【人教版】2020届高三数学统测试题(一)理 人教版
- 格式:doc
- 大小:829.13 KB
- 文档页数:10
2020年普通高等学校招生全国统一考试·联考理科数学本试卷共5页,23小题(含选考题),满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上用2B 铅笔将试卷类型(B )填在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}N x x x x A ∈<--=,0322,则集合A 的真子集有( )A .5个 B. 6个 C. 7个 D. 8个2.已知i 是虚数单位,则化简2020)11(ii -+的结果为( ) A.i B.i - C.1- D.13.若干年前,某教师刚退休的月退休金为400元,月退休金各种用途占比统计图如下面的条形图该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( )A .4500元 B. 5000元 C .5500元 D .6000元4.将包括甲、乙、丙在内的8人平均分成两组参加文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为( ) A.72 B.73 C.71 D.143 5已知抛物线x y 42=的焦点为F ,过点F 和抛物线上一点)32,3(M 的直线l 交抛物线于另一点N ,则NM NF :等于( )A.2:1B.3:1C.4:1D.3:16.在所有棱长都相等的直三棱柱111C B A ABC -中,D ,E 分别为棱AC CC ,1的中点,则直线AB 与平面DE B 1所成角的余弦值为( ) A.1030 B.2030 C.20130 D.1070 7已知点A (4,3),点B 为不等式组⎪⎩⎪⎨⎧≤-+≤-≥06200y x y x y 所表示平面区域上的任意一点,则AB 的最小值为( )A.5B.554 C.5 D.552 8.给出下列说法①定义在[a ,b]上的偶函数b x a x x f ++-=)4()(2的最大值为20; ②“4π=x ”是“1tan =x ”的充分不必要条件; ③命题“21),,0(000≥++∞∈∃x x x ”的否定形式是“21),,0(<++∞∈∀xx x ” 其中正确说法的个数为( )A.0B.1C.2D.39.已知5.03422log 2log ,,,03log m c m b m a m ===>,则c b a ,,间的大小关系为 A.c b a << B.c a b << C.b a c << D.a c b <<10.元代数学家朱世杰在《算学启蒙》中提及如下问题:今有银一秤一斤十两(1秤=15斤,1斤=16两),令甲、乙、丙从上作折半差分之,问:各得几何?其意思是:现有银一秤一斤十两,现将银分给甲、乙、丙三人,他们三人每一个人所得是前一个人所得的一半.若银的数量不变,按此法将银依次分给7个人,则得银最少的一个人得银( )A .9两 B.127266两 C.63266两 D.127250两 11在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若3cos cos c A b B a =-,则B b A a B a cos cos cos +的最大值为( ) A.2 B.22 C.23 D.332 12.已知几)(x f 为奇函数,)(x g 为偶函数,且)13(log )()(3+=+x x g x f ,不等式0)()(3≥--t x f x g 对R x ∈恒成立,则t 的最大值为( )A.1B.2log 233-C.2D.12log 233- 二、填空题:本题共4小题,每小题5分,共20分13已知向量a =(2,5-),b =(1,52),则b 在a 方向上的投影等于 .14在△ABC 中,∠B=32π,A 、B 是双曲线E 的左、右焦点,点C 在E 上,且BC=21AB ,则E 的离心率为 .5已知函数)0,0)(cos()(πϕωϕω≤≤>+=x x f 是奇函数,且在]4,6[ππ-上单调减,则ω的最大值是 .16已知三棱锥A-BCD 中,平面ABD ⊥平面BCD ,BC ⊥CD ,BC=CD=2,AB=AD=6,则三棱锥A-BCD 的外接球的体积为 .三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第次年题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答(一)必考题:共60分17.(12分)已知数列{a n }的前n 项和为S n ,且112n n n S na a =+-. (1)求数列{a n }的通项公式;(2)若数列22n a ⎧⎫⎨⎬⎩⎭的前n 项和为T n ,证明: 32n T <.18.(12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABEF 为正方形,AF ⊥DF ,AF=22FD ,∠DFE=∠CEF=45.(1)证明DC ∥FE ;(2)求二面角D-BE-C 的平面角的余弦值.19.(12分)已知点P 在圆O :x 2+y 2=9上,点P 在x 轴上的投影为Q ,动点M 满足432PQ MQ u u u r u u u u r .(1)求动点M 的轨迹E 的方程;(2)设G (-3,0),H (3,0),过点F (1,0)的动直线l 与曲线E 交于A 、B 两点,问直线AG 与直线BH 的斜率之比是否为定值?若为定值,求出该定值;若不为定值,试说明理由.20.(12分)某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗A 、B 、C .经过引种实验发现,引种树苗A 的自然成活率为0.7,引种树苗B 、C 的自然成活率均为p (0.6≤p≤0.8)(1)任取树苗A 、B 、C 各一棵,估计自然成活的棵数为X ,求X 的分布列及其数学期望;(2)将(1)中的数学期望取得最大值时p 的值作为B 种树苗自然成活的概率,该农户决定引种n 棵B 种树苗,引种后没有自然成活的树苗有75%的树苗可经过人栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.①求一棵B 种树苗最终成活的概率;②若每棵树苗引种最终成活可获利400元,不成活的每棵亏损80元该农户为了获利期望不低于10万元,问至少要引种种树苗多少棵?21.(12分)已知函数f (x )=(a-1)x+xlnx 的图象在点A (e 2,f (e 2))(e 为自然对数的底数)处的切线斜率为4(1)求实数a 的值;(2)若m ∈Z ,且m (x-1)<f (x )+1对任意x>1恒成立,求m 的最大值.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程](10分)以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为-22ππρθ⎡⎤∈⎢⎥⎣⎦,),直线l 的参数方程为2cos 4sin x t y ts αα=-+⎧⎨=-+⎩(t 为参数). (1)点A 在曲线C 上,且曲线C 在点A 处的切线与直线:x+2+1=0垂直,求点A 的直角坐标;(2)设直线l 与曲线C 有且只有一个公共点,求直线l 的斜率的取值范围.23.[选修4-5:不等式选讲](10分)设函数f (x )=|x-1|+2|x+1|,x ∈R(1)求不等式f (x )<5的解集;(2)若关于x 的不等式122)(-<+t x f 在实数范围内解集为空集,求实数t 的取值范围·11·。
绝密★启用前 试卷类型:A深圳市2020年普通高中高三年级线上统一测试数 学(理科) 2020.3本试卷共23小题,满分150分.考试用时120分钟.一、选择题:本题共 12 小题,每小题5分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}3 2 1 0{,,,=A ,}032|{2<--=x x x B ,则A B =A .)3,1(-B .]3,1(-C .)3,0(D .]3,0(2.设23i32iz +=-,则z 的虚部为 3.某工厂生产的30个零件编号为01,02,…,19,30,现利用如下随机数表从中抽取5个进行检测. 若从表中第1行第5列的数字开始,从左往右依次读取数字,则抽取的第5个零件编号为4.记n S 为等差数列{}n a 的前n 项和,若23a =,59a =,则6S 为 5.若双曲线22221x y a b-=(0a >,0b >)的一条渐近线经过点(1,2)-,则该双曲线的离心率为 6.已知tan 3α=-,则πsin 2()4α+=7.7)2(xx -的展开式中3x 的系数为A .1-B .1C .2-D .2A .25B .23C.12D. 07A .36B .32C .28D. 24AB C D. 2A .35B .35-C .45D .45-8.函数()2ln |e 1|x f x x =--的图像大致为9.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球表面积为 A .323π3B .32πC .36πD .48π10.已知动点M 在以1F ,2F 为焦点的椭圆2214y x +=上,动点N 在以M 为圆心,半径长为1||MF 的圆上,则2||NF 的最大值为 11.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 A .33AB AC HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=-12.已知定义在π[0]4,上的函数π()sin()(0)6f x x ωω=->的最大值为3ω,则正实数ω的取值个数 最多为 二、填空题:本大题共4小题,每小题5分,共 20 分.A .168B .84C .42 D. 21ABCDA .2B .4C .8D .16A .4B .3C .2D. 1(第9题图)13.若y x ,满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-+101022x y x y x ,则y x z 2-=的最小值为 ___________.14.设数列{}n a 的前n 项和为n S ,若n a S n n -=2,则=6a ___________.15.很多网站利用验证码来防止恶意登录,以提升网络安全. 某马拉松赛事报名网站的登录验证码由0,1,2,…,9中的四个数字随机组成,将从左往右数字依次增大的验证码称为“递增型验证码”(如0123),已知某人收到了一个“递增型验证码”,则该验证码的首位数字是1的概率为___________.16.已知点1(,)2M m m -和点1(,)2N n n -()m n ≠,若线段MN 上的任意一点P 都满足:经过点P 的所有直线中恰好有两条直线与曲线21:2C y x x =+(13)x -≤≤相切,则||m n -的最大值为___.三 、 解答题: 共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一) 必考题:共 60 分. 17.(本小题满分12分)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S ,222+2a b c S -=. (1)求cos C ;(2)若cos sin a B b A c +=,a =,求b .18.(本小题满分12分)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是平行四边形, 点M ,N 分别在棱1C C ,1A A 上,且12C M MC =,12A N NA =.(1)求证:1//NC 平面BMD ;(2)若13A A =,22AB AD ==,π3DAB ∠=, 求二面角N BD M --的正弦值.19.(本小题满分12分)已知以F 为焦点的抛物线2:2(0)C y px p =>过点(1,2)P -,直线l 与C 交于A ,B 两点,M 为AB中点,且OM OP OF λ+=.(1)当3λ=时,求点M 的坐标; (2)当12OA OB ⋅=时,求直线l 的方程.20.(本小题满分12分)在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期. 一研究团队统计了某地区1000名患者的相关信息,得到如下表格:(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表. 请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;(3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立. 为了深入研究,该研究团队随机调查了20名患者,其中潜伏期超过6天的人数最有可能....(即概率最大.....)是多少? 附:))()()(()(22d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=.21.(本小题满分12分)已知函数()e ln(1)xf x a x =--.(其中常数e=2.718 28⋅⋅⋅,是自然对数的底数) (1)若a ∈R ,求函数()f x 的极值点个数;(2)若函数()f x 在区间(1,1+e )a-上不单调,证明:111a a a +>+.(二)选考题:共 10 分.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1C 的参数方程为⎪⎩⎪⎨⎧=+-=,sin ,cos 32ααt y t x (t 为参数,α为倾斜角),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为θρsin 4=.(1)求2C 的直角坐标方程;(2)直线1C 与2C 相交于F E ,两个不同的点,点P 的极坐标为π),若PF PE EF +=2,求直线1C 的普通方程.23.(本小题满分10分)选修4-5:不等式选讲已知,,a b c 为正数,且满足 1.a b c ++= 证明: (1)1119a b c++≥; (2)8.27ac bc ab abc ++-≤绝密★启封并使用完毕前试题类型:A1 20 0x 0 深圳市 2020 年普通高中高三年级线上统一测试理科数学试题答案及评分参考一、选择题1. B2. B3. C4. A5. C6. D7. B8. A9. D10. B11. D12. C12. 解析:当ωπ - π > π时,即ω> 8时, f (x )= 1 = ω,解得ω= 3 ; 4 6 23max3ω ω当 ωπ - π ≤ π时,即0 < ω≤ 8时, f (x ) = sin(π - π) = ,4 6 2 3max4 6 3令 g (ω) = sin(ωπ - π) , h (ω) = ω, 4 6 3如图,易知 y = g (ω) , y = h (ω) 的图象有两个交点 A (ω1 , y 1 ) , B (ω2 , y 2 ) ,ωω 所以方程 s in( π - π) = 有两个实根ω,ω , 4 6 3又 g (8) = 1 > 8 = h (8) ,所以易知有ω < 8 < ω ,3 9 3 1 3 2所以此时存在一个实数ω= ω1 满足题设, 综上所述,存在两个正实数ω满足题设,故应选 C. 二、填空题:13.- 314. 6315.4154 16.316. 解析:由对称性不妨设 m < n ,易知线段 M N 所在直线的方程为 y = x - 1,2又 1 x 2 + x > x - 1,∴点 P 必定不在曲线 C 上, 2 2不妨设 P (t ,t - 1) , (m ≤ t ≤ n ) ,且过点 P 的直线 l 与曲线 C 相切于点 Q ( x, 1x 2 + x ) , 2 ( 1 x 2+ x) - (t - 1 )0 2 0 0易知 y ' |x = x = k PQ ,即 x 0 + 1 = 2 2 ,整理得 x - 2tx - 1 = 0 ,0 - t0 0 2x0 0 (法一)显然 x ≠ 0 ,所以 2t = x -1, 0令 f ( x ) = x -1 , x ∈[-1, 0) U (0,3],x5 ⎪ ⎨-1 < t < 3 如图,直线 y = 2t 和函数 y = f ( x ) 的图象有两个交点,又 f (-1) = 0 ,且 f (3) =8,30 ≤ 2t ≤ 8,即 0 ≤ t ≤ 4, ∴3 3 ∴ 0 ≤ m < n ≤4 ,∴ | m - n | 的最大值为 4 ,故应填 4.3 3 3(法二)由题意可知 -1 ≤ x 0 ≤ 3 ,令 f ( x ) = x - 2tx - 1 ,∴函数 f ( x ) 在区间[-1, 3] 上有两个零点,⎧ f (-1) = 2t ≥ 0⎪ f (3) = 8 - 6t ≥ 0 则 ⎪⎪⎩V = 4t 2 + 4 > 0,解得 0 ≤ t ≤ 4 , 3 ∴ 0 ≤ m < n ≤4,∴ | m - n | 的最大值为 4 ,故应填 4. 3 3 3三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分 12 分)已知△ ABC 的内角 A ,B ,C 的对边分别为 a,b ,c ,△ ABC 的面积为 S ,a 2 +b 2 - c 2 = 2S . (1)求c os C ;(2)若 a c os B + b sin A = c , a = ,求b . 解:(1) S = 1ab sin C ,a 2 + b 2 - c 2 = 2S ,2∴ a 2 + b 2 - c 2 = ab sin C , …………………………………………………………………2 分 a 2 + b 2 - c 2 ab sin C sin C在△ ABC 中,由余弦定理得 c os C = = =, 2ab 2ab 2 ∴sin C =2cosC ,…………………………………………………………………………4 分又 sin 2C +cos 2C=1 ,∴5cos 2C=1,cosC= ±5 ,5由于 C ∈(0, π) ,则 s in C > 0 ,那么 c osC>0 ,所以 c osC=5 . ………………………6 分5(2)(法一)在△ABC 中,由正弦定理得 s in A c os B + sin B sin A = sin C ,……………7 分 2sin C= sin[π- (A + B)] = sin(A + B) = sin A cos B + cos A sin B ,………………………8 分∴sin A cos B + sin B sin A = sin A cos B + cos A sin B ,即s in B sin A = cos A sin B ,5 5 ⨯ 2 5 5 ⨯ 2 又 A , B ∈(0, π) ,∴sin B ≠ 0 , s in A =cosA ,得 A = π.……………………………9 分4sin B = sin[π - (A + C )] = sin(A + C ) ,……………………………………………10 分∴sin B = sin A cos C + cos A sin C = 2 ⨯ 5 + 2 ⨯ 2 5 =310, ………………11 分2 5 2 5 10a s in B 10 在△ABC 中,由正弦定理得 b = == 3 . ……………………………12 分(法二)a cos B +b s in A =c , 又a cos B +b cos A =c , sin A2 2∴ a cos B + b s in A = a cos B + b cos A ,…………………………………………………8 分即 s in A = cos A ,又 A ∈(0, π) , ∴ A = π. ……………………………………………9 分4a sin C 5 在△ ABC 中,由正弦定理得 c = == 2 .………………………10 分b = C cos A + a cos C ,sin A2 2∴c = 2 ⨯ 2 + ⨯ 5= 3 . ………………………………………………………12 分2 5(法三)求 A 同法一或法二a sin C 5 在△ABC 中,由正弦定理得 c = == 2 , ………………………10 分sin A2 2又由余弦定理 c 2 = a 2 + b 2 - 2ab cos C ,得 b 2 - 2b - 3 = 0 ,解得 b = -1 或 b = 3 . 所以 b = 3 .……………………………………………………………………………12 分(余弦定理 a 2 = b 2 + c 2 - 2b cos A ,得 b 2 - 4b + 3 = 0 ,解得b = 1 或 b = 3 . 因为当 b = 1时, a 2 +b 2 -c 2 = -2 < 0 ,不满足c osC>0 (不满足 a 2 +b 2 - c 2 = -2 ≠ 2S ),故舍去,所以 b = 3 ) 【命题意图】综合考查三角函数的基本运算、三角函数性质,考查利用正弦、余弦定理解决三 角形⨯ 32 2 2问题,检验学生的数学知识运用能力.18.(本小题满分 12 分)如图,在直四棱柱 A BCD - A 1B 1C 1D 1 中,底面 A BCD 是平行四边形, 点 M ,N 分别在棱 C1C ,A 1 A 上,且 C 1M = 2MC , A 1 N = 2NA .(1)求证: N C 1 // 平面 B MD ;A π (2)若 A 1 A = 3,AB = 2AD = 2 , ∠DAB =,求二面角3MN - BD - M 的正弦值.解:(1)证明:(法一)如图,连接 A C 交 B D 于点GMG .设 C 1M 的中点为 E ,连接 A E .………2 分G , M 是在△ ACE 边 C A ,CE 的中点,∴ MG //AE , ……………………………………3 分又 C 1M = 2MC ,A 1 N = 2NA , A A 1 //CC 1 , ∴四边形 A NC 1E 是平行四边形,故 N C 1 //AE ,∴ NC 1 //GM , …………………………………4 分 GM ⊂ 平面 B MD ,∴ NC 1 // 平面 B MD . …………………………………5 分 (法二)如图,设 E 是 B B 1 上一点,且 B E = 2B 1E ,连接 E C 1 . 设 G 是 B E 的中点,连接G M . ……………………1 分BE = MC 1,BE //MC 1 ,∴四边形 B EC 1M 是平行四边形,故 E C 1 //BM , ……2 分又 BM ⊂ 平面 B MD ,∴ EC 1 // 平面 B MD , …………………………………3 分同理可证 N E //AG , A G //DM ,故 N E //DM ,2 ∴ NE // 平面 B MD , (4)分 又 EC 1,NE ⊂ 平面 N EC 1 ,且 N E C 1E = E ,∴平面 N EC 1 // 平面 B MD ,又 N C 1 ⊂ 平面 N EC 1 ,所以 N C 1 // 平面 B MD .……………5 分(2)(法一)设二面角 N - BD - M 为α,二面角N - BD - A 为 β,根据对称性,二面角 M - BD - C的大小与二面角 N - BD - A 大小相等,故α= π - 2β,sin α= sin(π - 2β) = sin 2β.下面只需求二面角 M - BD - C 的大小即可. ………7 分 由余弦定理得 B D 2 = AD 2 + AB 2 - 2AD ⋅ AB cos ∠DAB = 3 ,故 AB 2 = AD 2 + BD 2 ,A D ⊥ BD . (8)分四棱柱 A BCD - A 1B 1C 1D 1 为直棱柱,∴ DD 1 ⊥ 底面 A BCD ,D D 1 ⊥ BD , ……………………9 分 又 AD , D 1D ⊂ 平面 A DD 1 A 1 , A D D 1D = D ,∴ BD ⊥ 平面B DD 1B 1 , …………………………………10 分ND ⊂ 平面A DD 1 A 1 , ∴ND ⊥ BD ,所以二面角 N - BD - A 的大小为 ∠NDA ,即 ∠NDA = β,在 R t ∆NAD 中,s in β = AN= 1 ND = 2 ,…………11 分 2∴ β= π ,α= π,4 2∴二面角N- BD - M 的正弦值为1 . …………………12 分(法二)由余弦定理得B D2 = AD2 + AB2 - 2AD ⋅ AB cos∠DAB = 3 ,故AB2 = AD2 + BD2 ,A D ⊥ BD . ……………………6分以D为坐标原点O,以D A, DC, DD1 分别为x, y, z 轴建立如图所示的空间直角坐标系.依题意有 D (0,0,0) , B (0, ,0) , M (-1, ,1) , N (1, ,1) ,DB = (0, ,0) , DM = (-1, ,1) , D N = (1, ,1) ,……7 分设平面 M BD 的一个法向量为 n = (x , y , z ) ,⎧⎪n ⋅ DB = 0 ∴⎨ ⎧⎪ , ∴⎨ 3y = 0 , ⎪⎩n ⋅ DM = 0⎪⎩-x + y + z = 0令 x = 1 ,则 z = 1, y = 0 ,∴n = (1,0,1) ,……………9 分 同理可得平面 N BD 的一个法向量为 m = (1,0, -1) ,……10 分 所以 c os < m , n >=m ⋅ n 0= | m || n |= 0 , ……………11 分所以二面角 N - BD - M 的大小为 π,正弦值为1 . …12 分2【命题意图】考察线面平行、线面垂直判定定理等基本知识,考查空间想象能力,计算能力, 考查学生综合运用基本知识处理数学问题的能力.19.(本小题满分 12 分)已知以 F 为焦点的抛物线 C : y 2 = 2 p x ( p > 0) 过点 P (1, -2) ,直线 l 与 C 交于 A ,B 两点,M 为AB 中点,且 O M + OP = λOF .(1)当 λ=3 时,求点 M 的坐标;uur u u u r(2)当 O A ⋅ OB = 12 时,求直线 l 的方程.解:(1)因为 P (1, -2) 在y 2 = 2 p x 上,代入方程可得 p = 2 , 所以 C 的方程为 y 2 = 4x ,焦点为 F (1, 0) , (2)分 设 M ( x 0 , y 0 ) ,当 λ=3 时,由 O M + OP = 3OF ,可得M (2, 2) , ………………4 分 (2)(法一)设A (x 1 , y 1 ) ,B (x 2 , y 2 ) , M (x 0 , y 0 ) , 由 O M + OP = λOF ,可得 (x 0 + 1, y 0 - 2) = (λ, 0) ,所以 y 0 =2 , y - y 所以 l 的斜率存在且斜率k = 1 2=x 1 - x 24 = 2y + y y3 3 3 3 3 33 2 ⋅ 2= 1,……………7分⎧ y = x + b可设l方程为y= x + b ,联立⎨得x2 + (2b - 4)x + b2 = 0 ,⎩ y2 = 4x∆=(2b-2 - 4b2 =16 -16b > 0 ,可得b<1,………………………………9分2则 x 1 + x 2 = 4 - 2b , x 1x 2 = b, y 1 y 2 = x 1 x 2 + b (x 1 + x 2 ) + b = 4b ,所以 O A ⋅ OB = x x + y y =b 2 + 4b = 12 ,…………………………………11 分1 21 2解得 b = -6 ,或 b = 2 (舍去),所以直线l 的方程为 y = x - 6 . ……………………………………………12 分(法二)设 l 的方程为x = my + n , A (x 1 , y 1 ) , B (x 2 , y 2 ) , M (x 0 , y 0 ) , ⎧x = my + n 联立 ⎨ ⎩ y 2= 4x得 y 2 - 4my - 4n = 0 , ∆ =16m 2 +16n > 0 , ………………6 分则 y 1 + y 2 = 4m , y 1 y 2 = -4n , x 1 + x 2 = m ( y 1 + y 2 ) + 2n = 4m+ 2n ,所以 M (2m 2 + n , 2m ) ,…………………………………………………………7 分由 O M + OP = λOF ,得 (2m 2 + n +1, 2m - 2) = (λ, 0) ,所以 m =1, …………8 分 所以 l 的方程为x = y + n , 由 ∆ = 16 + 16n > 0 可得, n > -1,……………………………………………9 分( y 1 y 2 ) 2由 y 1 y 2 = -4n 得 x 1 x 2 == n ,16所以 O A ⋅ OB = x x + y y =n 2 - 4n = 12 , ………………………………………11 分1 21 2解得 n = 6 ,或 n = -2 (舍去),所以直线l 的方程为 y = x - 6 . ……………………………………………12 分【命题意图】本题以直线与抛物线为载体,考查抛物线方程,直线与抛物线的位置关系、向量 的数量积运算,考查学生的逻辑推理,数学运算等数学核心素养及思辨能力.20.(本小题满分 12 分) 在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期. 一研究团队统计了某地区1000 名患者的 相关信息,得到如下表格:222(1)求这1000 名患者的潜伏期的样本平均数 x (同一组中的数据用该组区间的中点(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否 超过 6 天为标准进行分层抽样,从上述1000 名患者中抽取 200 人,得到如下列联表. 请将列联表补充完整,并根据列联表判断是否有 95% 的把握认为潜伏期与患者年龄有关;(3)以这1000 名患者的潜伏期超过 6 天的频率,代替该地区1名患者潜伏期超过 6 天发生的概 率,每名患者的潜伏期是否超过 6 天相互独立. 为了深入研究,该研究团队随机调查了 20 名患者, 其中潜伏期超过 6 天的人数最.有.可.能.(即.概.率.最.大.)是多少? 附:2n (ad - bc )2K = ,其中 n = a + b + c + d .(a + b )(c + d )(a + c )(b + d )解:(1) x =1 1000⨯(1⨯ 85 + 3⨯ 205 + 5⨯ 310 + 7 ⨯ 250 + 9 ⨯130 +11⨯15 +13⨯ 5)= 5.4 天.……………………………………………………………………………2 分(2)根据题意,补充完整的列联表如下:则 K 2 = (65 ⨯ 45 - 55 ⨯ 35) ⨯ 200 =25 ≈ 2.083 , ………………………………………5 分120 ⨯ 80 ⨯100 ⨯10012经查表,得 K 2 ≈ 2.083 < 3.841 ,所以没有95% 的把握认为潜伏期与年龄有关. ……6 分(3)由题可知,该地区每 1 名患者潜伏期超过 6 天发生的概率为400 = 2, ……7 分 1000 5设调查的 20 名患者中潜伏期超过 6 天的人数为 X ,则 X ~ B (20, 2) , P ( X = k ) = C kk⎪ ⎪20-k, k = 0 ,1, 2 ,…, 20 , ………8 分⎛ 2 ⎫20深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 12 页 共 16页5 2 3 2 3 得 5 2 3 2 320 20 ⎧ ⎝ ⎭ ⎛ 3 ⎫ ⎝ 5 ⎭k 20-k ⎛ ⎫ ⎛ ⎫ k +1 19-k⎛ ⎫ ⎛ ⎫ ⎪C k ⎪ ⎪≥ C k +1 ⎪ ⎪ ⎧P ( X = k ) ≥ P ( X = k + 1) ⎪ 由 ⎨ ⎨ 20⎝ ⎭ ⎝ 5 ⎭ 20 ⎝ 5⎭ ⎝ 5 ⎭ , …………10 分 ⎩P ( X = k ) ≥ P ( X = k -1) ⎪ k 20-k ⎛ ⎫ ⎛ ⎫ k -1 21-k⎛ ⎫ ⎛ ⎫ ⎪C k ⎪ ⎪ ≥ C k -1 ⎪ ⎪⎩ ⎝ 5 ⎭ ⎝ 5 ⎭⎝ 5 ⎭ ⎝ 5 ⎭深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 13 页 共 16页0 ⎧3(k + 1) ≥ 2(20 - k ) 化简得 ⎨ ⎩2(21 - k ) ≥ 3k ,解得 375 ≤ k ≤ 42 ,5 又 k ∈ N ,所以 k = 8 ,即这 20 名患者中潜伏期超过6 天的人数最有可能是 8 人.…12 分【命题意图】以医学案例为实际背景,考查频数分布表,考查平均数,二项分布的随机变量概 率最大时的取值;考查分析问题、解决问题的能力;处理数据能力、建模能力和核心素养.21.(本小题满分 12 分)已知函数 f (x ) = e x- a ln(x -1) .(其中常数 e =2.718 28 ⋅ ⋅ ⋅ ,是自然对数的底数)(1)若 a ∈ R ,求函数 f (x ) 的极值点个数;(2)若函数 f (x ) 在区间(1,1+e -a) 上不单调,证明: 1+ 1> a .(x -1)e 解:(1)易知 f '(x ) =x- a a a +1, x > 1 ,………………………………………1 分x -1①若 a ≤ 0 ,则 f '(x ) > 0 ,函数 f (x ) 在 (1, +∞) 上单调递增,∴函数 f (x ) 无极值点,即函数 f (x ) 的极值点个数为 0 ;……………………2 分②若 a > 0 ,(法一)考虑函数 y = (x -1)e x - a (x ≥ 1) ,Q y (1 + a ) = a e 1+a - a > a - a = 0 ,y (1) = -a < 0 ,∴函数 y = (x -1)e x - a (x ≥ 1) 有零点x ,且1< x <1+ a , 0Q y ' = x e x > 0 ,∴函数 y = (x -1)e x - a (x ≥ 1) 为单调递增函数,∴函数 y = (x -1)e x - a (x ≥ 1) 有唯一零点x ,∴ f '(x ) =(x -1)e - a亦存在唯一零点 x , …………………………………4 分x -1 0x深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 14 页 共 16页∴当 x ∈(1, x 0 ) 时,易知 f '(x ) < 0 ,即函数 f (x ) 在 (1, x 0 ) 上单调递减,当 x ∈(x 0 , +∞) 时,易知 f '(x ) > 0 ,即函数 f (x ) 在 (x 0 , +∞) 上单调递增,∴ 函数 f (x ) 有极小值点 x 0 ,即函数 f (x ) 的极值点个数为1 , ……………………5 分 综上所述,当 a ≤ 0 时,函数 f (x ) 的极值点个数为 0 ;当 a > 0 时,函数 f (x ) 的极值点个数为1 .(法二)易知函数 y = e x 的图象与 y =ax -1(a > 0) 的图象有唯一交点 M (x 0 , y 0 ) ,深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 15 页 共 16页∴ e x=a x 0 -1,且 x 0 > 1 ,…………………………………………………………………3 分∴当 x ∈(1, x 0 ) 时,易知 f '(x ) < 0 ,即函数 f (x ) 在 (1, x 0 ) 上单调递减,当 x ∈(x 0 , +∞) 时,易知 f '(x ) > 0 ,即函数 f (x ) 在 (x 0 , +∞) 上单调递增,∴ 函数 f (x ) 有极小值点 x 0 ,即函数 f (x ) 的极值点个数为1 , ……………………4 分 综上所述,当 a ≤ 0 时,函数 f (x ) 的极值点个数为 0 ;当 a > 0 时,函数 f (x ) 的极值点个数为1 .(注:第(1)问采用法二作答的考生应扣 1 分,即总分不得超过 4 分)(法三)对于 ∀a > 0 ,必存在 n ∈N *,使得 n >2 - ln a,即 2 - na < ln a ,aQ e- na< 1 ,∴ e1-na +e - na- a < e 2 -na- a < e ln a- a = 0 ,e -na e 1+e - na- a ∴ f '(1+ e-na) = < 0 , e -naa e1+ a又 f '(1 + a ) = a - a =e 1+ a-1 > 0 , ∴函数 f '(x ) = (x -1)e x- a 有零点,不妨设其为 x ,x -1 0 显然 f '(x ) = e x-a x -1(x > 1) 为递增函数, ∴ x 0 为函数 f '(x ) 的唯一零点, …………………………………………………………4 分∴当 x ∈(1, x 0 ) 时,易知 f '(x ) < 0 ,即函数 f (x ) 在 (1, x 0 ) 上单调递减,当 x ∈(x 0 , +∞) 时,易知 f '(x ) > 0 ,即函数 f (x ) 在 (x 0 , +∞) 上单调递增,深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 16 页 共 16页∴ 函数 f (x ) 有极小值点 x 0 ,即函数 f (x ) 的极值点个数为1 , ……………………5 分 综上所述,当 a ≤ 0 时,函数 f (x ) 的极值点个数为 0 ;当 a > 0 时,函数 f (x ) 的极值点个数为1 .(2) Q 函数f (x ) 在区间 (1,1+e -a) 上不单调,∴存在 x ∈(1,1+e -a ) 为函数 f (x ) 的极值点, ……………………………………6 分e -a ⋅ e 1+e - a- a∴由(1)可知 a > 0 ,且 f '(1+e -a) => 0 ,即 e1-a +ee -a> a ,两边取对数得1 - a +e - a > ln a ,即1+e - a - ln a > a , ………………………………7 分深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 11 页 共 16页(法一)欲证1 + 1 > a ,不妨考虑证a a +11 + 1 ≥1+e -a - ln a , a a +1 先证明一个熟知的不等式: e x ≥ 1 + x ,令 g (x ) = e x - x -1,则 g '(x ) = e x -1,∴ g '(0) = 0 , 不难知道函数 g (x ) 的极小值(即最小值)为 g (0) = 0 ,∴ e x - x -1 ≥ 0 ,即 e x ≥ 1 + x ,……………………………………………………8 分(思路 1:放缩思想)∴ e -a = 1≤ 1 , 即 1 ≥ e -a, ………………………9 分1-111- 1e a a +1 1 a +11又 ea≥ ,∴ e a≤ a ,∴1- ≤ ln a ,即 ≥ 1- ln a ,………………………11 分∴ 1+ a a1≥1+e -a- ln a ,∴ 1 + 1a > a . …………………………12 分 a a +1 a a +1(思路 2:构造函数)令ϕ(a ) = 1 + ln a -1 ,则ϕ'(a ) = 1 - 1= a -1 ,a a a 2 a 2不难知道,函数ϕ(a ) 有最小值ϕ(1) = 0 ,∴ϕ(a ) ≥ 0 ,…………………………10 分当 a > 0 时, 1- e - a= e- a -1> 0 , …………………………………………11 分a + 1 (a + 1)e a∴ 1 + ln a -1 + 1 - e -a 1 1> 0,即 + ≥1+e -a - ln a , aa +1a a +1∴ 1 + 1 > a .…………………………………………………………………12 分a a +1(法二)令 F (x ) = 1+e - x - ln x - x ,则 F '(x ) = -e - x - 1 -1 < 0 ,x∴函数 F (x ) 为单调递减函数,显然 F (2) < 2 - ln 2 - 2 < 0 ,且 F (a ) > 0 ,∴ 0 < a < 2 ,①若 0 < a < 1 ,则1 + 1 > 1 > a ,即1 + 1> a 成立; …………………………8 分 a a +1a深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 12 页 共 16页②若1≤ a < 2 ,只需证 1+ aa a +1 1≥1+e -a - ln a ,a a +1 111414不难证明 +≥ a a +1 7a + 3,只需证明 7a + 3≥1+e -a - ln a , …………………………9 分令 G (a ) = 14 7a + 3- e -a + ln a -1,1≤ a ≤ 2 ,则 G '(a ) = e -a + 1 - a 98 (7a + 3)2 > 1 - a 98 , (7a + 3)2当1≤ a ≤ 2 时, 1 - 98=49a - 56a + 9 ,a (7a + 3)2 a (7a + 3)2显然函数 y = 49a 2 - 56a + 9 在 [1, 2] 上单调递增,且 y (1) = 2 > 0 ,2深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 13 页 共 16页ea∴ G '(a ) > 0 ,即函数 G (a ) 为单调递增函数, ………………………………………10 分∴当1≤ a < 2 时, G (a ) ≥ G (1) = 2 - 1 =2e - 5> 0 ,即 G (a ) > 0 , ………………11 分5 e 5e∴14 ≥1+e -a- ln a ,即 1 + 1 > a , 7a + 3 a a +11 1综上所述,必有 +> a 成立. …………………………………………………12 分 a a +1(法三)同(法二)得 0 < a < 2 ,1 11 1 1①若 0 < a < 1 ,则 +> > a ,即 + > a 成立; …………………………8 分a a +1 ②若1≤ a < 2 ,只需证 1 +a a a +11≥1+e -a - ln a , 令 G (a ) = 1 + 1a a +1- e - a + ln a -1 ,1≤ a ≤ 2 ,a a + 1则 G '(a ) = e -a- 1 + a -1 ≥ e -a - 1, (a +1)2 a 2 (a +1)2下证当1≤ a ≤ 2 时,e -a-1(a +1)2a > 0 ,即证 e a < (a +1)2,即证 e 2< a +1 , ………9 分a令 H (a ) = e 2- a -1,1≤ a ≤ 2 ,则 H '(a ) = 1 e 2 -1,当 a = 2ln 2 时, H '(a ) = 0 ,2不难知道,函数 H (a ) 在 [1, 2ln 2) 上单调递减,在 (2ln 2, 2] 上单调递增,∴函数 H (a ) 的最大值为 H (1) ,或 H (2) 中的较大值,显然 H (1) =- 2 < 0 ,且 H (2) = e - 3 < 0 ,a∴函数 H (a ) 的最大值小于 0 ,即 H (a ) < 0 ,亦即 e 2 < a +1 ,…………………………10 分∴ e -a -1 (a +1)2> 0 ,即 G '(a ) > 0 ,∴函数 G (a ) = 1 + 1- e - a + ln a -1 ,1≤ a ≤ 2 单调递增,a a + 1易知 G (1) = 1 - 1> 0 ,∴ G (a ) > 0 ,即 1 + 1≥1+e -a - ln a ,………………………11 分深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 14 页 共 16页2 e∴当1≤ a < 2 时,有 1 + 1a a +1> a 成立,a a +111综上所述, +> a .…………………………………………………………12 分a a +1深圳市 2020 年普通高中高三年级线上统一测试数学(理科)试题参考答案 第 15 页 共 16页3 【命题意图】 本题以基本初等函数及不等式证明为载体,考查学生利用导数分析、解决问题 的能力,分类讨论思想及逻辑推理、数学运算等数学核心素养,具有较强的综合性.22.(本小题满分 10 分)选修 4-4:坐标系与参数方程⎪⎧x = -2 在直角坐标系 x Oy 中,直线 C 1 的参数方程为 ⎨+ tcos α,(t 为参数,α为倾斜角), ⎪⎩ y = t sin α,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线C 2 的极坐标方程为 ρ= 4sin θ.(1)求 C 2 的直角坐标方程;(2)直线 C 1 与 C 2 相交于 E , F 两个不同的点,点 P 的极坐标为 (2, π) ,若 2 EF = PE + PF ,求直线 C 1 的普通方程.解:(1)由题意得, C 2 的极坐标方程为 ρ= 4sin θ,所以 ρ2 = 4ρsin θ,………………1 分 又x = ρcos θ, y = ρsin θ,………………2 分代入上式化简可得, x 2 + y 2 - 4 y = 0 ,………………3 分 所以 C 2 的直角坐标方程 x 2 + ( y - 2)2 = 4 .………………4 分 (2)易得点 P 的直角坐标为 (-2 ,0) ,⎪⎧x = -2 将 ⎨ + t cos α,代入 C 2 的直角坐标方程,可得⎪⎩ y = t sin α,t 2 - (4∆ = (4 cos α+ 4sin α)t + 12 = 0 ,………………5 分cos α+ 4sin α)2 - 48=[8sin(α+ π)]2 - 48 > 0 ,3 解得 s in(α+ π) > 3 ,或 s in(α+ π) < - 3,3 2 3 2不难知道α必为锐角,故 s in(α+ π) >3, 3 2所以 π <α+ π < 2π ,即 0 < α< π ,………………6 分3 3 3 33333 33设这个方程的两个实数根分别为 t 1 , t 2 ,则t 1 + t 2 = 4 cos α+ 4sin α, t 1 ⋅ t 2 = 12 ,………………7 分3 3 ) 所以 t 1 与t 2 同号, 由参数t 的几何意义可得,PE + PF = t + t= t + t= 8 sin(α+ π) , 1 2 1 2 3EF = t - t = ,………………8 分 1 2所以 2 ⨯= 8 sin(α+ π ,3两边平方化简并解得 s in(α+ π ) = 1,所以α= π + 2k π , k ∈ Z ,3 6 因为 0 < α< π ,所以α= π ,………………9 分3 6 ⎧ ⎪⎪x = -2+ t, 2 所以直线 C 1 的参数方程为 ⎨ ⎪ y = 1 t , ⎩⎪ 2消去参数 t ,可得直线 C 1 的普通方程为 x - y + 2 = 0 .………………10 分【命题意图】本题主要考查了圆的极坐标方程与直角坐标方程的互化、直线参数方程中参数的 几何意义和三角函数等知识点,重点考查数形结合思想,体现了数学运算、逻辑推理等核心素养, 考察考生的化归与转化能力.23.(本小题满分 10 分)选修 4-5:不等式选讲已知 a , b , c 为正数,且满足 a + b + c = 1. 证明:(1) 1 + 1 + 1 ≥ 9 ; a b c(2) a c + bc + ab - abc ≤ 8.273 3⎝ ⎭证明:(1)因为 1 + 1 + 1 = (a + b + c ) ⎛ 1+ 1 + 1 ⎫a b c = 3 + b + a + c + a + c + ba b a c b ca b c ⎪3≥ 3 + +1(当且仅当 a = b = c = 时,等号成立). ………………5 分3(2)(法一)因为 a , b , c 为正数,且满足 a + b + c = 1, 所以 c = 1 - a - b ,且1 - a > 0 ,1 - b > 0 ,1 - c > 0 , 所以 a c + bc + ab - abc= (a + b - ab )c + ab=(a+b -) 1- a - b )+ ab = (b -1)(a -1)(a + b )= (1- a )(1- b )(1- c )≤ ⎡(1- a ) + (1- b ) + (1- c ) ⎤ = 8 ,⎣⎢ 3 ⎦⎥ 27所以 a c + bc + ab - abc ≤ 8.271(当且仅当 a = b = c = 时,等号成立). ………………10 分3(法二)因为 a , b , c 为正数,且满足 a + b + c = 1,所以 c = 1 - a - b ,且1 - a > 0 ,1 - b > 0 ,1 - c > 0 ,ac + bc + ab - abc = 1 - (a + b + c ) + ac + bc + ab - abc= (1 - a ) + b (a - 1) + c (a - 1) + bc (1 - a )= (1- a ) ⎡⎣1- (b + c ) + bc ⎤⎦= (1- a)(1- b)(1- c)⎡3 -(a + b + c) ⎤38≤ ⎢⎥ =⎣ 3 ⎦27所以a c + bc + ab - abc ≤ 8 .271(当且仅当a= b = c =时,等号成立). ………………10 分3【命题意图】本题以三元不等式为载体考查二元基本不等式(三元均值不等式)的证明,涉及代数恒等变形等数学运算、充分体现了对考生的逻辑推理的核心素养及化归与转化能力的考察.。
北京市2020年〖人教版〗高三数学复习试卷全国统一高考数学试卷理科创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题(本大题共12小题,每小题5分)1.(5分)设z=,则z的共轭复数为()A.﹣1+3i B.﹣1﹣3i C.1+3i D.1﹣3i2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4)C.[﹣1,0)D.(﹣1,0]3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2 B. C.1 D.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=17.(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2 D.18.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.10.(5分)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A.6 B.5 C.4 D.311.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C ∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为.(用数字作答)14.(5分)设x、y满足约束条件,则z=x+4y的最大值为.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.16.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.18.(12分)等差数列{a n}的前n项和为S n,已知a1=13,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.22.(12分)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤(n∈N*).参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设z=,则z的共轭复数为()A.﹣1+3i B.﹣1﹣3i C.1+3i D.1﹣3i【分析】直接由复数代数形式的除法运算化简,则z的共轭可求.【解答】解:∵z==,∴.故选:D.【点评】本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础题.2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4)C.[﹣1,0)D.(﹣1,0]【分析】求解一元二次不等式化简集合M,然后直接利用交集运算求解.【解答】解:由x2﹣3x﹣4<0,得﹣1<x<4.∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<4},又N={x|0≤x≤5},∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4).故选:B.【点评】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b【分析】可得b=sin35°,易得b>a,c=tan35°=>sin35°,综合可得.【解答】解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知b>a,而c=tan35°=>sin35°=b,∴c>b>a故选:C.【点评】本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题.4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2 B. C.1 D.【分析】由条件利用两个向量垂直的性质,可得(+)•=0,(2+)•=0,由此求得||.【解答】解:由题意可得,(+)•=+=1+=0,∴=﹣1;(2+)•=2+=﹣2+=0,∴b2=2,则||=,故选:B.【点评】本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积等于零,属于基础题.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=1【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.7.(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2 D.1【分析】求函数的导数,利用导数的几何意义即可求出对应的切线斜率.【解答】解:函数的导数为f′(x)=e x﹣1+xe x﹣1=(1+x)e x﹣1,当x=1时,f′(1)=2,即曲线y=xe x﹣1在点(1,1)处切线的斜率k=f′(1)=2,故选:C.【点评】本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础.8.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.【分析】根据双曲线的定义,以及余弦定理建立方程关系即可得到结论.【解答】解:∵双曲线C的离心率为2,∴e=,即c=2a,点A在双曲线上,则|F1A|﹣|F2A|=2a,又|F1A|=2|F2A|,∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,则由余弦定理得cos∠AF2F1===.故选:A.【点评】本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.10.(5分)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A.6 B.5 C.4 D.3【分析】利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10.再利用对数的运算性质即可得出.【解答】解:∵数列{a n}是等比数列,a4=2,a5=5,∴a1a8=a2a7=a3a6=a4a5=10.∴lga1+lga2+…+lga8=lg(a1a2•…•a8)=4lg10=4.故选:C.【点评】本题考查了等比数列的性质、对数的运算性质,属于基础题.11.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C ∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.【分析】首先作出二面角的平面角,然后再构造出异面直线AB与CD所成角,利用解直角三角形和余弦定理,求出问题的答案.【解答】解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,∵AE⊥l∴∠EAC=90°∵CD∥AF又∠ACD=135°∴∠FAC=45°∴∠EAF=45°在Rt△BEA中,设AE=a,则AB=2a,BE=a,在Rt△AEF中,则EF=a,AF=a,在Rt△BEF中,则BF=2a,∴异面直线AB与CD所成的角即是∠BAF,∴cos∠BAF===.故选:B.【点评】本题主要考查了二面角和异面直线所成的角,关键是构造二面角的平面角和异面直线所成的角,考查了学生的空间想象能力和作图能力,属于难题.12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)【分析】设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,代入解析式变形可得.【解答】解:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,又∵函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,∴P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,∴必有﹣y=g(﹣x),即y=﹣g(﹣x)∴y=f(x)的反函数为:y=﹣g(﹣x)故选:D.【点评】本题考查反函数的性质和对称性,属中档题.二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为70.(用数字作答)【分析】先求出二项式展开式的通项公式,再令x、y的幂指数都等于2,求得r的值,即可求得展开式中x2y2的系数.=•(﹣1)【解答】解:的展开式的通项公式为T r+1 r••=•(﹣1)r••,令 8﹣=﹣4=2,求得 r=4,故展开式中x2y2的系数为=70,故答案为:70.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.14.(5分)设x、y满足约束条件,则z=x+4y的最大值为5.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时z max=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ的值,再根据tan2θ=,计算求得结果.【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.16.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是(﹣∞,2].【分析】利用二倍角的余弦公式化为正弦,然后令t=sinx换元,根据给出的x 的范围求出t的范围,结合二次函数的图象的开口方向及对称轴的位置列式求解a的范围.【解答】解:由f(x)=cos2x+asinx=﹣2sin2x+asinx+1,令t=sinx,则原函数化为y=﹣2t2+at+1.∵x∈(,)时f(x)为减函数,则y=﹣2t2+at+1在t∈(,1)上为减函数,∵y=﹣2t2+at+1的图象开口向下,且对称轴方程为t=.∴,解得:a≤2.∴a的取值范围是(﹣∞,2].故答案为:(﹣∞,2].【点评】本题考查复合函数的单调性,考查了换元法,关键是由换元后函数为减函数求得二次函数的对称轴的位置,是中档题.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.18.(12分)等差数列{a n}的前n项和为S n,已知a1=13,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.【分析】(1)通过S n≤S4得a4≥0,a5≤0,利用a1=13、a2为整数可得d=﹣4,进而可得结论;(2)通过a n=13﹣3n,分离分母可得b n=(﹣),并项相加即可.【解答】解:(1)在等差数列{a n}中,由S n≤S4得:a4≥0,a5≤0,又∵a1=13,∴,解得﹣≤d≤﹣,∵a2为整数,∴d=﹣4,∴{a n}的通项为:a n=17﹣4n;(2)∵a n=17﹣4n,∴b n===﹣(﹣),于是T n=b1+b2+……+b n=﹣[(﹣)+(﹣)+……+(﹣)]=﹣(﹣)=.【点评】本题考查求数列的通项及求和,考查并项相加法,注意解题方法的积累,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.【分析】记A i表示事件:同一工作日乙丙需要使用设备,i=0,1,2,B表示事件:甲需要设备,C表示事件,丁需要设备,D表示事件:同一工作日至少3人需使用设备(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(Ⅱ)X的可能取值为0,1,2,3,4,分别求出PX i,再利用数学期望公式计算即可.【解答】解:由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)X的可能取值为0,1,2,3,4P(X=0)=(1﹣0.6)×0.52×(1﹣0.4)=0.06P(X=1)=0.6×0.52×(1﹣0.4)+(1﹣0.6)×0.52×0.4+(1﹣0.6)×2×0.52×(1﹣0.4)=0.25P(X=4)=P(A2•B•C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)﹣P(X=4)=0.25,P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)﹣P(X=4)=1﹣0.06﹣0.25﹣0.25﹣0.06=0.38.故数学期望EX=0×0.06+1×0.25+2×0.38+3×0.25+4×0.06=2【点评】本题主要考查了独立事件的概率和数学期望,关键是找到独立的事件,计算要有耐心,属于难题.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得 p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px(p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得 p=2,或 p=﹣2(舍去).故C的方程为 y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为 x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为 x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N 两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为 x﹣y﹣1=0,或 x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.22.(12分)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤(n∈N*).【分析】(Ⅰ)求函数的导数,通过讨论a的取值范围,即可得到f(x)的单调性;(Ⅱ)利用数学归纳法即可证明不等式.【解答】解:(Ⅰ)函数f(x)的定义域为(﹣1,+∞),f′(x)=,①当1<a<2时,若x∈(﹣1,a2﹣2a),则f′(x)>0,此时函数f(x)在(﹣1,a2﹣2a)上是增函数,若x∈(a2﹣2a,0),则f′(x)<0,此时函数f(x)在(a2﹣2a,0)上是减函数,若x∈(0,+∞),则f′(x)>0,此时函数f(x)在(0,+∞)上是增函数.②当a=2时,f′(x)≥0,此时函数f(x)在(﹣1,+∞)上是增函数,③当a>2时,若x∈(﹣1,0),则f′(x)>0,此时函数f(x)在(﹣1,0)上是增函数,若x∈(0,a2﹣2a),则f′(x)<0,此时函数f(x)在(0,a2﹣2a)上是减函数,若x∈(a2﹣2a,+∞),则f′(x)>0,此时函数f(x)在(a2﹣2a,+∞)上是增函数.(Ⅱ)由(Ⅰ)知,当a=2时,此时函数f(x)在(﹣1,+∞)上是增函数,当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1)>,(x>0),又由(Ⅰ)知,当a=3时,f(x)在(0,3)上是减函数,当x∈(0,3)时,f(x)<f(0)=0,ln(x+1)<,下面用数学归纳法进行证明<a n≤成立,①当n=1时,由已知,故结论成立.②假设当n=k时结论成立,即,则当n=k+1时,a n=ln(a n+1)>ln(),+1a k+1=ln(a k+1)<ln(),即当n=k+1时,成立,综上由①②可知,对任何n∈N•结论都成立.【点评】本题主要考查函数单调性和导数之间的关系,以及利用数学归纳法证明不等式,综合性较强,难度较大.创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校。
北京市2020年〖人教版〗高三数学复习试卷全国统一高考数学试卷创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数=()A.2﹣iB.1﹣2iC.﹣2+iD.﹣1+2i2.(5分)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个3.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1C.y=﹣x2+4D.y=2﹣|x|4.(5分)椭圆=1的离心率为()A.B.C.D.5.(5分)执行如图的程序框图,如果输入的N是6,那么输出的p是()A.120B.720C.1440D.50406.(5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.7.(5分)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣B.﹣C.D.8.(5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.9.(5分)已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18B.24C.36D.4810.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(,)B.(﹣,0)C.(0,)D.(,)11.(5分)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称12.(5分)已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()A.10个B.9个C.8个D.1个二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a与b为两个垂直的单位向量,k为实数,若向量+与向量k﹣垂直,则k=.14.(5分)若变量x,y满足约束条件,则z=x+2y的最小值为.15.(5分)△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.16.(5分)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.三、解答题(共8小题,满分70分)17.(12分)已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.19.(12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数82042228B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数412423210(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20.(12分)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.21.(12分)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)证明:当x>0,且x≠1时,f(x)>.22.(10分)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M 是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.24.设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数=()A.2﹣iB.1﹣2iC.﹣2+iD.﹣1+2i【考点】A5:复数的运算.【专题】11:计算题.【分析】将分子、分母同时乘以1+2i,再利用多项式的乘法展开,将i2用﹣1 代替即可.【解答】解:=﹣2+i故选:C.【点评】本题考查复数的除法运算法则:分子、分母同乘以分母的共轭复数.2.(5分)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【考点】1E:交集及其运算.【专题】11:计算题.【分析】利用集合的交集的定义求出集合P;利用集合的子集的个数公式求出P 的子集个数.【解答】解:∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3}∴P的子集共有22=4故选:B.【点评】本题考查利用集合的交集的定义求交集、考查一个集合含n个元素,则其子集的个数是2n.3.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1C.y=﹣x2+4D.y=2﹣|x|【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题;51:函数的性质及应用.【分析】由函数的奇偶性和单调性的定义和性质,对选项一一加以判断,即可得到既是偶函数又在(0,+∞)上单调递增的函数.【解答】解:对于A.y=2x3,由f(﹣x)=﹣2x3=﹣f(x),为奇函数,故排除A;对于B.y=|x|+1,由f(﹣x)=|﹣x|+1=f(x),为偶函数,当x>0时,y=x+1,是增函数,故B正确;对于C.y=﹣x2+4,有f(﹣x)=f(x),是偶函数,但x>0时为减函数,故排除C;对于D.y=2﹣|x|,有f(﹣x)=f(x),是偶函数,当x>0时,y=2﹣x,为减函数,故排除D.故选:B.【点评】本题考查函数的性质和运用,考查函数的奇偶性和单调性及运用,注意定义的运用,以及函数的定义域,属于基础题和易错题.4.(5分)椭圆=1的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】根据椭圆的方程,可得a、b的值,结合椭圆的性质,可得c的值,有椭圆的离心率公式,计算可得答案.【解答】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选:D.【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分.5.(5分)执行如图的程序框图,如果输入的N是6,那么输出的p是()A.120B.720C.1440D.5040【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】执行程序框图,写出每次循环p,k的值,当k<N不成立时输出p的值即可.【解答】解:执行程序框图,有N=6,k=1,p=1P=1,k<N成立,有k=2P=2,k<N成立,有k=3P=6,k<N成立,有k=4P=24,k<N成立,有k=5P=120,k<N成立,有k=6P=720,k<N不成立,输出p的值为720.故选:B.【点评】本题主要考察了程序框图和算法,属于基础题.6.(5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】本题是一个古典概型,试验发生包含的事件数是3×3种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P=,故选:A.【点评】本题考查古典概型概率公式,是一个基础题,题目使用列举法来得到试验发生包含的事件数和满足条件的事件数,出现这种问题一定是一个必得分题目.7.(5分)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣B.﹣C.D.【考点】GS:二倍角的三角函数;I5:直线的图象特征与倾斜角、斜率的关系.【专题】11:计算题.【分析】根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tanθ的值,然后根据同角三角函数间的基本关系求出cosθ的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把cosθ的平方代入即可求出值.【解答】解:根据题意可知:tanθ=2,所以cos2θ===,则cos2θ=2cos2θ﹣1=2×﹣1=﹣.故选:B.【点评】此题考查学生掌握直线的斜率与倾斜角之间的关系,灵活运用同角三角函数间的基本关系化简求值,是一道中档题.8.(5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【考点】L7:简单空间图形的三视图.【专题】13:作图题.【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选:D.【点评】本题考查简单空间图形的三视图,考查由三视图看出原几何图形,再得到余下的三视图,本题是一个基础题.9.(5分)已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18B.24C.36D.48【考点】KH:直线与圆锥曲线的综合.【专题】44:数形结合法.【分析】首先设抛物线的解析式y2=2px(p>0),写出次抛物线的焦点、对称轴以及准线,然后根据通径|AB|=2p,求出p,△ABP的面积是|AB|与DP乘积一半.【解答】解:设抛物线的解析式为y2=2px(p>0),则焦点为F(,0),对称轴为x轴,准线为x=﹣∵直线l经过抛物线的焦点,A、B是l与C的交点,又∵AB⊥x轴∴|AB|=2p=12∴p=6又∵点P在准线上∴DP=(+||)=p=6=(DP•AB)=×6×12=36∴S△ABP故选:C.【点评】本题主要考查抛物线焦点、对称轴、准线以及焦点弦的特点;关于直线和圆锥曲线的关系问题一般采取数形结合法.10.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(,)B.(﹣,0)C.(0,)D.(,)【考点】52:函数零点的判定定理.【专题】52:导数的概念及应用.【分析】根据导函数判断函数f(x)=e x+4x﹣3单调递增,运用零点判定定理,判定区间.【解答】解:∵函数f(x)=e x+4x﹣3∴f′(x)=e x+4当x>0时,f′(x)=e x+4>0∴函数f(x)=e x+4x﹣3在(﹣∞,+∞)上为f(0)=e0﹣3=﹣2<0f()=﹣1>0f()=﹣2=﹣<0∵f()•f()<0,∴函数f(x)=e x+4x﹣3的零点所在的区间为(,)故选:A.【点评】本题考察了函数零点的判断方法,借助导数,函数值,属于中档题.11.(5分)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称【考点】H5:正弦函数的单调性;H6:正弦函数的奇偶性和对称性.【专题】57:三角函数的图像与性质.【分析】利用辅助角公式(两角和的正弦函数)化简函数f(x)=sin(2x+)+cos(2x+),然后求出对称轴方程,判断y=f(x)在(0,)单调性,即可得到答案.【解答】解:因为f(x)=sin(2x+)+cos(2x+)=sin(2x+)=cos2x.由于y=cos2x的对称轴为x=kπ(k∈Z),所以y=cos2x的对称轴方程是:x=(k∈Z),所以A,C错误;y=cos2x的单调递减区间为2kπ≤2x≤π+2kπ(k∈Z),即(k∈Z),函数y=f(x)在(0,)单调递减,所以B错误,D正确.故选:D.【点评】本题是基础题,考查三角函数的化简,三角函数的性质:对称性、单调性,考查计算能力,常考题型.12.(5分)已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()A.10个B.9个C.8个D.1个【考点】3Q:函数的周期性;4N:对数函数的图象与性质.【专题】16:压轴题;31:数形结合.【分析】根据对数函数的性质与绝对值的非负性质,作出两个函数图象,再通过计算函数值估算即可.【解答】解:作出两个函数的图象如上∵函数y=f(x)的周期为2,在[﹣1,0]上为减函数,在[0,1]上为增函数∴函数y=f(x)在区间[0,10]上有5次周期性变化,在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数,在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数,且函数在每个单调区间的取值都为[0,1],再看函数y=|lgx|,在区间(0,1]上为减函数,在区间[1,+∞)上为增函数,且当x=1时y=0; x=10时y=1,再结合两个函数的草图,可得两图象的交点一共有10个,故选:A.【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a与b为两个垂直的单位向量,k为实数,若向量+与向量k﹣垂直,则k= 1 .【考点】9T:数量积判断两个平面向量的垂直关系.【专题】11:计算题.【分析】利用向量垂直的充要条件:数量积为0;利用向量模的平方等于向量的平方列出方程,求出k值.【解答】解:∵∴∵垂直∴即∴k=1故答案为:1【点评】本题考查向量垂直的充要条件、考查向量模的性质:向量模的平方等于向量的平方.14.(5分)若变量x,y满足约束条件,则z=x+2y的最小值为﹣6 .【考点】7C:简单线性规划.【专题】11:计算题.【分析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数z=x+2y变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.【解答】解:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由y=x﹣9与2x+y=3的交点得到A(4,﹣5)∴z=4+2(﹣5)=﹣6故答案为:﹣6.【点评】本题考查线性规划问题,考查根据不等式组画出可行域,在可行域中,找出满足条件的点,把点的坐标代入,求出最值.15.(5分)△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】先利用余弦定理和已知条件求得BC,进而利用三角形面积公式求得答案.【解答】解:由余弦定理可知cosB==﹣,求得BC=﹣8或3(舍负)∴△ABC的面积为•AB•BC•sinB=×5×3×=故答案为:【点评】本题主要考查了正弦定理和余弦定理的应用.在求三角形面积过程中,利用两边和夹角来求解是常用的方法.16.(5分)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.【考点】L5:旋转体(圆柱、圆锥、圆台);LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】所成球的半径,求出球的面积,然后求出圆锥的底面积,求出圆锥的底面半径,即可求出体积较小者的高与体积较大者的高的比值.【解答】解:不妨设球的半径为:4;球的表面积为:64π,圆锥的底面积为:12π,圆锥的底面半径为:2;由几何体的特征知球心到圆锥底面的距离,求的半径以及圆锥底面的半径三者可以构成一个直角三角形由此可以求得球心到圆锥底面的距离是,所以圆锥体积较小者的高为:4﹣2=2,同理可得圆锥体积较大者的高为:4+2=6;所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为:.故答案为:【点评】本题是基础题,考查旋转体的体积,球的内接圆锥的体积的计算,考查计算能力,空间想象能力,常考题型.三、解答题(共8小题,满分70分)17.(12分)已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.【考点】89:等比数列的前n项和.【专题】15:综合题.【分析】(I)根据数列{a n}是等比数列,a1=,公比q=,求出通项公式a n和前n项和S n,然后经过运算即可证明.(II)根据数列{a n}的通项公式和对数函数运算性质求出数列{b n}的通项公式.【解答】证明:(I)∵数列{a n}为等比数列,a1=,q=∴a n=×=,S n=又∵==S n∴S n=(II)∵a n=∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣nlog33)=﹣(1+2+…+n)=﹣∴数列{b n}的通项公式为:b n=﹣【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.【考点】LF:棱柱、棱锥、棱台的体积;LW:直线与平面垂直.【专题】11:计算题;14:证明题;15:综合题.【分析】(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(II)要求棱锥D﹣PBC的高.只需证BC⊥平面PBD,然后得平面PBC⊥平面PBD,作DE⊥PB于E,则DE⊥平面PBC,利用勾股定理可求得DE的长.【解答】解:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD.(II)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(I)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.由题设知PD=1,则BD=,PB=2.根据DE•PB=PD•BD,得DE=,即棱锥D﹣PBC的高为.【点评】此题是个中档题.考查线面垂直的性质定理和判定定理,以及点到面的距离,查了同学们观察、推理以及创造性地分析问题、解决问题能力.19.(12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数82042228B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数412423210(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)【考点】B2:简单随机抽样;BB:众数、中位数、平均数;CH:离散型随机变量的期望与方差.【专题】11:计算题;15:综合题.【分析】(I)根据所给的样本容量和两种配方的优质的频数,两个求比值,得到用两种配方的产品的优质品率的估计值.(II)根据题意得到变量对应的数字,结合变量对应的事件和第一问的结果写出变量对应的概率,写出分布列和这组数据的期望值.【解答】解:(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为∴用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为∴用B配方生产的产品的优质品率的估计值为0.42;(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,即X的分布列为X﹣224P0.040.540.42∴X的数学期望值EX=﹣2×0.04+2×0.54+4×0.42=2.68【点评】本题考查随机抽样和样本估计总体的实际应用,考查频数,频率和样本容量之间的关系,考查离散型随机变量的分布列和期望,本题是一个综合问题20.(12分)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.【考点】J1:圆的标准方程;J8:直线与圆相交的性质.【专题】5B:直线与圆.【分析】(Ⅰ)法一:写出曲线与坐标轴的交点坐标,利用圆心的几何特征设出圆心坐标,构造关于圆心坐标的方程,通过解方程确定出圆心坐标,进而算出半径,写出圆的方程;法二:可设出圆的一般式方程,利用曲线与方程的对应关系,根据同一性直接求出参数,(Ⅱ)利用设而不求思想设出圆C与直线x﹣y+a=0的交点A,B坐标,通过OA ⊥OB建立坐标之间的关系,结合韦达定理寻找关于a的方程,通过解方程确定出a的值.【解答】解:(Ⅰ)法一:曲线y=x2﹣6x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(3﹣2,0).可知圆心在直线x=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2)2+t2,解得t=1,故圆C的半径为,所以圆C的方程为(x﹣3)2+(y﹣1)2=9.法二:圆x2+y2+Dx+Ey+F=0x=0,y=1有1+E+F=0y=0,x2 ﹣6x+1=0与x2+Dx+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为x2+y2﹣6x﹣2y+1=0(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足方程组,消去y,得到方程2x2+(2a﹣8)x+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根与系数的关系得到x1+x2=4﹣a,x1x2=①,由于OA⊥OB可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以可得2x1x2+a(x1+x2)+a2=0②由①②可得a=﹣1,满足△=56﹣16a﹣4a2>0.故a=﹣1.【点评】本题考查圆的方程的求解,考查学生的待定系数法,考查学生的方程思想,直线与圆的相交问题的解决方法和设而不求的思想,考查垂直问题的解决思想,考查学生分析问题解决问题的能力,属于直线与圆的方程的基本题型.21.(12分)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)证明:当x>0,且x≠1时,f(x)>.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】15:综合题;16:压轴题;32:分类讨论;35:转化思想.【分析】(I)据切点在切线上,求出切点坐标;求出导函数;利用导函数在切点处的值为切线的斜率及切点在曲线上,列出方程组,求出a,b的值.(II)构造新函数,求出导函数,通过研究导函数的符号判断出函数的单调性,求出函数的最值,证得不等式.【解答】解:(I).由于直线x+2y﹣3=0的斜率为﹣,且过点(1,1)所以解得a=1,b=1(II)由(I)知f(x)=所以考虑函数,则所以当x≠1时,h′(x)<0而h(1)=0,当x∈(0,1)时,h(x)>0可得;当从而当x>0且x≠1时,【点评】本题考查导函数的几何意义:在切点处的导数值为切线的斜率、考查通过判断导函数的符号求出函数的单调性;通过求函数的最值证明不等式恒成立.22.(10分)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.【考点】N7:圆周角定理;NC:与圆有关的比例线段.【专题】11:计算题;14:证明题.【分析】(I)做出辅助线,根据所给的AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根,得到比例式,根据比例式得到三角形相似,根据相似三角形的对应角相等,得到结论.(II)根据所给的条件做出方程的两个根,即得到两条线段的长度,取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH,根据四点共圆得到半径的大小.【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2﹣14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=(12﹣2)=5.故C,B,D,E四点所在圆的半径为5【点评】本题考查圆周角定理,考查与圆有关的比例线段,考查一元二次方程的解,考查四点共圆的判断和性质,本题是一个几何证明的综合题.23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M 是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【考点】J3:轨迹方程;Q4:简单曲线的极坐标方程.【专题】11:计算题;16:压轴题.【分析】(I)先设出点P的坐标,然后根据点P满足的条件代入曲线C1的方程即可求出曲线C2的方程;(II)根据(I)将求出曲线C1的极坐标方程,分别求出射线θ=与C1的交点A的极径为ρ1,以及射线θ=与C2的交点B的极径为ρ2,最后根据|AB|=|ρ2﹣ρ1|求出所求.【解答】解:(I)设P(x,y),则由条件知M(,).由于M点在C1上,所以即从而C2的参数方程为(α为参数)(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2﹣ρ1|=.【点评】本题考查点的极坐标和直角坐标的互化,以及轨迹方程的求解和线段的度量,属于中档题.24.设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【考点】R5:绝对值不等式的解法.【专题】11:计算题;16:压轴题;32:分类讨论.【分析】(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f (x)≥3x+2的解集即可.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得﹣=﹣1,故a=2【点评】本题是中档题,考查绝对值不等式的解法,注意分类讨论思想的应用,考查计算能力,常考题型.创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校。
北京市2020年〖人教版〗高三数学复习试卷全国统一高考数学试卷理科创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.42.(5分)=()A.iB.C.D.3.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±xB.y=±xC.y=±xD.y=±x6.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+48.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.5012.(5分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2020届高三11月联考数学(理)试题一、单选题1.复数312112ii i +++-的模为( )A .1BCD .5【答案】C【解析】对复数进行计算化简,然后根据复数的模长公式,得到答案.【详解】 根据题意,31211211212i i i i i i +++++=+-+(12)(1)122i i i+-+=+3122i i++=+2i =+,所以|2|i +==故选:C.【点睛】本题考查复数的四则运算,求复数的模长,属于简单题.2.集合{|3}A x x =≤,(){}22|log 2,B x y x x x R ==-+∈,则A B =ð( )A .{|0}x x ≤B .{|2 3 0}x x x ≤≤≤或C .{|23}x x ≤≤D .{|03}x x ≤≤【答案】B【解析】对集合B 进行化简,然后根据集合的补集运算,得到答案.【详解】因为(){}22|log 2,B x y x x x ==-+∈R{}2|20,x x x x =-+>∈R{}|02,x x x =<<∈R ,因为集合{|3}A x x =≤所以{|2 3 0}A B x x x =≤≤≤或ð.故选:B.【点睛】本题考查解对数不等式,一元二次不等式,集合的补集运算,属于简单题.3.已知向量(3,4)a =r ,则实数1λ=是||5a λ=r的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 【解析】先求出a r ,然后分别判断由1λ=能否得到||5a λ=r ,和由||5a λ=r 能否得到1λ=,从而得到答案.【详解】因为向量(3,4)a =r,所以5a ==r因为1λ=,所以可得5a a λλ==r r ,所以1λ=是||5a λ=r的充分条件. 因为||5a λ=r ,所以||||5a λ= ||1λ=即1λ=±.所以1λ=是||5a λ=r的不必要条件.综上所述,实数1λ=是||5a λ=的充分而不必要条件.故选:A.【点睛】本题考查根据向量的坐标求向量的模长,判断充分而不必要条件,属于简单题. 4.已知函数32,0()log ,0x x g x x x ⎧-≤=⎨>⎩,则不等式()1g x <的解集为( ) A .(0,2)B .(,2)-∞C .(1,2)-D .(1,2)【答案】C【解析】按0x ≤和0x >,分别解不等式()1g x <,从而得到答案.【详解】 根据题意,32,0,()log ,0,x x g x x x ⎧-≤=⎨>⎩,由不等式()1g x <得310x x ⎧-<⎨≤⎩或2log 10x x <⎧⎨>⎩,, 所以10x -<≤或02x <<.即12x -<<所以不等式()1g x <的解集为(1,2)-.故选:C.【点睛】本题考查解分段函数不等式,解对数不等式,属于简单题.5.某几何体的三视图如图所示,则该几何体的体积为( )正视图 侧视图俯视图A .43-B .23-C .32-D .34- 【答案】C【解析】根据三视图还原出几何体的直观图,将几何体分为三棱锥E ABC -和三棱锥E ACD -两部分,根据三视图中的数据及线段的位置关系分别得到底面积和高,求出几何体的体积.【详解】该几何体的直观图如下图,平面ACD ⊥平面ABC ,DE P 平面ABC ,ACD V 与ACB △均是边长为2的等边三角形,2BE =,点E 在平面ABC 上的射影落在ABC ∠的平分线上,所以DE ⊥平面ACD ,所以113E ABC ABC V S -∆=⨯=, 13E ACD ACD V S DE -=⨯⨯V 11)3=1=,所以几何体的体积为2. 故选:C.【点睛】本题考查三视图还原结合体,根据三视图求几何体的体积,属于中档题.6.函数1()1x f x x +=-的图象在点(3,2)处的切线与函数2()2g x x =+的图象围成的封闭图形的面积为( )A .1112B .3316C .3516D .12548【答案】D【解析】对()f x 求导,利用导数的几何意义,求出切线方程,然后求出切线与()g x 的交点坐标,利用定积分求出围成的封闭图形的面积,得到答案.【详解】 由题意,22()(1)f x x '=--, 221(3)(31)2f '∴=-=--, 所以切线方程为270x y +-=,与2()2g x x =+的交点横坐标为132x =-,21x =. 故封闭图形的面积13227222x S x dx -⎛⎫=--- ⎪⎝⎭⎰ 3122231323311d 22243x x x x x x --⎛⎫⎛⎫=⎰--=-- ⎪ ⎪⎝⎭⎝⎭12548= 故选:D.【点睛】本题考查利用导数求函数图像上在一点的切线方程,定积分求封闭图形的面积,属于中档题.7.已知数列满足11a =,121n n a a +=+,设数列(){}2log 1n a +的前n 项和为n S ,若12111n nT S S S =++⋅⋅⋅+,则与9T 最接近的整数是( ) A .5B .4C .2D .1 【答案】C【解析】根据递推关系式121n n a a +=+,得到1121n n a a ++=+,得到{}1n a +的通项,从而得到(){}2log 1n a +的通项和前n 项和n S ,从而求出n T ,再得到9T ,从而得到答案.【详解】由题意,()112221n n n a a a ++=+=+, 所以1121n n a a ++=+, 所以{}n a 为以112a +=为首项,2为公比的等比数列,所以()11112n n a a -+=+2n =,因此()2log 1n a n +=,数列(){}2log 1n a +的前n 项和为(1)2n n n S +=, 12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭, 12111n n T S S S =++⋅⋅⋅+ 11111212231n n ⎛⎫=-+-+⋅⋅⋅+- ⎪+⎝⎭ 1211n ⎛⎫=- ⎪+⎝⎭所以995T =. 所以与9T 最接近的整数是2.故选:C.【点睛】本题考查构造法求数列的通项,等差数列前n 项和公式,裂项相消法求数列的和,属于中档题.8.已知函数2211,1()1,1x x f x x x x⎧--≤⎪=⎨+>⎪⎩,若函数()()g x f x m =-有两个零点,则实数m的取值范围为( )A .[2,)+∞B .(1,0)(2,)-+∞UC .(1,2]-D .(1,0)-【答案】D【解析】画出()y f x =的图像,然后得到()y f x =的图像和y m =的图像有两个交点,从而得到m 的取值范围.【详解】 根据函数2211,1()1,1x x f x x x x⎧--≤⎪=⎨+>⎪⎩,画出()f x 的图象如图所示,函数()()g x f x m =-有两个零点则函数()y f x =的图象与y m =的图象有2个交点,所以10m -<<,所以实数m 的取值范围为(1,0)-.故选:D.【点睛】本题考查画分段函数的图像,函数与方程,属于简单题.9.如果函数21()(2)12f x mx n x =+-+(0,0)m n >>的单调递增区间为[1,)+∞,则14m n+的最小值为( ) A .92 B .2 C .1 D .34【答案】A【解析】由()f x 单调递增区间为[1,)+∞,得到对称轴方程21n m --=,即2m n +=,再根据基本不等式求出14m n+的最小值,得到答案. 【详解】 因为函数21()(2)12f x mx n x =+-+(0,0)m n >>的单调递增区间为[1,)+∞ 所以对称轴为:21n m --=,即2m n +=, 所以14114()2m n m n m n ⎛⎫+=++ ⎪⎝⎭ 1452m n n m ⎛⎫=++ ⎪⎝⎭1(52≥+92=, 当且仅当2,3m =43n =时,等号成立. 故选:A.【点睛】本题考查根据二次函数的单调区间求参数之间的关系,基本不等式求和的最小值,属于简单题.10.已知sin()1223πα-= 则sin(2)6πα+= ( ) A .710- B .710 C .79- D .79【答案】C【解析】利用倍角公式,结合函数名的转换求解.【详解】21cos()12sin ()61223ππαα-=--=,(2)cos[(2)]cos(2)6263sin ππππααα+=-+=-272()169cos πα=--=-,故选C. 【点睛】本题主要考查三角函数的给值求值问题,首先从角入手,寻求已知角和所求角的关系,再利用三角恒等变换公式求解.11.如图,在三角形ABC 中,AC 上有一点D 满足4BD =,将ABD △沿BD 折起使得5AC =,若平面EFGH 分别交边AB ,BC ,CD ,DA 于点E ,F ,G ,H ,且AC P 平面EFGH ,BD P 平面EFGH 则当四边形EFGH 对角线的平方和取最小值时,DH DA=( )A .14B .1641C .2041D .3241【答案】B【解析】易得HG AC P ,EF AC P ,设DH GH k DA AC==,易得∥EH BD ,∥FG BD ,得1AH EH k DA BD==-,从而得到5GH k =,4(1)EH k =-,平行四边形EFGH 中,()2222413216EG HF k k +=-+,从而得到22EG HF +最小时的k 值,得到答案.【详解】AC P 平面EFGH ,AC ⊂平面ACD ,平面ACD I 平面EFGH HG =,所以AC HG P ,同理AC EF P设DH GH k DA AC==(01)k <<, BD P 平面EFGH ,BD ⊂平面ABD ,平面ABD ⋂平面EFGH HE =,所以BD HE P ,同理∥FG BD所以1AH EH k DA BD==-, 因为4BD =,5AC =所以5GH k =,4(1)EH k =-,在平行四边形EFGH 中,222222516(1)EG HF k k ⎡⎤∴+=+-⎣⎦(22413216)k k =-+, 又01k <<Q ,∴当1641k =时,22EG HF +取得最小值. 故选:B.【点睛】本题考查线面平行证明线线平行,平行四边形对角线的性质,二次函数求最值,属于中档题.12.定义在R 上的函数()f x 满足(2)()0f x f x ++=,(2018)2f =,任意的[1,2]t ∈,函数32(2)()(2)2f m g x x x f x ⎡⎤=+-++⎢⎥⎣⎦在区间(,3)t 上存在极值点,则实数m 的取值范围为( ) A .37,53⎛⎫-- ⎪⎝⎭B .(9,5)--C .37,93⎛⎫-- ⎪⎝⎭D .37,3⎛⎫-∞- ⎪⎝⎭ 【答案】C 【解析】根据(2)()0f x f x ++=得到()f x 周期为4,再求得()()220182f f ==,得到()g x ,求导得到()g x ',判断出()0g x '=的两根一正一负,则()g x 在区间(,3)t 上存在极值点,且[]1,2t ∈,得到()g x '在(),3t 上有且只有一个根,从而得到关于t 的不等式组,再根据二次函数保号性,得到关于m 不等式组,解得m 的范围.【详解】由题意知,(2)()f x f x +=-,(4)()f x f x ∴+=,所以()f x 是以4为周期的函数,(2018)(2)2f f ∴==,所以322()22m g x x x x ⎛⎫=+-++ ⎪⎝⎭32222m x x x ⎛⎫=++- ⎪⎝⎭, 求导得2()3(4)2g x x m x '=++-,令()0g x '=,23(4)20x m x ∴++-=, 2(4)240m ∆=++>, 由12203x x =-<, 知()0g x '=有一正一负的两个实根.又[1,2],t ∈(,3)x t ∈,根据()g x 在(,3)t 上存在极值点,得到()0g x '=在(,3)t 上有且只有一个正实根.从而有()0(3)0g t g ''<⎧⎨>⎩,即23(4)2027(4)320t m t m ⎧++-<⎨++⨯->⎩恒成立, 又对任意[1,2]t ∈,上述不等式组恒成立,进一步得到2311(4)20,322(4)20,273(4)20,m m m ⨯+⨯+-<⎧⎪⨯+⨯+-<⎨⎪+⨯+->⎩所以59373m m m ⎧⎪<-⎪<-⎨⎪⎪>-⎩故满足要求的m 的取值范围为:3793m -<<-. 故选:C.【点睛】本题考查函数的周期性的应用,根据函数的极值点求参数的范围,二次函数根的分布和保号性,属于中档题.二、填空题13.在平面直角坐标系中,O 为坐标原点,(1,1)A -,(0,3)B ,(3,0)C ,3BD DC =u u u r u u u r,则OA OD ⋅=u u u r u u u r________.【答案】32-【解析】将3BD DC =u u u r u u u r 转化为3()OD OB OC OD -=-u u u r u u u r u u u r u u u r ,从而得到OD uuu r的坐标,然后根据向量数量积的坐标运算,得到答案. 【详解】因为3BD DC =u u u r u u u r,所以3()OD OB OC OD -=-u u u r u u u r u u u r u u u r ,所以()134OD OC OB =+u u u r u u u r u u u r 93,44⎛⎫= ⎪⎝⎭, ()1,1OA =-u u u r所以9344OA OD ⋅=-+u u u r u u u r 32=-.故答案为:32-.【点睛】本题考查向量线性运算的坐标表示,数量积的坐标表示,属于简单题.14.已知x ,y 满足不等式组0,010240x y x y x y ≥≥⎧⎪-+≥⎨⎪+-≤⎩,则11y z x +=+的最小值为________.【答案】13【解析】根据约束条件,画出可行域,将目标函数看成点(,)x y 与点(1,1)--两点连线的斜率,从而得到斜率的最小值,得到答案. 【详解】因为已知x ,y 满足不等式组0,010240x y x y x y ≥≥⎧⎪-+≥⎨⎪+-≤⎩,画出可行域,如图所示,11y x ++表示点(,)x y 与点(1,1)--两点连线的斜率,所以可得当直线过点A 时,z 最小, 由0240y x y =⎧⎨+-=⎩得2,0,x y =⎧⎨=⎩ 所以z 的最小值为011213+=+. 故答案为:13. 【点睛】本题考查根据线性规划求分式型目标函数的最值,属于简单题.15.如图,底面ABCD 为正方形,四边形DBEF 为直角梯形,DB EF ∥,BE ⊥平面ABCD ,2AB BE ==,2BD EF =,则异面直线DF 与AE 所成的角为________.【答案】6π 【解析】设正方形ABCD 的中心为O ,可得OE DF ∥,得到直线DF 与AE 所成角为AEO ∠(或其补角),根据余弦定理,可得cos AEO ∠的值,从而得到答案. 【详解】 如图,设正方形ABCD 的中心为O ,连接AO ,EO , 则12OD BD =因为DB EF ∥,2BD EF = 所以EF OD P ,EF OD = 所以DFEO 为平行四边形, 所以OE DF ∥,所以直线DF 与AE 所成角等于OE 与AE 所成的角,即AEO ∠(或其补角),因为AE =OA =OE =在三角形AEO 中,根据余弦定理,可知222cos 22EO EA AO AEO EO EA +-∠==⋅, 所以6AEO π∠=.故答案为:6π. 【点睛】本题考查求异面直线所成的角的大小,属于简单题.16.已知函数()4cos sin 3f x x x πωω⎛⎫=⋅+ ⎪⎝⎭(0)>ω在区间,63ππ⎛⎫⎪⎝⎭上有最小值4f π⎛⎫⎪⎝⎭,无最大值,则ω=________. 【答案】73【解析】先对()f x 进行整理,得到()2sin 23f x x πω⎛⎫=+⎪⎝⎭,根据最小值4f π⎛⎫⎪⎝⎭,得到743k ω=+,然后根据()f x 在区间,63ππ⎛⎫⎪⎝⎭无最大值,得到周期的范围,从而得到ω的范围,确定出ω的值. 【详解】()4cos sin 3f x x x πωω⎛⎫=⋅+ ⎪⎝⎭14cos sin 2x x x ωωω⎛⎫=⋅+ ⎪ ⎪⎝⎭)22sin cos 2cos 1x x x ωωω=+-sin 22x x ωω=+2sin 23x πω⎛⎫=+ ⎪⎝⎭,依题意,则322,432k ππωππ⨯+=+k Z ∈, 所以743k ω=+()k ∈Z .因为()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值, 所以342πππω-≤,即6ω≤, 令0k =,得73ω=. 故答案为:73ω=. 【点睛】本题考查二倍角公式,辅助角公式化简,根据正弦型函数的最值和周期求参数的值,属于中档题.三、解答题17.已知递增的等比数列{}n a 的前n 项和为n S ,149a a +=,238a a =. (1)求数列{}n a 的通项公式; (2)求数列{}n n S ⋅的前n 项和n T .【答案】(1)12n n a -=;(2)1(1)(1)222n n n nT n ++=-⋅+-【解析】(1)根据等比数列23148a a a a ==,解出1a 和4a 的值,从而得到公比q ,得到{}n a 的通项公式;(2)根据(1)得到n S ,再利用错位相减法和分组求和的方法求出{}n n S ⋅的前n 项和nT.【详解】(1)由题意,1423149,8,a a a a a a +=⎧⎨==⎩ 解得11,a =48a =或18,a =41a =; 而等比数列{}n a 递增,所以11,a =48a =,故公比2q =,所以12n n a -=. (2)由(1)得到12n S =++…1221n n -=-, 所以()*21n n S n ⋅=-2n n n =⋅-,23122232n T =⨯+⨯+⨯+…2(12n n +⋅-++…)n +,设23122232t =⨯+⨯+⨯+…2n n +⋅,2342122232t =⨯+⨯+⨯+…12n n ++⋅,两式相减可得,23222t -=+++ (1)22n n n ++-⋅()1212212n n n +-=-⋅-故1(1)22n t n +=-⋅+,所以1(1)(1)222n n n nT n ++=-⋅+-. 【点睛】本题考查等比数列通项基本量的计算,分组求和的方法,错位相减法求数列的前n 项的和,属于简单题. 18.已知函数321()3f x x ax bx =-+(),a b ∈R 在区间(1,2)-上为单调递减函数. (1)求+a b 的最大值;(2)当2a b +=-时,方程2135()32b f x x +=+有三个实根,求b 的取值范围. 【答案】(1)32-;(2)123,5⎡⎤--⎢⎥⎣⎦【解析】(1)先求得()f x ',根据()f x 在区间(1,2)-上为减函数,得到(1)0(2)0f f ''-≤⎧⎨≤⎩在区间(1,2)-上恒成立,从而得到关于a ,b 的约束条件,画出可行域,利用线性规划,得到+a b 的最大值;(2)根据2a b +=-,得到b 的范围,设2135()()32b h x f x x +=--,求导得到()h x ',令()0h x '=得到x b =或1x =,从而得到()h x 的极值点,根据()h x 有3个零点,得到b 的不等式组,解得b 的范围. 【详解】(1)2()2f x x ax b '=-+,因为()f x 在区间(1,2)-上为减函数,所以(1)0(2)0f f ''-≤⎧⎨≤⎩在区间(1,2)-上恒成立即120,440,a b a b ++≤⎧⎨-+≤⎩,画出可行域如图所示:设z a b =+,所以b a z =-+,z 表示直线l ,b a z =-+在纵轴上的截距.当直线:l b a z =-+经过A 点时,z 最大, 由120,440,a b a b ++=⎧⎨-+=⎩所以12a =,2b =- 故z a b =+的最大值为13222-=-. (2)由2a b +=-得2a b =-- 代入120,440,a b a b ++≤⎧⎨-+≤⎩可得1235b -≤≤-, 令2135()()32b h x f x x +=--32111323b x x bx +=-+-, 故由2()(1)h x x b x b '=-++(1)()0x x b =--=,得x b =或1x =,所以得到()h x 和()h x '随x 的变化情况如下表:x (,)b -∞ b(,1)b 1(1,)+∞ ()h x '+-+()h xZ极大值32111623b b -+- ]极小值12b -要使()h x 有三个零点,故需321110,62310,2b b b ⎧-+->⎪⎪⎨-⎪<⎪⎩ 即()2(1)220,1,b b b b ⎧---<⎪⎨<⎪⎩解得1b <,而1215>-所以b 的取值范围是123,5⎡⎤--⎢⎥⎣⎦. 【点睛】本题考查利用导数研究函数的单调性、极值和零点,根据函数的单调性求参数的取值范围,根据函数零点个数求参数的取值范围,属于中档题.19.已知ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c 满足cos cos 2cos ca Bb A C+=,且BC 边上一点P 使得PA PC =.(1)求角C 的大小; (2)若3PB =,sin 38BAP ∠=,求ABC V 的面积. 【答案】(1)3C π=;(2【解析】根据正弦定理,将边化成角,然后整理化简,得到cos C 的值,从而得到C 的值;(2)根据条件得到APC △为等边三角形,从而得到23APB ∠=π,根据正弦定理,得到AB 的值,根据余弦定理,得到AP 的长,根据三角形面积公式,得到答案. 【详解】(1)因为cos cos 2cos ca Bb A C+=在ABC V ,由正弦定理sin sin sin a b cA B C== 所以得2cos (sin cos sin cos )C A B B A +sin C =. 所以2cos sin()sin C A B C +=. 即2cos 1C =所以1cos 2C =, 因为()0,C π∈,所以3C π=(2)由(1)知3C π=,而PA PC =APC △为等边三角形.由于APB ∠是APC △的外角, 所以23APB ∠=π. 在APB △中,由正弦定理得2sin sin3PB ABBAPπ=∠, 即2357sin 3ABπ=,所以19AB =. 所以由余弦定理得,2222co 23s AB PA PB PA PB π=+-⋅, 即21993PA PA =++, 所以2PA =,故235BC =+=,2AC =, 所以11353sin 252222ABC S CA CB C =⋅⋅=⨯⨯⨯=V . 【点睛】本题考查正弦定理的边角互化,正弦定理、余弦定理解三角形,三角形面积公式,属于简单题.20.如图,在四棱锥1A ABCD ﹣中,底面ABCD 为直角梯形,90BAD ︒∠=,AB DC P ,2DC AB =24AD ==,12AA =,且O 为BD 的中点,延长AO 交CD 于点E ,且1A 在底ABCD 内的射影恰为OA 的中点H ,F 为BC 的中点,Q 为1A B 上任意一点.(1)证明:平面EFQ ⊥平面1A OE ;(2)求平面1A OE 与平面1A DC 所成锐角二面角的余弦值.【答案】(1)证明见解析;(2 【解析】(1)根据1A H ⊥平面ABCD ,得到1A H EF ⊥,由平面几何知识得到EF AE ⊥,从而得到EF ⊥平面1A OE ,所以所以平面EFQ ⊥平面1A OE ;(2)以O 为原点建立空间直角坐标系,得到平面1A DC 和平面1A OE 的法向量,利用向量的夹角公式,得到这两个面所成的锐角二面角的余弦值. 【详解】(1)由题意,E 为CD 的中点,因为1A H ⊥平面ABCD ,EE ⊂平面ABCD , 所以1A H EF ⊥,又因为DB EF ∥,AB AD =,OB OD =,所以AE 垂直平分BD , 所以DE BE =又因AB DE ∥,90BAD ︒∠= 所以ADEB 为正方形, 所以DE EC AB == 因为F 为BC 的中点, 所以EF BD P而DB AE ⊥,所以EF AE ⊥,又1A H AE H =I ,所以EF ⊥平面1A OE , 又EF ⊂平面EFQ , 所以平面EFQ ⊥平面1A OE .(2)因为1A 在底面ABCD 内的射影恰为OA 的中点H ,所以11242OH OA BD ===. 因为AB AD ⊥,所以过点O 分别作AD ,AB 的平行线(如图), 并以它们分别为x ,y 轴,以过O 点且垂直于xOy 平面的直线为z 轴, 建立如图所示的空间直角坐标系,所以(1,1,0)A --,(1,1,0)B -,(1,3,0)C ,(1,1,0)D -,1116,,222A ⎛-- ⎝⎭,所以1316,,222A D ⎛=-- ⎝⎭u u u u r ,1376,,222A C ⎛=- ⎝⎭, 设平面1A DC 的一个法向量为(,,)n x y z =r,则1100n A D n A C ⎧⋅=⎪⎨⋅=⎪⎩r v u u v v ,所以316022376022x y z x y z ⎧--=⎪⎪⎨⎪+=⎪⎩令6z =6)n =r,由(1)知,BD ⊥平面1A OE ,所以OD ⊥平面1A OE ,所以(1,1,0)OD =-u u u r为平面1A OE 的一个法向量,则||5|cos ,|||||102n OD n OD n OD ⋅〈〉===⋅r u u u rr u u u r r u u ur . 故平面1A OE 与平面1A DC 5. 【点睛】本题考查线面垂直的判定和性质,面面垂直的判定,利用空间向量求二面角的余弦值,属于中档题.21.已知函数1()1ln1mxf x x x-=-++(0)m >与满足()2()g x g x -=-()x R ∈的函数()g x 具有相同的对称中心.(1)求()f x 的解析式;(2)当(,]x a a ∈-,期中(0,1)a ∈,a 是常数时,函数()f x 是否存在最小值若存在,求出()f x 的最小值;若不存在,请说明理由;(3)若(21)(1)2f a f b -+-=,求22211a b a b+++的最小值. 【答案】(1)1()1ln 1x f x x x -=-++;(2)11ln 1a a a--++(3)94 【解析】(1)根据()g x 关于()0,1对称,从而得到()()2f x f x +-=,整理化简,得到m 的值;(2)判断出()f x 的单调性,得到当(0,1),a ∈(,]x a a ∈-时,()f x 单调递减,从而得到()f x 最小值;(3)由(21)(1)2f a f b -+-=得到a ,b 关系,然后将22b a =-代入到22211a b a b+++,利用基本不等式,得到其最小值. 【详解】(1)因为()2()g x g x -=-,所以()()2g x g x -+=,所以()y g x =图象关于(0,1)对称, 所以11()()1ln 1ln 11mx mx f x f x x x x x-++-=-+++++- 22212ln 21m x x ⎛⎫-=+= ⎪-⎝⎭所以22211,1m x x-=-0m > 解得1m =, 所以1()1ln 1x f x x x-=-++. (2)()f x 的定义域为(1,1)-,1()1ln 1x f x x x -=-++21ln 11x x ⎛⎫=-+-+ ⎪+⎝⎭, 当12x x <且12,(1,1)x x ∈-时,()f x 为减函数,所以当(0,1),a ∈(,]x a a ∈-时,()f x 单调递减,所以当x a =时,min 1()1ln1a f x a a-=-++. (3)由(21)(1)2f a f b -+-=, 得2110,1211,111,a b a b -+-=⎧⎪-<-<⎨⎪-<-<⎩解得01,a <<02,b <<22a b +=, 所以2222221211(1)a b a b ab b a a b a b++++++=++ 21(1)b a a b++=+()25321a a -=- 令53t a =-,则5,3t a -=(2,5)t ∈, ()()225392121016a t a t t -=--+- 916210t t =⎛⎫--+ ⎪⎝⎭94≥= 当且仅当4t =时,等号成立, 即当13a =,43b =时,22211a b a b+++的最小值为94. 【点睛】本题考查根据函数的对称性求参数的值,根据函数的单调性求最值,基本不等式求和的最小值,属于中档题.22.已知函数1()ln 2f x mx x =--()m R ∈,函数()F x 的图象经过10,2⎛⎫ ⎪⎝⎭,其导函数()F x '的图象是斜率为a -,过定点(1,1)-的一条直线.(1)讨论1()ln 2f x mx x =--()m R ∈的单调性; (2)当0m =时,不等式()()F x f x ≤恒成立,求整数a 的最小值.【答案】(1)当0m ≤时,()f x 在(0,)+∞上为减函数;当0m >时,()f x 在10,m ⎛⎫ ⎪⎝⎭上为减函数,在1,m ⎛⎫+∞ ⎪⎝⎭上为增函数. (2)2【解析】对()f x 求导,得到()f x ',按0m ≤和0m >进行分类讨论,利用导函数的正负,得到()f x 的单调性;(2)根据题意先得到()F x ',然后得到()F x 的解析式,设()()()g x F x f x =-,按0a ≤和0a >分别讨论,利用()g x '得到()g x 的单调性和最大值,然后研究其最大值恒小于等于0时,整数a 的最小值.【详解】(1)函数()f x 的定义域是(0,)+∞,1()mx f x x-'=, 当0m ≤时,()0f x '≤,所以()f x 在(0,)+∞上为减函数,当0m >时,令()0f x '=,则1x m =, 当10,x m ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数, 当1,x m ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 为增函数, 综上,当0m ≤时,()f x 在(0,)+∞上为减函数;当0m >时,()f x 在10,m ⎛⎫ ⎪⎝⎭上为减函数,在1,m ⎛⎫+∞ ⎪⎝⎭上为增函数. (2)根据题意,()(1)1F x a x '=-++, 设21()(1)2F x ax a x c =-+-+,代入10,2⎛⎫ ⎪⎝⎭,可得12c =, 令()()()g x F x f x =-21ln (1)12x ax a x =-+-+, 所以1()(1)g x ax a x '=-+-2(1)1ax a x x-+-+=. 当0a ≤时,因为0x >,所以()0g x '>.所以()g x 在(0,)+∞上是单调递增函数, 又因为21(1)ln11(1)112g a a =-⨯+-⨯+3202a =-+>, 所以关于x 的不等式()()F x f x ≤不能恒成立.当0a >时,2(1)1()ax a x g x x -+-+'=1(1)a x x a x⎛⎫-+ ⎪⎝⎭=-, 令()0g x '=,得1x a =. 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0g x '>;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<, 因此函数()g x 在10,x a ⎛⎫∈ ⎪⎝⎭上是增函数,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上是减函数. 故函数()g x 的最大值为211111ln (1)12g ax a a a a a ⎛⎫⎛⎫=-+-⨯+ ⎪ ⎪⎝⎭⎝⎭1ln 2a a =-. 令1()ln 2h a a a =-,因为1(1)0,2h =>1(2)ln 204h =-<, 又因为()h a 在(0,)a ∈+∞上是减函数.所以当2a ≥时,()0h a <.所以整数a 的最小值为2.【点睛】本题考查函数与方程的应用,利用导数研究函数的单调区间、极值和最值,根据导函数的解析式求原函数的解析式,利用导数研究不等式恒成立问题,涉及分类讨论的思想,题目比较综合,属于难题.。
天津市2020年〖人教版〗高三数学复习试卷统一质量检测数学理科第I 卷(选择题共50分)一、选择题:本大题共10小题。
每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集21log ,,1,2,162U y y x x ⎧⎫===⎨⎬⎩⎭,集合{}{}1,1,1,4A B =-=,则()U A C B ⋂= A.{}1,1- B.{}1-C.{}1D.∅ 2.已知数据12350,,,,,500x x x x ⋅⋅⋅(单位:公斤),其中12350,,,,,x x x x ⋅⋅⋅是某班50个学生的体重,设这50个学生体重的平均数为x ,中位数为y ,则12350,,,,,500x x x x ⋅⋅⋅这51个数据的平均数、中位数分别与x y 、比较,下列说法正确的是A.平均数增大,中位数一定变大B.平均数增大,中位数可能不变C.平均数可能不变,中位数可能不变D.平均数可能不变,中位数可能变小3.设随机变量ξ服从正态分布()21N σ,,则函数()2=2f x x x ξ++不存在零点的概率为 A.12 B.23 C.34 D.454.已知a R ∈,则“1a <”是“2x x a -+>恒成立”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.定义{}()2,1min ,min ,,a a b a b f x x b a b x ≤⎧⎧⎫==⎨⎨⎬>⎩⎭⎩,设,则由函数()f x 的图象与x 轴、直线2x =所围成的封闭图形的面积为A.712B.512C.1ln 23+D.1ln 26+6.已知点12F F ,为双曲线()222210,0x y C a b a b -=>>:的左,右焦点,点P 在双曲线C 的右支上,且满足21212,120PF F F F F P =∠=,则双曲线的离心率为A.312+B.512+C.3D.57.如图所示的程序框图,输出S 的值为A. 99223- B.100223- C.101223- D.102223- 8.已知,x y R ∈,且满足34,2y x x y x ≥⎧⎪+≤⎨⎪≥-⎩则2z x y =+的最大值为A.10B.8C.6D.39.如图,四棱锥P ABCD -的底面ABCD 为平行四边形,2NB PN =,则三棱锥N PAC -与三棱锥D PAC -的体积比为 A.1:2 B.1:8C.1:6D.1:310.已知抛物线24x y =,直线y k =(k 为常数)与抛物线交于A,B 两个不同点,若在抛物线上存在一点P(不与A,B 重合),满足0PA PB ⋅=,则实数k 的取值范围为A.2k ≥B.4k ≥C.02k <≤D.04k <≤ 第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.已知i 是虚数单位,,m n R ∈,且22m i ni +=-,则m ni m ni +-的共轭复数为_______; 12.在二项式6213x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项等于________(用数字作答); 13.已知函数()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<是偶函数,它的部分图象如图所示.M 是函数()f x 图象上的点,K ,L 是函数()f x 的图象与x 轴的交点,且KLM ∆为等腰直角三角形,则()f x =___________;14.若0,0a b >>,则()21a b a b ⎛⎫++ ⎪⎝⎭的最小值是___________; 15.定义在区间[]12,x x 上的函数()y f x =的图象为C ,M 是C 上任意一点,O 为坐标原点,设向量()()()()()1122,,,,,OA x f x OB x f x OM x y ===,且实数λ满足()121x x x λλ=+-,此时向量()1ON OA OB λλ=+-.若MN K ≤恒成立,则称函数()y f x =在区间[]12,x x 上可在标准K 下线性近似,其中K 是一个确定的实数.已知函数()22f x x x =-在区间[]1,2上可在标准K 下线性近似,那么K 的最小值是________.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16. (本小题满分12分)已知函数()22sin sin 6f x x x πωω⎛⎫=-- ⎪⎝⎭(,x R ω∈为常数且112ω<<),函数()f x 的图象关于直线x π=对称.(I )求函数()f x 的最小正周期;(II )在ABC ∆中,角A,B,C 的对边分别为,,a b c ,若311,54a f A ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.17.(本小题满分12分)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为11,46;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时. (I )求甲、乙两人所付滑雪费用相同的概率;(II )设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望()E ξ.18.(本小题满分12分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AC AD AB BC ⊥⊥,,45,2BCA AP AD AC ∠====,E 为PA 的中点. (I )设面PAB ⋂面PCD l =,求证://CD l ;(II )求二面角B CE D --的余弦值.19.(本小题满分12分)已知等差数列{}n a 的公差d=2,其前n 项和为n S ,数列{}n a 的首项12b =,其前n 项和为n T ,满足()122,n S n T n N +*=+∈.(I )求数列{}n a 、{}n b 的通项公式;(II )求数列{}14n n a b -的前n 项和n W .20.(本小题满分13分) 已知椭圆22:184x y E +=,A 、B 分别是椭圆E 的左、右顶点,动点M 在射线():420l x y =>上运动,MA 交椭圆E 于点P ,MB 交椭圆E 于点Q.(I )若MAB ∆垂心的纵坐标为47-,求点P 的坐标;(II )试问:直线PQ 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.21.(本小题满分14分)已知函数()sin f x x ax =-.(I )对于()()0,1,0x f x ∈>恒成立,求实数a 的取值范围;(II )当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值;(III )求证:()()1111ln 11231n n N n n*+<+++⋅⋅⋅++∈-. 创作人:百里公地创作日期:202X.04.01。
理科数学试题第1页(共6页)理科数学试题第2页(共6页)绝密★启用前2020届高三上学期期末教学质量检测卷03理科数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.测试范围:高中全部内容。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设z =i (2+i ),则z =A .1+2i B .–1+2i C.1–2iD .–1–2i2.已知集合M ={x |x 2+x –2<0},N ={x |log 2x <1},则M ∩N =A .(–2,1)B .(–1,2)C .(0,1)D .(1,2)3.二项式(12x –2y )5的展开式中x 3y 2的系数是A.5B .–20C .20D .–54.已知变量x ,y满足240260x y x x y -+≤⎧⎪≥⎨⎪+-≥⎩,,则k 13y x +=-的取值范围是A .k 12>或k ≤–5B .–5≤k 12<C .–5≤k 12≤D .k 12≥或k ≤–55.已知甲、乙、丙三人中,一人是数学老师、一人是英语老师、一人是语文老师.若丙的年龄比语文老师大;甲的年龄和英语老师不同;英语老师的年龄比乙小.根据以上情况,下列判断正确的是A .甲是数学老师、乙是语文老师、丙是英语老师B .甲是英语老师、乙是语文老师、丙是数学老师C .甲是语文老师、乙是数学老师、丙是英语老师D .甲是语文老师、乙是英语老师、丙是数学老师6.若ππ2αβ⎛⎫∈ ⎪⎝⎭,,,且sin 5α=,()sin 10αβ-=-,则sin β=A .10B .2C .12D .1107.某省在新的高考改革方案中规定:每位考生的高考成绩是按照“语文、数学、英语”+“6选3”的模式设置的其中,“6选3”是指从物理、化学、生物、思想政治、历史、地理6科中任选3科.某考生已经确定选一科物理,现在他还要从剩余的5科中再选2科,则在历史与地理两科中至少选一科的概率为A .310B .35C .710D .458.一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为A .BC .2D .49.函数()sin 22f x x x =-在区间ππ22⎡⎤-⎢⎥⎣⎦,上的零点之和是A .π3-B .π6-C .π6D .π3理科数学试题第3页(共6页)理科数学试题第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………10.已知正方体ABCD–A1B1C1D1,则异面直线A1D与B1D1所成角为A.π6B.π4C.π3D.π211.设抛物线C:y2=4x的焦点为F,过点F的直线l1与C交于M,N两点,则M,N两点到直线l2:x–y+1=0的距离之和的最小值为A.2B.2C.34D.12.已知A,B,C,D四点均在以点O1为球心的球面上,且AB=AC=AD=2,BC=BD,CD=8.若球O2在球O1内且与平面BCD相切,则球O2直径的最大值为A.1B.2C.4D.8第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知|a|=1,|b|=2,向量a与b的夹角为2π3,=c2+a b,|c|等于__________.14.已知O是椭圆E的对称中心,F1,F2是E的焦点.以O为圆心,OF1为半径的圆与E的一个交点为A.若1AF与2AF的长度之比为2:1,则E的离心率等于__________.15.设函数f(x)=ln x+ax232x-,若x=1是函数f(x)是极大值点,则函数f(x)的极小值为__________.16.△ABC的内角A,B,C的对边分别为a,b,c,若a cos B+b cos A=2,sin sin sin2AB C⋅=,则△ABC周长的最小值为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)数列{a n}中,a1=1,a n+a n+1=λn+1,且a1,a2,a4成等比数列.(1)求λ的值;(2)求数列{a n}的前n项和S n.18.(本小题满分12分)如图,在四棱锥P–ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=1,AD=2,CD=(1)求证:平面PQB⊥平面PAD;(2)若M是棱PC上的一点,且满足3PM MC=,求二面角M–BQ–C的大小.19.(本小题满分12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额(元)支付方式(0,1000](1000,2000]大于2000仅使用A18人9人3人仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;理科数学试题第5页(共6页)理科数学试题第6页(共6页)(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.20.(本小题满分12分)已知圆(2264Mx y ++=:及定点()N ,点A 是圆M 上的动点,点B 在NA 上,点G 在MA 上,且满足20NA NB GB NA =⋅=,,点G 的轨迹为曲线C .(1)求曲线C 的方程;(2)设斜率为k 的动直线l 与曲线C 有且只有一个公共点,与直线12y x =和12y x =-分别交于P 、Q 两点,当1|2k >时,求△OPQ (O 为坐标原点)面积的取值范围.21.(本小题满分12分)设函数23()ln(1)f x x x a x =-++,其中0a ≠.(1)若4a =-,求曲线y =()f x 在点(0,(0))A f 处的切线方程;(2)若函数23()()2g x f x x =+在定义域内有3个不同的极值点,求实数a 的取值范围;(3)是否存在最小的正整数N ,使得当n N ≥时,不等式311ln n n n n+->恒成立?若存在,求出N ,若不存在,请说明理由.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 1:ρ=4cos θ+4sin θ,直线l 的参数方程为11212x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数).(1)求直线l 及曲线C 1的直角坐标方程,并判断曲线C 1的形状;(2)已知点P (1,1),直线l 交曲线C 1于A ,B 两点,求11PA PB+的值.23.(本小题满分10分)选修4-5:不等式选讲已知f (x )=|x –1|+|2x +3|.(1)求不等式f (x )>4的解集;(2)若关于x 的不等式|x +1|–|x –m |≥|t –1|+|2t +3|(t ∈R )能成立,求实数m 的取值范围.。
北京市2020年〖人教版〗高三数学复习试卷全国统一高考数学试卷理科创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()A.1+2iB.1﹣2iC.2+iD.2﹣i2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π5.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15B.﹣9C.1D.96.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2B.3C.4D.59.(5分)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2B.C.D.10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.112.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2B.﹣C.﹣D.﹣1二、填空题:本题共4小题,每小题5分,共20分。
2020年高三联考理科数学试题本试卷共6页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用黑色字迹钢笔或签字笔将答案填写在答题卡上对应题目的序号下面,如需改动,用橡皮擦干净后,再选填其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{/|1|1}A x x =-<, 1{0}xB xx-=≤,则A ∩(∁U B )=( ) A .(0,1) B .[0,1) C .(1, 2) D . (0,2)2. 已知x ,y ∈R ,i 为虚数单位,且(x ﹣2)i ﹣y=1,则(1)x yi -+的值为( ) A .4 B . ﹣4C . ﹣2iD . ﹣2+2i3、已知),2(ππα∈,53sin =α,则)4tan(πα-的值等于( )A .7-B .71-C .7D .714. 等比数列{}n a 中,39a =,前3项和为32303S x dx =⎰,则公q 的值是( )A. 1B.-12 C. 1或-12 D. - 1或-125.定义在R 上的偶函数f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式()0xf x >的解集是( )A .(0,13)B .(13 ,+∞)C .(- 13,0)∪(13,+∞)D .(-∞,-13)∪(0,13)6.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积...为 A .π12 B . π3 C .π34 D .π3127.已知双曲线22221x y a b-=(0a >,0b >),过其右焦点且垂直于实轴的直线与双曲线交于,M N 两点,O 为坐标原点,若OM ON ⊥,则双曲线的离心率为( )A .132-+ B .132+ C .152-+ D .152+ 8. 已知集合M={(x,y )|y f (x )=},若对于任意11(x ,y )M ∈,存在22(x ,y )M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①M={1(x,y )|y x=}; ②M={1(x,y )|y sin x =+};③M={2(x,y )|y log x =}; ④M={2x(x,y )|y e =-}.其中是“垂直对点集”的序号是( ) A.①② B .②④ C .①④ D .②③二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(8~13题)9.下面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损.则甲的平均成绩超过乙的平均成绩的 概率为10. 设31(5)nx x-的展开式的各项系数之和为M ,二项式系数之和为N ,若240M N -=,则展开式中的常数项_________.11. 下列说法:①“x ∃∈R ,23x >”的否定是“x ∀∈R ,23x ≤”;②函数sin(2)sin(2)36y x x ππ=+- 的最小正周期是π;③命题“函数()f x 在0x x =处有极值,则0()0f x '=”的否命题是真命题;④()f x 是(,0)(0,)-∞+∞上的奇函数,0x >的解析式是()2xf x =,则0x <时的解析式为()2xf x -=-.其中正确的说法是__________.12. 已知向量a =(2,1),b =(x ,y ).若x ∈[-1,2],y ∈[-1,1],则向量a ,b 的夹角是钝角的概率是 .13.右表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起, 每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为ij a (*,,N j i j i ∈≥),则53a 等于 ,______(3)mn a m =≥.( ) ▲ 14.在极坐标系中,过点(3,)3π且垂直于极轴的直线方程的极坐标方程是 (请选择正确标号填空) (1)3sin 2=ρθ (2)3cos 2=ρθ (3)3sin 2=ρθ (4)3cos 2=ρθ 15. 如图,在△ABC 和△ACD 中,∠ACB =∠ADC =90°,∠BAC =∠CAD ,⊙O 是以AB 为直径的圆,DC 的延长线与AB 的延长线交于点E . 若EB =6,EC =62,则BC 的长为 .三、解答题:本大题共6小题,共80分。
2019届高三年级统测(一)试题数学试题(理)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷 选择题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合{}52x x A =-<<,{}33x x B =-<<,则AB =A .{}32x x -<< B .{}52x x -<< C .{}33x x -<< D .{}53x x -<<2.命题“∃0x ∈R ,02x≤0”的否定是A .∃0x ∈R ,02x >0B .∃0x ∈R ,02x≥0 C .∀0x ∈R ,02x ≤0 D .∀0x ∈R ,02x>03.函数f (x )=)1ln(+x + 4-x 2的定义域为A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]4.设1.05.0=a ,1.0log 4=b ,1.04.0=c ,则A.a c b >> B .a c b >> C .c a b >> D. c a b >>5.函数21()ln 2f x x x =- 的单调递减区间为 A .(-1,1] B .(0,1] C .[1,+∞) D .(0,+∞) 6.设21:()1,:log 02x p q x <<,则p 是q 的A 充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知f (x )是定义在R 上的奇函数,当0x ≥时,()3()xf x m m =+为常数,则3(log 5)f -的值为 A .0 B .-2 C .-4 D .-68.函数||()x f x x e =⋅的大致图象为A.B.C.D.9、设函数23)21()(--=x x x f 的零点为x 0,则x 0所在的区间是A .(0,1)B .(1,2)C .(2,3)D .(3,4)10、 已知定义在 R 上的函数()f x 满足(1)(1)f x f x +=-,当[]1,1x ∈-时2()f x x = ,那么函数()y f x = 的图像与函数()lg g x x =的图像的交点共有A. 10个B. 9个C. 8个D. 1个11.函数3()31f x x x =--,若对于区间[-3,2]上的任意12,x x ,都有12()()f x f x t -≤,则实数t 的最小值是(A . 0B .3C .18D .2012.已知函数()f x 的定义域为R ,且()()2xf x f x xe -'+=,若(0)1f =,则函数()()f x f x '的取值范围是 A .[1,0]- B .[0,1] C .[2,0]- D. [0,2]第Ⅱ卷 非选择题二、填空题:(本大题共4小题,每小题5分)13、设函数()(1)()f x x x a =++为偶函数,则a = . 14、计算:dx x )1(222+-⎰=________.15、偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则=-)1(f _______. 16、已知函数 3211()(0)32f x ax bx cx d a =+++≠ 的导函数为()g x ,且(1)0,,g a b c =<< 设12,g x x 是方程(x)=0 的两个根,则12x x -的取值范围为 ____三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17、(本小题满分12分)设等差数列{}n a 满足35a =,109a =-。
(Ⅰ)求{}n a 的通项公式;(Ⅱ)求{}n a 的前n 项和n S 及使得n S 最大的序号n 的值.18、(本小题满分12分)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.19、(本小题满分12分)如图,正方形ABCD 与直角梯形ADEF 所 在平面互相垂直,90ADE ∠=,DE AF //,22===AF DA DE . (Ⅰ) 求证://AC 平面BEF ;(Ⅱ) 求平面BEF 与平面ABCD 所成角的正切值.20、(本小题满分12分)已知21,F F 分别为椭圆:E )0(12222>>=+b a b y a x 的左,右焦点,点)23,1(P 在椭圆上,且421=+PF PF(Ⅰ)求椭圆的方程.(Ⅱ)过1F 的直线21,l l 分别交椭圆E 于点C A ,和点D B ,,且21l l ⊥,问是否存在常数λ,使得AC 1,λ,BD1成等差数列?若存在,求出λ的值;若不存在,请说明理由.21.(本小题满分12分)已知函数2()ln 3f x x x ax =+- 的图像在点(1,(1))f 处的切线方程 为1y =.(Ⅰ)确定实数a 的值,并求函数()y f x =的单调区间;(Ⅱ)若*n N ∈ ,求证:2111ln(11)2ln(1)3ln(1)ln(1)2)623n n++++++++<-.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目题号涂黑.22. (本小题满分10分)选修4-4:坐标系与参数方程 已知直线l 的参数方程为为参数)t t y t x ,0(sin 1cos πααα<≤⎩⎨⎧+==,曲线C 的极坐标方程为θθρ2sin cos 4=。
(Ⅰ)将曲线C 的极坐标方程化为直角坐标系方程,并说明曲线C 的形状. (Ⅱ)若直线l 经过点(1,0),求直线l 被曲线C 截得的线段AB 的长.23.(本小题满分10分)选修4-5:不等式选讲已知函数()2123f x x x =+--,()1g x x x a =++-.(Ⅰ)求()1f x ≥的解集;(Ⅱ)若对任意的t ∈R ,s ∈R ,都有()()g s f t ≥.求a 的取值范围.2019届高三年级统测(一)试题(理科数学答案)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)二、填空题:(本大题共4小题,每小题5分)13、设函数()(1)()f x x x a =++为偶函数,则a = -1 . 14、32815、偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则=-)1(f ___3____. 16、3(,3)2三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)18、端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.[解] (1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P (A )=C 12C 13C 15C 310=14.5分(2)X 的所有可能值为0,1,2,且P (X =0)=C 38C310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115.8分综上知,X 的分布列为10分故E (X )=0×715+1×715+2×115=35(个).12分19.如图,正方形ABCD 与直角梯形ADEF 所在平面互相垂直,90ADE ∠=,DE AF //,22===AF DA DE . (Ⅰ) 求证://AC 平面BEF ;(Ⅱ) 求平面BEF 与平面ABCD 所成角的正切值.解:(Ⅰ) 证明:设AC BD O =I ,取BE 中点G ,连结OG FG 、, 则OG ∥DE 且OG =12DE , ∵DE AF //,AF DE 2=, ∴AF ∥OG 且AF =OG ,∴AFGO 是平行四边形,∴AO FG //.∵FG ⊂平面BEF ,AO ⊄平面BEF ,∴//AO 平面BEF ,即//AC 平面BEF .以点D 为坐标原点,DA 、DC 、DE 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,设平面BEF 的一个法向量为(,,)n x y z =r,则00n FE n FB ⎧⋅=⎪⎨⋅=⎪⎩r uur r uu r ,而(2,0,1)(0,2,1)FE FB ⎧=-⎪⎨=-⎪⎩uuruu r ,∴2020x z y z -+=⎧⎨-=⎩, 令1x =,则1y =,2z =,(1,1,2)n =r. ∵(2,2,0)AC =-uu u r , ∴0n AC ⋅=r uuu r,∴n AC ⊥r u u u r ,而AC ⊄平面BEF ,∴//AC 平面BEF .(Ⅱ) 设平面ABCD 与平面BEF 所成二面角的平面角为α,由条件知α是锐角由 (Ⅰ) 知平面BEF 的法向量为( 1,1,2)n =r,又平面ABCD 与z 轴垂直,所以平面ABCD 的法向量可取为1(0,0,1)n =u r所以111cos|cos,|||||||n nn nn nα⋅=<>===⋅u r ru r ru r rtan2α=即为所求.20、(本小题满分12分)已知21,FF分别为椭圆:E)0(12222>>=+babyax的左,右焦点,点)23,1(P在椭圆上,且421=+PFPF(Ⅰ)求椭圆的方程。
(Ⅱ)过1F的直线21,ll分别交椭圆E于点CA,和点DB,,且21ll⊥,问是否存在常数λ,使得AC1,λ,BD1成等差数列?若存在,求出λ的值;若不存在,请说明理由。
解:(1)21.(本小题满分12分)已知函数2()ln3f x x x ax=+-的图像在点(1,(1))f处的切线方程为1y =。
(1)确定实数a 的值,并求函数()y f x =的单调区间; (2)若*n N ∈,求证:2111ln(11)2ln(1)3ln(1)ln(1)2)623n n++++++++<-解:(1)由已知得函数()f x 的定义域为(0,)+∞, 1()32f x ax x'=+-,()f x 函数的图像在点(1,(1))f 处的切线方程为1y =,则()1320, 2.f x a a '=+-=∴= 由1(41)(1)()340,x x f x x x x +-'=+-=-=得1=1()4x x =-,或舍去,∴当x ∈(0,1)时, ()0,()f x f x '>单调递增,当+x ∈∞(1,)时,()0,()f x f x '<单调递减。