曼彻斯特解码器
- 格式:pdf
- 大小:1.32 MB
- 文档页数:16
曼彻斯特解码1、变量定义 (2)2、Manchest初始化 (2)3、Manchest解码信号翻转 (3)4、过滤错误的卡号 (4)5、获取正确的卡号 (5)6、Manchest获取卡号数据 (6)7、通过中断采样获取刷卡数据 (9)1、变量定义#define TH1_370US_H 0XFE //晶振11.0592MHZ,12T模式#define TL1_370US_L 0XAB#define SIGNAL_FLIP_TIME 10 //每隔100ms翻转一次读卡信号#define REPEAT_TIME 5 //500ms后重复读卡#define CLEAR_CARD_TIME 20 //2S后清除卡号数据#define MANCHEST_TIME 5sbit PULSE = P3^2;sbit RFEN = P3^5; //曼彻斯特解码脉冲信号sbit MANCHEST0= P3^2; //wiegand0sbit MANCHEST1= P3^3; //wiegand1uchar code CheckingTab[32]={ //接收到10组卡号的偶校验0X00,0X01,0X01,0X00,0X01,0X00,0X00,0X01, //这里数值是低五位的偶校验值0X01,0X00,0X00,0X01,0X00,0X01,0X01,0X00,0X01,0X00,0X00,0X01,0X00,0X01,0X01,0X00,0X00,0X01,0X01,0X00,0X01,0X00,0X00,0X01};uchar WGCardBuf[5]; //卡号uchar CopyCardBuf[5]; //备份卡号uchar ManchestBuf[11]; //暂存接收到的11组数据uchar idata g_ucManchestTime = MANCHEST_TIME; //uchar idata g_ucDWithCardTime= 0; //隔500ms处理该卡号uchar idata g_ucPreambleFlag = 0;uchar idata g_ucERAgainTimer = 0; //每隔100ms翻转一次RFENuchar idata g_ucStoreGroupCnt= 0; //接收到几组数据,这里为11组才可能正确uchar idata g_ucEGroupBitCnt = 0; //每组数据有5个为,5=4位卡号+1位偶校验uchar idata g_ucPreambleCount= 0; //9位为1的引导码uchar idata g_ucRemvoeCardTime=0; //隔多久清除以前的卡号数据,这里为3s2、Manchest初始化/******************************************************************** 函数原型:ManchestInit功能:曼彻斯特解码变量初始化输入:无输出:无说明:无*-------------------------------------------------------------------- *修改时间| 修改者| 备注*-------------------------------------------------------------------- *2012-02-14 Oscar First********************************************************************/ void ManchestInit(void) //初始化读卡参数{RFEN = 1;g_ucPreambleFlag = 0;g_ucStoreGroupCnt = 0;g_ucEGroupBitCnt = 5;g_ucPreambleCount = 9;g_ucERAgainTimer = SIGNAL_FLIP_TIME;}3、Manchest解码信号翻转/******************************************************************** 函数原型:ProcessManchestSignal功能:manchest解码的翻转信号输入:无输出:无说明:无*-------------------------------------------------------------------- *修改时间| 修改者| 备注*-------------------------------------------------------------------- *2012-02-14 Oscar First********************************************************************/ void ProcessManchestSignal(void){if((g_ucDWithCardTime!=0)&&(--g_ucDWithCardTime==0)){}if((g_ucRemvoeCardTime!=0)&&(--g_ucRemvoeCardTime==0)){CopyCardBuf[0] = 0; //清除卡号缓冲区CopyCardBuf[1] = 0;CopyCardBuf[2] = 0;CopyCardBuf[3] = 0;CopyCardBuf[4] = 0;}RFEN = ~RFEN;g_ucPreambleFlag = 0;g_ucPreambleCount= 9;if(RFEN){EX0 = 1;EX1 = 1;}else{EX0 = 0;EX1 = 0;}}4、过滤错误的卡号/******************************************************************** 函数原型:CalibrationCardData功能:一张卡号,如果出现全部相同的数字或者该卡号只有两种数据,则认为是错误的卡号。
一种简便的ID卡曼彻斯特解码方法我这里介绍的是常用的125KHz的ID卡。
ID卡内固化了64位数据,由5个区组成:9个引导位、10个行偶校验位“PO~P9′’、4个列偶校验位“PC0~PC3”、40个数据位“D00~D93”和1个停止位S0。
9个引导位是出厂时就已掩膜在芯片内的,其值为“111111111”,当它输出数据时,首先输出9个引导位,然后是10组由4个数据位和1个行偶校验位组成的数据串,其次是4个列偶校验位,最后是停止位“0”。
“D00~D13”是一个8位的晶体版本号或ID识别码。
“D20~D93”是8组32位的芯片信息,即卡号。
注意校验位都是偶校验,网上有些资料写的是奇校验,很明显是错的,如果是奇校验的话,在一个字节是FF 的情况下,很容易就出现9个1,这样引导位就不是唯一的了,也就无法判断64位数据的起始位了。
数据结构如下图:我读的一个ID卡数据是111111111 10001 00101 00000 00011 00000 01010 00000 11011 00110 01100 01100,对应的ID卡号是01050d36。
ID卡数据采用曼彻斯特编码,1对应着电平下跳,0对应着电平上跳。
每一位数据的时间宽度都是一样的(1T)。
由于电路参数的差别,时间宽度要实际测量。
解码芯片采用U2270B,单片机采用89S52。
U2270B的输出脚把解码得到的曼彻斯特码输出到89S52的INT脚。
在89S52的外部中断程序中完成解码。
在没有ID卡在读卡器射频范围内时,U2270B的输出脚会有杂波输出,ID卡进入读卡器射频范围内后,会循环发送64位数据,直到ID卡离开读卡器的有效工作区域。
根据ID卡的数据结构,64位数据的最后一位停止位是0。
最开始的9位引导位是1,可以把0111111111做为引导码。
也就是说在ID卡进入读卡器工作范围后,丢掉ID卡发送的第一个64位码,检测最后1位0,然后检测ID卡发送的第2个64位码的9个引导码111111111,引导码检测成功后,解码剩余的55位码。
曼彻斯特解码原则+125K EM4100系列RFID卡解码源程序分析曼彻斯特解码原则1.曼彻斯特编码曼彻斯特编码(Manchester Encoding),也叫做相位编码(PE),是一个同步时钟编码技术,被物理层使用来编码一个同步位流的时钟和数据。
曼彻斯特编码被用在以太网媒介系统中。
曼彻斯特编码提供一个简单的方式给编码简单的二进制序列而没有长的周期没有转换级别,因而防止时钟同步的丢失,或来自低频率位移在贫乏补偿的模拟链接位错误。
在这个技术下,实际上的二进制数据被传输通过这个电缆,不是作为一个序列的逻辑1或0来发送的(技术上叫做反向不归零制(NRZ))。
相反地,这些位被转换为一个稍微不同的格式,它通过使用直接的二进制编码有很多的优点。
曼彻斯特编码,常用于局域网传输。
在曼彻斯特编码中,每一位的中间有一跳变,位中间的跳变既作时钟信号,又作数据信号;从高到低跳变表示"1",从低到高跳变表示"0"。
还有一种是差分曼彻斯特编码,每位中间的跳变仅提供时钟定时,而用每位开始时有无跳变表示"0"或"1",有跳变为"0",无跳变为"1"。
对于以上电平跳变观点有歧义:关于曼彻斯特编码电平跳变,在雷振甲编写的<<网络工程师教程>>中对曼彻斯特编码的解释为:从低电平到高电平的转换表示1,从高电平到低电平的转换表示0,模拟卷中的答案也是如此,张友生写的考点分析中也是这样讲的,而《计算机网络(第4版)》中(P232页)则解释为高电平到低电平的转换为1,低电平到高电平的转换为0。
清华大学的《计算机通信与网络教程》《计算机网络(第4版)》采用如下方式:曼彻斯特编码从高到低的跳变是0 从低到高的跳变是1。
两种曼彻斯特编码是将时钟和数据包含在数据流中,在传输代码信息的同时,也将时钟同步信号一起传输到对方,每位编码中有一跳变,不存在直流分量,因此具有自同步能力和良好的抗干扰性能。
1.5.什么叫“综合”?一般“综合”包含哪些过程?答:在电子设计领域中“综合”的概念可以表示为:将用行为和功能层次表达的电子系统转换为低层次的便于具体实现的模块组合装配的过程。
综合包含的过程:对VHDL或Verilog HDL进行处理分析,并将其转换成电路结构或模块,这时不考虑实际器件实现,即完全与硬件无关,这个过程是一个通用电路原理图形成的过程:第2步,对实际实现目标器件的结构进行优化,并使之满足各种约束条件,优化关键路径,等等。
2.10 使用Quartus II的 Mega Wizard Plug-In Manager宏功能模块中的PLL设计一个能实现图题2.10波形的电路元件(包括一个VHDL文件和一个*.bsf原理图图标)。
其中:inclk0为电路的主频输入端,频率为50MHz;areset为异步置位端,c2和主频inclk0同频率。
c1为主频inclk0的倍频输出信号。
C0为c2的反相信号。
Locked为相位控制信号,也是输出使能控制信号。
( 2014am)3.20 试用VHDL 语言设计一个曼彻斯特编码器。
已知有时钟信号clk_d、时钟的倍频信号clk及时钟的反相信号clk_dn。
串行数据输入为data_s,编码输出为mcode_out,输出使能信号为clk_lock_in,高电平有效(2012am)(2013am)(2014am)提示:曼彻斯特码(Manchester Code)又称为数字双相码或分相码(Split-phase Code)。
它的编码规则是:用分别持续半个码元周期的正(高)、负(低)电平组合表示信码“1”;用分别持续半个码元周期的负(低)、正(高)电平组合表示信码“0”。
图题3.20 用倍频时钟设计Manchester Code图题3.20 用双时钟设计Manchester Code 的仿真结果hsu_manchester_code_vmodule hsu_manchester_code_v ( clk,clk_d,clk_dn,data_s,clk_lock_in,mcode_out); input clk,clk_d,clk_dn,data_s,clk_lock_in;output mcode_out;reg mcode_out;reg temp_mcode_out;reg temp_mcode_out_ddn;always ( posedge clk or posedge clk_lock_in )beginif (clk_lock_in==1'b1)if (data_s==1'b1)temp_mcode_out<=clk_d;elsetemp_mcode_out<=1'b0;elsetemp_mcode_out=1'b0;endalways ( posedge clk or posedge clk_lock_in )beginif (clk_lock_in==1'b1)if (data_s==1'b0)temp_mcode_out_ddn<=clk_dn;elsetemp_mcode_out_ddn<=1'b0;elsetemp_mcode_out_ddn=1'b0;Endalways ( posedge clk or posedge clk_lock_in )beginif (clk_lock_in==1'b1)mcode_out<=temp_mcode_out;temp_mcode_out_ddn;elsemcode_out<=1'b0;endendmodule3.21 试用VHDL 语言设计一个求两个数中最大值的程序,要求用函数调用的方法设计。
曼彻斯特解码原则+125K EM4100系列RFID卡解码源程序分析曼彻斯特解码原则1.曼彻斯特编码曼彻斯特编码(Manchester Encoding),也叫做相位编码(PE),是一个同步时钟编码技术,被物理层使用来编码一个同步位流的时钟和数据。
曼彻斯特编码被用在以太网媒介系统中。
曼彻斯特编码提供一个简单的方式给编码简单的二进制序列而没有长的周期没有转换级别,因而防止时钟同步的丢失,或来自低频率位移在贫乏补偿的模拟链接位错误。
在这个技术下,实际上的二进制数据被传输通过这个电缆,不是作为一个序列的逻辑1或0来发送的(技术上叫做反向不归零制(NRZ))。
相反地,这些位被转换为一个稍微不同的格式,它通过使用直接的二进制编码有很多的优点。
曼彻斯特编码,常用于局域网传输。
在曼彻斯特编码中,每一位的中间有一跳变,位中间的跳变既作时钟信号,又作数据信号;从高到低跳变表示"1",从低到高跳变表示"0"。
还有一种是差分曼彻斯特编码,每位中间的跳变仅提供时钟定时,而用每位开始时有无跳变表示"0"或"1",有跳变为"0",无跳变为"1"。
对于以上电平跳变观点有歧义:关于曼彻斯特编码电平跳变,在雷振甲编写的<<网络工程师教程>>中对曼彻斯特编码的解释为:从低电平到高电平的转换表示1,从高电平到低电平的转换表示0,模拟卷中的答案也是如此,张友生写的考点分析中也是这样讲的,而《计算机网络(第4版)》中(P232页)则解释为高电平到低电平的转换为1,低电平到高电平的转换为0。
清华大学的《计算机通信与网络教程》《计算机网络(第4版)》采用如下方式:曼彻斯特编码从高到低的跳变是0 从低到高的跳变是1。
两种曼彻斯特编码是将时钟和数据包含在数据流中,在传输代码信息的同时,也将时钟同步信号一起传输到对方,每位编码中有一跳变,不存在直流分量,因此具有自同步能力和良好的抗干扰性能。