气体分馏装置工艺流程简介
- 格式:doc
- 大小:13.50 KB
- 文档页数:1
化工生产中气体分馏装置的基本原理及工艺流程随着化工工业的发展,气体分馏装置在化工生产中扮演着越来越重要的角色。
气体分馏装置是一种能够将混合气体按照分子大小、极性等物理化学性质进行分离的设备,可以分离出高纯度的气体,满足不同的工业需求。
本文将详细介绍气体分馏装置的基本原理及工艺流程。
一、气体分馏装置的基本原理气体分馏装置的基本原理是利用气体分子的质量、大小、极性等物理化学性质的差异,通过分子在不同介质中的扩散速度的不同,实现气体的分离。
具体来说,气体分馏装置一般采用的是渗透分离法或扩散分离法。
1. 渗透分离法渗透分离法是利用气体在不同材料的渗透特性不同,通过膜的渗透作用,将混合气体分离的一种方法。
在渗透分离法中,混合气体通过膜的一侧,而只有某些成分的气体能够通过膜进入另一侧,从而实现分离。
渗透分离法中的膜材料一般包括无机材料、有机材料、复合材料等。
不同材料的渗透特性不同,因此可以选择不同的膜材料来分离不同的气体。
渗透分离法的优点在于操作简便、节能环保、成本低廉等,因此在化工生产中得到了广泛应用。
2. 扩散分离法扩散分离法是利用气体在不同介质中扩散速度的不同,通过扩散的差异实现气体的分离的一种方法。
在扩散分离法中,混合气体通过一定压力差的作用,进入分馏器中,然后在分馏器中逐渐分离出不同成分的气体。
扩散分离法中的分馏器一般采用的是塔式结构。
在塔式结构中,气体在不同层次的塔板上进行扩散,最终分离出不同成分的气体。
扩散分离法的优点在于分离效率高、分离效果稳定等,因此在一些高端化工生产中得到了广泛应用。
二、气体分馏装置的工艺流程气体分馏装置的工艺流程一般包括进料、分馏、收集等环节。
1. 进料在进料环节中,混合气体被送入分馏器中,一般采用的是压缩气体或液化气体的方式。
在进料的过程中,需要对气体进行预处理,以保证气体的质量和稳定性。
2. 分馏在分馏环节中,混合气体被分离成不同的成分。
分馏的过程中,需要根据不同的气体分馏特性,选择不同的分馏方法和设备,以保证分馏效率和分馏效果。
15万吨/年气体分馏装置操作规程1.1装置概况气体分馏装置设计加工能力为15万吨/年,采用四塔流程,主产品为精丙烯,副产品为丙烷和碳四混合液化气,由山东东明石化设计院设计,于2006年7月份投产。
1。
2工艺流程分馏装置工艺流程见附录《分馏装置自控流程》。
1。
3工艺流程说明经脱硫合格后的液化气进入分馏装置的原料缓冲罐V-200由原料泵P —200抽出,经原料流量调节阀FIC-201进入脱丙烷塔C—201,塔底釜液(碳四)自液位调节阀LIC-201进入换热器E—101与碱液换热后进入碳四冷却器E-204 冷却到38度以下送入碳四球罐(或送去MTBE装置深加工)。
C—201塔顶出来的C2、C3和少量的C4馏分经脱丙烷塔(C-201)顶空冷器E-201和塔顶冷凝器E—202冷凝后进入回流罐V—201经过脱丙烷塔顶回流泵P-201抽出加压后,一部分用作C-201回流,另一部分用作脱乙烷塔C-202进料。
脱乙烷塔(C-202)塔顶馏出的C2及少量的C3馏分经塔顶冷凝器E—205冷凝冷却后达到38摄氏度进入脱乙烷塔塔顶回流罐V-202内,然后用脱乙烷塔顶回流泵P—202抽出全部打回流,气相部分在压力调节阀PIC—301控制下排放到高压瓦斯管网,和C—201底C4混合外送罐区(实际已改进MTBE装置生产的C4中)。
塔底釜液经脱乙烷塔塔底液位调节阀LIC—301自压进入粗丙烯塔C—203内。
丙烯塔为双塔串联操作,C-203顶部气相物料进入C—204底部,C—204顶部气相物料经丙烯空冷器E-208/1.2。
3.4和丙烯塔顶冷凝器E—209/1。
2。
3。
4,冷凝冷却到40摄氏度后进入精丙烯回流罐V-203内,罐内压力由压力控制阀PIC-402控制,罐内丙烯液相经精丙烯回流泵P-204抽出,一部分打回流,另一部分经液位调节控制阀LIC-403出装置送入球罐,C —204塔底釜液经粗丙烯塔回流泵P—203打入C—203顶部作为塔顶回流。
气体分馏装置工艺流程简介炼油厂二次加工装置所产液化气是一种非常宝贵的气体资源,富含丙烯、正丁烯、异丁烯等组分,它既可以作为民用燃料,又可以作为重要的石油化工原料。
随着油气勘探开发的快速发展,天然气资源得到充分利用后,民用液化气的需求量将大幅度减少,同时,丙烯、丁烯的需求量也因为下游消费领域的迅速发展而大幅增加。
因此,充分利用液化气资源以提高其加工深度,最终增产聚合级丙烯、正丁烯、异丁烯等高附加值化工产品的T作日益受到石化行业的重视。
液化气经气体分馏装置通过物理分馏的方法,除可得到高纯度的精丙烯以满足下游装置要求外,C4产品、副产丙烷可作为溶剂,并且是优质的乙烯裂解原料。
它们分别可为聚丙烯装置、MTBE装置、甲乙酮装置、烷基化装置等提供基础原料。
气体分馏主要以炼油厂催化、焦化装置生产的液化气为原料,原料组成(体积分数)一般为:乙烷0.01%~0.5%,丙烯28%-45%,丙烷7%-14%,轻C427%-44%,重C415%~25%。
气体分馏工艺就是对液化气即C。
、C4的进一步分离,这些烃类在常温、常压下均为气体,但在一定压力下成为液态,利用其不同混点进行精馏加以分离。
由于彼此之间沸点差别不大,而分馏精度要求又较高,故通常需要用多个塔板数较多的精馏塔。
气体分馏装置的工艺流程是根据分离的产品种类及纯度要求来确定的,其工艺流程主要有二塔、三塔、四塔和五塔流程4种。
五塔常规流程,脱硫后的液化气进入原料缓冲罐用脱丙烷塔进料泵加压,经过脱丙烷塔进料换进入脱丙烷塔。
脱丙烷塔底热量由重沸器提供,塔底C。
以上馏分自压至碳四塔的气相cz和c。
经脱丙烷塔顶冷凝冷却器后进入脱丙烷塔回流罐,流罐冷凝回流泵加压后作为塔顶回流,另一部分送至脱乙烷塔作为该塔的进料。
脱乙烷塔底由重沸器提供热量,塔底物料自压进入丙烯精馏塔进行丙烯与丙烷。
脱乙烷塔塔顶分出的乙烷进入脱乙烷塔顶冷凝器后自流进入脱乙烷塔回流罐,液全部由脱乙烷塔回流泵加压打回塔顶作回流,回流罐顶的不凝气可经压控阀排网或至催化装置的吸收稳定系统以回收其中的丙烯,达到增产丙烯的目的。
气体分馏装置的基本原理及工艺流程作者:董兴鑫来源:《中国科技博览》2014年第11期一气体分馏的重要性炼厂气是石油化工过程中,特别是破坏加工过程中产生的各种气体的总称。
包括热裂化气、催化裂化气、催化裂解气、重整气、加氢裂化气等,炼厂气的产率一般占所加工原油的5~10%。
这些气体的组成较为复杂,主要有C1~C4的烷烃和烯烃,其中有少量的二烯烃和C5以上重组分,此外还有少量的非烃类气体,如:CO、H2、CO2、H2S和有机硫(RSH、COS)等。
炼厂气过去大多是用作工业和民用燃料,少部分加工成为高辛烷值汽油和航空汽油的组成,随着石油化学工业的发展,炼厂气已成为宝贵的化工原料。
炼厂气作为化工原料,必须进行分离,分离的方法很多,就其本质来说可以分为两类,一类是物理分离法,即利用烃类的物理性质的差别进行分离。
如:利用烃类的饱和蒸汽压、沸点不同而进行气体分离过程,有些合成过程对气体纯度要求较高时,则需要高效率的气体分离,如吸附、超精馏、抽提精馏、共沸蒸馏等;另一类方法是化学方法,既利用化学反应的方法将它们分离,如化学吸附和分子筛分离。
目前,我国绝大多数炼油厂采用气体分离装置对炼厂气进行分离,以制取丙烷、丁烷、异丁烷,可以说是以炼油厂气为原料的石油化工生产的重要装置。
一、气体分馏的基本原理炼厂液化气中的主要成分是C3、C4的烷烃和烯烃,即丙烷、丙烯、丁烷、丁烯等,这些烃的沸点很低,如丙烷的沸点是—42.07℃,丁烷为—0.5℃,异丁烯为—6.9℃,在常温常压下均为气体,但在一定的压力下(2.0MPa以上)可呈液态。
由于它们的沸点不同,可利用精馏的力法将其进行分离”所以气体分馏是在几个精馏塔中进行的。
由于各个气体烃之间的沸点差别很小,如丙烯的沸点为—47.7℃.比丙烷低4.6℃,所以要将它们单独分出,就必须采用塔板数很多(一般几十、甚至上百)、分馏精确度较高的精馏塔。
二、气体分馏的工艺流程气体分馏装置中的精馏塔一般为三个或四个,少数为五个,实际中可根据生产需要确定精馏塔的个数。
化工生产中气体分馏装置的基本原理及工艺
流程
化工生产中,气体分馏装置是一种常见的设备,它可以将混合气
体按照物理性质和化学性质的不同分离出不同成分的气体。
气体分馏
装置的基本原理是利用气体分子的质量、沸点、升华点等性质的差异,采用物理或化学的方法将气体分离出来。
气体分馏装置的工艺流程一般包括以下几个步骤:
1. 原料气体的净化
首先,原料气体需要经过净化,去除其中的杂质,例如水、油等。
这可以通过过滤、吸附、脱除等方法完成。
2. 原料气体的压缩
将原料气体通过压缩设备进行压缩,使其达到适合分离的压力范围。
在压缩的过程中,一般会产生热量,需要进行冷却或者加入制冷
剂降低温度,避免气体因过高的温度而发生不可预期的化学反应。
3. 分馏塔中的分离过程
将经过压缩处理的气体送入分馏设备——分馏塔。
分馏塔内分为
多个分离区域,每个区域都放置有不同密度、沸点的填料,通过填料
的分离作用,使得不同成分的气体蒸汽分离并分别进入不同区域。
高
沸点气体逐渐被降温凝结成液体,称为“渣油”,低沸点气体则成为
还原气体。
4. 冷凝和回收
将高沸点液体冷凝后,通过加热蒸发来回收其中的有价值成分。
通过这种方式,不同成分的气体就能够得到有效的分离和回收。
气体分馏装置在化工生产中具有非常广泛的应用,例如在炼油、
空分、氨合成、乙烯等行业都广泛使用。
气体分馏装置的生产技术及
流程越来越完善,可以满足不同的生产需求,并有效地提高了化工生产效率。
气体分馏装置的流程模拟与优化摘要:国内某石化公司天然气分馏装置处理能力为65×104t/a,首次采用脱丙烷、脱乙烷、丙烯塔(两塔)、脱异丁烷塔四塔工艺,主要产品为工业精制丙烯和烷基化原料,纯度大于99.2%利用aspenplus软件建立了气体分馏装置的稳态过程模拟,对气体分馏装置的过程模拟和优化进行了分析。
关键词:流程模拟;气体分馏;热负荷;进料位置随着发展聚丙烯工业和汽车液化气的应用,对高纯丙烯和丙烷的市场需求不断增加,气体分馏装置的处理规模也在不断扩大,目前整个炼油行业都非常重视工艺模拟和工艺流程模拟对常减压蒸馏、催化裂化、重整、加氢、延迟焦化等主要生产装置进行优化,对气体分馏等非主要装置重视不够,大部分装置不能在最佳工况下运行,能耗高,丙烯收率低,附加值高,导致设备运行不稳定。
一、工艺流程简述气体分馏装置处理能力为65×104t/a,根据产品要求,四塔工艺纯度大于99.2%(体积分数),具体流程如图1所示,来自脱硫装置(或罐区)的LPG进入进料缓冲罐(v501),加热至泡点温度后进入脱丙烷塔(T501),C2和C3馏分从塔顶蒸发,冷凝后一部分作为脱丙烷塔的回流,另一部分加热后作为脱乙烷塔的进料送入脱乙烷塔(t502),塔底用混合C4冷却后排出装置,另一部分直接送入脱异丁烷塔(T504)作为塔料。
部分冷凝后,脱乙烷塔顶部的C2和C3气体进入脱乙烷塔顶部的回流罐(v503)。
不可凝气输送至燃料气管网,冷凝液返回塔顶,脱乙烷塔底部的材料输送至丙烯A(t503a)和丙烯C(t503c)分别作为两塔的原料,丙烯塔A底部的丙烷馏分冷却至40℃后,装置退出,塔顶气体进入丙烯塔B底部,丙烯塔B底部的液体返回丙烯塔A顶部,丙烯塔顶部的气体冷凝后进入丙烯塔回流罐(v504a),部分冷凝液返回丙烯塔B顶部,部分冷却至40℃后离开装置。
丙烯塔D顶部的气体冷凝并进入丙烯塔回流罐(v504b)。
部分冷凝液返回丙烯塔D顶部,部分冷却至40℃后离开装置。
空分装置空气分镏原理及流程一、空气成份空气成份及其比例二、原理空气中氧气、氮气、氩气含量基本不变。
而水蒸汽和二氧化碳气在0℃和—79℃分别变成冰和干冰,会阻塞换热器,因而在进冷箱前必须除去。
而碳氢化合物特别是乙炔,在精馏过程中如乙炔在液空和液氧中浓缩到一定程度就有发生爆炸的可能,故其在液氧中含量不得超过0.1PPm。
稀有气体如氖氦气,由于其冷凝温度很低,总以气态集聚在冷凝蒸发器中影响换热效果,要经常排放。
氧和氮的沸点不同,氮比氧易蒸发、氧比氮易冷凝,气体自下而上流动时,在塔顶可获得高纯的氮气,在下塔底部可获得富氧液空,在上塔底部可获得高纯氧气。
在下塔中空气被初次分离成富氧液空和氮气,液空由下塔底部送入上塔,一部分液氮由下塔顶部送入上塔顶部。
三、主要流程空气经分子筛吸附器后吸附,分三路:第一路直接进入冷箱内主换热器,经换热温度降到—172.8℃,再进入下塔底部;第二路直接增压机I段膨胀机增压段冷箱内主换热器,温度降到—127℃膨胀机膨胀段汽液分离气下塔底部;第三路直接增压机II段冷箱内主换热器,温度降到—173.5℃下塔中部。
在下塔中,空气被初步分离成氮和富氧液体空气,顶部气氮在主冷凝蒸发器中液化,同时主冷凝蒸发器的低压侧液氧被气化。
液氮作为下塔回流液全部回流到下塔,再从下塔顶部引出一部分液氮,经过液空液氮过冷器被纯气氮和污气氮过冷后送入上塔顶部。
污液氮经过液空液氮过冷器过冷后送入上塔顶部。
液空在液空液氮过冷器中过冷后送入上塔中部作为回流液。
液氧从上塔底部经低温液氧泵加压,经主换热器复热以2.5MPa送出。
污气氮从上塔上部经液空液氮过冷器及主换热器复热,一路作为分子筛的再生气体,一路进入水冷塔中。
纯气氮从上塔顶部经主换热器复热进入氮压机。
气体分馏装置工艺流程简介
炼油厂二次加工装置所产液化气是一种非常宝贵的气体资源,富含丙烯、正丁烯、异丁烯等组分,它既可以作为民用燃料,又可以作为重要的石油化工原料。
随着油气勘探开发的快速发展,天然气资源得到充分利用后,民用液化气的需求量将大幅度减少,同时,丙烯、丁烯的需求量也因为下游消费领域的迅速发展而大幅增加。
因此,充分利用液化气资源以提高其加工深度,最终增产聚合级丙烯、正丁烯、异丁烯等高附加值化工产品的T作日益受到石化行业的重视。
液化气经气体分馏装置通过物理分馏的方法,除可得到高纯度的精丙烯以满足下游装置要求外,C4产品、副产丙烷可作为溶剂,并且是优质的乙烯裂解原料。
它们分别可为聚丙烯装置、MTBE装置、甲乙酮装置、烷基化装置等提供基础原料。
气体分馏主要以炼油厂催化、焦化装置生产的液化气为原料,原料组成(体积分数)一般为:乙烷0.01%~0.5%,丙烯28%-45%,丙烷7%-14%,轻C4 27%-44%,重C415%~25%。
气体分馏工艺就是对液化气即C。
、C4的进一步分离,这些烃类在常温、常压下均为气体,但在一定压力下成为液态,利用其不同混点进行精馏加以分离。
由于彼此之间沸点差别不大,而分馏精度要求又较高,故通常需要用多个塔板数较多的精馏塔。
气体分馏装置的工艺流程是根据分离的产品种类及纯度要求来确定的,其工艺流程主要有二塔、三塔、四塔和五塔流程4种。
五塔常规流程,脱硫后的液化气进入原料缓冲罐用脱丙烷塔进料泵加压,经过脱丙烷塔进料换进入脱丙烷塔。
脱丙烷塔底热量由重沸器提供,塔底C。
以上馏分自压至碳四塔的气相cz和c。
经脱丙烷塔顶冷凝冷却器后进入脱丙烷塔回流罐,流罐冷凝回流泵加压后作为塔顶回流,另一部分送至脱乙烷塔作为该塔的进料。
脱乙烷塔底由重沸器提供热量,塔底物料自压进入丙烯精馏塔进行丙烯与丙烷。
脱乙烷塔塔顶分出的乙烷进入脱乙烷塔顶冷凝器后自流进入脱乙烷塔回流罐,液全部由脱乙烷塔回流泵加压打回塔顶作回流,回流罐顶的不凝气可经压控阀排网或至催化装置的吸收稳定系统以回收其中的丙烯,达到增产丙烯的目的。
丙烯精馏塔I底由重沸器提供热量,塔底丙烷馏分经冷却器冷却后自压出装置塔I的塔顶气相自压进入丙烯精馏塔的F部,作为丙烯精馏塔Ⅱ的气相内回流馏塔Ⅱ的塔底液相经过泵加压后,作为丙烯精馏塔I的塔顶液相内回流。
丙烯精顶气相经冷凝冷却后自流进入精丙烯塔顶回流罐,冷凝液经丙烯塔回流泵加压,热器换热,塔顶分液一郡分的分离过同流罐冷入燃料气。
丙烯精,而丙烯馏塔II的一部分作为塔顶回流,另一部分作为精丙烯产品经过冷却器冷却后送出装置。
碳四塔底热量由重沸器提供,塔底重C4以上馏分(主要为。
J烯-2和正丁烷)自压至碳五塔。
塔顶分出的气相轻C4馏分(主要为异丁烷、异丁烯、丁烯-1),经碳四塔顶冷凝冷却器后进入碳四塔回流罐,回流罐冷凝液一部分经回流泵加压后作为塔顶回流,另一部分经冷却器冷却后自压出装置。
碳五塔底热量由重沸器提供,塔底C5馏分自压出装置。
塔顶分出的气相重c。
馏分经碳五塔顶冷凝冷却器后进入碳五塔回流罐,回流罐冷凝液一部分经回流泵加压后作为塔顶回流,另一部分重C4馏分经过冷却器冷却后送出装置。