模具钢的热处理工艺及表面技术
- 格式:doc
- 大小:22.00 KB
- 文档页数:6
第八章钢的表面热处理知识要点:表面热处理的目的、分类;常用的表面热处理工艺(感应加热表面淬火和渗碳);了解表面热处理的典型零件。
一、表面热处理的目的1.提高零件的表面性能,具有高硬度、高耐磨和高的疲劳强度。
→保证高精度2.使零件心部具有足够高的塑性和韧性。
→防止脆性断裂。
“表硬心韧”二、表面热处理的分类及工艺特点主要有两大类:表面淬火和化学热处理。
(一)表面淬火1.工艺:将工件表面快速加热到奥氏体区,在热量尚未达到心部时立即迅速冷却,使表面得到一定深度的淬硬层,而心部仍保持原始组织的一种局部淬火方法。
工艺特点:(1)不改变工件表面化学成分,只改变表面组织和性能;(2)表面与心部的成分一致,组织不同。
2.所用材料一般多用中碳钢、中碳合金钢,也有用工具钢、球墨铸铁等。
典型零件:如用40、45钢制作的机床齿轮齿面的强化、主轴轴颈处的硬化等。
3.常用表面淬火方法主要有:感应加热表面淬火、火焰加热表面淬火和激光加热表面淬火。
(1)感应加热表面淬火原理:通以一定频率交变电流的感应线圈,产生的交变磁场在工件内产生一定频率的感应电流(涡流),利用工件的电阻而将工件加热;由于感应电流的集肤效应,使工件表层被快速加热至奥氏体化,随后立即快速冷却,在工件表面获得一定深度的淬硬层。
感应线圈→交变磁场→感应电流→工件电阻→加热,集肤效应→表层加热,快冷→淬硬层。
工件淬硬层的深度与频率有关:A. 0.2~2mm,高频感应加热(100—500KHz),适用于中小型齿轮、轴等零件;B.2~10mm,中频感应加热(0.5—10KHz),大中型齿轮、轴;C.〉10—15mm,工频感应加热(50Hz),用于大型轴、轧辊等零件。
特点:淬火质量好,表层组织细密、硬度高、脆性小、疲劳强度高;生产频率高、便于自动化,但设备较贵,不适于单件和小批量生产。
应用:主要零件类型是轴类、齿轮类、工模具,最常见的有:齿轮,如机床和精密机械上的中、小模数传动齿轮,蒸汽机车、内燃机车、冶金、矿山机械等上的大模数齿轮。
第二节模具表面处理工艺概述模具是现代工业之母。
随着社会经济的发展,特别是汽车、家电工业、航空航天、食品医疗等产业的迅猛发展,对模具工业提出了更高的要求。
如何提高模具的质量、使用寿命和降低生产成本,成为各模具厂及注塑厂当前迫切需要解决的问题。
模具在工作中除了要求基体具有足够高的强度和韧性的合理配合外,其表面性能对模具的工作性能和使用寿命至关重要。
这些表面性能指:耐磨损性能、耐腐蚀性能、摩擦系数、疲劳性能等。
这些性能的改善,单纯依赖基体材料的改进和提高是非常有限的,也是不经济的,而通过表面处理技术,往往可以收到事半功倍的效果;模具的表面处理技术,是通过表面涂覆、表面改性或复合处理技术,改变模具表面的形态、化学成分、组织结构和应力状态,以获得所需表面性能的系统工程。
从表面处理的方式上,又可分为:化学方法、物理方法、物理化学方法和机械方法。
在模具制造中应用较多的主要是渗氮、渗碳和硬化膜沉积。
◆提高模具的表面的硬度、耐磨性、摩擦性、脱模性、隔热性、耐腐蚀性;◆提高表面的高温抗氧化性;◆提高型腔表面抗擦伤能力、脱模能力、抗咬合等特殊性能;减少冷却液的使用;◆提高模具质量,数倍、几十倍地提高模具使用寿命。
减少停机时间;◆大幅度降低生产成本与采购成本,提高生产效率和充分发挥模具材料的潜能。
◆减少润滑剂的使用;◆涂层磨损后,还退掉涂层后,再抛光模具表面,可重新涂层。
在模具上使用的表面技术方法多达几十种,从表面处理的方式上,主要可以归纳为物理表面处理法、化学表面处理法和表面覆层处理法。
模具表面强化处理工艺主要有气体氮化法、离子氮化法、点火花表面强化法、渗硼、TD法、CVD化学气相淀积、PVD物理气相沉积、PACVD离子加强化学气相沉积、CVA铝化化学气相沉积、激光表面强化法、离子注入法、等离子喷涂法等等。
下面综述模具表面处理中常用的表面处理技术:一、物理表面处理法:表面淬火是表面热处理中最常用方法,是强化材料表面的重要手段,分高频加热表面淬火、火焰加热表面淬火、激光表面淬火。
热加工模具的材料选择及热处理随着社会的发展,科学的发展,热加工用模也有了很迅速的发展。
本毕业设计从理论与实践的角度对热加工模模具进行阐述,针对热加工模用料及热处理进行分析,从以下几方面进行论述:热加工类模具用钢的材料分析热加工模是工业产品生产中不可缺少的工艺方法之一。
它主要用于制造业和加工业。
它是和冲压、锻造、铸造成型机械,同时和塑料、橡胶、陶瓷等非金属材料制品成型加工用的成形机械相配套,作为成形工具来使用的。
热加工模具属于精密机械产品,因为它主要由机械零件和机构组成,如成形工作零件(凸模、凹模),导向零件(导柱、导套等),支承零件(模座等),定位零件等;送料机构,抽芯机构,推料机构,检测与安全机构等。
为提高模具的质量,性能,精度和生产效率,缩短制造周期,其零、部件(又称模具组合),多由标准零、部件组成。
所以,模具应属于标准化程度较高的产品。
一副中小型冲模或塑料注射模,其构成的标准零、部件可达90%,其工时节约率可达25%~45%。
一、热加工用模模具的功能和作用现代产品生产中,热加工模具由于其加工效率高,互换性好,节约原材料,所以得到很广泛的应用。
现代工业产品的零件,广泛采用冲击、成型锻造、压铸成形、挤压成形、塑料注射或其他成形加工方法,和成形模具相配套,经单工序或多道成形工序,使材料或胚料成形加工成符合产品要求的零件,或成分精加工前的半成品件。
如汽车覆盖件,须采用多副模具,进行冲孔、拉深、翻边、弯曲、切边、修边、整形等多道工序,成形加工为合格零件;电视机外壳洗衣机内桶是采用塑料注射方法,经一次注射成型为合格零件的;发动机的曲轴连杆是采用锻造成形模具,经滚锻和模锻成形加工为精密机械加工前的半成品胚件的。
高精度、高效率、长寿命的冲模、塑料注射成形模具,可成形加工几十万,甚至几千万产品零件,如一副硬质合金模具,可冲压硅钢片零件(E型片、电机定转子片)上亿件,称这类模具为大批量生产用模具。
适用于多品种、少批量或产品试制的模具有:组合冲模、快换冲模、叠层冲模或成型冲模,低熔点合金成型模具等,在现代加工业中,具有重要的经济价值,称这类模具为通用、经济模具。
H13钢及其热处理陈杰(中国一拖集团有限公司热处理厂,河南洛阳471000)摘要:通过对热挤压模具钢H13材料以及热处理工艺的研究,我们能够获得有效的方法来满足对使用这种材料的日益增多的要求,更好地满足该种材料模具的使用性能。
关键词:热挤压;模具钢;脱碳敏感性;常规淬火;低温淬火;渗碳;保护气氛淬火0 前言H13钢是一种空冷硬化的铬系热挤压模具钢。
H13是采用美国AISI-SAE统一编号的钢材,系中碳中铬热模具钢。
该钢具有较高的热强度和硬度,尤其在中温(600℃)时具有较高的热强度和硬度,高的耐磨性和韧性,较好的耐冷热疲劳性能。
由于这种钢具有良好的综合机械性能,而越来越广泛地被用于制造模锻锤的锻模、热挤压模具与芯棒、锻造压力机模具、精锻机用模具、镶块以及铝、铜及其合金的压铸模等。
1 材料的基本性能1.1材料的化学成分(见表1)以及合金元素的影响H13属铬系热模具钢,材料中含有大约5%的铬,并加有钼、钨、钒和硅等合金元素。
由于含铬较高,因而有较高的淬透性,加入1%Mo时的淬透性更高。
故尺寸较大的模具淬火时也可以空冷。
铬、硅可以提高钢的耐热疲劳性和抗氧化性,但是硅的存在却增加了材料的脱碳敏感性。
钒可以加强钢的二次硬化效果,增加钢的稳定性。
铬系热作模具钢的韧性、耐热疲劳性都较好,但是由于这种材料中含钨较少,故其回火稳定性低于钨系。
1.2材料的其它性能(见表2)2 材料的热处理方法2.1锻后球化退火该钢锻打后应及时退火。
退火温度为860~880℃。
由于加热到Ac1温度以上,碳化物开始溶解,但又未完全溶解,导致奥氏体的成分极不均匀,在随后的冷却过程中,或以未溶的细小碳化物微粒为核心,或在不均匀奥氏体中碳原子富集处产生新的核心,而均匀地长大形成颗粒状的碳化物。
经过球化退火,可以降低材料的硬度,改善切削加工性,并为以后淬火处理作好组织准备。
退火保温时间取决于工件透烧时间,不宜过长。
冷却速度一般30℃/h,冷至500℃以下出炉空冷。
模具钢表面氧化处理全文共四篇示例,供读者参考第一篇示例:模具钢表面氧化处理是一种常见的表面处理方法,旨在提高模具钢的表面硬度、耐磨性和耐腐蚀性。
随着工业技术的不断发展,传统的氧化处理方法已经逐渐被新型的技术所取代,进而提高了模具钢的质量和性能,延长了模具的使用寿命。
一般来说,模具钢表面氧化处理包括氧化、氮化、硅化等多种方法。
在这些方法中,氧化处理是最常见的一种。
氧化处理是一种将模具钢表面氧化形成保护膜的工艺,提高了模具钢的硬度和耐磨性,同时还有效阻止了模具钢表面的腐蚀。
传统的氧化处理方法包括热氧化、化学氧化和电化学氧化等。
化学氧化是一种通过将模具钢浸泡在化学液中进行氧化处理的方法,通常在常温下进行。
化学氧化能够快速形成一层膜层,提高了模具钢的表面硬度,且处理时间短、效果好。
但化学氧化方法存在着腐蚀性高、环保要求高等缺点。
第二篇示例:模具钢是制造模具的重要材料,其表面处理对模具的使用寿命和性能有着重要影响。
表面氧化处理是一种常用的表面处理方法,可以提高模具钢的硬度、耐磨性和耐腐蚀性,延长模具的使用寿命。
本文将介绍模具钢表面氧化处理的原理、方法和影响。
一、表面氧化处理的原理模具钢表面氧化处理是指在模具钢表面形成一层氧化膜,通过氧化膜的形成,提高模具钢的硬度和耐磨性。
氧化膜通常是通过加热模具钢至一定温度,使其与氧气反应而形成的。
氧化膜的厚度和硬度取决于处理温度、时间和氧化剂的种类。
常见的氧化剂有氧气、硝酸和碳酸氢钠等。
1. 热处理法:这是最常用的表面氧化处理方法,通过将模具钢加热至一定温度,在空气中进行氧化反应,形成氧化膜。
热处理温度一般在500-800摄氏度之间,处理时间根据需要可调节,通常在1-2小时左右。
2. 化学处理法:这种方法是通过将模具钢浸入含有氧化剂的化学溶液中进行氧化反应,形成氧化膜。
化学处理可以控制氧化膜的厚度和性质,适用于一些特殊要求的模具。
1. 提高硬度:氧化膜的形成可以增加表面硬度,提高模具钢的耐磨性和耐刮擦性。
模具钢的热处理工艺及表面技术作者:吴陆兵来源:《中国科技博览》2015年第34期[摘要]伴随工业技术的发展,国内外的模具工业发展速度日益加快。
本文主要对冷作模具钢及热作模具钢的使用现状进行探讨,并对常用的热处理工艺进行了简要的介绍,最后介绍了不同的热处理表面技术在工业中的应用情况。
[关键词]模具钢冷作模具钢热作模具钢热处理工艺热处理表面技术中图分类号:TGl42 文献标识码:B 文章编号:1009-914X(2015)34-0259-02我国模具工业发展迅速,但与工业发达国家相比仍存在较大差距,模具寿命普遍较低。
热处理对模具钢的性能有着重要的影响,通过热处理可以使模具钢具有必要的强韧性,大幅度提高模具的寿命。
因此为了提高我国模具工业的技术水平,充分发挥现有材料的潜力,本文主要对模具钢的热处理工艺及技术进行全面深入的研究。
1.热处理对模具的性能影响模具性能会受到热处理技术的影响,因为通过热处理可以增加模具钢的韧性,从而模具的寿命就会大幅度提高,因此,对模具钢的热处理技术的研究是当前提高我国模具工业技术水平,发挥现有材料的潜能是一条非常有效地方法。
根据性质和使用条件的不同,可分为冷作模具钢和热作模具钢。
相对来说,模具的工作条件更加恶劣复杂些,由于他们均需要与加热的坯料或者液态金属进行直接的接触,并且在整个过程中还会被反复的加热和冷却,同时还有来自冲击载荷的作用,因而热模具钢的性能要求要更为苛刻,才能满足热模具的使用。
普遍存在于当前热做模具的问题就是高温磨损、冷热疲劳会经常失效屠户局部强度不够而造成坍塌。
然而在我国当前现有的材料基础上,还可以通过热处理及表面处理技术来使模具的各项性能指标得到改善和提高,从而促进模具使用寿命的提高。
2.冷作模具钢用作冷冲压模、热锻压模、挤压模、压铸模等模具的钢称为模具钢,冷作模具钢是用于在室温下对金属进行变形加工的模具,包括冷冲模、冷镦模、冷挤压模、拉丝模、落料模等。
2.1工作条件和性能要求处于工作状态的冷作模具承受着强烈的冲击载荷和摩擦、很大的压力和弯曲力的作用,主要的失效破坏形式包括磨损、变形和开裂等,因此冷作模具钢要求具有较高的硬度和耐磨性,良好的韧性和疲劳强度。
截面尺寸较大的模具还要求具有较高的淬透性,高精度模具则要求热处理变形小。
2.2合金化处理为保证获得高硬度和高耐磨性,冷作模具钢碳的质量分数较高,大多超过1.0%C,有的甚至高达2.0%C。
铬是冷作模具钢中的主要合金元素,能提高淬透性形成Cr7C3等碳化物,能明显提高钢的耐磨性。
锰可以提高淬透性和强度,钨、钼、钒等与碳形成细小弥散的碳化物,除了进一步提高淬透性、耐磨性、细化晶粒外,还能提高回火稳定性、强度和韧性。
2.3热处理工艺冷作模具钢热处理的目的是最大限度地满足其性能要求,以便能正常工作,现以Crl2MoV 冷作模具专用钢制造冲孔落料模为例来分析热处理工艺方法及制定生产工艺路线。
冲孔落料模的凸、凹模均要求硬度在(58~60)HRC之内,要求具有较高的耐磨性、强度和韧性,较小的淬火变形。
为此,设计其生产工艺路线:锻造一退火一机加工+淬火+回火+精磨或电火花加工一成品。
Crl2MoV钢的组织与性能与高速钢相类似,合金元素含量较高,锻后空冷易出现马氏体组织,一般锻后都采用缓冷。
钢中有莱氏体组织,可以通过锻造使其破碎并均匀分布。
锻后退火工艺与高速钢的等温退火工艺相似,退火后硬度小于255HBW,可进行机械加工。
Crl2MoV钢的淬火十回火工艺,淬火温度较低,低温回火后钢的耐磨性和韧性较高,组织为回火马氏体+残余奥氏体+合金碳化物,硬度为(58~60)HRC。
如果要求模具具有较高的红硬性,能够在400~450℃条件下工作,则要进行“二次硬化法”处理,将淬火加热温度提高到1100~1150℃,此时由于钢中出现了大量的残余奥氏体,硬度仅为(42~50)HRC,但是随后在510~520'C高温下三次回火,析出了细小弥散的合金碳化物及残余奥氏体转变为马氏体,产生“二次硬化”现象,硬度回升到(60~62)HRC,红硬性也较好,但是淬火加热温度较高,组织粗化会导致强度和韧性下降。
2.4常用冷作模具钢对于几何形状比较简单、截面尺寸和工作负荷不太大的模具可用高级优质碳素工具钢T8A、T10A、T12A和低合金刃具钢9SiCr、9Mn2V、CrWMn等,它们耐磨性较好,淬火变形不太大。
对于形状复杂、尺寸和负荷较大的模具多用Crl2型钢如Crl2、Crl2MoV钢或W18Cr4V等,它们淬透性、耐磨性和强度较高,淬火变形较小。
3.热作模具钢热作模具钢是用于制造在受热状态下对金属进行变形加工的模具,包括热锻模、热挤压模、热镦模、压铸模、高速锻模等。
3.1工作条件和性能要求热作模具钢在工作时经常接触炽热的金属,型腔表面温度高达400~600℃。
金属在巨大的压应力、张应力、弯曲应力和冲击载荷作用下,与型腔作相对运动时,会产生强烈的磨损。
工作过程中还要反复受到冷却介质冷却和热态金属加热的交替作用,模具工作面出现热疲劳“龟裂纹”。
因此,为使热作模具正常工作,要求模具用钢在较高的工作温度下具有良好的强韧性,较高的硬度、耐磨性、导热性、抗热疲劳能力,较高的淬透性和尺寸稳定性。
3.2合金化处理热作模具钢碳的质量分数一般保持在(0.3%~0.6%)C之间,以获得所需的强度、硬度、耐磨性和韧性,碳含量过高,会导致韧性和导热性下降;碳含量过低,强度、硬度、耐磨性难以保证。
铬能提高淬透性和回火稳定性;镍除与铬共存时可提高淬透性外,还能提高综合力学性能;锰能提高淬透性和强度,但是有使韧性下降的趋势;钼、钨、钒等能产生二次硬化,提高红硬性、回火稳定性、抗热疲劳性、细化晶粒,钼和钨还能防止第二类回火脆性。
3.3热处理工艺热作模具钢热处理的目的主要是提高红硬性、抗热疲劳性和综合力学性能,最终热处理一般为淬火加高温(或中温)回火,以获得均匀的回火索氏体(或回火托氏体)。
现以5CrMnMo钢制造板牙热锻模为例来分析热处理工艺方法及制定生产工艺路线。
板牙热锻模要求硬度为(351~387)HBW,抗拉强度大于1200~1400MPa,冲击值大于32~56J,同时还要满足对热作模具淬透性、抗热疲劳性等的要求。
其生产工艺路线:锻造一退火一粗加工一成型加工+淬火+回火+精加工(修型、抛光)。
由于钢在轧制时会出现纤维组织,导致各向异性,所以要予以锻造消除。
锻后要缓冷,防止应力过大产生裂纹,采用780~800℃保温4~5h退火,消除锻造应力,改善切削能力,为最终热处理作组织上的准备。
5CrMnMo钢制热锻模淬火+回火工艺,为降低热应力,大型模具需在500℃左右预热,为防止模具淬火开裂,一般先由炉内取出空冷至750~780℃预冷,然后再淬人油中,油冷至150~200C(大致为油只冒青烟而不着火的温度)取出立即回火,避免冷至室温再回火导致开裂。
回火消除了应力,获得回火索氏体(或回火托氏体)组织,以得到所需的性能。
3.4常用热作模具钢制造中、小型热锻模(有效厚度小于400mm)一般选用5CrMnMo钢,制造大型热锻模(有效厚度大于100mm)多选用5CrNiMo钢,它的淬火加热温度比5CrMnMo钢高10℃左右,淬透性和红硬性优于5CrMnMo钢。
热挤压模冲击载荷较小,但模具与热态金属常时间接触,对热强性和红硬性要求较高,常选用3Cr2W8V或4Cr5W2Vsi钢,淬火后多次回火产生二次硬化,组织与高速钢类似。
压铸模钢的选用与成型金属种类有关,压铸熔点为400~450℃的锌合金,一般选用低合金钢30CrMnSi或40Crr等;压铸熔点为r850~920℃的铜合金,可选用3Cr2W8V钢。
4.热处理工艺在常用的热处理工艺中主要有以下流程:预热-淬火-冷却-回火。
4.1预热高速钢中合金元素含量很高,碳当量很高,导热性差,如果直接加热到淬火温度,容易导致内力过大,产生严重的变形和开裂。
并且冷态高速钢直接加热到淬火温度需要较长的加热时间,会加剧高速钢的氧化并增加了脱碳倾向。
为了缩短高温停留时间,在淬火之前进行二次预热,减少工件和高温炉之间的温差防止弯曲变形。
4.2淬火高速钢中的合金元素含量很高,并且很多是难容碳化物,在温度为1200℃左右时才能够有效融入奥氏体。
因此只有控制好温度,才能保证冷却后形成的马氏体中有足够的合金浓度,从而提高马氏体的强度和耐磨性,提高模具的硬度和耐磨性。
需要注意,淬火温度不能太低,也不能太高,超过1300℃之后会导致奥氏体晶粒尺寸增加,导致冷却后力学指标不符合设计要求。
因此,淬火过程中要严格控制时间和温度,在保证淬火效果的前提下,尽量降低温度并缩短高温停留时间,按照工件有效直径或者厚度计算,特小件加热时间不得小于2min。
[2]4.3冷却采取空冷能够获得马氏体,但是空冷会导致工件表面氧化并析出二次碳化物,造成淬火硬度和红硬性的下降。
所以高速钢冷却选择油冷,保证淬火后硬度达到HRC632以上,金相组织以马氏体、残余奥氏体、碳化物为主。
4.4回火淬火应力是高速钢模具断裂的主要原因,为了消除淬火应力,同时提高奥氏体的转化率,高速钢至少要在二次硬化峰值温度下完成三次回火。
残余奥氏体转化为马氏体,残余奥氏体的量仅剩1%-3%,硬度上升到HRC65,此时金相组织主要为黑色回火马氏体,夹杂少量残余奥氏体和颗粒状碳化物。
4.5尺寸变形预防选择淬火加热温度时需要考虑残留奥氏体对淬火变形的影响。
对于一些要求较高的模具,选择硝盐分级淬火方式能够避免模具因形状复杂、截面不均匀等出现相变不等时的现象,同时还能够控制尺寸胀缩变形量,冷却过程产生的热应力和组织应力峰值也相应减小,是控制对尺寸要求较高的模具的变形的有效方法。
5.模具钢的表面处理技术一般常用的表面强化技术有以下几种:化学热处理、高能束表面强化、物理或化学气相沉积。
常见的化学热处理主要有渗碳、渗氮、渗硼等。
这些表面处理的工艺都是一些传统的工艺,与其它工艺相比具有成本低,可靠性高的特点,而且可供选择的方式也很多,尽管这些工艺比较传统,但目前仍然被广泛的应用。
比如,虽然现在己经发展了很多新的可以用来提高压铸模具表面磨损抗力的工艺,然而在实际生产中气体渗氮工艺在通常所进行的表面处理中却占到了90-95%,并且在将来很长一段时间仍将保持现在的地位[3]。
目前对渗氮的研究主要集中在等离子渗氮上,气体渗氮、盐浴渗氮等传统工艺尽管在工业上己经取得了较好的应用,但是由于这些传统工艺所用材料往往具有易爆炸性,有毒性,因此在实际的应用中往往会对工人及环境造成伤害,这些限制了他们的应用。
等离子渗氮就没有气体盐浴渗氮的上述问题而且可以避免复合层也即白亮层的形成和控制扩散层的质量。
高能束表面强化技术的特点是加热速度快、工件变形小、不需冷却介质、可控性能好、便于实现自动化控制,在高能束表面强化技术中尤以激光表面改性的研究应用最多。