵AE ⊂平面SAB , ∴BC AE ⊥. ∵SC ⊥平面AEFG , ∴SC AE ⊥. ∴AE ⊥平面SBC . ∴AE SB ⊥.同理证AG SD ⊥. 例3:向量法解立体几何类 【量法解立体几何类公式总结】 基本公式若),,(),,,(222111z y x b z y x a ==,则①212121z z y y x x b a ++=⋅ ;②222222212121||,||z y x b z y x a ++=++=;③212121z z y y x x b a ++=⋅④222222212121212121,cos z y x z y x z z y y x x b a ++⋅++++>=<夹角公式:||||cos 2121n n n n ⋅=θ距离公式:||||n n AB CD d == 【例】已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4. (1)证明:PQ ⊥平面ABCD ; (2)求异面直线AQ 与PB 所成的角; (3)求点P 到面QAD 的距离.简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(0222)AQ PB =--=-,,,,,,1cos 3AQ PB AQ PB AQ PB<>==,. 所求异面直线所成的角是1arccos 3.(3)由(2)知,点(022(22220)(004)D AD PQ -=--=-,,,,,,,,设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩,,n n 得200x z x y +=+=⎪⎩,,取x =1,得(112)-,n =.点P 到平面QAD 的距离22PQ d ==n n.立体几何证明经典习题平行题目1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥面BDQ.2、如图(1),在直角梯形P1DCB中,P1D//BC,CD⊥P1D,且P1D=8,BC=4,DC=46,A是P1D的中点,沿AB把平面P1AB折起到平面PAB的位置(如图(2)),使二面角P—CD—B成45°,设E、F分别是线段AB、PD的中点.求证:AF//平面PEC;垂直题目3、如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求证:BC⊥平面PAC.4、如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD向量法解立体几何题目5、在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,EA⊥EB1.已知2AB=,BB1=2,BC=1,∠BCC1=3π.求二面角A-EB1-A1的平面角的正切值.立体几何证明经典习题答案1、证明:如图,连结AC交BD于点O.∵ABCD是平行四边形,∴A O=O C.连结O Q,则O Q在平面BDQ内,且O Q是△APC的中位线,∴PC∥O Q.∵PC在平面BDQ外,∴PC∥平面BDQ.2、证明:如图,设PC中点为G,连结FG,1CD=AE,则FG//CD//AE,且FG=2∴四边形AEGF是平行四边形∴AF//EG,又∵AF⊄平面PEC,EG⊂平面PEC,∴AF//平面PEC3、证明:在平面PAC内作AD⊥PC交PC于D.∵平面PAC⊥平面PBC,且两平面交于PC,AD⊂平面PAC,且AD⊥PC,∴AD⊥平面PBC.又∵BC⊂平面PBC,∴AD⊥BC.∵PA⊥平面ABC,BC⊂平面ABC,∴PA ⊥BC . ∵AD ∩PA =A , ∴BC ⊥平面PAC .4、证明:取AB 的中点F,连结CF ,DF . ∵AC BC =,∴CF AB ⊥.∵AD BD =,(等腰三角形三线合一) ∴DF AB ⊥. 又CFDF F =,∴AB ⊥平面CDF . ∵CD ⊂平面CDF ,∴CD AB ⊥. 又CD BE ⊥,BEAB B =,∴CD ⊥平面ABE ,CD AH ⊥. ∵AH CD ⊥,AH BE ⊥, CD BE E =,∴ AH ⊥平面BCD .5、以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系.由于BC =1,BB 1=2,AB BCC 1=3π,∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、AB 1(0,2,0)、102c ⎫-⎪⎪⎝⎭,、1302C ⎫⎪⎪⎝⎭,,.设0E a ⎫⎪⎪⎝⎭,且1322a -<<, 由EA ⊥EB 1,得10EA EB =,即3202a a ⎛⎛⎫--- ⎪ ⎪⎝⎝⎭,, 233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭, 即12a =或32a =(舍去).故1022E ⎛⎫ ⎪ ⎪⎝⎭,,. 由已知有1EA EB ⊥,111B A EB ⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA 的夹角.因11(00B A BA ==,122EA ⎛=-- ⎝ 故11112cos 3EA B A EA B A θ==,即tan θ=。
2014届高考数学(理)一轮复习知识过关检测:第7章《立体几何》(第5课时)(新人教A版)一、选择题1.(2013·北京海淀区期末)已知平面α、β,直线l,若α⊥β,α∩β=l,则( ) A.垂直于平面β的平面一定平行于平面αB.垂直于直线l的直线一定垂直于平面αC.垂直于平面β的平面一定平行于直线lD.垂直于直线l的平面一定与平面α、β都垂直解析:选D.对于A,垂直于平面β的平面与平面α平行或相交,故A错;对于B,垂直于直线l的直线与平面α垂直、斜交、平行或在平面α内,故B错;对于C,垂直于平面β的平面与直线l平行或相交,故C错;易知D正确.2.(2012·高考浙江卷)设l是直线,α,β是两个不同的平面( )A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β解析:选B.对于选项A,两平面可能平行也可能相交;对于选项C,直线l可能在β内也可能平行于β;对于选项D,直线l可能在β内或平行于β或与β相交,故选B.3.(2013·洛阳统考)已知α,β是两个不同的平面,m,n是两条不重合的直线,则下列命题中正确的是( )A.若m∥α,α∩β=n,则m∥nB.若m⊥α,m⊥n,则n∥αC.若m⊥α,n⊥β,α⊥β,则m⊥nD.若α⊥β,α∩β=n,m⊥n,则m⊥β解析:选C.对于选项A,若m∥α,α∩β=n,则m∥n或m,n是异面直线,所以A 错误;对于选项B,n可能在平面α内,所以B错误;对于选项D,m与β的位置关系还可以是m⊂β,m∥β或m与β斜交,所以D错误;由面面垂直的性质可知C正确.4.(2012·高考浙江卷)已知矩形ABCD,AB=1,BC= 2.将△ABD沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,( )A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直解析:选B.对于AB⊥CD,因为BC⊥CD,可得CD⊥平面ACB,因此有CD⊥AC.因为AB=1,BC=2,CD=1,所以AC=1,所以存在某个位置,使得AB⊥CD.5.(2012·高考安徽卷)设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A.若α⊥β,因为α∩β=m,b⊂β,b⊥m,则根据两个平面垂直的性质定理可得b⊥α,又因为a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.二、填空题6.如图,∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中:与PC垂直的直线有________;与AP垂直的直线有________.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC;∵AB⊥AC,AB⊥PC,∴AB⊥平面PAC,∴AB⊥AP.与AP垂直的直线是AB.答案:AB,BC,AC AB7.已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若a⊥α,a⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若α∥β,a⊂α,b⊂β,则a∥b;④若α∥β,α∩γ=a,β∩γ=b,则a∥b.其中正确命题的序号有________.解析:垂直于同一直线的两平面平行,①正确;α⊥β也有可能成立,②错;a、b也可以异面,③错;由面面平行性质知,a∥b,④正确.答案:①④8.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足__________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)解析:由定理可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC等)三、解答题9.(2011·高考课标全国卷)如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB =60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)设PD=AD=1,求棱锥D-PBC的高.解:(1)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=3AD.所以BD2+AD2=AB2,故BD⊥AD.又PD⊥底面ABCD,所以BD⊥PD.所以BD⊥平面PAD,故PA⊥BD.(2)如图,作DE⊥PB,垂足为E.已知PD⊥底面ABCD,故PD⊥BC.由(1)知BD⊥AD,因为BC∥AD,所以BC⊥BD.所以BC⊥平面PBD,BC⊥DE.则DE⊥平面PBC,即DE为棱锥D-PBC的高.由PD=AD=1知BD=3,PB=2.由DE·PB=PD·BD得DE=32,所以棱锥D-PBC的高为32.10.(2012·高考安徽卷)如图,长方体ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,O是BD 的中点,E是棱AA1上任意一点.(1)证明:BD⊥EC1;(2)如果AB=2,AE=2,OE⊥EC1,求AA1的长.解:(1)证明:如图,连接AC,A1C1,相交于点O.由底面是正方形知,BD⊥AC.因为AA1⊥平面ABCD,BD⊂平面ABCD,所以AA1⊥BD.又由AA1∩AC=A,所以BD⊥平面AA1C1C.再由EC1⊂平面AA1C1C知,BD⊥EC1.(2)设AA1的长为h,连接OC1.在Rt△OAE中,AE=2,AO=2,故OE2=(2)2+(2)2=4.在Rt△EA1C1中,A1E=h-2,A1C1=22,故EC21=(h-2)2+(22)2.在Rt△OCC1中,OC=2,CC1=h,OC21=h2+(2)2.因为OE⊥EC1,所以OE2+EC21=OC21,即4+(h-2)2+(22)2=h2+(2)2,解得h=32,所以AA1的长为3 2.一、选择题1.(2013·青岛质检)已知直线l、m,平面α、β,且l⊥α,m⊂β,则α∥β是l ⊥m的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选B.充分性:若α∥β,∵l⊥α,∴l⊥β,又m⊂β,∴l⊥m,是充分条件;必要性:如图正方体ABCD-A1B1C1D1,取ABCD 为平面α,ADD1A1为平面β,直线l过点B,B1,直线m过点A,D,则符合条件,但不能推出α∥β,不是必要条件.2.如图,在正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总保持AP ⊥BD1,则动点P的轨迹是( )A.线段B1CB.线段BC1C.BB1中点与CC1中点连成的线段D.BC中点与B1C1中点连成的线段解析:选A.连接AC、CB1、AB1(图略).易证BD1⊥平面AB1C.所以点P的轨迹是线段B1C.二、填空题3.(2013·桂林质检)已知l,m,n为三条不同的直线,α为一个平面,给出下列命题:①若l⊥α,则l与α相交;②若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;③若l∥m,m∥n,l⊥α,则n⊥α;④若l∥m,m⊥α,n⊥α,则l∥n.其中正确命题的序号为________.解析:由于垂直是直线与平面相交的特殊情况,故①正确;由于m、n不一定相交,故②不正确;根据平行线的传递性,故l∥n,又l⊥α,故n⊥α,从而③正确;由l∥m,m ⊥α,n⊥α知m∥n,故l∥n,故④正确.答案:①③④4.(2013·威海质检)如图所示,正方体ABCD-A1B1C1D1的棱长是1,过A点作平面A1BD的垂线,垂足为点H,有下列三个命题:①点H是△A1BD的中心;②AH垂直于平面CB1D1;③AC1与B1C所成的角是90°.其中正确命题的序号是________.解析:由于ABCD-A1B1C1D1是正方体,所以A-A1BD是一个正三棱锥,因此A点在平面A1BD上的射影H是三角形A1BD的中心,故①正确;又因为平面CB1D1与平面A1BD平行,所以AH⊥平面CB1D1,故②正确;因为B1C⊥BC1,AB⊥B1C,且AB∩BC1=B,所以B1C⊥平面ABC1,即AC1与B1C垂直,所成的角等于90°.答案:①②③三、解答题5.如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点,求证:(1)直线EF∥平面ACD;(2)平面EFC⊥平面BCD.证明:(1)在△ABD中,因为E、F分别是AB、BD的中点,所以EF∥AD.又AD⊂平面ACD,EF⊄平面ACD,所以直线EF∥平面ACD.(2)在△ABD中,因为AD⊥BD,EF∥AD,所以EF⊥BD.在△BCD中,因为CD=CB,F为BD的中点,所以CF⊥BD.因为EF⊂平面EFC,CF⊂平面EFC,EF与CF交于点F,所以BD⊥平面EFC.又因为BD⊂平面BCD,所以平面EFC⊥平面BCD.。
2014年高考一轮复习热点难点精讲精析:7.1空间几何体一、空间几何体的结构及其三视图和直观图(一)空间几何体的结构特征※相关链接※1、几种常见的多面体(1)正方体(2)长方体(3)直棱柱:指的是侧棱垂直于底面的棱柱,特别地当底面是正多边形时,这样的直棱柱叫正棱柱;(4)正棱锥:指的是底面是正多边形,且顶点在底面的射影是底面的中心的棱锥。
特别地,各条棱均相等的正三棱锥又叫正四面体;(5)平行六面体:指的是底面为平行四边形的四棱柱。
2、理解并掌握空间几何体的结构特征,对培养空间想象能力,进一步研究几何体中的线面位置关系或数量关系非常重要,每种几何体的定义都是非常严谨的,注意对比记忆。
※例题解析※〖例1〗平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①充要条件②思路解析:利用类比推理中“线 面”再验证一下所给出的条件是否正确即可。
解答:平行六面体实质是把一个平行四边形按某一方向平移所形成的几何体,因此“平行四边形”与“平行六四体”有着性质上的“相似性”。
答案:两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点且互相平行;底面是平行四边形(任选两个即可)。
〖例2〗一正方体表面沿着几条棱裁开放平得到如图的展开图,则在原正方体中()A AB∥CDB AB∥EFC CD∥GHD AB∥GH解答:选C。
折回原正方体如图,则C与E重合,D与B重合。
显见CD∥GH(二)几何体的三视图※相差链接※1、几何体的三视图的排列规则:俯视图放在正视图的下面,长度与正视图一样,侧视图放在正视图右面,高度与正视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”注意虚、实线的区别。
注:严格按排列规则放置三视图,并用虚线标出长、宽、高的关系,对准确把握几何体很有利。
2、应用:在解题的过程中,可以根据三视图的的及图中所涉及到的线段的长度,推断出原几何图形中的点、线、面之间的关系及图中一些线段的长度,这样我们就可以解出有关的问题。
立体几何判定方法汇总
一、判定两线平行的方法
1、平行于同一直线的两条直线互相平行
2、垂直于同一平面的两条直线互相平行
3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行
4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行
5、在同一平面内的两条直线,可依据平面几何的定理证明
二、判定线面平行的方法
1、据定义:如果一条直线和一个平面没有公共点
2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行
3、两面平行,则其中一个平面内的直线必平行于另一个平面
4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面
5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面
三、判定面面平行的方法
1、定义:没有公共点
2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行
3 垂直于同一直线的两个平面平行
4、平行于同一平面的两个平面平行
四、面面平行的性质
1、两平行平面没有公共点
2、两平面平行,则一个平面上的任一直线平行于另一平面
3、两平行平面被第三个平面所截,则两交线平行
4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面
五、判定线面垂直的方法
1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直
2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直
3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面
4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面
5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面
6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面
六、判定两线垂直的方法
1、 定义:成︒90角
2、 直线和平面垂直,则该线与平面内任一直线垂直
3、 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直
4、 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直
5、 一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直
七、判定面面垂直的方法
1、 定义:两面成直二面角,则两面垂直
2、 一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面
八、面面垂直的性质
1、 二面角的平面角为︒90
2、 在一个平面内垂直于交线的直线必垂直于另一个平面
3、 相交平面同垂直于第三个平面,则交线垂直于第三个平面
九、各种角的范围
1、异面直线所成的角的取值范围是:︒≤<︒900θ (]︒︒90,0
2、直线与平面所成的角的取值范围是:︒≤≤︒900θ []︒︒90,0
3、斜线与平面所成的角的取值范围是:︒≤<︒900θ (]︒︒90,0
4、二面角的大小用它的平面角来度量;取值范围是:︒≤<︒1800θ (]︒︒180,0
十、三角形的心
1、
内心:内切圆的圆心,角平分线的交点 2、
外心:外接圆的圆心,垂直平分线的交点 3、
重心:中线的交点 4、
垂心:高的交点
一、面积:
1、ch s =直棱柱侧 ()为直截面周长斜棱柱侧``c l c s = rh cl s π2==圆柱侧
2、中截面面积:2`0s s s +=
3、`21ch s =
正棱锥侧 rl cl s π==21圆锥侧 4、()``21h c c s +=正棱台侧 ()()l r r l c c s ``2
1+=+=π圆台 5、预备定理ph s π2=锥球内接圆台,圆柱,圆
①24r s π=球 ②rh s π2=球带 ③)(222h r rh s +==ππ球冠
6、面积比是相似比的平方,体积比是相似比的立方
7、圆锥轴截面的顶角α和侧面展开图的圆心角θ的关系为:
2
s i n 22αππθ⋅=⋅=l r 8、圆台上、下底面半径为r`、r ,母线为l,圆台侧面展开后所得的扇环圆心角
为θ,则:l
c c l r r l r r `2`360`-=⋅-=︒⋅-=πθ 9、圆锥中,过两母线的截面面积为s
当轴截面顶角(]︒︒∈90,0α时,αsin 2
12l s s ==轴截面截面最大 当轴截面顶角[)︒︒∈180,90α时,轴截面截面最大s l l s ≠=︒=222
190sin 21 10、球面距离θ⋅=R l (θ用弧度表示,R
l =θ) 二、体积
1、l s sh V `==棱柱(s`为直截面面积) sh h r V =⋅=2π圆柱
2、sh V 3
1=棱锥 sh h r V 31312=⋅=π圆锥 3、`)`(31s s s s h V +⋅+=棱台 =++=)``(3122r rr r h V π圆台`)`(3
1s s s s h +⋅+ 4、33
4R V π=球 5、)3(3
1)3(61222h R h h r h V -=+=ππ球缺 6、)(3
1体适用于有内切球的多面内切球半径表体r S V ⋅=。