数据结构单链表及插入删除C语言
- 格式:docx
- 大小:15.02 KB
- 文档页数:3
链表删除节点的方法c语言摘要:1.引言2.链表删除节点的原理3.单链表删除节点的实现4.双向链表删除节点的实现5.总结与拓展正文:【1】引言在计算机科学中,链表是一种常见的数据结构。
在实际应用中,链表的删除操作是非常重要的。
本文将介绍如何在C语言中实现链表的删除操作,主要包括单链表和双向链表的删除方法。
【2】链表删除节点的原理链表删除节点的主要原理是通过迭代或直接修改指针来实现。
在删除节点时,需要考虑以下几点:1.确定要删除的节点;2.更新前后相邻节点的指针;3.释放被删除节点的内存。
【3】单链表删除节点的实现单链表删除节点的核心代码如下:```cvoid deleteNode(Node* head, int target) {Node* p = head;Node* prev = NULL;while (p != NULL) {if (p->data == target) {if (prev == NULL) {head = p->next;} else {prev->next = p->next;}free(p);break;}prev = p;p = p->next;}}```这段代码首先定义了一个指向链表头的指针head,以及一个指向要删除节点的指针prev。
在while循环中,遍历链表的每个节点,当找到要删除的节点时,修改其相邻节点的指针,并释放被删除节点的内存。
【4】双向链表删除节点的实现双向链表删除节点的核心代码如下:```cvoid deleteNode(Node* head, int target) { Node* p = head;while (p != NULL) {if (p->data == target) {if (p->prev == NULL) {head = p->next;} else {p->prev->next = p->next;}if (p->next == NULL) {p->prev = NULL;} else {p->next->prev = p->prev;}free(p);break;}p = p->next;}}```这段代码与单链表删除节点的实现类似,主要区别在于双向链表需要维护prev指针,因此在删除节点时需要特别处理。
计算机学院实验报告课程名称:数据结构实验名称:单链表学生姓名:***学生学号:***********实验日期:2012一、实验目的1.理解数据结构中带头结点单链表的定义和逻辑图表示方法。
2.掌握单链表中结点结构的C++描述。
3.熟练掌握单链表的插入、删除和查询算法的设计与C++实现。
二、实验内容1.编制一个演示单链表插入、删除、查找等操作的程序。
三、实验步骤1.需求分析本演示程序用C++6.0编写,完成单链表的生成,任意位置的插入、删除,以及确定某一元素在单链表中的位置。
①输入的形式和输入值的范围:插入元素时需要输入插入的位置和元素的值;删除元素时输入删除元素的位置;查找操作时需要输入元素的值。
在所有输入中,元素的值都是整数。
②输出的形式:在所有三种操作中都显示操作是否正确以及操作后单链表的内容。
其中删除操作后显示删除的元素的值,查找操作后显示要查找元素的位置。
③程序所能达到的功能:完成单链表的生成(通过插入操作)、插入、删除、查找操作。
④测试数据:A.插入操作中依次输入11,12,13,14,15,16,生成一个单链表B.查找操作中依次输入12,15,22返回这3个元素在单链表中的位置C.删除操作中依次输入2,5,删除位于2和5的元素2.概要设计1)为了实现上述程序功能,需要定义单链表的抽象数据类型:(1)insert初始化状态:单链表可以不为空集;操作结果:插入一个空的单链表L。
(2)decelt操作结果:删除已有的单链表的某些结点。
(3)display操作结果:将上述输入的元素进行排列显示。
(4)modify操作结果:将上述输入的某些元素进行修改。
(5)save操作结果:对上述所有元素进行保存。
(6)load操作结果:对上述元素进行重新装载。
3.使用说明程序执行后显示======================1.单链表的创建2.单链表的显示3.单链表的长度4.取第i个位置的元素5.修改第i个位置的元素6.插入元素到单链表里7.删除单链表里的元素8.合并两个单链表9.退出系统=======================5.源代码:#include<iostream>using namespace std;#define true 1#define false 0#define ok 1#define error 0#define overflow -2typedef int Status;typedef int ElemType;typedef struct LNode{ ElemType data;struct LNode *next;}LNode,*LinkList;void CreateList(LinkList &L,int n){ LinkList p;L=new LNode;L->next=NULL;LinkList q=L;for(int i=1;i<=n;i++){ p=new LNode;cin>>p->data;p->next=NULL;q->next=p;q=p; }}Status GetElem(LinkList L,int i,ElemType &e){ LinkList p=L->next;int j=1;while(p&&j<i){ p=p->next;++j; }if(!p||j>i) return error;e=p->data;return ok;}Status LinkInsert(LinkList &L,int i,ElemType e) { LinkList p=L;int j=0;while(p&&j<i-1){ p=p->next;++j; }if(!p||j>i-1)return error;LinkList s=new LNode;s->data=e;s->next=p->next;p->next=s;return ok;}Status ListDelete(LinkList &L,int i,ElemType &e){ LinkList p=L;LinkList q;int j=0;while(p->next&&j<i-1){p=p->next;++j; }if(!(p->next)||j>i-1) return error;q=p->next;p->next=q->next;e=q->data;delete(q);return ok;}void MergeList(LinkList &La,LinkList &Lb,LinkList &Lc) {LinkList pa,pc,pb;pa=La->next;pb=Lb->next;Lc=pc=La;while(pa&&pb){ if(pa->data<=pb->data){ pc->next=pa;pc=pa;pa=pa->next; }else{ pc->next=pb;pc=pb;pb=pb->next; }}pc->next=pa?pa:pb;delete(Lb);}void show(LinkList L){ LinkList p;p=L->next;while(p){ cout<<p->data<<"-->";p=p->next; }cout<<endl;}int Length(LinkList L,int i){ i=0;LinkList p=L->next;while(p){ ++i;p=p->next; }return i;}void xiugai(LinkList L){ int i,j=1;ElemType k;ElemType e,m;LinkList p=L->next;cout<<"请输入要修改的元素位置(0<i<length):";cin>>i;GetElem(L,i,e);cout<<"该位置的元素:"<<e<<endl;cout<<"修改后的元素值:";cin>>k;while(p&&j<i){ p=p->next;++j; }m=p->data;p->data=k;cout<<"修改后的单链表显示如下:"<<endl;show(L);}void hebing(){ int a,b;LinkList La,Lb,Lc;cout<<"请输入第一个有序链表的长度:"<<endl;cin>>a;cout<<"请输入第一个有序链表的元素共("<<a<<"个):"<<endl;CreateList(La,a);show(La);cout<<"请输入第二个有序链表的长度:"<<endl;cin>>b;cout<<"请输入第二个有序链表的元素共("<<b<<"个):"<<endl;CreateList(Lb,b);show (Lb);MergeList(La,Lb,Lc);cout<<"合并后的有序链表如下:"<<endl;show(Lc);}void main(){ int select;int x;ElemType y;LinkList list;for(;;){ cout<<" 单链表的基本操作"<<endl;cout<<" 1.单链表的创建"<<endl;cout<<" 2.单链表的显示"<<endl;cout<<" 3.单链表的长度"<<endl;cout<<" 4.取第i个位置的元素"<<endl;cout<<" 5.修改第i个位置的元素"<<endl;cout<<" 6.插入元素到单链表里"<<endl;cout<<" 7.删除单链表里的元素"<<endl;cout<<" 8.合并两个单链表"<<endl;cout<<" 9.退出系统"<<endl;cout<<"请选择:";cin>>select;switch(select){ case 1:cout<<"请输入单链表的长度:"<<endl;cin>>x;cout<<"请输入"<<x<<"个元素"<<endl;CreateList(list,x);break;case 2: cout<<"单链表显示如下:"<<endl;show(list);break;case 3: int s;cout<<"单链表的长度为:"<<Length(list,s)<<endl;break;case 4: cout<<"请选择所要取出元素的位置:";cin>>x;while(x<0||x>Length(list,s)){ cout<<"输入有误,请重新输入"<<endl;cout<<"请选择所要取出元素的位置:";cin>>x; }GetElem(list,x,y);cout<<"该位置的元素为:"<<y<<endl;break;case 5: xiugai(list); break;case 6: cout<<"请选择要插入的位置:"; cin>>x;while(x<0||x>Length(list,s)){ cout<<"输入有误,请重新输入"<<endl;cout<<"请选择所要插入元素的位置:";cin>>x; }cout<<"要插入的元素值:";cin>>y;LinkInsert( list,x,y);cout<<"插入后单链表显示如下:"<<endl;show(list);break;case 7: cout<<"请选择要删除的位置:"; cin>>x;while(x<0||x>Length(list,s)){ cout<<"输入有误,请重新输入"<<endl;cout<<"请选择所要删除元素的位置:";cin>>x; }ListDelete(list,x,y);cout<<"要删除的元素值:"<<y<<endl;cout<<"删除后的单链表显示如下:"<<endl;show(list);break;case 8: hebing();break;case 9: exit(0);break;default : cout<<"输入有误,请重新输入"<<endl;break;}}}6.测试结果四、实验总结(结果分析和体会)单链表的最后一个元素的next为null ,所以,一旦遍历到末尾结点就不能再重新开始;而循环链表的最后一个元素的next为第一个元素地址,可返回头结点进行重新遍历和查找。
c语言单链表头插法实现链表逆置链表是一种常用的数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
在C语言中,我们可以使用单链表来实现各种操作,如插入、删除和查找等。
本文将介绍如何使用头插法实现链表的逆置。
首先,我们需要定义一个链表节点的结构体,包含数据和指向下一个节点的指针。
代码如下:```ctypedef struct Node {int data;struct Node* next;} Node;```接下来,我们需要实现链表的创建和逆置函数。
首先,创建一个空链表,并将头节点指针指向NULL。
代码如下:```cNode* createList() {Node* head = NULL;return head;}```然后,我们可以实现链表的插入函数,使用头插法将新节点插入到链表的头部。
代码如下:```cNode* insertNode(Node* head, int data) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = head;head = newNode;return head;}```接下来,我们可以实现链表的逆置函数,通过遍历链表,将每个节点插入到头部,从而实现链表的逆置。
代码如下:```cNode* reverseList(Node* head) {Node* newHead = NULL;Node* temp = NULL;while (head != NULL) {temp = head->next;head->next = newHead;newHead = head;head = temp;}return newHead;}```最后,我们可以编写主函数,测试链表的逆置功能。
代码如下:```cint main() {Node* head = createList();head = insertNode(head, 1);head = insertNode(head, 2);head = insertNode(head, 3);head = insertNode(head, 4);head = insertNode(head, 5);printf("原链表:");Node* temp = head;while (temp != NULL) {printf("%d ", temp->data);temp = temp->next;}printf("\n");head = reverseList(head);printf("逆置后的链表:");temp = head;while (temp != NULL) {printf("%d ", temp->data);temp = temp->next;}printf("\n");return 0;}```运行以上代码,输出结果如下:```原链表:5 4 3 2 1逆置后的链表:1 2 3 4 5```通过以上代码,我们成功地使用C语言的单链表头插法实现了链表的逆置。
数据结构单链表实验报告一、实验目的本次实验的主要目的是深入理解和掌握数据结构中单链表的基本概念、操作原理和实现方法。
通过实际编程实现单链表的创建、插入、删除、查找等操作,提高对数据结构的应用能力和编程技能。
二、实验环境本次实验使用的编程语言为 C 语言,开发环境为 Visual Studio 2019。
三、实验原理单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。
数据域用于存储节点的数据信息,指针域用于指向下一个节点的地址。
通过这种链式结构,可以方便地进行节点的插入、删除和遍历等操作。
四、实验内容与步骤1、单链表节点的定义```ctypedef struct Node {int data;struct Node next;} Node;```2、单链表的创建```cNode createList(){Node head = NULL;Node newNode;int data;printf("请输入节点数据(输入-1 结束):\n");scanf("%d",&data);while (data!=-1) {newNode =(Node)malloc(sizeof(Node));newNode>data = data;newNode>next = NULL;if (head == NULL) {head = newNode;} else {Node temp = head;while (temp>next!= NULL) {temp = temp>next;}temp>next = newNode;}scanf("%d",&data);}return head;}```3、单链表的插入操作```cvoid insertNode(Node head, int position, int data) {Node newNode =(Node)malloc(sizeof(Node));newNode>data = data;newNode>next = NULL;if (position == 1) {newNode>next = head;head = newNode;} else {Node temp = head;int count = 1;while (temp!= NULL && count < position 1) {temp = temp>next;count++;}if (temp!= NULL) {newNode>next = temp>next;temp>next = newNode;} else {printf("插入位置无效!\n");}}}```4、单链表的删除操作```cvoid deleteNode(Node head, int position) {if (head == NULL) {printf("链表为空,无法删除!\n");return;}Node temp = head;if (position == 1) {head = head>next;free(temp);} else {Node prev = NULL;int count = 1;while (temp!= NULL && count < position) {prev = temp;temp = temp>next;count++;}if (temp!= NULL) {prev>next = temp>next;free(temp);} else {printf("删除位置无效!\n");}}}```5、单链表的查找操作```cNode searchNode(Node head, int data) {Node temp = head;while (temp!= NULL) {if (temp>data == data) {return temp;}temp = temp>next;}return NULL;}```6、单链表的遍历打印```cvoid printList(Node head) {Node temp = head;while (temp!= NULL) {printf("%d ", temp>data);temp = temp>next;}printf("\n");}```五、实验结果与分析1、创建单链表输入一系列整数,成功创建了单链表。
数据结构单链表实验报告一、实验目的1、深入理解单链表的数据结构及其基本操作。
2、掌握单链表的创建、插入、删除、查找等操作的实现方法。
3、通过实际编程,提高对数据结构和算法的理解和应用能力。
二、实验环境1、操作系统:Windows 102、编程语言:C 语言3、开发工具:Visual Studio 2019三、实验原理单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。
指针域用于指向下一个节点,从而形成链表的链式结构。
单链表的基本操作包括:1、创建链表:通过动态分配内存创建链表的头节点,并初始化链表为空。
2、插入节点:可以在链表的头部、尾部或指定位置插入新的节点。
3、删除节点:根据给定的条件删除链表中的节点。
4、查找节点:在链表中查找满足特定条件的节点。
四、实验内容(一)单链表的创建```cinclude <stdioh>include <stdlibh>//定义链表节点结构体typedef struct Node {int data;struct Node next;} Node;//创建单链表Node createList(){Node head =(Node)malloc(sizeof(Node));if (head == NULL) {printf("内存分配失败!\n");return NULL;}head>data = 0;head>next = NULL;return head;}int main(){Node list = createList();//后续操作return 0;}```在创建单链表时,首先为头节点分配内存空间。
若内存分配失败,则提示错误信息并返回`NULL`。
成功分配内存后,初始化头节点的数据域和指针域。
(二)单链表的插入操作插入操作分为三种情况:头部插入、尾部插入和指定位置插入。
1、头部插入```cvoid insertAtHead(Node head, int data) {Node newNode =(Node)malloc(sizeof(Node));if (newNode == NULL) {printf("内存分配失败!\n");return;}newNode>data = data;newNode>next = head>next;head>next = newNode;}```头部插入时,创建新节点,将新节点的数据域赋值,并将其指针域指向原头节点的下一个节点,然后更新头节点的指针域指向新节点。
#include 〈stdio.h>#include <malloc。
h>#include 〈stdlib.h>/*数据结构C语言版线性表的单链表存储结构表示和实现P28—31编译环境:Dev-C++ 4。
9。
9。
2日期:2011年2月10日*/typedef int ElemType;// 线性表的单链表存储结构typedef struct LNode{ElemType data; //数据域struct LNode *next;//指针域}LNode, *LinkList;// typedef struct LNode *LinkList;// 另一种定义LinkList的方法// 构造一个空的线性表Lint InitList(LinkList *L){/*产生头结点L,并使L指向此头结点,头节点的数据域为空,不放数据的。
void *malloc(size_t)这里对返回值进行强制类型转换了,返回值是指向空类型的指针类型.*/(*L)= (LinkList)malloc(sizeof(struct LNode) );if( !(*L))exit(0);// 存储分配失败(*L)-〉next = NULL;// 指针域为空return 1;}// 销毁线性表L,将包括头结点在内的所有元素释放其存储空间。
int DestroyList(LinkList *L){LinkList q;// 由于单链表的每一个元素是单独分配的,所以要一个一个的进行释放while(*L ){q = (*L)—〉next;free(*L );//释放*L = q;}return 1;}/*将L重置为空表,即将链表中除头结点外的所有元素释放其存储空间,但是将头结点指针域置空,这和销毁有区别哦。
不改变L,所以不需要用指针。
*/int ClearList( LinkList L ){LinkList p,q;p = L—〉next;// p指向第一个结点while( p ) // 没到表尾则继续循环{q = p—>next;free( p );//释放空间p = q;}L—>next = NULL; // 头结点指针域为空,链表成了一个空表return 1;}// 若L为空表(根据头结点L—〉next来判断,为空则是空表),则返回1,// 否则返回0.int ListEmpty(LinkList L){if(L—>next ) // 非空return 0;elsereturn 1;}// 返回L中数据元素个数。
c语言单链表尾插法在C语言中,使用单链表数据结构时,可以使用尾插法来插入新的节点。
尾插法是指在链表的末尾插入新的节点。
下面是一个使用尾插法实现单链表插入节点的示例代码:c#include<stdio.h>#include<stdlib.h>struct node {int data;struct node* next;};void insert_at_end(struct node** head, int data) {// 分配新节点的内存空间struct node* new_node = (struct node*)malloc(sizeof(struct node));new_node->data = data;new_node->next = NULL;// 如果链表为空,将新节点设置为头节点if (*head == NULL) {*head = new_node;return;}// 找到链表的末尾节点struct node* last_node = *head;while (last_node->next != NULL) {last_node = last_node->next;}// 将新节点插入到链表的末尾last_node->next = new_node;}int main() {// 创建一个包含3个节点的单链表:1 -> 2 -> 3struct node* head = NULL;insert_at_end(&head, 1);insert_at_end(&head, 2);insert_at_end(&head, 3);// 输出链表中的所有节点数据struct node* current_node = head;while (current_node != NULL) {printf("%d ", current_node->data);current_node = current_node->next;}printf("\n");// 释放链表中每个节点的内存空间current_node = head;while (current_node != NULL) {struct node* next_node = current_node->next;free(current_node);current_node = next_node;}return0;}在这个示例代码中,我们定义了一个结构体node来表示单链表中的每个节点。
数据结构c语言版课后习题答案数据结构是计算机科学中的一个重要概念,它涉及到组织、管理和存储数据的方式,以便可以有效地访问和修改数据。
C语言是一种广泛使用的编程语言,它提供了丰富的数据结构实现方式。
对于学习数据结构的C语言版课程,课后习题是巩固理论知识和提高实践能力的重要手段。
数据结构C语言版课后习题答案1. 单链表的实现在C语言中,单链表是一种常见的线性数据结构。
它由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。
实现单链表的基本操作通常包括创建链表、插入节点、删除节点、遍历链表等。
答案:- 创建链表:定义一个链表结构体,然后使用动态内存分配为每个节点分配内存。
- 插入节点:根据插入位置,调整前后节点的指针,并将新节点插入到链表中。
- 删除节点:找到要删除的节点,调整其前后节点的指针,然后释放该节点的内存。
- 遍历链表:从头节点开始,使用指针遍历链表,直到达到链表尾部。
2. 二叉树的遍历二叉树是一种特殊的树形数据结构,其中每个节点最多有两个子节点。
二叉树的遍历是数据结构中的一个重要概念,常见的遍历方式有前序遍历、中序遍历、后序遍历和层序遍历。
答案:- 前序遍历:先访问根节点,然后递归遍历左子树,最后递归遍历右子树。
- 中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树。
- 后序遍历:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。
- 层序遍历:使用队列,按照从上到下,从左到右的顺序访问每个节点。
3. 哈希表的实现哈希表是一种通过哈希函数将键映射到表中一个位置来访问记录的数据结构。
它提供了快速的数据访问能力,但需要处理哈希冲突。
答案:- 哈希函数:设计一个哈希函数,将键映射到哈希表的索引。
- 哈希冲突:使用链地址法、开放地址法或双重哈希法等解决冲突。
- 插入操作:计算键的哈希值,将其插入到对应的哈希桶中。
- 删除操作:找到键对应的哈希桶,删除相应的键值对。
4. 图的表示和遍历图是一种复杂的非线性数据结构,由顶点(节点)和边组成。
数据结构单链表及插入删除C语言
#include<stdio.h>
#include<stdlib.h>
typedef struct LinkLode{
int data;
struct LinkLode* link;
}LinkLode;
int length;
void show(LinkLode* first)
{
first=first->link;
while(first->link!=NULL)
{
printf("%d ",first->data);
first=first->link;
}
printf("%d\n",first->data);
}
LinkLode* newLode(int data)
{
LinkLode *newLode;
newLode=(LinkLode *)malloc(sizeof(LinkLode));
newLode->data=data;
newLode->link=NULL;
return newLode;
}
void createList(LinkLode* first)
{
LinkLode*s1,*s2;
int i=2;
s2=newLode(1);
first->link=s2;
s1=s2;
for(;i<11;i++)
{
s2=newLode(i);
s1->link=s2;
s1=s2;
}
length=10;
s1=first->link;
while(s1->link!=NULL)
{
printf("%d ",s1->data);
s1=s1->link;
}
printf("%d\n",s1->data);
}
void intList(int i,int data,LinkLode* first)
{
LinkLode *s1=first,*s2;
int i2=0;
s2=newLode(data);
if(i>=0&&i<=length)
{
while(i2<i)
{
s1=s1->link;
i2++;
}
s2->link=s1->link;
s1->link=s2;
length++;
printf("插入成功\n");
show(first);
}
else
printf("插入失败\n");
}
void delList(int i,LinkLode* first)
{
LinkLode* s2=first,*s1;
int i1=0;
if(i>0&&i<=length)
{
while(i1<i)
{
s1=s2;
s2=s2->link;
i1++;
}
printf("删除的数为:%d,地址为%p\n",s2->data,s2);
s1->link=s2->link;
free(s2);
length--;
show(first);
}
else
printf("删除失败\n");
}
int main()
{
LinkLode* first;
char c1=NULL,c2;
int i,data;
first = (LinkLode *)malloc(sizeof(LinkLode));
first->data=-10;
first->link=NULL;
createList(first);
while(c1!='s')
{
printf("插入请输入i,删除输入d,停止输入s\n");
scanf("%c",&c1);
if(c1=='i')
{
printf("请输入插入的数据和插入在第几个数后面,以空格隔开\n");
scanf("%d%d",&data,&i);
intList(i,data,first);
c2=getchar();
}
if(c1=='d')
{
printf("请输入删除第几个数据\n");
scanf("%d",&i);
delList(i,first);
c2=getchar();
}
}
return 0;
}。