基于单片机的暖风机设计
- 格式:doc
- 大小:713.58 KB
- 文档页数:34
基于51单片机的智能温控风扇设计各部块的设计本篇文章将介绍一种基于51单片机的智能温控风扇设计。
这种设计旨在提高室内温度控制的精确度和节能性,使用户可以根据需要自动调节风扇速度和调整温度,同时也具有很高的安全性能。
硬件设计:1.温度传感器我们选择了DS18B20温度传感器,它是一种数字温度传感器,在室内温度控制方面非常常用。
该传感器具有精度高、测量范围广等优点。
2.电机控制模块我们使用L298N电机驱动模块来控制风扇的转速和方向。
该模块具有稳定的电流输出和过载保护功能,可以保护电机不会遭受损伤。
3. 51单片机我们使用AT89S51单片机,该单片机具有很好的性能和扩展性,是物联网和控制系统中经常使用的一种单片机。
软件设计:1.温度采集和显示我们通过DS18B20传感器采集室内温度数据,并通过OLED屏幕显示出来,以方便用户监控室内温度的变化。
我们通过单片机的IO口与温度传感器连接。
2.温度控制我们通过比较当前温度与设定温度之间的差值,来控制风扇的转速和方向。
当室内温度高于设定温度时,风扇自动启动并运行,直到室内温度降至设定温度以下,风扇自动关闭。
我们也可通过OLED屏幕来设置设定温度,并可根据实际需求进行调节。
3.安全保护我们还设置了过温保护和短路保护,以确保整个系统的安全性能。
当温度超过一定值时,单片机会自动停止电机控制模块的输出,从而避免电机烧毁。
当驱动电机过电流或短路时,该模块也会停止输出,以保护电机的安全。
总结:基于51单片机的智能温控风扇设计使得室内温度控制更加精确和便捷,并且具有很好的安全性能。
该系统可以用于各种室内环境,可以提高生活质量和用户的使用体验。
基于51单片机的温控风扇设计【摘要】本文基于51单片机设计了一款温控风扇系统,通过硬件设计、软件设计、温度检测与控制算法、风扇控制逻辑和系统测试与优化等内容详细介绍了该系统的设计过程。
实验结果表明,该系统在温度控制和风扇控制方面均取得了良好的效果。
设计总结中总结了系统的优点和不足之处,并提出了未来改进的方向。
本文旨在为基于51单片机的温控风扇系统的设计提供参考,对于提高室内温度舒适度和节能具有积极意义。
【关键词】51单片机、温控风扇设计、引言、研究背景、研究意义、研究目的、硬件设计、软件设计、温度检测与控制算法、风扇控制逻辑、系统测试与优化、实验结果分析、设计总结、展望未来。
1. 引言1.1 研究背景随着科技的不断发展,人们对舒适生活的需求也越来越高。
温度的控制是一个非常重要的环节,尤其是在室内环境中。
夏季炎热时,人们往往需要通过风扇来降低室内温度,提升舒适度。
而随着智能技术的兴起,基于单片机的温控风扇设计成为了一个热门的研究方向。
传统的风扇控制通常是通过开关控制,无法实现温度自动调节。
而基于51单片机的温控风扇设计可以利用单片机的强大功能实现温度检测、实时控制风扇转速等功能。
通过设计合理的算法,可以实现智能化的温控系统,提高舒适度的同时实现能源的节约。
研究如何利用51单片机设计一套温控风扇系统,对于提升室内生活质量、节约能源具有重要的意义。
本文旨在通过具体的硬件设计、软件设计以及温度检测与控制算法的研究,实现一套稳定可靠的基于51单片机的温控风扇系统,并对系统进行测试优化,为今后类似应用提供参考和借鉴。
1.2 研究意义在工业生产中,温控风扇设计也具有重要意义。
通过合理设计温控系统,可以有效地控制设备的温度,保证设备在安全的工作温度范围内运行,提高设备的稳定性和可靠性,减少设备的故障率,降低维护成本,提高生产效率。
开展基于51单片机的温控风扇设计研究具有重要的理论和实践意义。
通过该研究,不仅可以提高温控风扇的控制精度和稳定性,还可以为温控系统的设计和应用提供参考和借鉴,推动智能家居和工业生产的发展。
基于51单片机的智能温控风扇系统的设计题目:基于51单片机的智能温控风扇系统的设计一、需求分析在炎热的夏天人们常用电风扇来降温,但传统电风扇多采用机械方式进行控制,存在功能单一,需要手动换挡等问题。
随着科技的发展和人们生活水平的提高,家用电器产品趋向于自动化、智能化、环保化和人性化,使得智能电风扇得以逐渐走进了人们的生活中。
智能温控风扇可以根据环境温度自动调节风扇的启停与转速,在实际生活的使用中,温控风扇不仅可以节省宝贵的电资源,也大大方便了人们的生活。
二、系统总体设计1、硬件本系统由集成温度传感器、单片机、LED数码管、及一些其他外围器件组成。
使用89C52单片机编程控制,通过修改程序可方便实现系统升级。
系统的框图结构如下:图1-1硬件系统框图其中,单片机为STC89C52,这个芯片与我开发板芯片相同,方便拷进去程序。
晶振电路和复位电路为单片机最小系统通用设置,温度采集电路,使用的是DS18B20芯片,数码管使用的是4位共阳数码管,风扇驱动芯片使用的是L298N,按键为按钮按键,指示灯为发光二级管。
2、软件要实现根据当前温度实时的控制风扇的状态,需要在程序中不时的判断当前温度值是否超过设定的动作温度值范围。
由于单片机的工作频率高达12MHz,在执行程序时不断将当前温度和设定动作温度进行比较判断,当超过设定温度值范围时及时的转去执行超温处理和欠温处理子程序,控制风扇实时的切换到关闭、低速、高速三个状态。
显示驱动程序以查七段码取得各数码管应显数字,逐位扫描显示。
主程序流程图如图4-1所示。
图1-2软件系统框图这是该系统主程序的运行流程,当运行时,程序首先初始化,然后调用DS18B20初始化函数,然后调用DS18B20温度转换函数,接着调用温度读取函数,到此,室内温度已经读取,调用按键扫描函数这里利用它设置温度上下限,然后就是调用数码管显示函数,显示温度,之后调用温度处理函数,再调用风扇控制函数使风扇转动。
基于单片机的智能温控风扇系统设计一、本文概述随着科技的快速发展,智能家居系统在人们的日常生活中扮演着越来越重要的角色。
其中,智能温控风扇系统作为智能家居的重要组成部分,通过自动调节风速和温度,为用户提供舒适的室内环境。
本文旨在探讨基于单片机的智能温控风扇系统的设计与实现。
本文首先介绍了智能温控风扇系统的背景和意义,阐述了其在现代家居生活中的重要性和应用价值。
接着,文章详细分析了系统的总体设计方案,包括硬件平台的选择、软件编程的思路以及温度控制算法的实现。
在此基础上,文章还深入探讨了单片机在智能温控风扇系统中的应用,包括单片机的选型、外设接口的设计以及控制程序的编写。
文章还注重实际应用的可行性,对智能温控风扇系统的硬件电路和软件程序进行了详细的说明,包括电路原理图的设计、元器件的选择以及程序的调试过程。
文章对系统的性能和稳定性进行了测试和分析,验证了系统的有效性和可靠性。
通过本文的阐述,读者可以全面了解基于单片机的智能温控风扇系统的设计和实现过程,为相关领域的研究和应用提供参考和借鉴。
本文也为智能家居系统的发展提供了新的思路和方法。
二、系统总体设计智能温控风扇系统的设计旨在实现根据环境温度自动调节风扇转速的功能,从而提高使用的舒适性和能源效率。
整个系统以单片机为核心,辅以温度传感器、电机驱动模块、电源模块以及人机交互界面等组成部分。
在总体设计中,首先需要考虑的是硬件的选择与配置。
单片机作为系统的核心控制器,需要选择运算速度快、功耗低、稳定性高的型号。
温度传感器则选用能够精确测量环境温度、响应速度快、与单片机兼容的型号。
电机驱动模块负责驱动风扇电机,需要选择能够提供足够驱动电流、控制精度高的模块。
电源模块需要为整个系统提供稳定可靠的电源。
人机交互界面则用于显示当前温度和风扇转速,同时提供用户设置温度阈值的接口。
在软件设计上,系统需要实现温度数据的采集、处理与传输,风扇转速的控制,以及人机交互界面的管理等功能。
基于51单片机的智能温控风扇设计各部块的设计智能温控风扇是一种能够根据环境温度自动调节风速的风扇。
它可以通过内置的温度传感器来检测环境温度,并根据预设的温度阈值来自动调节风速,以达到舒适的温度控制效果。
在这篇文章中,我将介绍基于51单片机的智能温控风扇设计中的各部块的设计原理和功能。
1. 电源电路设计:智能温控风扇的电源电路设计需要保证稳定的电压供应,并提供足够的电流输出。
一般来说,我们可以使用稳压芯片来实现稳定的电压输出,并使用大功率三极管或MOSFET来提供足够的电流。
2. 温度传感器设计:温度传感器是智能温控风扇的核心部件之一。
常见的温度传感器有DS18B20、LM35等。
通过将温度传感器与51单片机相连,可以实时获取环境温度数据,并根据设定的温度阈值进行风速调节。
3. 显示屏设计:为了方便用户查看当前的环境温度和风速情况,智能温控风扇通常配备了显示屏。
可以选择液晶显示屏或者数码管来显示温度和风速信息。
通过51单片机的IO 口和显示屏进行连接,可以将温度和风速数据显示在屏幕上。
4. 按键设计:为了方便用户设置温度阈值和控制风速,智能温控风扇通常配备了按键。
通过51单片机的IO口和按键进行连接,可以实现对温度和风速的调节。
按键可以设置上下调节温度的按钮,还可以设置开关风扇的按钮等。
5. 控制逻辑设计:智能温控风扇的控制逻辑设计非常重要。
根据温度传感器采集到的环境温度数据,通过与预设的温度阈值进行比较,可以确定风扇应该以何种速度工作。
通过51单片机控制风扇的速度,可以实现智能的温控功能。
6. 风扇驱动电路设计:智能温控风扇设计中,需要使用风扇驱动电路将单片机的输出信号转换为足够的电流驱动风扇。
常见的风扇驱动电路设计包括三极管驱动电路和MOSFET驱动电路。
7. 通信模块设计:为了实现智能化控制,可以考虑在智能温控风扇中添加通信模块,如WiFi模块或蓝牙模块。
通过与手机或其他智能设备的连接,可以实现远程控制和监控。
基于51单片机的温控风扇设计1. 引言1.1 研究背景基于51单片机的温控风扇设计能够满足消费者的需求,具有成本低、易操作、高性能等优点。
通过研究51单片机的应用,设计一个简单实用的温控风扇系统,不仅可以降低消费者的购买成本,提高普及率,还可以为温控风扇行业的发展带来新的技术突破。
本研究旨在基于51单片机设计一个具有良好性能和稳定运行的温控风扇系统,通过硬件设计、软件设计、系统测试等方面的研究,探索出一套有效的温控算法和风扇控制方案,为温控风扇的普及和应用提供技术支持和参考。
1.2 研究意义温控风扇设计在现代生活中有着重要的意义。
随着科技的不断发展,人们对于生活质量的要求也越来越高。
在夏季高温天气中,使用温控风扇可以有效调节室内温度,提供舒适的环境。
而基于51单片机的温控风扇设计可以实现智能化的控制,提高风扇的效率和稳定性。
温控风扇设计还可以节约能源,减少能源消耗,符合节能减排的现代社会发展需求。
通过研究和设计温控风扇系统,可以提高人们对于科技产品的认识和理解,促进科技和生活的融合。
基于51单片机的温控风扇设计具有重要的研究意义,对于提升生活质量、节约能源、促进科技发展等方面都具有积极的作用。
深入研究和探讨温控风扇设计,将有助于提升技术水平,推动相关领域的发展。
1.3 研究目的本次研究的目的是设计基于51单片机的温控风扇系统,通过该系统实现对环境温度的监测和控制,从而实现自动调节风扇转速。
通过该研究,我们旨在提高家用电器的智能化水平,提升用户体验,减少能源消耗,降低碳排放。
具体目的包括:1. 研究51单片机在温控领域的应用,深入了解其功能和特点;2. 设计一个可靠稳定的温控风扇系统,确保其能够准确监测环境温度并实现有效的风扇调节;3. 测试系统的性能和稳定性,验证其在实际使用中的可靠性和可行性;4. 探讨温控算法和风扇控制策略,优化系统性能,提高能效和响应速度。
通过这些目的,我们希望能够为家用电器领域的智能化发展做出贡献,为用户提供更加舒适和便捷的生活体验。
《基于单片机的多功能自动调温风扇系统设计》篇一一、引言随着科技的发展和人们生活品质的提高,对于家居环境的舒适度要求也越来越高。
其中,温度的调节是影响舒适度的重要因素之一。
因此,设计一款基于单片机的多功能自动调温风扇系统,不仅可以满足人们对于温度调节的需求,还能提供更多的功能,提高生活的便利性。
本文将详细介绍该系统的设计思路、实现方法和应用前景。
二、系统设计概述本系统以单片机为核心控制器,结合温度传感器、电机驱动器、LCD显示屏等模块,实现自动调温风扇的功能。
系统具有温度检测、温度显示、自动调温、风速调节、定时开关机等多项功能,可广泛应用于家庭、办公室等场所。
三、硬件设计1. 核心控制器:选用一款性能稳定、功能强大的单片机作为核心控制器,负责整个系统的控制和数据处理。
2. 温度传感器:采用高精度的温度传感器,实时检测环境温度,并将数据传输给单片机。
3. 电机驱动器:采用合适的电机驱动器,控制风扇电机的运转,实现风速的调节。
4. LCD显示屏:用于显示当前环境温度和风扇的工作状态,方便用户了解系统运行情况。
5. 其他模块:包括电源模块、按键模块、通信模块等,用于实现系统的供电、操作和与其他设备的通信。
四、软件设计1. 程序设计:编写单片机程序,实现温度检测、温度显示、自动调温、风速调节、定时开关机等功能。
程序采用模块化设计,便于后期维护和功能扩展。
2. 算法设计:根据环境温度和用户需求,设计合适的温度控制算法,实现自动调温功能。
算法应具有响应速度快、稳定性好、节能环保等特点。
3. 人机交互设计:设计友好的人机交互界面,方便用户操作和了解系统运行情况。
界面应具有直观性、易用性和美观性等特点。
五、功能实现1. 温度检测与显示:温度传感器实时检测环境温度,并将数据传输给单片机。
单片机将温度数据处处理后,通过LCD显示屏显示出来,方便用户了解当前环境温度。
2. 自动调温:根据环境温度和用户需求,单片机控制电机驱动器,调整风扇的运行状态,实现自动调温功能。
基于51单片机的温控风扇设计【摘要】本文基于51单片机设计了一款温控风扇系统,通过温度传感器监测环境温度,根据温度控制算法调整风扇的转速,实现温度的精确控制。
文章首先介绍了研究的背景和目的,然后详细阐述了51单片机的概述、风扇控制电路设计、温度传感器的选择与应用、温度控制算法以及系统整合与调试过程。
实验结果表明该系统能够有效地实现温控风扇的功能,并具有稳定性和可靠性。
设计优点包括成本低、性能稳定等,但仍存在一些问题需要改进,如精度不高、响应速度较慢等。
未来的展望包括优化算法、提高系统的稳定性和精确度。
该温控风扇设计具有一定的实用价值和发展潜力。
【关键词】51单片机、温控风扇设计、温控算法、温度传感器、风扇控制、系统整合、实验结果、设计优点、存在问题、展望。
1. 引言1.1 研究背景随着科技的不断发展,电子产品在人们日常生活中扮演着越来越重要的角色。
随之而来的问题之一就是设备在运行过程中会产生热量,而如果热量无法有效散发,可能会导致设备过热,甚至损坏。
对于一些需要长时间运行的电子设备,如电脑,电视机等,就需要设计一种能够实时监测温度并调节风扇转速的系统,以确保设备稳定运行。
目前市面上已经有一些温控风扇产品,但是它们通常使用的是普通的温度控制芯片,功能比较单一,而且价格较高。
开发一种基于51单片机的温控风扇设计方案,能够降低成本,提高灵活性,适用范围更广。
本研究旨在通过对51单片机温控风扇设计的研究,探讨其原理和实践操作,为深入了解电子设备温控系统的设计和实现提供参考。
1.2 研究目的研究目的是设计并实现一种基于51单片机的温控风扇系统,旨在实现对风扇转速的智能控制,使其能够根据环境温度自动调节,提高风扇的效能和节能性。
通过本研究,我们希望能够深入了解51单片机的工作原理和应用领域,掌握风扇控制电路设计的关键技术,选择合适的温度传感器并实现其准确的温度测量和调节功能,研究并优化温度控制算法,最终实现系统的整合与调试,验证设计的可行性和稳定性。
基于51单片机的智能温控风扇设计1. 项目介绍在炎热的夏季,风扇是人们最常用的家电之一。
然而,传统的风扇只能提供恒定的风速,无法根据环境温度自动调节风速。
本项目旨在设计一款智能温控风扇,能够根据环境温度自动调节风速,为用户带来更加舒适的体验。
2. 硬件设计2.1 51单片机本项目采用51单片机作为主控芯片。
51单片机具有成本低、功能强大的特点,非常适合嵌入式系统应用。
2.2 温度传感器为了实现智能温控功能,需要使用温度传感器来实时监测环境温度。
常用的温度传感器有DS18B20、DHT11等,本项目选择DS18B20作为温度传感器。
2.3 风扇控制电路风扇控制电路用于控制风扇的转速。
传统的风扇通常使用三档开关来控制风速,本项目将采用PWM调速方式来实现无级调速。
3. 软件设计3.1 硬件连接首先,我们需要将温度传感器和单片机进行连接。
将温度传感器的数据线连接到单片机的GPIO口,将VCC和GND连接到单片机的电源。
3.2 温度读取使用51单片机的GPIO口读取温度传感器的数据,通过GPIO口发送指令给传感器,并接收传感器返回的温度值。
温度值可以通过串口输出,也可以显示在液晶屏上。
3.3 温度控制根据读取的温度值,判断当前环境温度是否超过设定的阈值。
如果温度超过阈值,则控制风扇开始运转,否则关闭风扇。
3.4 PWM调速通过51单片机的PWM输出口来控制风扇的转速。
根据温度的变化,动态调整PWM的占空比,从而实现风扇转速的调节。
3.5 实时监测和显示通过LCD液晶屏显示当前温度和风扇转速,使用户能够实时监测和调节温控风扇的工作状态。
4. 总结本项目利用51单片机设计了一款智能温控风扇。
通过温度传感器实时监测环境温度,根据温度的变化自动调节风扇的转速,为用户提供更加舒适的使用体验。
经过实际测试,该温控风扇稳定可靠,具有较高的实用性和可操作性。
参考资料1.DS18B20温度传感器 datasheet2.51单片机资料手册3.PWM调速原理与应用。
62(2004年11月号)理,要调功和调速,可采用直接控制电机或发热体两端的电压来实现。
作为很多现代电器的核心,精选的控制器件是简单可靠且价格不高的双向可控硅。
本设计两路调节都通过双向可控硅实现,其详细的工作原理及导通方式限于篇幅,在此不再赘述。
要调节端电压,只要通过调节双向可控硅的导通角,就可以调节发热元件和风机两端的电压,完成调功和调速设计。
为了简化设计同时确保可控硅可靠触发和导通,本设计中,可控硅采用常用的“1-”和“3-”两种触发方式。
在这两种工作方式下,双向可控硅在门极加控制信号时导通,当两主端子间电流反向时自行截止。
该部分设计电路原理图如图1。
图1中BCR为双向可控硅,R1、C2为浪涌电压吸收电路,用以抑制dv/dt,从而防止可控硅误动作。
Heat Wire为电热丝,既可抑制di/dt,保护可控硅,又分压发热,为电暖器提供部分热量。
可控硅的通断是通过在门极(CONTROL LINE)加控制信号实现的,当可控硅导通时,4个1N4007组成的全波桥式整流电路工作,L1、L2和C3、C4为滤波电路,平滑电机两端电压,使电机工作平稳。
3 PWM控制电路设计根据调节电路设计思路,至少要产生两路可变的PWM。
考虑到可靠性和成本,在设计中选择用单片机产生PWM,则PWM的周期和占空比都可根据软件改变,产品设计的扩展空间大。
本设计选用Atmel公司的AT89C2051为CPU,该CPU是基于8051内核的一款通用单片机,芯片功能强大,具有2K Flash可反复擦写。
以图2中两个通用端口(P1.6、P1.7)产生PWM信号为例,说明利用单片机产生PWM信号的原理。
为了确保斩波的可靠性,要利用一或两个端口检测市电同步信号,保证PWM斩波信号与市电信号同步。
为了保证电压稳定,在设计中采用两个端口,在市电的一个周期内有两个脉冲,正负半周各斩波一次,这样滤波的效果好,波形比较稳定,电机或发热元件工作平稳性好。
毕业论文题目:基于单片机的暖风机设计摘要本文设计了一种以AT89S52单片机为核心的低成本、高精度、微型化LED显示温湿度监测系统,并使用一些常用芯片如:DS18B20、GHS-20E等。
系统由单片机、温度检测电路、电机驱动电路、报警电路以及显示电路构成。
由芯片AT89S52控制温湿度传感器检测到的温湿度值进行存储转换,从而在显示电路中数码管中显示出来。
本系统具有易安装检测、软件功能完善,工作可靠、准确度高等优点。
本文论述了单片机技术研制成功的暖风机的监测系统的基本原理,温湿度传感器信号采集通过单片机来实现方案。
采用软件校正,提高了测量精度和整机的可靠性。
实际使用表明,极大的提高了安全性、可靠性和准确度。
关键词:暖风机,温湿度传感器,单片机AT89S52目录摘要 (I)目录 (II)第1章概述 (20)1.1选题背景 (20)1.2设计过程及工艺要求 (20)1.3设计的重点与难点 (20)第2章方案论证与比较 (21)2.1温度传感器的选择 (21)2.2湿度传感器的选择 (21)第3章系统总体设计 (23)3.1系统设计 (23)3.2芯片AT89S52介绍 (23)3.3传感器的介绍 (26)3.3.1传感器的定义及作用 (26)3.3.2传感器的特性 (26)3.3.3温度传感器DS18B20 (26)3.3.4湿度传感器GHS-20E (31)3.3.5 A/D转换TLC549 ......................... 错误!未定义书签。
3.4温湿度采集电路设计........................... 错误!未定义书签。
3.5显示电路的设计 (33)3.6报警电路的设计 (34)3.7按键电路的设计 (35)第4章系统调试 (36)4.1软硬件的调试 (36)4.2系统软件设计 (36)总结 (39)致谢 (40)参考文献 (41)附录 (42)第1章概述1.1选题背景带液晶显示屏的暖风机,越来越受到用户的欢迎,配合液晶屏显示,可显示环境温度及设定状态,大大方便了产品的使用。
目前,各大厂商为了在市场上占有一席之地,纷纷在遥控型暖风机的性能参数标准,重量,体积,厚度,色彩,价格大大下功夫。
如:海宝驰的奔驰暖风取暖器NSB-200遥控型暖风机,SANYO的三洋暖风机R-P201MR等,样式新颖,都占有很高的性价比。
消费者可以量身挑选适合自己的。
1.2设计过程及工艺要求一、基本功能~ 吹出恒定的暖风~ 检测温度~ 显示温度~ 过限报警二、主要技术参数~ 温度检测范围:0℃-+50℃~ 测量精度:±0.5℃~ 检测精度:±1%RH~ 显示方式:温度:二位显示湿度:四位显示~ 报警方式:三极管驱动的蜂鸣音报警1.3设计的重点与难点本设计的任务是设计一个暖风机系统,可以应用于温湿度有一定要求的区域。
测量时能够清晰稳定地显示出监测结果。
系统组成的设计:各部分硬件的选取很有讲究,要十分合理。
设计的难点是:1、温度湿度模块设计2、电机驱动模块3、显示电路设计4、流程图及程序的设计第2章方案论证与比较当将单片机用作测控系统时,系统总要有被测信号懂得输入通道,由计算机拾取必要的输入信息。
对于测量系统而言,如何准确获得被测信号是其核心任务;而对测控系统来讲,对被控对象状态的测试和对控制条件的监察也是不可缺少的环节。
传感器是实现测量与控制的首要环节,是测控系统的关键部件,如果没有传感器对原始被测信号进行准确可靠的捕捉和转换,一切准确的测量和控制都将无法实现。
工业生产过程的自动化测量和控制,几乎主要依靠各种传感器来检测和控制生产过程中的各种参量,使设备和系统正常运行在最佳状态,从而保证生产的高效率和高质量。
2.1温度传感器的选择方案一:采用热电阻温度传感器。
热电阻是利用导体的电阻随温度变化的特性制成的测温元件。
现应用较多的有铂、铜、镍等热电阻。
其主要的特点为精度高、测量范围大、便于远距离测量。
铂的物理、化学性能极稳定,耐氧化能力强,易提纯,复制性好,工业性好,电阻率较高,因此,铂电阻用于工业检测中高精密测温和温度标准。
缺点是价格贵,温度系数小,受到磁场影响大,在还原介质中易被玷污变脆。
按IEC标准测温范围-200~650℃,百度电阻比W(100)=1.3850时,R0为100Ω和10Ω,其允许的测量误差A级为±(0.15℃+0.002 |t|),B级为±(0.3℃+0.005 |t|)。
铜电阻的温度系数比铂电阻大,价格低,也易于提纯和加工;但其电阻率小,在腐蚀性介质中使用稳定性差。
在工业中用于-50~180℃测温。
方案二:采用DS18S20,独特的单线接口,多点能力使分布式温度检测应用简单,不需要外部元件和备份电源,可用数据线供电,测量范围从-55~+125℃,增量值为0.5℃,并且以9位数值方式读出温度且可在1秒内把温度变成数字。
综合比较方案一与方案二,方案二更为适合于本设计系统对于温度传感器的选择。
2.2电机选择与论证方案一:采用步进电机,步进电机的一个显著特点就是具有快速启停能力,如果负荷不超过步进电机所能提供的动态转矩值,就能够立即使步进电机启动或反转。
另一个显著特点是转换精度高,正转反转控制灵活。
但是步进电机价格昂贵。
方案二:采用直流伺服电机,直流伺服电机具有优良的速度控制性能,它输出较大的转矩,直接拖动负载运行,同时它又受控制信号的直接控制进行转速调节,在很多方面具有优越性,但是直流伺服电机价格昂贵,且不易购买。
方案三: 采用普通的直流电机,直流电动机具有优良的调速特性,调速平滑、方便,调整范围广;过载能力强,能承受频繁的冲击负载,可实现频繁的无级快速启动、制动和反转;能满足各种不同的特殊运行要求,且价格实惠,容易购买。
由于普通的直流电机价廉物美,且能完成所需的功能,故我们采用方案三作为小车的动力源。
2.2测速模块:方案1:采用采用霍尔开关元器件A44E检测轮子上的小磁铁从而给单片机中断脉冲,达到测量速度的作用。
霍尔元件具有体积小,频率响应宽度大,动态特性好,对外围电路要求简单,使用寿命长,价格低廉等特点,电源要求不高,安装也较为方便。
霍尔开关只对一定强度的磁场起作用,抗干扰能力强,因此可以在车轮上安装小磁铁,而将霍尔器件安装在固定轴上,通过对脉冲的计数进行车速测量。
2.3.2 方案2:采用红外传感器进行测速。
但无论是反射式红外传感器还是对射式红外传感器,他们对都对外围环境要求较高,易受外部环境的影响,稳定性不高,且价格较为昂贵。
通过对方案1、方案2的比较其优缺点,综合多方面因素决定选用方案1,其原理图接线如(图5)所示:(图5)第3章系统总体设计3.1系统设计本设计是基于单片机对数字信号的高敏感和可控性、温湿度传感器可以产生模拟信号,和A/D模拟数字转换芯片的性能,我设计了以AT89S52基本系统为核心的一套检测系统,其中包括A/D转换、单片机、复位电路、温度检测、按键及显示、报警电路、系统软件等部分的设计。
见图3.1所示:本设计由信号采集、信号分析和信号处理三个部分组成的。
(一)信号采集由红外传感器、DS18B20及TLC549组成;(二)信号分析由A/D转换器TLC549、单片机89S52基本系统组成;(三)信号处理由串行口LED显示器和报警系统等组成。
3.2芯片AT89S52介绍AT89S52是一种低功耗、高性能CMOS 8位微控制器,具有8K在系统可编程Flash 存储器。
使用ATMEL公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。
片上Flash允许程序存储器在系统可编程,亦适于常规编程器。
在单芯片上,拥有灵巧的8位CPU和在系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。
由于此单片机应用在仓库温湿度检测上,所以本设计选用了低功耗、高性能、低价格、小管脚(40脚)的AT89S52单片机。
如图3.2所示::图3.2 AT89S52芯片引脚图AT89S52具有以下标准功能:8k字节Flash,256字节RAM,32 位I/O口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。
另外,AT89S52可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。
空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。
引脚功能介绍1.Vcc:电源电压。
2.GND:地。
3. P0 口:P0口是一个8位漏极开路的双向I/O口。
作为输出口,每位能驱动8个TTL逻辑电平。
对P0端口写“1”时,引脚用作高阻抗输入。
当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。
在这种模式下,P0具有内部上拉电阻。
在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。
程序校验时,需要外部上拉电阻。
4. P1 口:P1 口是一个具有内部上拉电阻的8 位双向I/O 口,p1 输出缓冲器能驱动4 个TTL 逻辑电平。
对P1 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。
此外,P1.0和P1.2分别作定时器/计数器2的外部计数输入(P1.0/T2)和时器/计数器2 的触发输入(P1.1/T2EX),具体如表3.1所示: 在flash编程和校验时,P1口接收低8位地址字节。
表3.1 P1口的第二功能5.P2 口:P2 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器能驱动4 个TTL 逻辑电平。
对P2 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。
在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX @DPTR)时,P2 口送出高八位地址。
在这种应用中,P2 口使用很强的内部上拉发送1。
在使用8位地址(如MOVX @RI)访问外部数据存储器时,P2口输出P2锁存器的内容。
在flash编程和校验时,P2口也接收高8位地址字节和一些控制信号。
6. P3 口:P3 口是一个具有内部上拉电阻的8 位双向I/O 口,p3 输出缓冲器能驱动4 个TTL 逻辑电平。
对P3 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。
P3口亦作为AT89S52特殊功能(第二功能)使用,如表3.2所示。