评估
评估非线性回归模型的表现通常通过比较预测值 和实际值,使用相关系数、均方误差等指标。
多元回归分析
01 定义
多元回归分析是一种用于描述多 个自变量与一个因变量之间关系 的统计方法。
03
02
假设
模型
多元回归模型通常表示为 y = ax1 + bx2 + cx3 + ... + zxn + e,其 中 a、b、c 等是系数,e 是误差项 。
3
机器学习方法
利用计算机学习大量数据,从中发现规律和模 式的方法。
统计方法的应用范围
社会科学
用于研究人类行为、社会现象,如社会调查、心 理学等。
自然科学
用于研究自然界现象、规律,如医学、生物学等 。
工程领域
用于优化设计、质量控制、预测等,如制造、建 筑等行业。
统计方法的发展趋势
大数据时代的挑战
如何处理海量数据,提取有用 信息。
评估线性回归模型的表现通常通过比较预测 值和实际值,使用相关系数、均方误差等指 标。
非线性回归分析
定义
非线性回归分析是一种用于描述一个或多个自变 量与因变量之间非线性关系的统计方法。
假设
非线性回归模型通常也需要满足一些假设,包括 误差项的独立性、同方差性和无序列相关性。
模型
非线性回归模型通常表示为 y = f(x1, x2, ..., xn), 其中 f 是一个非线性函数。
用于检验时间序列是否存在单位根,判断 序列是否平稳。
ADF检验
一种单位根检验方法,比DF检验更有效。
KPSS检验
与单位根检验相反,用于检验序列是否平 稳。
PP检验
一种检验单位根的稳健方法,适用于小样 本数据。