同济大学高等数学习题答案名师教学资料
- 格式:doc
- 大小:2.86 MB
- 文档页数:44
同济大学第六版高等数学课后答案详解全集同济六版高等数学课后答案全集第一章习题1,11, 设A,(,,~ ,5),(5~,,)~ B,[,10~ 3)~写出A,B~ A,B~ A\B及A\(A\B)的表达式,2, 设A、B是任意两个集合~证明对偶律: (A,B)C,AC ,BC , ,3, 设映射f : X ,Y~ A,X~ B,X , 证明(1)f(A,B),f(A),f(B),(2)f(A,B),f(A),f(B),g,f,If,g,IXY 4, 设映射f : X,Y~若存在一个映射g: Y,X~使~~其中IX、IY分别是X、Y上的恒等映射~即对于每一个x,X~有IX x,x, 对于每一个y,Y~有IY y,y, 证明: f是双射~且g是f的逆映射: g,f ,1, 5, 设映射f : X,Y~ A,X , 证明:(1)f ,1(f(A)),A,(2)当f是单射时~有f ,1(f(A)),A ,6, 求下列函数的自然定义域:111y,2y,y,,1,x22y,3x,2y,sinx4,xx1,x (1),, (2), (3),(4),(5),1y,3,x,arctanx (6) y,tan(x,1),(7) y,arcsin(x,3), (8),, (9)y,ln(x,1),1xy,e (10),7, 下列各题中~函数f(x)和g(x)是否相同,为什么,(1)f(x),lg x2~ g(x),2lg x,2x (2) f(x),x~ g(x),,3343f(x),x,xg(x),xx,1 (3)~,(4)f(x),1~ g(x),sec2x,tan2x ,,,|sinx| |x|,,3,(x),,,,,,x0 ||,,()()(,),,,3,644 8, 设~求~~~ ,(,2)~并作出函数y,,(x)的图形,, 9, 试证下列函数在指定区间内的单调性:xy,1,x (1)~ (,,~ 1),(2)y,x,ln x~ (0~,,),10, 设f(x)为定义在(,l~l)内的奇函数~若f(x)在(0~l)内单调增加~证明f(x)在(,l~ 0)内也单调增加,11, 设下面所考虑的函数都是定义在对称区间(,l~ l)上的~证明:(1)两个偶函数的和是偶函数~两个奇函数的和是奇函数,(2)两个偶函数的乘积是偶函数~两个奇函数的乘积是偶函数~偶函数与奇函数的乘积是奇函数,12, 下列函数中哪些是偶函数~哪些是奇函数~哪些既非奇函数又非偶函数,(1)y,x2(1,x2),(2)y,3x2,x3,21,xy,21,x (3),(4)y,x(x,1)(x,1),(5)y,sin x,cos x,1,x,xa,ay,2 (6)13, 下列各函数中哪些是周期函数,对于周期函数~指出其周期:(1)y,cos(x,2),,(2)y,cos 4x,(3)y,1,sin ,x,(4)y,xcos x,(5)y,sin2x,14, 求下列函数的反函数:3y,x,1 (1)错误~未指定书签。
同济大学《高等数学第五版》上下册习题答案习题 1?11. 设 A?∞, ?5∪5, +∞, B[?10, 3, 写出 A∪B, A∩B, A\B及 A\A\B的表达式解 A∪B?∞, 3∪5, +∞, A∩B[?10, ?5, A\B?∞, ?10∪5, +∞, A\A\B[?10, ?5C C C2. 设A、B是任意两个集合, 证明对偶律: A∩B A ∪B证明因为C C C C Cx∈A∩B ?x?A∩B? x?A或x?B? x∈A 或x∈Bx∈A ∪B ,C C C所以 A∩B A ∪B 3. 设映射 f : X →Y, A?X, B?X证明1fA∪BfA∪fB; 2fA ∩B?fA∩fB 证明因为 y∈fA∪B??x∈A∪B, 使 fxy?因为 x∈A 或 x∈B y∈fA或 y∈fB? y∈ fA∪fB,所以 fA∪BfA∪fB 2因为y∈fA∩Bx∈A∩B, 使fxy?因为 x∈A且 x∈B y∈fA且 y∈fB? y∈ fA∩fB,所以 fA∩B?fA∩fB 4. 设映射f : X→Y, 若存在一个映射g: Y→X, 使 g f I , f g I , 其中I 、I 分别是X、X YX YY上的恒等映射, 即对于每一个x∈X, 有I xx; 对于每一个y∈Y, 有I yy. 证明: f是双射, 且gX Y?1是f的逆映射: gf证明因为对于任意的y∈Y, 有xgy∈X, 且fxf[gy]I yy, 即Y中任意元素都是X中某y元素的像, 所以f为X到Y的满射又因为对于任意的x ≠x , 必有fx ≠fx , 否则若fx fx ?g[ fx ]g[fx ]x x1 2 1 2 1 2 1 2 1 2 因此 f 既是单射, 又是满射, 即 f 是双射对于映射g: Y→X, 因为对每个y∈Y, 有gyx∈X, 且满足fxf[gy]I yy, 按逆映射的y定义, g是f的逆映射 5. 设映射 f : X→Y, A?X证明: ?1 1f fA?A; ?1 2当f是单射时, 有f fAA ?1 ?1 证明 1因为x∈Afxy∈fAf yx∈f fA, ?1 所以 f fA?A1 2由1知f fA?A1 ?1 另一方面, 对于任意的x∈f fA?存在y∈fA, 使f yx?fxy因为y∈fA且f是单1 ?1射, 所以x∈A. 这就证明了f fA?A. 因此f fAA6. 求下列函数的自然定义域: 1 y 3x+2 ;2 2 解由 3x+2≥0 得 x 函数的定义域为[? , +∞3 31 2 y ;21?x2 解由 1?x ≠0得x≠±1函数的定义域为?∞, ?1∪?1, 1∪1, +∞12 3 y 1?x ;x2 解由x≠0 且 1?x ≥0得函数的定义域D[?1, 0∪0, 1]1 4 y ;24?x2 解由 4?x 0 得 |x|2函数的定义域为?2, 2 5 y sin x ;解由 x≥0 得函数的定义 D[0, +∞ 6 ytanx+1;ππx≠kπ + ?1解由 x+1≠ k0, ±1, ±2,得函数的定义域为 k0, ±1, ±2,2 2 7 yarcsinx?3; 解由|x?3|≤1 得函数的定义域 D[2, 4]1 8 y 3? x +arctan ;x 解由 3?x≥0 且 x≠0 得函数的定义域 D?∞, 0∪0, 3 9 ylnx+1; 解由 x+10 得函数的定义域 D?1, +∞1x 10 ye解由 x≠0 得函数的定义域 D?∞, 0∪0, +∞ 7. 下列各题中, 函数 fx和 gx是否相同?为什么? 2 1fxlg x , gx2lg x;2 2 fxx, gx x ;3 34 3 3 f x xx , gx x x?12 2 4fx1, gxsec x?tan x解 1不同因为定义域不同 2不同因为对应法则不同, x0时, gx?x 3相同因为定义域、对应法则均相相同 4不同因为定义域不同π|sin x| |x|πππ3 8. 设?x , 求? , ? , ?? , ??2, 并作出函数 y?x的图形π 64 4?0 |x|≥3ππ 1 ππ 2 ππ 2 解 ? |sin | , ? |sin | , ?? |sin? | , ??206 6 2 4 4 2 4 4 2 9. 试证下列函数在指定区间内的单调性:x 1 y , ?∞, 1;1? x 2yx+ln x, 0, +∞证明 1对于任意的x , x ∈?∞, 1, 有 1?x 0, 1?x 0. 因为当x x 时,1 2 1 2 1 2x x xx1 2 1 2yy 0,1 21? x 1? x 1? x 1? x1 2 1 2x所以函数 y 在区间?∞, 1内是单调增加的1? x 2对于任意的x , x ∈0, +∞, 当x x 时, 有1 2 1 2x1yy x +ln x ?x +ln x xx +ln 0,1 2 1 1 2 2 1 2x2所以函数 yx+ln x 在区间0, +∞内是单调增加的 10. 设 fx为定义在?l, l内的奇函数, 若 fx在0, l内单调增加, 证明 fx在?l, 0内也单调增加证明对于?x , x ∈?l, 0且x x , 有?x , ?x ∈0, l且?x ?x1 2 1 2 1 2 1 2 因为 fx在0, l内单调增加且为奇函数, 所以f?x f?x ,fx ?fx , fx fx ,2 1 2 1 2 1这就证明了对于?x , x ∈?l, 0, 有fx fx , 所以fx在?l, 0内也单调增加1 2 1 2 11. 设下面所考虑的函数都是定义在对称区间?l, l上的, 证明: 1两个偶函数的和是偶函数, 两个奇函数的和是奇函数; 2两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数证明1设Fxfx+gx. 如果fx和gx都是偶函数, 则F?xf?x+g?xfx+gxFx,所以 Fx为偶函数, 即两个偶函数的和是偶函数如果 fx 和 gx都是奇函数, 则 F?xf?x+g?x?fx?gx?Fx,所以 Fx为奇函数, 即两个奇函数的和是奇函数2设Fxfx?gx. 如果fx和gx都是偶函数, 则F?xf?x?g?xfx?gxFx,所以 Fx为偶函数, 即两个偶函数的积是偶函数如果 fx 和 gx都是奇函数, 则 F?xf?x?g?x[?fx][?gx]fx?gxFx,所以 Fx为偶函数, 即两个奇函数的积是偶函数如果fx是偶函数, 而gx是奇函数, 则F?xf?x?g?xfx[?gx]?fx?gx?Fx,所以 Fx为奇函数, 即偶函数与奇函数的积是奇函数 12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?2 21yx 1?x ;2 32y3x ?x ;21?x3 y ;21+x4yxx?1x+1; 5ysin x?cos x+1;x ?xa +a6 y22 2 2 2 解 1因为f?x?x [1??x ]x 1?x fx, 所以fx是偶函数2 3 2 3 2由f?x3?x ??x 3x +x 可见fx既非奇函数又非偶函数221??x1? x 3因为 f ?x f x , 所以 fx是偶函数221+ x1+x 4因为f?x?x?x?1?x+1?xx+1x?1?fx, 所以fx是奇函数5由f?xsin?x?cos?x+1?sin x?cos x+1 可见 fx既非奇函数又非偶函数?x ??x ?x xa +a a +a 6因为 f ?x f x , 所以 fx是偶函数2 2 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: 1ycosx?2; 2ycos 4x; 3y1+sin πx; 4yx cos x;25ysin x 解 1是周期函数, 周期为 l2ππ 2是周期函数, 周期为 l2 3是周期函数, 周期为 l2 4不是周期函数 5是周期函数, 周期为 lπ 14. 求下列函数的反函数:3 1 y x+1 ;1?x 2 y ;1+xax+b 3 y ad?bc≠0;cx+d 4 y2sin3x; 5 y1+lnx+2;x2 6yx2 +13 33 3 解 1由 y x+1得xy ?1, 所以 y x+1的反函数为yx ?11? y1?x 1?x 1?x 2由 y 得 x , 所以 y 的反函数为 y1+x 1+ y 1+x 1+x?dy+bax+b ax+b ?dx+b 3由 y 得 x , 所以 y 的反函数为 ycy?acx+d cx+d cx?ay1 1 x 4由 y2sin 3x 得 x arcsin, 所以 y2sin 3x的反函数为 y arcsin3 2 3 2y?1 x?1 5由y1+lnx+2得xe ?2, 所以y1+lnx+2的反函数为ye ?2x xy2 2 x 6由 y 得 xlog , 所以 y 的反函数为 ylog2 2x x2 +1 1? y 2 +1 1? x 15. 设函数 fx在数集 X 上有定义, 试证: 函数 fx在 X 上有界的充分必要条件是它在 X上既有上界又有下界证明先证必要性. 设函数 fx在 X 上有界, 则存在正数 M, 使|fx|≤M, 即?M≤fx≤M. 这这就证明了 fx在 X 上有下界?M 和上界 M 再证充分性. 设函数fx在X 上有下界K 和上界K , 即K ≤fx≤ K取M|K |, |K |,1 2 1 2 1 2则M≤ K ≤fx≤ K ≤M ,1 2即 |fx|≤M这就证明了 fx在 X 上有界 16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 和x 的函数值:1 22 ππ 1 yu , usin x, x , x ;1 26 3ππ 2 ysin u, u2x, x , x ;1 28, 42 3 y u, u1+x , x 1, x 2;1 2u 2 4 ye , ux , x 0, x 1;1 22 x 5 yu , ue , x 1, x ?11 22 π 1 1 π3 32 2 2 2 解 1ysin x, y sin , y sin1 26 2 4 3 2 4ππ 2 ππ 2ysin2x, y sin2? sin , y sin2? sin 11 28 4 2 4 22 2 23 y, 1+ x y 1+1 2 , y 1+2 51 22 2 2x 0 1 4 y e , y e 1 , y e e1 22x 2?1 2 2??1 ?2 5ye , y e e , y e e1 2 17. 设 fx的定义域 D[0, 1], 求下列各函数的定义域:2 1 fx ; 2 fsinx; 3 fx+aa0; 4fx+a+fx?aa02 2 解 1由 0≤x ≤1 得|x|≤1, 所以函数fx 的定义域为[?1, 1] 2由0≤sin x≤1 得 2nπ≤x≤2n+1π n0, ±1, ±2 ?, 所以函数 fsin x的定义域为[2nπ, 2n+1π] n0, ±1, ±2 ?3由 0≤x+a≤1 得?a≤x≤1?a, 所以函数fx+a的定义域为[?a, 1?a]1 1 1 4由 0≤x+a≤1 且 0≤x?a≤1 得: 当 0a≤时, a≤x≤1?a; 当 a 时, 无解. 因此当 0a≤时2 2 21函数的定义域为[a, 1?a], 当 a 时函数无意义21 |x|1?x18. 设 f x 0 |x|1, gxe , 求f[gx]和g[fx], 并作出这两个函数的图形1 |x|1x1 |e |1 1 x0x解 f [gx] 0 |e |1 , 即 f [gx] 0 x0x1 |e |1 ?1 x0?1e |x| 1 e |x| 1f x 0 g[ f x ]e e |x|1, 即 g[ f x ] 1 |x|11 ?1?e |x|1 e |x|119. 已知水渠的横断面为等腰梯形, 斜角?40°图 1?37. 当过水断面ABCD的面积为定值S 时, 求湿周LLAC+CD+DB与水深h之间的函数关系式, 并说明定义域0图 1?37h 解 AbDC , 又从sin401h[BC +BC +2cot40 ?h]S 得2SBC ?cot40 ?h , 所以hS2?cos40L + hh sin 40 自变量 h 的取值范围应由不等式组Sh0, ?cot40 ?h0h确定, 定义域为 0h S cot400 20. 收敛音机每台售价为 90 元, 成本为 60 元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过 100 台以上的, 每多订购 1台, 售价就降低 1 分, 但最低价为每台 75 元 1将每台的实际售价 p 表示为订购量 x 的函数; 2将厂方所获的利润 P表示成订购量 x 的函数; 3某一商行订购了 1000 台, 厂方可获利润多少?解 1当 0≤x≤100时, p90令 0. 01x ?10090?75, 得x 1600. 因此当x≥1600 时, p750 0 当 100x1600 时, p90?x?100×0. 0191?0. 01x 综合上述结果得到90 0≤ x≤100 p 91?0.01x 100 x1600?75x≥1600 30x 0≤ x≤1002P p?60x 31x?0.01x 100 x1600 215xx≥16002 3 P31×1000?0. 01×1000 21000元习题 1 ?21. 观察一般项x 如下的数列x 的变化趋势, 写出它们的极限:n n1 1 x ;nn21n 2 x ?1 ;nn1x 2 + 3 ;n2nn ?1 4 x ;nn +1n 5 x n ?1n1 1x lim 0 解 1 当 n →∞时, →0,nn nn →∞2 21 1n n 2 当 n →∞时, x ?1 →0, lim ?1 0 nn →∞n n1 1 3 当 n →∞时, x2 + →2,lim2 + 2 n2 2n →∞n nn ?1 2 n ?1x 1lim 1 4 当 n →∞时, →0,nn →∞n +1 n +1 n +1n 5 当n→∞时, x n ?1 没有极限nn πcos2 2. 设数列x 的一般项 x 问 lim x ? 求出N, 使当nN 时, x 与其极限之差的n nn nn →∞n绝对值小于正数ε , 当ε 0.001 时, 求出数N 解 lim x 0nn →∞n π|cos |1 1 1 12 |x ?0| ≤? ε 0, 要使|x ?0| ε , 只要ε , 也就是 n 取 N [ ], nnn nn εε则?nN, 有|x ?0| εn1N [ ] 当ε 0.001 时, 1000ε 3. 根据数列极限的定义证明: 1 1 lim 0 ;2n →∞n3n +1 3lim 2 ;n →∞2n +1 22 2n +a 3 lim 1n →∞n 4 lim 0.999 9 1n →∞n 个1 1 1 12| ?0| ε n 1 分析要使 , 只须 , 即 n2 2εn n ε1 11 证明因为ε0,N [ ], 当 nN 时, 有| ?0| ε , 所以 lim 02 2n →∞1 13n +1 3 1 1 2 分析要使|| ε , 只须ε , 即 n2n +1 2 22n +1 4n4n 4 ε3n +1 31 3n +1 3 证明因为ε0,N [ ] , 当 nN 时, 有|| ε , 所以 lim n →∞4 ε 2n +1 2 2n +1 22 2 2 2 2 2 2n +a n +a ?n a a a 3 分析要使|, ?1| ε只须 n2 2n n n εn n +a +n2 2 2 2 2an +a n +a证明因为? ε0,N [ ] , 当?nN 时, 有| ?1| ε , 所以 lim 1n →∞ε n n11 1 4 分析要使|0.99 9 ?1| , 只须ε , 即 n 1 +lgεn ?1 n ?1ε1证明因为? ε0,N [1 +lg ] , 当?nN 时, 有|0.99 9 ?1| ε , 所以 lim 0.999 9 1n →∞εn 个 4. lim u a , 证明 lim |u | |a|并举例说明: 如果数列|x | 有极限, 但数列x 未必有n nn nn →∞ n →∞极限证明因为 lim u a , 所以? ε0, ?N ∈N, 当 nN 时, 有|u ?a| ε , 从而n nn →∞||u | ?|a|| ≤|u ?a| εn n这就证明了 lim|u | |a|nn →∞n n 数列|x | 有极限, 但数列x 未必有极限. 例如 lim| ?1 | 1, 但lim ?1 不存在n nn →∞ n →∞ 5. 设数列x 有界, 又 lim y 0 , 证明: lim x y 0 nn →∞ n →∞证明因为数列x 有界, 所以存在M, 使?n ∈Z, 有|x | ≤Mn nε又 lim y 0 , 所以ε0, ?N ∈N, 当 nN 时, 有| y | 从而当 nN 时, 有n nn →∞Mε |x y ?0| |x y | ≤M | y | M ε ,n n n n nM所以 lim x y 0n nn →∞ 6. 对于数列x 若x →a k →∞, x →a k →∞, 证明: x →a n →∞n 2k 2k +1 n 证明因为x →a k →∞, x →a k →∞, 所以ε0,2k 2k +1?K , 当 2k2K 时, 有| x ?a | ε ;1 1 2kK , ?当 2k+12K +1 时, 有| x ?a | ε2 2 2k+1取N 2K , 2K +1, 只要nN, 就有|x ?a | ε因此x →a n →∞1 2 n n 习题 1 ?31. 根据函数极限的定义证明: 1 lim3x ?1 8;x →3 2 lim5x +2 12;x →22x ?4 3 lim ?4;x → ?2x +231 ?4x 4 lim 21x →2x +121 证明 1 分析 |3x ?1 ?8| |3x ?9| 3|x ?3|, 要使|3x ?1 ?8| ε , 只须|x ?3| ε31 证明因为ε 0,δε , 当 0 |x ?3| δ时, 有|3x ?1 ?8| ε , 所以 lim3x ?1 8x →331 2 分析 |5x +2 ?12| |5x ?10| 5|x ?2|, 要使|5x +2 ?12| ε , 只须|x ?2| ε51δε证明因为ε 0,, 当 0 |x ?2| δ时, 有|5x +2 ?12| ε , 所以 lim5x +2 12x →252 2 2x ?4 x +4x +4 x ?4 3 分析 ? ?4 |x +2| |x ? ?2| , 要使 ? ?4 ε , 只须x +2 x +2 x +2|x ? ?2| ε2 2x ?4 x ?4 证明因为ε 0,δε , 当 0 |x ? ?2| δ时, 有 ? ?4 ε ,所以 lim ?4x → ?2x +2 x +2331 ?4x 1 1 ?4x 1 1 4 分析 , 要使 ?2 ε , 只须|x ?| ε 2 |1 ?2x ?2| 2|x ?|2x +1 2 2x +1 2 23 31 1 1 ?4x 1 ?4x 证明因为ε 0,δε , 当 0 |x ?| δ时, 有 ?2 ε , 所以 lim 212 2 2x +1 2x +1x →2 2. 根据函数极限的定义证明:31 + x 1 1 ;lim3x →∞22xsin x 2 lim 0x → +∞x33 3 31 + x 1 1 + xx 1 1 + x 1 1 证明 1 分析 , 要使ε , 只须ε , 即3 3 3 3 32 22x 2x 2|x| 2x 2|x|1|x| 32 ε 331 1 + x 11 + x 1 证明因为ε 0,X , 当|x| X 时, 有ε , 所以 lim3 33x →∞2 22x 2x2 εsin x |sin x| 1 sin x 1 1 2 分析 ?0 ≤ , 要使 ?0 ε , 只须ε , 即 x 2εx x x x x1sin x sin x 证明因为ε 0,X , 当 x X 时, 有 ?0 ε , 所以 lim 0 2x → +∞εx x2 3. 当x →2 时, y x →4. 问δ等于多少, 使当|x ?2| δ时, |y ?4|0. 001 ?2 解由于x →2, |x ?2| →0, 不妨设|x ?2| 1, 即 1 x 3. 要使|x ?4| |x +2||x ?2| 5|x ?2| 0. 001, 只要0.0012|x ?2| 0.0002, 取δ 0. 0002, 则当 0 |x ?2| δ时, 就有|x ?4| 0. 00152x ?1 4. 当x →∞时, y →1, 问X 等于多少, 使当|x|X 时, |y ?1|0.012x +32x ?1 44 解要使 ?1 0.01, 只 ,|x| ?3 397 X 3972 20.01x +3 x +3 5. 证明函数 fx |x| 当 x →0 时极限为零x |x| 6. 求 f x , ?x 当 x →0 时的左?右极限, 并说明它们在 x →0 时的极限是否存在x x 证明因为xlim f x lim lim 1 1,x →0 x →0 x x →0xlim f x lim lim 1 1,+ + +x →0 x →0 x x →0lim f x lim f x,? +x →0 x →0所以极限 lim f x 存在x →0 因为|x| ?xlim ?x lim lim ?1,x →0 x →0 x →0x x|x| xlim ?x lim lim 1,+ + +x →0 x →0 x →0x xlim ?x ≠ lim ?x,? +x →0 x →0所以极限 lim ?x 不存在x →0 7. 证明: 若 x →+ ∞及 x →?∞时, 函数 fx 的极限都存在且都等于 A, 则 lim f x Ax →∞证明因为 lim f x A , lim f x A , 所以? ε0,x → ?∞ x →+∞?X 0, 使当x ?X 时, 有|fx ?A| ε ;1 1?X 0, 使当x X 时, 有|fx ?A| ε2 2取XX , X , 则当|x| X时, 有|fx ?A| ε , 即 lim f x A1 2x →∞ 8. 根据极限的定义证明: 函数fx 当x →x 时极限存在的充分必要条件是左极限、右极限各自存在并且相等证明先证明必要性. 设fx →Ax →x , 则? ε0,δ 0, 使当 0|x ?x | δ时, 有0 0|fx ?A| ε因此当xδxx 和x xx + δ时都有0 0 0 0|fx ?A| ε这说明fx 当x →x 时左右极限都存在并且都等于A0 再证明充分性. 设fx ?0 fx +0 A, 则? ε0,0 0? δ 0, 使当xδ xx 时, 有| fx ?A ε ;1 0 1 0? δ 0, 使当x xx + δ时, 有| fx ?A| ε2 0 0 2取δ min δ , δ , 则当0|x ?x | δ时, 有xδ xx 及x xx + δ , 从而有1 2 0 0 1 0 0 0 2| fx ?A| ε ,即fx →Ax →x0 9. 试给出 x →∞时函数极限的局部有界性的定理, 并加以证明解 x →∞时函数极限的局部有界性的定理 : 如果 fx 当 x→∞时的极限存在 , 则存在 X0 及M 0 , 使当|x|X 时, |fx| M证明设 fx →Ax →∞ , 则对于ε 1 , ?X0 , 当|x| X 时, 有|fx ?A| ε 1所以|fx| |fx ?A+A| ≤|fx ?A| +|A| 1 +|A| 这就是说存在 X0 及 M 0 , 使当|x| X 时, |fx| M , 其中 M 1 +|A|习题1 ?41. 两个无穷小的商是否一定是无穷小?举例说明之解不一定αx 2 αx 例如, 当 x →0 时, αx 2x, βx 3x 都是无穷小, 但 lim , 不是无穷小x →0β x 3 β x 2. 根据定义证明:2x ?9 1 y 当 x →3 时为无穷小;x +31 2 y xsin 当 x →0 时为无穷小x2x ?9 证明 1 当 x ≠3 时| y| |x ?3|因为ε 0,δε , 当 0 |x ?3| δ时, 有x +32x ?9| y| |x ?3| δε ,x +32x ?9所以当 x →3 时 y 为无穷小x +31 2 当 x ≠0 时| y| |x||sin | ≤|x ?0|因为? ε 0,δε , 当 0 |x ?0| δ时, 有x1| y| |x||sin | ≤|x ?0| δε ,x1所以当 x →0 时 y xsin 为无穷小x1 +2x 3. 根据定义证明: 函数 y 为当x →0 时的无穷大. 问x 应满足什么条件, 能使x4|y|10 ?1 +2x 1 1 1 1 证明分析| y|2 + ≥ ?2 , 要使|y| M, 只须 ?2 M , 即|x|x x |x| |x| M +21 1 + 2x 证明因为 ?M 0,δ , 使当 0 |x ?0| δ时, 有 M ,M +2 x1 +2x所以当 x →0 时, 函数 y 是无穷大x1 14 4 取M 10 , 则δ当 0 |x ?0| 时, |y|104 410 +2 10 +2 4. 求下列极限并说明理由:2x +1 1 lim ;n →∞x21x 2 limx →01x2x +1 1 1 2x +1 解 1 因为 2 + , 而当 x→∞时是无穷小, 所以 lim 2n →∞x x x x2 21x 1x 2 因为 1 + x x ≠1, 而当 x →0 时 x 为无穷小, 所以 lim 1 x →01x 1x 5. 根据函数极限或无穷大定义, 填写下表: 6. 函数 y xcos x 在?∞, +∞内是否有界?这个函数是否为当 x →+∞时的无穷大?为什么?解函数 y xcos x 在?∞, +∞内无界这是因为?M 0, 在 ?∞, +∞内总能找到这样的 x, 使得|yx| M. 例如y2k π 2k π cos2k π 2k π k 0, 1, 2,,当 k 充分大时, 就有| y2k π| M 当 x →+ ∞时, 函数 y xcos x 不是无穷大这是因为?M 0, 找不到这样一个时刻 N, 使对一切大于 N 的 x, 都有|yx| M. 例如πππy2k π + 2k π + cos2k π + 0 k 0, 1, 2,,2 2 2π对任何大的 N, 当 k 充分大时, 总有 x 2k π + N , 但|yx| 0 M21 1+ 7. 证明: 函数 y sin 在区间0, 1] 上无界, 但这函数不是当x →0 时的无穷大x x1 1 证明函数 y sin 在区间0, 1] 上无界. 这是因为x xM 0, 在0, 1] 中总可以找到点x , 使yx M. 例如当k k1x k 0, 1, 2,kπ2k π +2时, 有πyx 2k π + ,k2当k 充分大时, yx Mk+当x →0 时, 函数 y sin 不是无穷大. 这是因为x xM 0, 对所有的δ 0, 总可以找到这样的点x , 使 0 x δ, 但yx M. 例如可取k k k1x k 0, 1, 2,,k2k π当k 充分大时, x δ, 但yx 2k πsin2k π 0 Mk k习题 1 ?51. 计算下列极限:2x +5 1 lim ;x →2x ?32 2x +5 2 +5 解 lim ?9x →2x ?3 2 ?32x ?3 2 lim ;2x → 3 x +1223 ?3x ?3 解 lim 02x → 3 x +13 +12x ?2x +1 3 lim ;2x →1x ?122x ?2x +1 x ?1 x ?1 0 解 lim lim lim 0 2x →1 x →1 x →1x ?1 x ?1x +1 x +1 23 24x ?2x +x 4 lim ;2x →03x +2x3 2 24x ?2x +x 4x ?2x +1 1 解 lim lim2x →0 x →03x + 2x 3x + 2 22 2x +h ?x 5 lim ;h →0h2 22 2 2x +h ?xx +2hx +h ?x 解 lim lim lim2x +h 2x h →0 h →0 h →0h h1 1 6 lim2+ ;2x →∞x x1 1 1 1 解 lim2+ 2lim + lim 22 2x →∞ x →∞ x →∞x x x x2x ?1 7 lim ;2x →∞2x ?x ?11122x 解 lim lim2x →∞ x ?xx →∞ 1 1 22 12?2x x2x +x 8 lim ;4 2x →∞x ?3x ?12x +x 解 lim 0 分子次数低于分母次数, 极限为零4 2x →∞x ?3x ?11 1+22 3x +xx x 或 lim lim 04 2x →∞ x →∞ 2 11?2 4x x2x6x + 8 9 lim ;2x →4x5x + 42x ?2x ?4x ?6x +8 x ?2 4 ?2 2lim lim lim 解2x →4 x →4 x →4x ?5x +4 x ?1x ?4 x ?1 4 ?1 31 1 10 lim1 +2 ;2x →∞x x1 1 1 1 解 lim1 +2 lim1 + lim2 1 ×2 22 2x →∞ x →∞ x →∞x x x x1 1 1 11 lim1 + + + + ;nn →∞2 4 21n +11 ?1 1 12 解 lim1 + + + + lim 2 nn →∞ n →∞ 12 4 2121 +2 +3 + +n ?1 12 lim ; 2n →∞nn ?1n1 +2 +3 + +n ?1 1 n ?1 12 解lim lim lim2 2n →∞ n →∞ n →∞n n 2 n 2n +1n +2n +3 13 lim ;3n →∞5nn +1n +2n +3 1 解 lim 分子与分母的次数相同, 极限为最高次项系数之比3n →∞ 5n 5n +1n +2n +31 123 1 或 lim lim1 + 1 + 1 +3n →∞ n →∞5n 5 n n n 51 3 14 lim ;3x →11 ?x 1 ?x21 ?xx +21 3 1 +x +x ?3 x +2lim lim ?lim ?lim ?1 解3 2 2 2x →1 x →1 x →1 x →11 ?x 1 ?x 1 ?x1 +x +x 1 ?x1 +x +x 1 +x +x 2. 计算下列极限:3 2x +2x 1 lim ;2x →223 2x ?20 x +2x 解因为 lim 0 , 所以 lim ∞3 2 2x →2 x →2x +2x 16 x ?22x 2 lim ;x →∞2x +12x 解 lim ∞因为分子次数高于分母次数x →∞2x +13 3 lim2x ?x +1x →∞3 解 lim2x ?x +1 ∞因为分子次数高于分母次数x →∞ 3. 计算下列极限:12 1 limx sin ;x →0x1 2 12 解 limx sin 0 当x →0 时, x 是无穷小, 而 sin 是有界变量x →0arctanx 2 limx →∞xarctanx 1 1 解 lim lim ?arctanx 0 当 x →∞时, 是无穷小, 而arctan x 是有界变量x →∞ x →∞x x x 4. 证明本节定理 3 中的2. 习题 1 ?61. 计算下列极限:sin ωx 1 lim ;x →0xsin ωx sin ωx 解 lim ω lim ωx →0 x →0x ωxtan3x 2 lim ;x →0xtan3x sin3x 1 解 lim 3lim3x →0 x →0x 3x cos3xsin2x 3 lim ;x →0sin5xsin2x sin2x 5x 2 2 解 lim lim?x →0 x →0sin5x 2x sin5x 5 5 4 lim x cot x ;x →0x x 解 lim xcot x lim ?cosx lim ?limcosx 1x →0 x →0 x →0 x →0sin x sin x1 ?cos2x 5 lim ;x →0xsin x21 ?cos2x 1 ?cos2x 2sin x sin x2 解法一 lim lim lim 2lim 22 2x →0 x →0 x →0 x →0xsin x x x x21 ?cos2x 2sin x sin x 解法二 lim lim 2lim 2x →0 x →0 x →0xsin x xsin x xxn 6 lim 2 sin x 为不等于零的常数nn →∞2xsinnxn2 解 lim2 sin lim ?x xnxn →∞ n →∞2n2 2. 计算下列极限:1x 1 lim1 ?x ;x →01 11?1?1?1?x ?xx 解 lim1x lim[1 + ?x] lim[1 + ?x] e x →0 x →0 x →01x 2 lim1 +2x ;x →01 1 1?222x 2x 2x 解 lim1 +2x lim1 +2x [ lim1 +2x ] ex →0 x →0 x →01 + x2x 3 lim ;x →∞x1 + x 1 22x x 2[ ] 解 lim lim1 + ex →∞ x →∞x x1kx 4 lim1 k 为正整数x →∞x1 1kx ?x ?k ?k 解 lim1 lim1 + ex →∞ x →∞xx 3. 根据函数极限的定义, 证明极限存在的准则 I ′解 4. 利用极限存在准则证明:1 1 lim 1 + 1;n →∞ n1 1 证明因为1 1 + 1 + ,n n1而lim1 1 且 lim1 + 1,n →∞ n →∞ n1由极限存在准则 I, lim 1 + 1n →∞n1 1 12 limn + + + 1;2 2 2n →∞n + π n +2 π n +n π证明因为2 2n 1 1 1 nn + + + ,2 2 2 2 2n +n π n + π n +2 π n +n π n + π2 2n n而lim 1, lim 1,2 2n →∞ n →∞n +n π n + π1 1 1所以 limn + + + 12 2 2n →∞ n + π n +2 π n +n π 3 数列 2 , 2 + 2 , 2 + 2 + 2 , 的极限存在; 证明 x 2 , x 2 + x n 1, 2, 3,1 n +1 n 先证明数列x 有界. 当n 1 时 x2 2 , 假定n k 时x 2, 当n k +1 时,n k1x 2 + x 2 +2 2,k +1 k所以x 2n 1, 2, 3,, 即数列x 有界n n 再证明数列单调增22 + xx ?x ?2x +1n n n nxx 2 + xx ,n +1 n n n2 + x + x 2 + x + xn n n n而x ?2 0, x +1 0, 所以x ?x 0, 即数列x 单调增n n n +1 n n 因为数列x 单调增加有上界, 所以此数列是有极限的nnlim 1 + x 1 4 ;x →0 证明当|x| ≤1 时, 则有n 1 +x ≤1 +|x| ≤1 +|x| ,n 1 +x ≥1 ?|x| ≥1 ?|x| ,n从而有 1 ?|x| ≤ 1 + x ≤1 +|x|因为 lim1 ?|x| lim1 +|x| 1,x →0 x →0根据夹逼准则, 有nlim 1 + x 1x →01 5 lim x [ ] 1+x →0 x1 1 1 1 证明因为 ?1 [ ] ≤ , 所以1x x [ ] ≤1x x x x1 又因为 lim 1x lim 1 1 , 根据夹逼准则, 有 lim x [ ] 1+ + +x →0 x →0 x →0x习题 1?72 23 1. 当x→0 时, 2x?x 与x ?x 相比, 哪一个是高阶无穷小?2 3 2x ?x x?x 解因为 lim lim 0,2x→0 x→02?x2x?x2 3 2 3 2所以当x→0 时, x ?x 是高阶无穷小, 即x ?x o2x?x13 2 2. 当x→1 时, 无穷小 1?x 和11?x , 2 1x 是否同阶?是否等价? 23 21?x 1?x1+x+x2 解 1 因为 lim lim lim1+x+x 3,x→1 x→1 x→11?x 1?x3所以当x→1 时, 1?x 和 1?x 是同阶的无穷小, 但不是等价无穷小121?x12 2 因为 lim lim1+x1,x→1 x→11?x 212所以当x→1 时, 1?x 和 1?x 是同阶的无穷小, 而且是等价无穷小2 3. 证明: 当x→0 时, 有: 1 arctanx~x;2x 2 secx?1~2arctanx y 证明 1 因为 lim lim 1 提示: 令yarctan x, 则当x→0 时, y →0,x→0 y→0x tany所以当x→0 时, arctanx~xx x22sin 2sin2secx?1 1?cosx2 2 2 因为 lim 2lim lim lim 1,2 2x→0 x→0 x→0 x→01 x2 x cosx xx2 222x所以当x→0 时, secx?1~2 4. 利用等价无穷小的性质, 求下列极限:tan3x 1 lim ;x→02xnsinx 2 lim n, m 为正整数;mx→0sinxtanx?sinx 3 lim ;3x→0sin xsinx?tanx 4 limx→0 3 21+x ?1 1+sinx ?1tan3x 3x 3 解 1 lim lim x→0 x→02x 2x 21 nmnnsinx x 2 lim lim 0 nmm mx→0 x→0sinx x∞nm1 12sinx ?1 xtanx?sinx 1?cosx 1cosx2 3 lim lim lim lim3 3 2 2x→0 sin x x→0 sin x x→0 cosxsin x x→0x cosx 2 4 因为。
同济大学第六版高等数学上下册课后习题答案5-2 1. 试求函数⎰=xtdt y 0sin 当x =0及4π=x 时的导数. 解 x tdt dx d y x sin sin 0=='⎰, 当x =0时, y '=sin0=0; 当4π=x 时, 224sin =='πy . 2. 求由参数表示式⎰=t udu x 0sin , ⎰=tudu y 0cos 所给定的函数y 对x 的导数.解 x '(t )=sin t , y '(t )=cos t , t t x t y dx dy cos )()(=''=. 3. 求由⎰⎰=+x y ttdt dt e 000cos 所决定的隐函数y 对x 的导数dxdy . 解 方程两对x 求导得0cos =+'x y e y ,于是 ye x dx dy cos-=. 4. 当x 为何值时, 函数⎰-=x t dt te x I 02)(有极值? 解 2)(x xe x I -=', 令I '(x )=0, 得x =0. 因为当x <0时, I '(x )<0; 当x >0时, I '(x )>0,所以x =0是函数I (x )的极小值点.5. 计算下列各导数:(1)⎰+2021x dt t dx d ; (2)⎰+32411x x dt tdx d ; (3)⎰x xdt t dx d cos sin 2)cos(π. 解 (1)dxdu dt t du d u x dt t dx d u x ⋅+=+⎰⎰02202112令 421221x x x u +=⋅+=.(2)⎰⎰⎰+++=+323204044111111x x x x dt tdx d dt t dx d dt t dx d ⎰⎰+++-=3204041111x x dt t dx d dt t dx d )()(11)()(11343242'⋅++'⋅+-=x x x x 12281312xx x x +++-=. (3)⎰⎰⎰+-=x x x x dt t dx d dt t dx d dt t dx d cos 02sin 02cos sin 2)cos()cos()cos(πππ ))(cos cos cos())(sin sin cos(22'+'-=x x x x ππ)cos cos(sin )sin cos(cos 22x x x x ππ⋅-⋅-=)sin cos(sin )sin cos(cos 22x x x x πππ-⋅-⋅-=)sin cos(sin )sin cos(cos 22x x x x ππ⋅+⋅-=)sin cos()cos (sin 2x x x π-=.6. 计算下列各定积分:(1)⎰+-adx x x 02)13(; 解 a a a x x x dx x x a a+-=+-=+-⎰230230221|)21()13(. (2)⎰+2142)1(dx xx ; 解 852)11(31)22(31|)3131()1(333321332142=---=-=+---⎰x x dx x x . (3)⎰+94)1(dx x x ; 解 94223942194|)2132()()1(x x dx x x dx x x +=+=+⎰⎰ 6145)421432()921932(223223=+-+=. (4)⎰+33121x dx ; 解 66331arctan 3arctan arctan 13313312πππ=-=-==+⎰x x dx . (5)⎰--212121x dx ; 解 3)6(6)21arcsin(21arcsin arcsin 1212121212πππ=--=--==---⎰x x dx .(6)⎰+a x a dx 3022; 解 a a a a xa x a dx aa 30arctan 13arctan 1arctan 1303022π=-==+⎰. (7)⎰-1024x dx ; 解 60arcsin 21arcsin 2arcsin 410102π=-==-⎰x x dx . (8)dx x x x ⎰-+++012241133; 解 013012201224|)arctan ()113(1133---+=++=+++⎰⎰x x dx x x dx x x x 41)1arctan()1(3π+=----=. (9)⎰---+211e x dx ; 解 1ln 1ln ||1|ln 12121-=-=+=+------⎰e x x dx e e . (10)⎰402tan πθθd ; 解 4144tan )(tan )1(sec tan 40402402πππθθθθθθπππ-=-=-=-=⎰⎰d d . (11)dx x ⎰π20|sin |; 解 ⎰⎰⎰-=ππππ2020sin sin |sin |xdx xdx dx x πππ20cos cos x x +-==-cos π +cos0+cos2π-cos π=4.(12)⎰20)(dx x f , 其中⎪⎩⎪⎨⎧>≤+=1 211 1)(2x x x x x f . 解 38|)61(|)21(21)1()(2131022121020=++=++=⎰⎰⎰x x x dx x dx x dx x f . 7. 设k 为正整数. 试证下列各题: (1)⎰-=ππ0cos kxdx ; (2)⎰-=ππ0sin kxdx ; (3)⎰-=πππkxdx 2cos ; (4)⎰-=πππkxdx 2sin . 证明 (1)⎰--=-=--==ππππππ000)(sin 1sin 1|sin 1cos k k k k kx k kxdx . (2))(cos 1cos 1cos 1sin ππππππ-+-=-=--⎰k k k k x k k kxdx 0cos 1cos 1=+-=ππk kk k . (3)πππππππππ=+=+=+=---⎰⎰22|)2sin 21(21)2cos 1(21cos 2kx k x dx kx kxdx . (4)πππππππππ=+=-=-=---⎰⎰22|)2sin 21(21)2cos 1(21sin 2kx k x dx kx kxdx . 8. 设k 及l 为正整数, 且k ≠l . 试证下列各题:(1)⎰-=ππ0sin cos lxdx kx ; (2)⎰-=ππ0cos cos lxdx kx ;(3)⎰-=ππ0sin sin lxdx kx . 证明 (1)⎰⎰----+=ππππdx x l k x l k lxdx kx ])sin()[sin(21sin cos 0])cos()(21[])cos()(21[=----++-=--ππππx l k l k x l k l k . (2)⎰⎰---++=ππππdx x l k x l k lxdx kx ])cos()[cos(21cos cos 0])sin()(21[])sin()(21[=--+++=--ππππx l k l k x l k l k . (3)⎰⎰----+-=ππππdx x l k x l k lxdx kx ])cos()[cos(21sin sin . 0])sin()(21[])sin()(21[=--+++-=--ππππx l k l k x l k l k . 9. 求下列极限:(1)x dt t x x ⎰→020cos lim;(2)⎰⎰→x t x t x dt te dt e 0220022)(lim .解 (1)11cos lim cos lim 20020==→→⎰x x dt t x x x . (2)22222200002200)(2lim )(lim x xt x t x xt x t x xe dt e dt e dtte dt e '⋅=⎰⎰⎰⎰→→ 22222002002lim 2lim x x t x x x xt x xe dt e xe edt e ⎰⎰→→=⋅=2212lim 22lim 2020222=+=+=→→x e x e e x x x x x . 10. 设⎩⎨⎧∈∈=]2 ,1[ ]1 ,0[ )(2x x x x x f . 求⎰=x dt t f x 0)()(ϕ在[0, 2]上的表达式, 并讨论ϕ(x )在(0, 2)内的连续性.解 当0≤x ≤1时, 302031)()(x dt t dt t f x xx ===⎰⎰ϕ; 当1<x ≤2时, 6121212131)()(2211020-=-+=+==⎰⎰⎰x x tdt dt t dt t f x xx ϕ. 因此 ⎪⎩⎪⎨⎧≤<-≤≤=21 612110 31)(23x x x x x ϕ. 因为31)1(=ϕ, 3131lim )(lim 30101==-→-→x x x x ϕ, 316121)6121(lim )(lim 20101=-=-=+→+→x x x x ϕ, 所以ϕ(x )在x =1处连续, 从而在(0, 2)内连续.11. 设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f 或0 00 sin 21)(. 求⎰=x dt t f x 0)()(ϕ在(-∞, +∞)内的表达式.解 当x <0时,00)()(00===⎰⎰xx dt dt t f x ϕ; 当0≤x ≤π时,21cos 21|cos 21sin 21)()(000+-=-===⎰⎰x t tdt dt t f x x xx ϕ; 当x >π时,πππϕ000|cos 210sin 21)()(t dt tdt dt t f x x x -=+==⎰⎰⎰ 10cos 21cos 21=+-=π. 因此 ⎪⎩⎪⎨⎧≥≤≤-<=ππϕx x x x x 10 )cos 1(210 0)(. 12. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0,⎰-=x adt t f a x x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f x a -=⎰ξ. 于是有)(1)()(1)(2x f ax dt t f a x x F x a -+--='⎰ ))(()(1)(12a x f a x x f a x ----=ξ )]()([1ξf x f ax --=. 由 f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内, x -a >0, 所以在(a , b )内 0)]()([1)(≤--='ξf x f ax x F .。
同济六版高等数学课后答案全集第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0l n )()l n ()l n (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xxy +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数. (3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
习题8-31. 求下列函数的全微分: (1)yx xy z +=;解 dy y z dx x z dz ∂∂+∂∂=dy y x x dx y y )()1(2-++=.(2)xy e z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+-=∂∂+∂∂=.(3) 22y x yz +=;解 因为2/3222322)()(21y x xy y x y x z +-=+-=∂∂-, 2/3222222222)(y x x y x y x yy y x y z +=++⋅-+=∂∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++-=)()(2/322xdy ydx y x x -+-=.(4)u =x yz . 解 因为1-⋅=∂∂yz x yz x u , x zx yu yz ln =∂∂, x yx z u yz ln =∂∂,所以 xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-.2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分. 解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x xz, 3221=∂∂==y x y z , 所以 dy dx dz y x 323121⋅+===.3. 求函数xyz =当x =2, y =1, ∆x =0.1, ∆y =-0.2时的全增量和全微分.解 因为xy x x y y z -∆+∆+=∆, y x x x ydz ∆+∆-=12, 所以, 当x =2, y =1, ∆x =0.1, ∆y =-0.2时,119.0211.02)2.0(1-=-+-+=∆z , 125.0)2.0(211.041-=-⨯+⨯-=dz .4. 求函数z =e xy 当x =1, y =1, ∆x =0.15, ∆y =0.1时的全微分. 解 因为y xe x ye y yz x x z dz xy xy ∆+∆=∆∂∂+∆∂∂=所以, 当x =1, y =1, ∆x =0.15, ∆y =0.1时, e e e dz 25.01.015.0=⋅+⋅=.*5. 计算33)97.1()102(+的近似值. 解 设33y x z +=, 由于y yz x x z y x y y x x ∆∂∂+∆∂∂++≈∆++∆+3333)()(332233233yx y y x x y x +∆+∆++=,所以取x =1, y =2, ∆x =0.02, ∆y =-0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+-⋅⋅+⋅++≈+. *6. 计算(1.97)1.05的近似值(ln2=0.693). 解 设z =x y , 由于y yz x x z x x x y y y ∆∂∂+∆∂∂+≈∆+∆+)(y x x x yx x y y y ∆+∆+=-ln 1,所以取x =2, y =1, ∆x =-0.03, ∆y =0.05可得(1.97)1.05≈2-0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7( 已知边长为x(6m 与y(8m 的矩形( 如果x 边增加5cm 而y 边减少10cm(问这个矩形的对角线的近似变化怎样? 解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z ∆+∆+=∆+∆=≈∆,当x =6, y =8, ∆x =0.05, ∆y =-0.1时,05.0)1.0805.06(86122-=⋅-⋅+≈∆z .这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值. 解 圆柱体的体积公式为V =πR 2h , ∆V ≈dV =2πRh ∆R +πR 2∆h , 当R =4, h =20, ∆R =∆h =0.1时,∆V ≈2⨯3.14⨯4⨯20⨯0.1+3.14⨯42⨯0.1≈55.3(cm 3), 这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差. 解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z ∆⋅∂∂+∆⋅∂∂≤≈∆|)|||(122y y x x yx ∆+∆+=.令x =7, y =24, |∆x |≤0.1, |∆y |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm .*10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60︒±1︒, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=.zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈∆.令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则55.2718021278631.0232631.023278=⨯⨯⨯+⨯⨯+⨯⨯≈πδs ,82.21273sin 786321=⋅⋅⋅=πS ,%29.182.212755.27==S s δ,所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和.证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u ∆+∆≤∆+∆=∆∂∂+∆∂∂=≈∆.所以两数之和的绝对误差|∆u |等于它们各自的绝对误差|∆x |与|∆y |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和. 证明 设u =xy , y x v =, 则∆u ≈du =ydx +xdy ,2yxdyydx dv v -=≈∆, 由此可得相对误差;||||||||y dy x dx xy xdy ydx u du u u +=+=≈∆||||||||yyx x y dy x dx ∆+∆=+≤;||||||||2y dy x dx yx y xdy ydx v dv v v -=⋅-==∆||||||||y yx x y dy x dx ∆+∆=+≤.习题8-41. 设z =u 2-v 2, 而u =x +y , v =x -y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x ,y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(-1)=2(u -v )=4y .2. 设z =u 2ln v , 而y x u =, v =3x -2y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2y y x x y x y x -+-=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂)2()(ln 222-+-⋅=v u y x v u 2232)23(2)23ln(2yy x x y x y x ----=. 3. 设z =e x -2y , 而x =sin t , y =t 3, 求dtdz .解 dtdyy z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅-⋅+=--)6(cos )6(cos 22sin 223t t e t t e t t y x -=-=--.4. 设z =arcsin(x - y ), 而x +3t , y =4t 3, 求dtdz .解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x ⋅---+⋅--= 232)43(1)41(3t t t ---=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz .解 dx dy y z x z dx dz ⋅∂∂+∂∂=xxxe x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+-=a z y e u ax , 而y =a sin x , z =cos x , 求dxdu .解 dxdz dz u dx dyy u x u dx du ⋅∂+⋅∂∂+∂∂=)sin (1cos 11)(222x a e x a a e a z y ae ax ax ax -⋅+-⋅+++-= )sin cos cos sin (122x x a x a x a a e ax ++-+=x e ax sin =. 7. 设yx z arctan =, 而x =u +v , y =u -v , 验证22v u v uv z u z +-=∂∂+∂∂. 证明 )()(v yy z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂)()(111)(11222y x yx y y x -⋅++⋅+=)1()()(111)(11222-⋅-⋅++⋅++y x yx y y x22222v u v u y x y +-=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1) u =f (x 2-y 2, e xy );解 将两个中间变量按顺序编为1, 2号, 2122212)()(f ye f x xe f x y x f x u xy xy '+'=∂∂⋅'+∂-∂⋅'=∂∂, 212)2212)((f xe f y ye f y y x f y u xy xy '+'-=∂∂⋅'+∂-∂⋅'=∂∂. (2)) ,(zyy x f u =;解 1211)()(f y z yx f y x x f x u '=∂∂⋅'+∂∂⋅'=∂∂,)()(21z yy f y x y f y u ∂∂⋅'+∂∂'=∂∂2121f z f y x '+'-=,)()(21z y z f z x z f z u ∂∂⋅'+∂∂'=∂∂22f z y '⋅-=. (3) u =f (x , xy , xyz ).解 yz f y f f xu ⋅'+⋅'+⋅'=∂∂3211321f yz f y f '+'+'=,3232f xz f x xz f x f y u '+'=⋅'+⋅'=∂∂,33f xy xy f zu '=⋅'=∂∂.9. 设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z yz y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅])([])()([y u u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .10. 设)(22y x f yz -=, 其中f (u )为可导函数, 验证 211y z y z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222'-=⋅'⋅-=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()('-+=-⋅'⋅-=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+'+'-=∂∂⋅+∂∂⋅211yz zy y =⋅.11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22x z ∂∂, y x z ∂∂∂2, 22y z ∂∂.解 令u =x 2+y 2, 则z =f (u ), f x xu u f x z '=∂∂'=∂∂2)(,f y yu u f y z '=∂∂'=∂∂2)(,f x f x u f x f x z ''+'=∂∂⋅''+'=∂∂2224222,f xy yu f x y x z ''=∂∂⋅''=∂∂∂422,f y f yu f y f y z ''+'=∂∂⋅''+'=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22yz ∂∂(其中f 具有二阶连续偏导数): (1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).ufy v f y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0,vfu f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )()()(22uf x y u f y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=,)(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yvv u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂= v u fy u f xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(,)()()()(22vf y u f y x v f u f x y y z y y z∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ y vv f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)( 1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=vfx u v f v u f x u f x2222222vfv u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =;解 令u =x ,yx v =, 则z =f (u , v ).v fy u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1,vfy x dy dv v f y z ∂∂⋅-=⋅∂∂=∂∂2.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22v f x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xvv f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂=22222212vfy v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=,)1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂)(1)1()(v f y y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂= y vv f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅-∂∂⋅∂∂∂=22211 2232221vf y x v f y v u f y x ∂∂⋅-∂∂⋅-∂∂∂⋅-= )()()(2222vf y y x v f y x y y z y y z∂∂∂∂⋅-∂∂⋅-∂∂=∂∂∂∂=∂∂22423222322v f y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅-∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1'⋅y 2+f 2'⋅2xy =y 2f 1'+2xyf 2', z y =f 1'⋅2xy +f 2'⋅x 2=2xyf 1'+x 2f 2';z xx =y 2[f 11''⋅y 2+f 12''⋅2xy ]+2yf 2''+2xy [f 21''⋅y 2+f 22''⋅2xy ] =y 4f 11''+2xy 3f 12''+2yf 2''+2xy 3f 21''+4x 2y 2 f 22'' =y 4f 11''+4xy 3f 12''+2yf 2''+4x 2y 2 f 22'',z xy =2y f 1'+y 2[f 11''⋅2xy +f 12''⋅x 2]+2xf 2'+2xy [f 21''⋅2xy +f 22''⋅x 2] =2y f 1'+2xy 3f 11''+x 2y 2 f 12''+2xf 2'+4x 2y 2f 21''+2x 3yf 22'' =2y f 1'+2xy 3f 11''+5x 2y 2 f 12''+2xf 2'+2x 3yf 22'', z yy =2xf 1'+2xy [f 11''⋅2xy +f 12''⋅x 2]+x 2[f 21''⋅2xy +f 22''⋅x 2] =2xf 1'+4x 2y 2f 11''+2x 3y f 12''+2x 3yf 21''+x 4f 22'' =2xf 1'+4x 2y 2f 11''+4x 3y f 12''+x 4f 22''. (4) z =f (sin x , cos y , e x +y ).解 z x =f 1'⋅cos x + f 3'⋅e x +y =cos x f 1'+e x +y f 3', z y =f 2'⋅(-sin y )+ f 3'⋅e x +y =-sin y f 2'+e x +y f 3', z xx =-sin x f 1'+cos x ⋅(f 11''⋅cos x + f 13''⋅e x +y ) +e x +y f 3'+e x +y (f 31''⋅cos x + f 33''⋅e x +y ) =-sin x f 1'+cos 2x f 11''+e x +y cos x f 13''+e x +y f 3' +e x +y cos x f 31''+e 2(x +y ) f 33''=-sin x f 1'+cos 2x f 11''+2e x +y cos x f 13''+e x +y f 3'+e 2(x +y ) f 33'', z xy =cos x [f 12''⋅(-sin y )+ f 13''⋅e x +y ] +e x +y f 3'+e x +y [f 32''⋅(-sin y )+ f 33''⋅e x +y ] =-sin y cos x f 12''+e x +y cos x f 13' +e x +y f 3'-e x +y sin y f 32'+e 2(x +y )f 33' =-sin y cos x f 12''+e x +y cos x f 13'' +e x +y f 3'-e x +y sin y f 32''+e 2(x +y )f 33'',z yy =-cos y f 2'-sin y [f 22''⋅(-sin y )+ f 23''⋅e x +y ] +e x +y f 3'+e x +y [f 32''⋅(-sin y )+ f 33''⋅e x +y ] =-cos y f 2'+sin 2y f 22''-e x +y sin y f 23'' +e x +y f 3'-e x +y sin y f 32''+ f 33''⋅e 2(x +y )=-cos y f 2'+sin 2y f 22''-2e x +y sin y f 23''+e x +y f 3'+f 33''⋅e 2(x +y ). 13. 设u =f (x , y )的所有二阶偏导数连续, 而23t s x -=,23t s y +=, 证明2222)()()()(t u s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂.证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321yu x u t yy u t x x u t u ∂∂⋅+∂∂⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂-+∂∂+∂∂=∂∂+∂∂22)()(y u x u ∂∂+∂∂=. 又因为)2321()(22yu x u s s u s s u∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ )(23)(21222222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= )2321(23)2321(21222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅= 22222432341yu y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=,)2123()(22yu x u t t u t t u∂∂⋅+∂∂⋅-∂∂=∂∂∂∂=∂∂ )(21)(23222222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂-= )2123(21)2123(23222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅-+∂∂∂⋅+∂∂⋅--= 22222412343y u y x u x u ∂∂⋅+∂∂∂⋅-∂∂⋅=, 所以 22222222yu x u t u s u ∂∂+∂∂=∂∂+∂∂.习题8-51. 设sin y +e x -xy 2=0, 求dxdy . 解 令F (x , y )=sin y +e x -xy 2, 则F x =e x -y 2, F y =cos y -2xy ,xyy e y xy y y e F F dx dy xy x 2cos 2cos 222--=---=-=. 2. 设x y y x arctan ln 22=+, 求dxdy .解 令xyy x y x F arctan ln ),(22-+=, 则22222222)()(11221y x y x x y xy y x x y x F x ++=-⋅+-+⋅+=,22222221)(11221y x x y x xy y x y y x F y +-=⋅+-+⋅+=, yx y x F F dx dyy x -+=-=. 3. 设022=-++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(-++=, 则 xyz yz F x -=1, xyzxz F y -=2, xyz xyF z -=1, xy xyz xyz yz F F x z z x --=-=∂∂, xy xyz xyz xz F F y z z y --=-=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及y z ∂∂,解 令yz z x z y x F ln ),,(-=, 则 z F x 1=, y y z y z F y 1)(12=-⋅-=, 2211z z x y yz z x F z +-=⋅--=, 所以 z x z F F x z z x +=-=∂∂, )(2z x y z F F yz z y +=-=∂∂.5. 设2sin(x +2y -3z )=x +2y -3z , 证明1=∂∂+∂∂y z x z证明 设F (x , y , z )=2sin(x +2y -3z )-x -2y +3z , 则 F x =2cos(x +2y -3z )-1, F y =2cos(x +2y -3z )⋅2-2=2F x , F z =2cos(x +2y -3z )⋅(-3)+3=-3F x ,313=--=-=∂∂x x z x F F F F x z ,3232=--=-=∂∂x x z y F F F F yz , 于是13231=+=--=∂∂+∂∂z z z x F F F F y z x z . 6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1-=∂∂⋅∂∂⋅∂∂x z z yy x .解 因为x y F F y x -=∂∂, y z F F z y -=∂∂, zx F F x z -=∂∂, 所以 1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx -az , cy -bz )=0 所确定的函数z =f (x , y )满足 c y z b x z a =∂∂+∂∂.证明 因为vu uv u u b a c b a c x z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂, vu v v u v b a c b a c y z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂, 所以 c b a c b b a c a y z b x z a vu vv u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z-xyz =0, 求22xz∂∂.解 设F (x , y , z )=e z -xyz , 则F x =-yz , F z =e z -xy , xye yzF F x z z z x -=-=∂∂,222)()()()(xy e y x z e yz xy e x z y x z x x z z z z --∂∂--∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y zz z z ----+=32232)(22xy e e z y z xy ze y z zz ---=. 9. 设z 3-3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3-3xyz -a 3, 则 xyz yzxy z yz F F x z z x -=---=-=∂∂22333,xyz xzxy z xz F F y z z y -=---=-=∂∂22333, )()(22xyz yz y x z y y x z -∂∂=∂∂∂∂=∂∂∂ 222)()2())((xy z x yz z yz xy z y z y z --∂∂--∂∂+= 22222)()2()()(xy z x xyz xz z yz xy z xy z xz yz -----⋅-+=322224)()2(xy z y x xyz z z ---=. 10. 求由下列方程组所确定的函数的导数或偏导数: (1)设⎩⎨⎧=+++=203222222z y x y x z , 求dx dy , dx dz ;解 视y =y (x ), z =z (x ), 方程两边对x 求导得 ⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧-=+-=-xdx dzz dxdy y x dx dz dx dy y 3222.解方程组得 )13(2)16(++-=∂∂z y z x x y , 13+=z x dx dz.(2)设⎩⎨⎧=++=++10222z y x z y x , 求dz dx ,dz dy ; 解 视x =x (z ), y =y (z ), 方程两边对z 求导得 ⎪⎩⎪⎨⎧=++=++022201z dz dy y dz dx x dz dy dz dx , 即⎪⎩⎪⎨⎧-=+-=+zdz dy y dzdxx dz dy dz dx 2221.解方程组得y x z y z x --=∂∂, yx xz z y --=∂∂. (3)设⎩⎨⎧-=+=),(),(2y v x u g v y v ux f u , 其中f , g 具有一阶连续偏导数, 求x u ∂∂,xv ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得 ⎪⎩⎪⎨⎧∂∂⋅'+-∂∂⋅'=∂∂∂∂⋅'+∂∂+⋅'=∂∂x v yv g xu g x v x vf x u x u f x u 21212)1()( ,即 ⎪⎩⎪⎨⎧'=∂∂⋅⋅-'+∂∂'''-=∂∂⋅'+∂∂-'121121)12()1(g x v g yv xu g f u x v f x u f x .解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ''--'-'''--''-=∂∂,1221111)12)(1()1(g f g yv f x f u f x g x v ''--'-'-'+''=∂∂.(4)设⎩⎨⎧-=+=vu e y v u e x uu cos sin , 求x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得 ⎩⎨⎧+-=++=vdv u vdu du e dy vdv u vdu du e dx uu sin cos cos sin , 即 ⎩⎨⎧=+-=++dy vdv u du v e dx vdv u du v e u u sin )cos (cos )sin (, 从中解出du , dv 得 dy v v e v dx v v e v du uu 1)cos (sin cos 1)cos (sin sin +--++-=, dy v v e u e v dx v v e u e v dv u uuu ]1)cos (sin [sin ]1)cos (sin [cos +-+++--=, 从而1)cos (sin sin +-=∂∂v v e v x u u , 1)cos (sin cos +--=∂∂v v e v y u u, ]1)cos (sin [cos +--=∂∂v v e u e v x v u u , ]1)cos (sin [sin +-+=∂∂v v e u e v y v u u. 11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tF y F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂-∂∂⋅∂∂=.证明 由方程组⎩⎨⎧==0),,(),(t y x F t x f y 可确定两个一元隐函数⎩⎨⎧==)()(x t t x y y , 方程两边对x 求导可得⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dx dt t F dx dy y F x F dxdtt f x f dx dy ,移项得 ⎪⎩⎪⎨⎧∂∂-=∂∂+⋅∂∂∂∂=⋅∂∂-x F dx dt t F dx dy y F x f dx dt t f dx dy , 在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂-=y F t f t F tF y F t fD 的条件下 yFt f t F xFt f t F x f t F x F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂-∂∂⋅∂∂=∂∂∂∂-∂∂-∂∂⋅=1. 习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12 (-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T . 因此在点)22 ,1 ,12 (-π处, 切线方程为22211121-=-=-+z y x π, 法平面方程为0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, t t y +=1, z =t 2在对应于t =1的点处的切线及法平面方程. 解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t .在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0.3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程. 解 令F (x , y , z )=e z -z +xy -3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程. 解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++, 法线方程为00000cz z z by y y ax x x -=-=-.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z ,解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为 n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6). 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为 0)(1)(1)(1000000=-+-+-z z z y y y x x x ,即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8-71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数.解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故 )cos ,(cos )23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy '=4, 解得yy 2='. 在抛物线y 2=4x 上点(1, 2)处, 切线的斜率为y '(1)=1, 切向量为l =(1, 1), 单位切向量为)cos ,(cos )21 ,21(βα==l e . 又因为31 1)2,1()2,1(=+=∂∂y x x z , 31 1)2,1()2,1(=+=∂∂y x y z , 故所求方向导数为3221312131cos cos =⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 3. 求函数)(12222b y a x z +-=在点)2,2(b a 处沿曲线12222=+b y a x 在这点的内法线方向的方向导数.解 令1),(2222-+=by a x y x F , 则22a x F x =, 22b y F y =. 从而点(x , y )处的法向量为)2 ,2() ,(22by a x F F y x ±=±=n . 在)2,2(b a 处的内法向量为 )2 ,2()2 ,2()2,2(22ba b y a x ba-=-=n , 单位内法向量为)cos ,(cos ) ,(2222βα=+-+-=b a a b a b n e . 又因为aa x x zbab a 22)2,2(2)2,2(-=-=∂∂, b b y y zb a b a 22)2,2(2)2,2(-=-=∂∂, 所以 βαcos cos yz x z n z ∂∂+∂∂=∂∂222222b a a b b a b a +⋅++⋅=222b a ab+=.4. 求函数u =xy 2+z 3-xyz 在点(1, 1, 2)处沿方向角为3 πα=, 4 πβ=, 3πγ=的方向的方向导数. 解 因为方向向量为)21 ,22 ,21()cos ,cos ,(cos ==γβαl , 又因为1)()2,1,1(2)2,1,1(-=-=∂∂yz y x u , 0)2()2,1,1()2,1,1(=-=∂∂xz xy y u , 11)3()2,1,1(2)2,1,1(=-=∂∂xy z z u , 所以 γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂ 5211122021)1(=⋅+⋅+⋅-=. 5. 求函数u =xyz 在点(5,1,2)处沿从点(5, 1, 2)到点(9, 4, 14)的方向的方向导数.解 因为l =(9-5, 4-1, 14-2)=(4, 3, 12),)1312 ,133 ,134(||==l l e l , 并且 2)2,1,5()2,1,5(==∂∂yz xu ,10)2,1,5()2,1,5(==∂∂xz y u , 5)2,1,5()2,1,5(==∂∂xy z u , 所以 γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂ 139813125133101342=⋅+⋅+⋅=. 6. 求函数u =x 2+y 2+z 2在曲线x =t , y =t 2, z =t 3上点(1, 1, 1)处, 沿曲线在该点的切线正方向(对应于t 增大的方向)的方向导. 解 曲线x =t , y =t 2, z =t 3上点(1, 1, 1)对应的参数为t =1, 在点(1, 1,1)的切线正向为)3 ,2 ,1()3 ,2 ,1(12===t t t l ,)143,142,141(||==l l e l , 又 22)1,1,1()1,1,1(==∂∂x x u , 22)1,1,1()1,1,1(==∂∂y y u , 22)1,1,1()1,1,1(==∂∂z z u , 所以 γβαcos cos cos )1,1,1(zu y u x u l u ∂∂+∂∂+∂∂=∂∂ 1412143214221412=⋅+⋅+⋅=. 7. 求函数u =x +y +z 在球面x 2+y 2+z 2=1上点(x 0, y 0, z 0)处, 沿球面在该点的外法线方向的方向导数.解 令F (x , y , z )=x 2+y 2+z 2-1, 则球面x 2+y 2+z 2=1在点(x 0, y 0, z 0)处的外法向量为)2 ,2 ,2() , ,(000),,(000z y x F F F z y x z y x ==n , )cos ,cos ,(cos ) , ,(||000γβα===z y x n n n e , 又 1=∂∂=∂∂=∂∂zu y u x u , 所以 γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 000000111z y x z y x ++=⋅+⋅+⋅=.8. 设f (x , y , z )=x 2+2y 2+3z 2+xy +3x -2y -6z , 求grad f (0, 0, 0)及grad f (1, 1, 1).解 32++=∂∂y x x f , 24-+=∂∂x y yf , 66-=∂∂z z f . 因为 3)0,0,0(=∂∂x f, 2)0,0,0(-=∂∂yf, 6)0,0,0(-=∂∂z f , 6)1,1,0(=∂∂x f , 3)1,1,0(=∂∂y f, 0)1,1,0(=∂∂z f,所以 grad f (0, 0, 0)=3i -2j -6k ,grad f (1, 1, 1)=6i +3j .9. 设u , v 都是 x , y , z 的函数, u , v 的各偏导数都存在且连续, 证明(1) grad (u +v )=grad u + grad v ;解 k j i zv u y v u x v u v u ∂+∂+∂+∂+∂+∂=+)()()()(grad k j i )()()(zv z u y v y u x v x u ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂=)()(k j i k j i zv y v x v z u y u x u ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂= v u grad grad +=.(2) grad (uv )=v grad u +u grad v ;解 k j i zuv y uv x uv uv ∂∂+∂∂+∂∂=)()()()(grad k j i )()()(z v u z u v y v u y u v x v u x u v ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂= )()(k j i k j i zv y v x v u z u y u x u v ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂= =v grad u +u grad v .(3) grad (u 2)=2u grad u .解 k j i z u y u x u u ∂∂+∂∂+∂∂=2222)(grad k j i zu u y u u x u u ∂∂+∂∂+∂∂=222 u u zu y u x u u grad 2)(2=∂∂+∂∂+∂∂=k j i .10. 问函数u =xy 2z 在点p (1, -1, 2)处沿什么方向的方向导数最大? 并求此方向导数的最大值.解 k j i k j i 222 xy xyz z y zu y u x u u ++=∂∂+∂∂+∂∂=grad , k j i k j i +-=++=--42)2()2 ,1 ,1( )2,1,1(22xy xyz z y u grad .grad u (1, -1, 2)为方向导数最大的方向, 最大方向导数为 211)4(2|)2 ,1 ,1( 222=+-+=-u grad |.习题8-81. 求函数f (x , y )=4(x -y )-x 2-y 2的极值.解 解方程组⎩⎨⎧=--==-=024),(024),(y y x f x y x f yx , 求得驻点为(2,-2). f xx =-2, f xy =0, f yy =-2,在驻点(2,-2)处, 因为f xx f yy -f xy 2=(-2)(-2)-0=4>0, f xx =-2<0,所以在点(2, -2)处, 函数取得极大值, 极大值为f (2, -2)=8.2. 求函数f (x , y )=(6x -x 2)(4y -y 2)的极值.解 解方程组⎩⎨⎧=--==--=0)24)(6(),(0)4)(26(),(22y x x y x f y y x y x f yx , 得驻点(0, 0), (0, 4), (3, 2), (6, 0), (6,4).函数的二阶偏导数为f xx (x , y )=-2(4y -y 2), f xy (x , y )=4(3-x )(2-y ), f yy (x , y )=-2(6x -x 2). 在点(0, 0)处, 因为f xx ⋅f yy -f xy 2=0⨯0-242=-242<0,所以f (0, 0)不是极值;在点(0, 4)处, 因为f xx ⋅f yy -f xy 2=0⨯0-(-24)2=-242<0,所以f (0, 4)不是极值.在点(3, 2)处, 因为f xx ⋅f yy -f xy 2=(-8)⨯(-18)-02=8⨯18>0, f xx =-8<0,所以f (3, 2)=36是函数的极大值.在点(6, 0)处, 因为f xx ⋅f yy -f xy 2=0⨯0-(-24)2=-242>0,所以f (6, 0)不是极值.在点(6, 4)处, 因为f xx ⋅f yy -f xy 2=0⨯0-242=-242>0,所以f (6, 4)不是极值.综上所述, 函数只有一个极值, 这个极值是极大值f (3, 2)=36. 3. 求函数f (x , y )=e 2x (x +y 2+2y )的极值.解 解方程组⎩⎨⎧=+==+++=0)22(),(0)1422(),(222y e y x f y y x e y x f x yx x , 得驻点)1 ,21(-. f xx (x , y )=4e 2x (x +y 2+2y +1), f xy (x , y )=4e 2x (y +1), f yy (x , y )=2e 2x . 在驻点)1 ,21(-处, 因为 f xx ⋅f yy -f xy 2=2e ⋅2e -02=4e 2>0, f xx =2e >0, 所以2)1 ,21(e f -=-是函数的极小值. 4. 求函数z =xy 在适合附加条件x +y =1下的极大值.解 由x +y =1得y =1-x , 代入z =xy , 则问题化为求z =x (1-x )的无条件极值.x dxdz 21-=, 222-=dx z d . 令,0=dx dz 得驻点21=x . 因为022122<-==x dx zd , 所以21=x 为极大值点, 极大值为41)211(21=-=z . 5. 从斜边之长为l 的一切直角三角形中, 求有最大周界的直角三角形.解 设直角三角形的两直角边之长分别为x , y , 则周长 S =x +y +l (0<x <l , 0<y <l ).因此, 本题是在x 2+y 2=l 2下的条件极值问题, 作函数 F (x , y )=x +y +l +λ(x 2+y 2-l 2).解方程组⎪⎩⎪⎨⎧=+=+==+=222021021ly x y F x F y x λλ, 得唯一可能的极值点2l y x ==. 根据问题性质可知这种最大周界的直角三角形一定存在, 所以斜边之长为l 的一切直角三角形中, 周界最大的是等腰直角三角形.6. 要造一个容积等于定数k 的长方体无盖水池, 应如何选择水池的尺寸方可使表面积最小.解 设水池的长为x , 宽为y , 高为z , 则水池的表面积为 S =xy +2xz +2yz (x >0, y >0, z >0).本题是在条件xyz =k 下, 求S 的最大值.作函数F (x , y , z )=xy +2xz +2yz +λ(xyz -k ).解方程组⎪⎩⎪⎨⎧==++==++==++=k xyz xy y x F xz z x F yz z y F z y x 0220202λλλ, 得唯一可能的极值点)221 ,2 ,2(333k k k . 由问题本身可知S 一定有最小值, 所以表面积最小的水池的长和宽都应为.23k 高为3221k . 7. 在平面xOy 上求一点, 使它到x =0, y =0及x +2y -16=0三直线距离平方之和为最小.解 设所求点为(x , y ), 则此点到x =0的距离为|y |, 到y =0的距离为|x |, 到x +2y -16=0的距离为221|162|+-+y x , 而距离平方之和为 222)162(51-+++=y x y x z . 解方程组⎪⎩⎪⎨⎧=-++=∂∂=-++=∂∂0)162(5420)162(522y x y y z y x x x z , 即{03292083=-+=-+y x y x . 得唯一的驻点)516 ,58(, 根据问题的性质可知, 到三直线的距离平方之和最小的点一定存在, 故)516 ,58(即为所求. 8( 将周长为2p 的矩形绕它的一边旋转而构成一个圆柱体( 问矩形的边长各为多少时( 才可使圆柱体的体积为最大?解 设矩形的一边为x , 则另一边为(p -x ), 假设矩形绕p -x 旋转, 则旋转所成圆柱体的体积为V =πx 2(p -x ).由0)32()(22=-=--=x p x x x p x dx dV πππ, 求得唯一驻点p x 32=. 由于驻点唯一, 由题意又可知这种圆柱体一定有最大值, 所以当矩形的边长为32p 和3p 时, 绕短边旋转所得圆柱体体积最大. 9. 求内接于半径为a 的球且有最大体积的长方体.解 设球面方程为x 2+y 2+z 2=a 2, (x , y , z )是它的各面平行于坐标面的内接长方体在第一卦限内的一个顶点, 则此长方体的长宽高分别为2x , 2y , 2z , 体积为V =2x ⋅2y ⋅2z =8xyz .令 F (x , y , z )=8xyz +λ(x 2+y 2+z 2-a 2) .解方程组⎪⎩⎪⎨⎧=++=+==+==+=2222028028028a z y x z xy F y xz F x yz F z y x λλλ, 即⎪⎩⎪⎨⎧=++=+=+=+2222040404a z y x z xy y xz x yz λλλ, 得唯一驻点)3,3,3(a a a . 由题意可知这种长方体必有最大体积, 所以当长方体的长、宽、高都为32a 时其体积最大. 10. 抛物面z =x 2+y 2被平面x +y +z =1截成一椭圆, 求原点到这椭圆的最长与最短距离.解 设椭圆上点的坐标(x , y , z ), 则原点到椭圆上这一点的距离平方为d 2=x 2+y 2+z 2, 其中x , y , z 要同时满足z =x 2+y 2和x +y +z =1. 令 F (x , y , z )=x 2+y 2+z 2+λ1(z -x 2-y 2)+λ2(x +y +z -1).解方程组⎪⎩⎪⎨⎧=++==+-==+-=02022022212121λλλλλλz F y y F x x F z y x , 得驻点231±-==y x , 32 =z . 它们是可能的两个极值点, 由题意这种距离的最大值和最小值一定存在, 所以距离的最大值和最小值在两点处取得, 因为在驻点处359)32()231(2222222 =+±-=++=z y x d , 所以3591+=d 为最长距离;3592-=d 为最短距离.总习题八1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)f (x , y )在(x , y )可微分是f (x , y )在该点连续的______条件, f (x , y )在点连续是f (x , y )在该点可微分的______条件.解 充分; 必要.(2)z =f (x , y )在点(x , y )的偏导数x z ∂∂及yz ∂∂存在是f (x , y )在该点可微分的______条件, z = f (x , y )在点(x , y )可微分是函数在该点的偏导数x z ∂∂及y z ∂∂存在的______条件. 解 必要; 充分.(3)z =f (x , y )的偏导数x z ∂∂及yz ∂∂在(x , y )存在且连续是f (x , y )在该点可微分的______条件. 解 充分. (4)函数z =f (x , y )的两个二阶偏导数y x z ∂∂∂2及xy z ∂∂∂2在区域D 内连续是这两个二阶混合偏导数在D 内相等的______条件.解 充分.2. 选择下述题中给出的四个结论中一个正确的结论:设函数f (x , y )在点(0, 0)的某邻域内有定义, 且f x (0, 0)=3, f y (0, 0)=-1, 则有______.(A )dz |(0, 0)=3dx -dy .(B )曲面z =f (x , y )在点(0, 0, f (0, 0))的一个法向量为(3, -1, 1).(C )曲线⎩⎨⎧==0),(y y x f z 在点(0, 0, f (0, 0))的一个切向量为(1, 0, 3). (D )曲线⎩⎨⎧==0),(y y x f z 在点(0, 0, f (0, 0))的一个切向量为(3, 0, 1). 解 (C ).3. 求函数)1ln(4),(222y x y x y x f ---=的定义域, 并求),(lim )0,21(),(y x f y x →. 解 函数的定义域为{(x , y )| 0<x 2+y 2<1, y 2≤4x }因为D ∈)0 ,21(, 故由初等函数在定义域内的连续性有 43ln 2)1ln(4)1ln(4lim ),(lim )0,21(222222)0,21(),()0,21(),(=---=---=→→y x y x y x y x y x f y x y x .。
1. 计算下面对面积的曲面积分:(1)dS y x z )342(++∑⎰⎰, 其中∑为平面1432=++z y x 在第一象限中的部分; 解 y x z 3424:--=∑, x y x D xy 2310 ,20 :-≤≤≤≤, d x d y z z dS y x 221++=d x d y 361=, 61436143614)342(==⋅=++⎰⎰⎰⎰⎰⎰∑dxdy dxdy dS y x z xyxy D D . (2)dS y x 2)1(1++∑⎰⎰, 其中∑为四面体x +y +z ≤1, x ≥0, y ≥0, z ≥0的边界. 解 ∑=∑1+∑2+∑3+∑4, 其中∑1: x =0, D yz : 0≤y ≤1, 0≤z ≤1-y , dS =dydz ,∑2: y =0, D zx : 0≤z ≤1, 0≤x ≤1-z , dS =dzdx ,∑3: z =0, D xy : 0≤x ≤1, 0≤y ≤1-x , dS =dxdy ,∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x , dxdy dS 3=.43212)1(1∑∑∑∑∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++=++dS y xd x d y y x d x d y y x d z d x x d y d z y xy xy zx yzD D D D 3)1(1)1(1)1(1)1(12+++++++++=⎰⎰⎰⎰⎰⎰⎰⎰ ⎰⎰⎰⎰⎰⎰---+++++++=x z y dy y x dx dx x dz dz y dy 101010101010)1(1)31()1(1)1(1 2ln )13(233+--=. (3)dS r 21∑⎰⎰, 其中∑是圆柱面x 2+y 2=R 2上界于平面z =0及z =h 之间的部分, r 是∑上的点到原点的距离.解: ∑=∑1+∑2, 其中221 :x R y -=∑, 222 :x R y --=∑D zx : -R ≤x ≤R , 0≤z ≤h , dxdy xR R dxdy z y dS y x 22221-='+'+=, dS z y x dS z y x dS z y x dS r 2222222222111121+++++=++=∑∑∑∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+-=-⋅+=-h R R D dz z R dx x R R dxdy x R R z R xy0222222221212 Rh R R a r c t a n 122+=π. (4)dS zx yz xy )(++∑⎰⎰, 其中∑为锥面22y x z +=被x 2+y 2=2ax 所截得的有限部分.解 ∑: 22y x z +=, D xy : x 2+y 2≤2ax , dxdy dxdy z z dS y x 2122=++=,d x d y y x y x xy dS zx yz xy xy D ])([2)(22+++=++⎰⎰⎰⎰∑⎰⎰++=-θππθθθθc o s 202222)]sin (cos cos sin [2a rdr q r r dθθθθθθππd a )c o s s i n c o s c o s (s i n 24422554⎰-++=421564a =. 提示: dxdy yx y y x x dS 2222221++++=.2. 若半径为a 的球面上每点的面密度等于该点到球的某定直径的距离的平方, 试求球面的质量.解 建立坐标系, 使球心在原点, 则球面方程为x 2+y 2+z 2=a 2.设球面上每点的面密度等于该点z 轴的距离的平方, 即22),,(y x z y x +=μ.∑=∑1+∑2, 其中2221 :y x a z --=∑, 2222 :y x a z ---=∑, D xy : x 2+y 2≤a 2. ⎰⎰⎰⎰⎰⎰--⋅+=+=+=∑∑xy D dxdy yx a a y x dS y x dS y x M 222222222)(2)(2)(1πθπ42202203812a r d r r a r d a a =⋅-⋅=⎰⎰.提示: dxdy z z dS y x 221++=dxdy yx a a 222--=. 3. 求面密度为μ0的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量.解 ∑: 222y x a z --=, D xy : x 2+y 2≤a 2,d x d y z z dS y x 221++=d x d y yx a a 222--=,d x d y yx a a y x dS y x I z 222022022)()(--+=+=∑∑⎰⎰⎰⎰μμ ⎰⎰-=πθμ2002230a dr y a r d a 4034a πμ=. 提示: dxdy y x a y y x a x dS 22222222)()(1---+---+=dxdy yx a a 222--=,。
同济六版高等数学课后答案全集第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A\B 及A\(A\B)的表达式.2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B)C =AC ⋃BC . .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f(A ⋃B)=f(A)⋃f(B);(2)f(A ⋂B)⊂f(A)⋂f(B).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中IX 、IY 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有IX x =x ; 对于每一个y ∈Y , 有IY y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f(A))⊃A ;(2)当f 是单射时, 有f -1(f(A))=A .6. 求下列函数的自然定义域:(1)23+=x y ;. (2)211x y -=; (3)211x x y --=;(4)241x y -=;(5)x y sin =; (6) y =tan(x +1);(7) y =arcsin(x -3); (8)x x y 1arctan 3+-=;. (9) y =ln(x +1);(10)x e y 1=.7. 下列各题中, 函数f(x)和g(x)是否相同?为什么?(1)f(x)=lg x2, g(x)=2lg x ;(2) f(x)=x , g(x)=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f(x)=1, g(x)=sec2x -tan2x .8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x)的图形.. 9. 试证下列函数在指定区间内的单调性:(1)x xy -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).10. 设 f(x)为定义在(-l , l)内的奇函数, 若f(x)在(0, l)内单调增加, 证明f(x)在(-l , 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l , l)上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x2(1-x2);(2)y =3x2-x3;(3)2211x xy +-=;(4)y =x(x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x aa y -+= 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);.(2)y =cos 4x ;(3)y =1+sin πx ;(4)y =xcos x ;(5)y =sin2x .14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
同济大学第六版高等数学上下册课后习题答案5-11. 利用定积分定义计算由抛物线y =x 2+1, 两直线x =a 、x =b (b >a )及横轴所围成的图形的面积.解 第一步: 在区间[a , b ]内插入n -1个分点i nab a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 把区间[a , b ]分成n 个长度相等的小区间, 各个小区间的长度为: nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 第二步: 在第i 个小区间[x i -1, x i ] (i =1, 2, ⋅ ⋅ ⋅, n )上取右端点i nab a x i i -+==ξ, 作和 nab i n a b a x f S ni i i ni n -⋅+-+=∆=∑∑==]1)[()(211ξ ∑=+-+-+-=n i i na b i n a b a a n a b 12222]1)()(2[]6)12)(1()(2)1()(2[)(222n n n n na b n n n a b a na n a b +++⋅-++⋅-+-= ]16)12)(1()()1)(()[(222+++-++-+-=nn n a b n n a b a a a b . 第三步: 令λ=max{∆x 1, ∆x 2, ⋅ ⋅ ⋅ , ∆x n }nab -=, 取极限得所求面积 ∑⎰=→∆==ni i i ba x f dx x f S 10)(lim )(ξλ]16)12)(1()()1)(()[(lim 222+++-++-+-=∞→nn n a b n n a b a a a b n a b a b a b a b a a a b -+-=+-+-+-=)(31]1)(31)()[(3322.2. 利用定积分定义计算下列积分:(1)xdx ba ⎰(a <b ); (2)dx e x ⎰10.解 (1)取分点为i n a b a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点i nab a x i i -+==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是∑∑⎰=∞→=∞→-⋅-+=∆=ni n n i i i n ba nab i n a b a x xdx 11)(lim lim ξ )(21]2)1()()([lim )(22222a b n n n a b a b a a b n -=+-+--=∞→. (2)取分点为n i x i =(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nx i 1=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点nix i i ==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是) (1lim 1lim 21110n n n n n n i n i n xe e e nn e dx e +⋅⋅⋅++==∞→=∞→∑⎰1)1(]1[lim1])(1[1lim 11111-=--=--⋅=∞→∞→e e n e e e e e nnn n nn n n n .3. 利用定积分的几何意义 说明下列等式: (1)1210=⎰xdx ; (2)41102π=-⎰dx x ;(3)⎰-=ππ0sin xdx ;(4)⎰⎰=-2022cos 2cos πππxdx xdx .解 (1)⎰102xdx 表示由直线y =2x 、x 轴及直线x =1所围成的面积, 显然面积为1.(2)⎰-1021dx x 表示由曲线21x y -=、x 轴及y 轴所围成的四分之一圆的面积, 即圆x 2+y 2=1的面积的41:41411212ππ=⋅⋅=-⎰dx x . (3)由于y =sin x 为奇函数, 在关于原点的对称区间[-π, π]上与x 轴所夹的面积的代数和为零, 即⎰-=ππ0sin xdx .(4)⎰-22cos ππxdx 表示由曲线y =cos x 与x 轴上]2,2[ππ-一段所围成的图形的面积. 因为cos x为偶函数, 所以此图形关于y 轴对称. 因此图形面积的一半为⎰20cos πxdx , 即⎰⎰=-2022cos 2cos πππxdx xdx .4. 水利工程中要计算拦水闸门所受的水压力, 已知闸门上水的压强p (单位面积上的压力大小)是水深h 的函数, 且有p =9⋅8h (kN/m 2). 若闸门高H =3m , 宽L =2m , 求水面与闸门顶相齐时闸门所受的水压力P .解 建立坐标系如图. 用分点i nHx i =(i =1, 2, ⋅ ⋅ ⋅, n -1)将区间[0, H ]分为n 分个小区间, 各小区间的长为nHx i =∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间[x i -1, x i ]上, 闸门相应部分所受的水压力近似为 ∆P i =9.8x i l ⋅∆x i . 闸门所受的水压力为22118.42)1(lim 8.9lim 8.98.9lim H L nn n H L n Hi n H L x L x P n ni n ni i i n ⋅=+⋅=⋅=∆⋅⋅=∞→=∞→=∞→∑∑.将L =2, H =3代入上式得P =88.2(千牛).5. 证明定积分性质: (1)⎰⎰=ba ba dx x f k dx x kf )()(; (2)ab dx dx ba ba -==⋅⎰⎰1.证明 (1)⎰∑∑⎰=∆=∆==→=→ba ni i i ni i i ba dx x f k x f k x kf dx x kf )()(lim )(lim )(1010ξξλλ.(2)a b a b x x dx ni i ni i ba -=-=∆=∆⋅=⋅→=→=→∑∑⎰)(lim lim 1lim 101010λλλ.6. 估计下列各积分的值: (1)⎰+412)1(dx x ; (2)⎰+ππ4542)sin 1(dx x ;(3)⎰331arctan xdx x ;(4)⎰-022dx e xx.解 (1)因为当1≤x ≤4时, 2≤x 2+1≤17, 所以 )14(17)1()14(2412-⋅≤+≤-⋅⎰dx x , 即 51)1(6412≤+≤⎰dx x . (2)因为当ππ454≤≤x 时, 1≤1+sin 2x ≤2, 所以 )445(2)sin 1()445(14542ππππππ-⋅≤+≤-⋅⎰dx x ,即 ππππ2)sin1(4542≤+≤⎰dx x .(3)先求函数f (x )=x arctan x 在区间]3 ,31[上的最大值M 与最小值m .21arctan )(x x x x f ++='. 因为当331≤≤x 时, f '(x )>0, 所以函数f (x )=x arctan x 在区间]3 ,31[上单调增加. 于是3631arctan31)31(π===f m , 33arctan 3)3(π===f M .因此)313(3arctan )313(36331-≤≤-⎰ππxdx x ,即32arctan 9331ππ≤≤⎰xdx x . (4)先求函数xx e x f -=2)(在区间[0, 2]上的最大值M 与最小值m .)12()(2-='-x e x f xx , 驻点为21=x .比较f (0)=1, f (2)=e 2,41)21(-=e f ,得41-=e m , M =e 2. 于是)02()02(220412-⋅≤≤-⎰--e dx e e xx,即 41022222---≤≤-⎰e dx dx e e xx .7. 设f (x )及g (x )在[a , b ]上连续, 证明:(1)若在[a , b ]上 f (x )≥0, 且0)(=⎰ba dx x f , 则在[a ,b ]上f (x )≡0; (2)若在[a , b ]上, f (x )≥0, 且f (x )≢0, 则0)(>⎰ba dx x f ;(3)若在[a , b ]上, f (x )≤g (x ), 且⎰⎰=b a ba dx x g dx x f )()(, 则在[ab ]上f (x )≡g (x ).证明 (1)假如f (x )≢0, 则必有f (x )>0. 根据f (x )在[a , b ]上的连续性, 在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是0)(2)()()()()()(0>-≥≥++=⎰⎰⎰⎰⎰c d x f dx x f dx x f dx x f dx x f dx x f dc bd d c c a b a . 这与条件0)(=⎰ba dx x f 相矛盾. 因此在[a ,b ]上f (x )≡0.(2)证法一 因为f (x )在[a , b ]上连续, 所以在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是⎰⎰>-≥≥badcc d x f dx x f dx x f 0)(2)()()(0. 证法二 因为f (x )≥0, 所以0)(≥⎰ba dx x f . 假如0)(>⎰ba dx x f 不成立. 则只有0)(=⎰ba dx x f , 根据结论(1), f (x )≡0, 矛盾. 因此0)(>⎰ba dx x f . (3)令F (x )=g (x )-f (x ), 则在[a ,b ]上F (x )≥0且0)()()]()([)(=-=-=⎰⎰⎰⎰ba b a b a b a dx x f dx x g dx x f x g dx x F ,由结论(1), 在[a , b ]上F (x )≡0, 即f (x )≡g (x ).4. 根据定积分的性质及第7题的结论, 说明下列积分哪一个的值较大: (1)⎰102dx x 还是⎰103dx x ?(2)⎰212dx x 还是⎰213dx x ? (3)⎰21ln xdx 还是⎰212)(ln dx x ? (4)⎰10xdx 还是⎰+10)1ln(dx x ? (5)⎰10dx e x 还是⎰+10)1(dx x ?解 (1)因为当0≤x ≤1时, x 2≥x 3, 所以⎰⎰≥103102dx x dx x . 又当0<x <1时, x 2>x 3, 所以⎰⎰>103102dx x dx x . (2)因为当1≤x ≤2时, x 2≤x 3, 所以⎰⎰≤213212dx x dx x . 又因为当1<x ≤2时, x 2<x 3, 所以⎰⎰<213212dx x dx x .(3)因为当1≤x ≤2时, 0≤ln x <1, ln x ≥(ln x )2, 所以⎰⎰≥21221)(ln ln dx x xdx . 又因为当1<x ≤2时, 0<ln x <1, ln x >(ln x )2, 所以⎰⎰>21221)(ln ln dx x xdx . (4)因为当0≤x ≤1时, x ≥ln(1+x ), 所以⎰⎰+≥1010)1ln(dx x xdx . 又因为当0<x ≤1时, x >ln(1+x ), 所以⎰⎰+>1010)1ln(dx x xdx .(5)设f (x )=e x -1-x , 则当0≤x ≤1时f '(x ) =e x -1>0, f (x )=e x -1-x 是单调增加的. 因此当0≤x ≤1时, f (x )≥f (0)=0, 即e x ≥1+x , 所以⎰⎰+≥1010)1(dx x dx e x . 又因为当0<x ≤1时, e x >1+x , 所以⎰⎰+>1010)1(dx x dx e x .。
习题一 解答1.在1,2,3,4,四个数中可重复地先后取两个数,写出这个随机事件的样本空间及事件A =“一个数是另一个数的2倍”,B =“两个数组成既约分数”中的样本点。
解 Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1)(4,2),(4,3),(4,4)};A ={(1,2),(2,1),(2,4),(4,2)};B ={(1,2),(1,3},(1,4),(2,1),(2,3),(3,1),(3,2),(3,4),(4,1)(4,3)}2. 在数学系学生中任选一名学生.设事件A ={选出的学生是男生},B ={选出的学生是三年级学生},C ={选出的学生是科普队的}.(1)叙述事件ABC 的含义.(2)在什么条件下,ABC =C 成立? (3)在什么条件下,C ⊂B 成立?解 (1)事件ABC 的含义是,选出的学生是三年级的男生,不是科普队员.(2)由于ABC ⊂C ,故ABC =C 当且仅当C ⊂ABC .这又当且仅当C ⊂AB ,即科普队员都是三年级的男生.(3)当科普队员全是三年级学生时,C 是B 的子事件,即C ⊂B 成立. 3.将下列事件用A ,B ,C 表示出来: (1)只有C 发生;(2)A 发生而B ,C 都不发生; (3)三个事件都不发生;(4)三个事件至少有一个不发生;(5)三个事件至少有一套(二个不发生)发生; (6)三个事件恰有二个不发生; (7)三个事件至多有二个发生; (8)三个事件中不少于一个发生。
解 (1)ABC ; (2)ABC : (3)ABC (4)A B C ; (5)AB BCAC ;(6)ABCABCABC ;(7)ABC ; (8)AB C 。
4.设A ,B ,C 是三个随机事件,且=====)()(,41)()()(CB P AB P C P B P A p 0,81)(=AC P ,求A ,B ,C 中至少有一个发生的概率. 解 设D ={A ,B ,C 中至少有一个发生},则D =A +B +C ,于是 P (D )=P (A +B +C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ). 又因为,41)()()(===C P B P A P ,0)()(==CB P AB P 81)(=AC P ,而由P (AB )=0,有P (ABC )=0,所以⋅=-=858143)(D P 5.掷两枚匀称的硬币,求它们都是正面的概率.解 设A ={出现正正},其基本事件空间可以有下面三种情况: (Ⅰ)Ω1={同面、异面},n 1=2.(Ⅱ)Ω2={正正、反反、一正一反},n 2=3. (Ⅲ)Ω3={正正、反反、反正、正反},n 3=4.于是,根据古典概型,对于(Ⅰ)来说,由于两个都出现正面,即同面出现,因此,m 1=1,于是有21)(=A P . 而对于(Ⅱ)来说,m 2=1,于是有31)(=A P .而对于(Ⅲ)来说,m 3=1,于是有41)(=A P . 6.口袋中装有4个白球,5个黑球。
从中任取两个球,求取出的两个球都是白球的概率。
解 试验的基本事件(样本点)总数29n C =,设A=“取得两个白球”,则A 包含的基本事件数24m C =,有古典概型有24291()6C P A C ==7.两封信任意地向标号为1,2,3,4的四个邮筒投递,求:(1)第三个邮筒恰好投入一封信的概率;(2)有两个邮筒各有一封信的概率。
解 (1)设事件A 表示“第三个邮筒恰好投入一封信”。
两封信任意投入4个邮筒,共有42种等可能投法,组成事件A 的不同投法有112323C C =⨯种,于是11232263()448C C P A ===(2)设B 表示“有两个邮筒各有一封信”,则2422!3()44C P A ⋅==8.在100个产品中有70件一等品,20件二等品,10件三等品,规定一、二等品为合格品,考虑这批产品的合格率与一、二等品率的关系。
解 设事件A ,B 分别表示产品为一、二等品,显然事件A 与B 互补相容,并且事件A B 表示产品为合格品,于是70()100P A =,20()100P B =,702090()100100P A B +==. 可见 ()()()P AB P A P B =+9.三只外观相同的钢笔分别属于甲、乙、丙三人.如今三人各取一只,求:(1)恰好取到自己的笔的概率;(2)都没有取到自己的笔的概率.分析 设D 1={都取到自己的笔},D 2={都没有取到自己的笔}.这是一个古典概型问题.我们有因此⋅==3)(,6)(21D P D P 10.设随机事件B 是A 的子事件,已知P (A )=1/4,P (B )=1/6,求P (B |A ).解 因为B ⊂A ,所以P (B )=P (AB ),因此⋅===32)()()()()|(A P B P A P AB P A B P11.在100件产品中有5件是不合格的,无放回地抽取两件,问第一次取到正品而第二次取到次品的概率是多少?解 设事件A ={第一次取到正品},B ={第二次取到次品}.用古典概型方法求出.010095)(=/=A P 由于第一次取到正品后不放回,那么第二次是在99件中(不合格品仍是5件)任取一件,所以⋅=995)|(A B P 由公式(1-4),⋅=⨯==3961999510095)|()()(A B P A P AB P12.五个人抓一个有物之阄,求第二个人抓到的概率.解 这是一个乘法公式的问题.设A i ={第i 个人抓到有物之阄}(i =1,2,3,4,5),有,41)|(,54)(,51)(1211===A A P A P A P所以13.加工某一零件共需经过四道工序,设第一、二、三、四道工序的次品率分别是2%、3%、5%、3%,假定各道工序是互不影响的,求加工出来的零件的次品率.解 设{},1,2,3,4i A i i ==第道工序加工的零件是次品,且i A 相互独立,{}A =加工的零件是次品,由题意得,1()2%P A =、2()3%P A =、3()5%P A =、4()3%P A =从而12341234()1()1()()()()1(12%)(13%)(15%)(13%)10.980.970.950.970.124P A P A A A A P A P A P A P A =-=-=-----=-⨯⨯⨯=14.一批零件共100个,其中有次品10个.每次从中任取一个零件,取出的零件不再放回去,求第一、二次取到的是次品,第三次才取到正品的概率.解 设{},1,2,3i A i i ==第次取到的是次品,由题意得,1101()10010P A ==、2191(|)9911P A A ==、3129045(|)9849P A A A ==从而1231213121145()()(|)(|)0.0084101149P A A A P A P A A P A A A ==⨯⨯= 15.由以往记录的数据分析,某船只在不同情况下运输某种物品,损坏2%,10%,90%的概率分别为0.8,0.15和0.05.现在从中随机地取三件,发现这三件全是好的,试分析这批物品的损坏率为多少?分析 设B ={三件都是好的},A 1={损坏率为2%}, A 2={损坏率为10%},A 3={损坏率为90%},则A 1,A 2,A 3两两互斥,且A 1∪A 2∪A 3=Ω.已知P (A 1)=0.8,P (A 2)=0.15,P (A 3)=0.05,且3198.0)|(=A B P , 3290.0)|(=A B P , 3310.0)|(=A B P .由全概率公式可知)()|()(31i i i A P A B P B P ∑==05.01.015.090.08.098.0333⨯+⨯+⨯=8624.0≈.由贝叶斯公式,这批物品的损坏率为2%,10%,90%的概率分别是,8731.08624.08.098.0)()()|()|(3111≈⨯==B P A P A B P B A P,1268.08624.015.090.0)()()|()|(3222≈⨯==B P A P A B P B A P.0001.08624.005.01.0)()()|()|(3333≈⨯==B P A P A B P B A P由于P (A 1|B )比P (A 2|B ),P (A 3|B )大得多,因此可以认为这批货物的损坏率为2%.16. 袋中有15个小球,其中7个是白球,8个是黑球.现在从中任取4个球,发现它们颜色相同,问它们都是黑色的概率为多少?解 设A 1=“4个球全是黑的”,A 2=“4个球全是白的”,A =“4个球颜色相同”.使用古典概型,有P (A 1)=41548/C C ,P (A 2)=41547/C C .而A =A 1∪A 2且A 1A 2=∅,得415474821)()()(C C C A P A P A P +=+=. 所以概率是在4个球的颜色相同的条件下它们都是黑球的条件概率,即P (A 1|A ).注意到A 1⊂A ,A 1A =A 1,有⋅=+===32)()()()()|(474848111C C C A P A P A P A A P A A P 17.设袋中有4个乒乓球,其中1个涂有白色,1个涂有红色,1个涂有蓝色,1个涂有白、红、蓝三种颜色.今从袋中随机地取一个球,设事件A ={取出的球涂有白色},B ={取出的球涂有红色},C ={取出的球涂有蓝色}. 试验证事件A ,B ,C 两两相互独立,但不相互独立. 此题从现实情况分析是不合理的,故不要深究。
证 根据古典概型,我们有n =4,而事件A ,B 同时发生,只能是取到的球是涂有白、红、蓝三种颜色的球,即m =1,因而⋅=41)(AB P 同理,事件A 发生,只能是取到的球是涂红色的球或涂三种颜色的球,因而⋅==⋅==2142)(2142)(B P A P 因此,有 ,412121)()(=⨯=B P A P所以 P (AB )=P (A )P (B ),即事件A ,B 相互独立.类似可证,事件A ,C 相互独立,事件B ,C 相互独立,即A ,B ,C 两两相互独立,但是由于,41)(=ABC P而 ,4181212121)()()(=/=⨯⨯=C P B P A P 所以A ,B ,C 并不相互独立.18.设两两相互独立的三事件A ,B ,C ,满足:ABC =∅,P (A )=P (B )=P (C )<21,并且169)(=++C B A P ,求事件A 的概率. 分析 设P (A )=p .由于ABC =∅,有P (ABC )=0,根据三个事件两两独立情况下的加法公式,有P (A +B +C )=P (A )+P (B )+P (C )-P (A )P (B )-P (B )P (C )-P (A )P (C )+P (ABC ),即 ,1690332=+-p p 亦即 ,01632=+-p p 解得 41=p 或43(由题意舍去). 于是 ⋅=41)(A P19设A ,B 是两个随机事件,且0<P (A )<1,P (B )>0,)|()|(A B P A B P =,则P (AB )=P (A )P (B ).分析 由公式()()()(|),(|),()()1()P AB P AB P AB P B A P B A P A P A P A ===- 由题设 ),|()|(A B P A B P =即 ,)(1)()()(A P B A P A P AB P -=于是,有()()(()())()()()(),P AB P A P AB P AB P A P AB AB P A P B =+=+=即A 、B 相互独立.20.设两个随机事件A ,B 相互独立,已知仅有A 发生的概率为41,仅有B 发生的概率为41,求 P (A ),P (B ). 分析 方法1 因为P (A )>0,P (B )>0,且A 与B 相互独立,所以AB ≠∅(想一想为什么).一方面P (A +B )=P (A )+P (B )-P (A )P (B ); (1-6)另一方面).()(21)()()()()(B P A P B P A P B A P B A P B A P +=++=+ (1-7)由于)()(B A P B A P =,有),()()()(B P AB B A P AB B A P A P =+=+=于是由式(1-6),式(1-7)有,))((21))(()(222A P A P A P +=- 即 ⋅===-21)(,21)(,41))(()(2B P A P A P A P 方法2 因为A 与B 相互独立,所以A 与B 也相互独立.由于)()(B A P B A P =,有P (A )=P (B ),于是,41))(1)(())(1)(()()()(=-=-==A P A P B P A P B P A P B A P因此 ⋅==21)()(B P A P21.用高射炮射击飞机,如果每门高射炮击中飞机的概率是0.6,试问:(1)用两门高射炮分别射击一次击中飞机的概率是多少?(2)若有一架敌机入侵,至少需要多少架高射炮同时射击才能以99%的概率命中敌机?解 (1)令B i ={第i 门高射炮击中敌机}(i =1,2),A ={击中敌机}.在同时射击时,B 1与B 2可以看成是互相独立的,从而21,B B 也是相互独立的,且有P (B 1)=P (B 2)=0.6,.4.0)(1)()(121=-==B P B P B P方法1(加法公式)由于A =B 1+B 2,有P (A )=P (B 1+B 2)=P (B 1)+P (B 2)-P (B 1)P (B 2)=0.6+0.6-0.6×0.6=0.84.方法2(乘法公式) 由于21B B A =,有,16.04.04.0)()()()(2121=⨯===B P B P B B P A P于是 .84.0)(1)(=-=A P A P(2)令n 是以99%的概率击中敌机所需高射炮的门数,由上面讨论可知,99%=1-0.4n 即 0.4n =0.01,亦即.026.53979.024.0lg 01.0lg ≈--==n因此若有一架敌机入侵,至少需要配置6门高射炮方能以99%的把握击中它.22.设某人从外地赶来参加紧急会议.他乘火车、轮船、汽车或飞机来的概率分别是31110510、、及52,如果他乘飞机来,不会迟到;而乘火车、轮船或汽车来迟到的概率分别为41、⋅12131、 试问:(1)他迟到的概率;(2)此人若迟到,试推断他是怎样来的可能性最大?解 令A 1={乘火车},A 2={乘轮船},A 3={乘汽车},A 4={乘飞机},B ={迟到}.按题意有:,103)(1=A P ,51)(2=A P ,101)(3=A P ,52)(4=A P,41)|(1=A B P ,31)|(2=A B P ,121)|(3=A B P .0)|(4=A B P(1)由全概率公式,有⋅=⨯+⨯+⨯+⨯==∑=203052121101315141103)|()()(41i i i A B P A P B P (2)由贝叶斯公式),4,3,2,1()|()()|()()|(41==∑=i A B P AP A B P A P B A P j jj i i i得到.0)|(,181)|(,94)|(,21)|(4321====B A P B A P B A P B A P由上述计算结果可以推断出此人乘火车来的可能性最大.23.三人同时向一架飞机射击,设他们射中的概率分别为0.5,0.6,0.7.又设无人射中,飞机不会坠毁;只有一人击中飞机坠毁的概率为0.2;两人击中飞机坠毁的概率为0.6;三人射中飞机一定坠毁.求三人同时向飞机射击一次飞机坠毁的概率..解 设A i ={第i 个人射中}(i =1,2,3),有P (A 1)=0.5, P (A 2)=0.6, P (A 3)=0.7.又设B 0={三人都射不中},B 1={只有一人射中},B 2={恰有两人射中},B 3={三人同时射中},C ={飞机坠毁}.由题设可知,0)|(0=B C P ,2.0)|(1=B C P ,6.0)|(2=B C P ,1)|(3=B C P并且.06.03.04.05.0)()()()()(3213210=⨯⨯===A P A P A P A A A P B P同理)()(3213213211A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=123123123()()()()()()()()()P A P A P A P A P A P A P A P A P A =++=0.5×0.4×0.3+0.5×0.6×0.3+0.5×0.4×0.7 =0.29;P (B 2)=0.44; P (B 3)=0.21.利用全概率公式便得到)|()()(3i i i B C P B P C P ∑===0.06×0+0.29×0.2+0.44×0.6+0.21×1 =0.532.24.两台机床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍,求任意取出的零件是合格品的概率;又:如果任意取出的零件经检查是废品,求它是由第二台机床加工的概率.答案是:0.973;0.25. 习题二1.掷两枚匀称的骰子,X ={点数之和},求X 的分布. 解 概率空间{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)} 点数和等于2 (1,1), 点数和等于3 (1,2),(2,1), 点数和等于4 (1,3),(2,2),(3,1) 点数和等于5 (1,4),(2,3),(3,2),(4,1) 点数和等于6 (1,5),(2,4),(3,3),(4,2),(5,1) 点数和等于7 (1,6),(2,5),(3,4),(4,3),(6,1),(5,2) 点数和等于8 (2,6),(3,5),(4,4),(5,3),(6,2) 点数和等于9 (3,6),(4,5),(5,4),(6,3) 点数和等于10 (4,6),(5,5),(6,4)点数和等于11 (5,6),(6,5) 点数和等于12 (6,6)} 答案是:2.设一个盒子中装有5个球,标号为1,2,3,4,5,在其中等可能地任取3个,用表示取出的球的最大号码数,求随机变量X 的分布律.解 X 的可能取值为3,4,5.从5个球中任取3个的取法有3510C =种.则 事件{X =3}就相当于“取出的3个球的标号为(1,2,3)” , 1{3}10P X ==. 事件{X =4}就相当于“取出的3个球的标号为(1,2,4),(1,3,4),(2,3,4)” ,3{4}10P X ==.事件{X =5}就相当于“取出的3个球的标号为(1,2,5),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)” , 63{5}105P X ===.故X 的分布律为3.已知离散型随机变量X 的可能取值为-2,0,21a ,32a ,54a,78a,试求概率{||2|0}P X X ≤≥. 解 41{}i i P X x ==∑=1a +32a +54a +78a 3718a ==解得 837a =故的分布律为{||2|0}P X X ≤≥{||2,0}{0}P X X P X ≤≥=≥2229=4.设某电子产品正品率为0.75,次品率为0.25.现对该批电子产品进行测试,以随机变量X表示首次测得正品,,求随机变量X 的分布律. 提示,参考例2.6.答1{}0.750.25k P X k -==⨯,k =1,2,…5. 设100件产品中有95件合格品,5件次品,现从中有放回的取10次,每次任取一件.求:(1)所取10件产品中所包含次品数的概率分布;(2)10件产品中恰有2件次品的概率;(3)10件产品中至少有2件次品的概率.解 因为是有放回的抽取,所以10次抽取是独立、重复进行的,每次取得次品的概率为0.05,因此这是一个10重伯努利试验.(1)设所取的19件产品中所含有的次品数为X ,则~(10,0.05)X B ,其概率分布为1010{}(0.05)(0.95)kk k P X k C -==⨯,k =1,2, (10)(2)所求的概率为2210210{2}(0.05)(0.95)0.0746P X C -==⨯≈(3)所求的概率为 {2}1{2}P X P X ≥=-<001011910101(0.05)(0.95)(0.05)(0.95)0.0861C C =-⨯-⨯≈6.一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只球,用X 表示取出的3只球中的最小号码数,求X 的分布函数. 解 X 的可能取值为3,2,1.232323253545136(3)/,(2)/,(1)/,101010P X C C P X C C P X C C ========= 即X 的分布阵为从而X 的分布函数为0,1,6,12,10()9,23,101, 3.x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩7.设离散型随机变量X 的分布函数为0,10.4,11()0.8,131,3x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩试求:(1)X 的概率分布;(2){2|1}P X X <≠.解X 的可能取值为-1,1,3.{2,1}{2|1}{1}P X X P X X P X <≠-<≠-=≠-{1}0.42{1}{3}0.40.23P X P X P X =====+++求Y =X +1的概率分布.解 由y i =2i x +1(i =1,2,…,5)及X 的分布,得到把f (x i )=2i x +1相同的值合并起来,并把相应的概率相加,便得到Y 的分布,即1(5)(2)(2),2P Y P X P X ===-+==3(2)(1)(1),10P Y P X P X ===-+==1(1)(0)5P Y P X ====⋅所以应配制几台秤?解 设X i ={第i 个售货员使用秤},则X i ~B (1,0.25).令41i i S X ==∑,于是S ~B (4,0.25).考虑到P (S ≤2)=1-P (S >2)=1-P (S =3)-P (S =4)33441(0.25)(0.75)(0.25)C =--=1-0.0469-0.0039≈0.95故该商店通常情况下应配制2台秤. 10.设二维随机向量(X ,Y )共有6个取正概率的点,它们是:(1,-1),(2,-1),(2,0)(2,2),(3,1),(3,2),并且(X ,Y )取得它们的概率相同,求(X ,Y )的联合分布 解 由于6个点取得的概率相同,均为1,而6个1的和为1,因此其余概率为0.11试求:(1)13{,04}22P X Y <<<<;(2){12,34}P X Y ≤≤≤≤. 解:(1)13{,04}22P X Y <<<<{1,1}{1,2}{1,3}P X Y P X Y P X Y ===+==+== 110044=++= (2){12,34}P X Y ≤≤≤≤{1,3}{1,4}{2,3}{2,4}P X Y P X Y P X Y P X Y ===+==+==+== 1150016416=+++= 12.设二维随机向量(X ,Y )的联合分布为求 (1)X 与Y 的边缘分布.(2)X 关于Y取值y 1=0.4的条件分布. (3)Y 关于X 取值x 2=5的条件分布. 解 (1)由公式()(1,2,3),i i ijjp p X x p i ⋅====∑()(1,2),j j ijip p Y y p j ⋅====∑(2)1121112111(,)(,)0.1530.303(|),(|),()0.8016()0.808p x y px y p x y p x y p y p y ======31311(,)0.357(|)()0.8016p x y p x y p y ===⋅因此,X 关于Y(3)同样方法求出Y 关于X 取值x13.设随机变量X 与Y 相互独立,下表列出了二维随机向量(X ,Y )联合分布律及关于X 和关解 由于P (X =x 1,Y =y 1)=P (Y =y 1)-P (X =x 2,Y =y 1)111,6824=-= 考虑到X 与Y 相互独立,有P (X =x 1)P (Y =y 1)=P (X =x 1,Y =y 1),11124{}146P X x ===⋅所以同理,可以导出其他数值.故XY 的联合分布律为求二维随机向量的函数Z 的分布:(1)=+;(2)=. 解 有(X ,Y )的概率分布可得合并Z 值相同的概率可得(2)Z =XY 的概率分布为15.已知X 和Y 的概率分布为101~111424X -⎛⎫ ⎪ ⎪⎪⎝⎭,01~1122Y ⎛⎫⎪ ⎪ ⎪⎝⎭而且{0}1P XY ==.(1)求X 和Y 的联合分布;(2)问X 与Y 是否相互独立?为什么? 解 (1)由{0}1P XY ==,即{00}1P X Y ===或,所以{11}{1,1}0P X Y P X Y =-=====,根据联合分布与边缘分布的关系,不难把表中打“*”号的位置上的数值求出,于是,得到(2)因1{1,0}4P X Y =-==,而111{1}{0}424P X P Y =-==⨯≠ 所以X 与Y 不独立.习题31.设210()10x f x x x ⎧>⎪=+⎨⎪≤⎩当当 f (x )是否为分布密度函数?如何改造?解 由于π()d ,2f x x +∞-∞=⎰所以f (x )不是分布密度函数.令221,0,2()()π1π0,0.x p x f x x x ⎧⋅>⎪==+⎨⎪≤⎩则p (x )是分布密度函数.2.设随机变量X 的分布密度函数为01()0Cx x p x ≤≤⎧=⎨⎩其他当求(1)常数C ;(2)P (0.3≤X ≤0.7);(3)P (-0.5≤X <0.5).解 (1)由p (x )的性质,有2110011()d d |,22x p x x Cx x C C +∞-∞===⋅=⎰⎰所以C =2.(2)0.720.70.30.3(0.30.7)2d |0.4.P X x x x ≤≤===⎰(3)00.520.500.5(0.50.5)0d 2d |0.25.P X x x x x --≤≤=+==⎰⎰3.设连续型随机变量X 的分布函数为2201()1112212Ax Bx x F x Cx x x x <⎧⎪≤<⎪⎪=⎨--≤<⎪⎪≥⎪⎩当当当当求:(1)A ,B ,C 的值;(2)X 的概率密度函数;(3){12}P X ≤≤.解 (1)由连续型随机变量的性质,可知,()F x 是一个连续函数.考察()F x 在x =0,x =1,x =2处的连续性,有lim ()x F x A -→=,20lim ()lim 0x x F x Bx ++→→==,所以A =0;211lim ()lim x x F x Bx B --→→==,21113lim ()lim(1)22x x F x Cx x C ++→→=--=-,可知B32C =- 2221lim ()lim(1)232x x F x Cx x C --→→=--=-,2lim ()1x F x +→=,可知231C -=. 所以C =2,12B =.(2)X 的概率密度函数为,01()2,120,x x f x x x ≤<⎧⎪=-≤<⎨⎪⎩其他(3){12}P X ≤≤(3)(1)F F =-2111(2111)22=-⨯-⨯-=.4.在一个公共汽车站有甲、乙、丙三人,分别等1,2,3路车.设等车的时间(分钟)服从[0,5]上的均匀分布,求3人中至少有2人等车时间不超过2分钟的概率. 解 设每人等车的时间为X ,则X 的密度函数为1,05()50,x f x ⎧≤≤⎪=⎨⎪⎩其他3人中每人“等车不超过2分钟”的概率为212{2}55P X dx ≤==⎰3人中等车不超过2分钟的人数2~(3,)5Y B故22323{2}0.35255P Y C ⎛⎫≥=⨯= ⎪⎝⎭5.设X ~N (0,1),求P (X <2.35),P (X <-1.25)以及P (|X |<1.55). 解 P (X <2.35)=Ф(2.35)查表0.9906.P (X <-1.25)=Ф(-1.25)=1-Ф(1.25)=1-0.8944=0.1056. P (|X |<1.55)=P (-1.55<X <1.55)=Ф(1.55)-Ф(-1.55) =2Ф(1.55)-1=2×0.9394-1=0.8788. 6.设X ~N (1,22),求P (0<X ≤5). 解 这里μ=1,σ=2,β=5,α=0,有2,0.5.βμαμσσ--=- 于是P (0<X ≤5)=Ф(2)-Ф(-0.5)=Ф(2)-[1-Ф(0.5)]=Ф(2)+Ф(0.5)-1=0.9772+0.6915-1=0.6687.7.设X ~N (2,32),求:(Ⅰ)P {-1≤X ≤8};(Ⅱ)P {X ≥-4};(Ⅲ)P {X ≤11}. 解 由于X ~N (2,32),即μ=2,σ=3,因此 (1)P {-1≤X ≤8}=P {2-3≤X ≤2+2×3}=P {2-3≤X <2}+P {2≤X ≤2+2×3}11{2323}{223223}22P X P X =-≤<++-⨯≤<+⨯ 0.680.950.815.22≈+=(2)P {X ≥-4}=P {-4≤X <+∞}=P {2-2×3≤X ≤2}+P {X ≥2} 0.9510.975.22≈+=(3)P {X ≤11}=P {-∞<X ≤11}=P {-∞<X ≤2}+P {2≤X ≤2+3×3} 10.990.995.22≈+= 8.某科考试成绩服从正态分布2(70,10)N ,在这次考试人中,及格者100人(及格分数为60),计算(1)不及格人数;(2)成绩在前10名的人数在考生中的比例;(3)估计第10名考生的成绩.解 设考生的考生成绩为X ,X ~2(70,10)N ,首先参加考试的人数n .{60}1{60}P X P X ≥=-<60701(1)0.841310-⎛⎫=-Φ=Φ= ⎪⎝⎭这表明及格人数占考试人数的比例为84.13%,即1000.8413n=,1000.8413n =(1)不及格人数占占考试人数的比例为15.87%,因此不及格人数为1000.15870.1587190.8413n =⨯≈(2)成绩在前10名的人数在考生中的比例为 100.8413108.4%100n =⨯≈ (3)设第10名考生的成绩为0x ,则0{}0.08413P X x ≥=,0{}0.91587P X x <=,即0700.9158710x -⎛⎫Φ= ⎪⎝⎭查正态分布表,得0701.3710x -=,083.784x =≈. 或者在EXCEL 的单元格中键入的“=NORMINV (0.91587,70,10)”,求得.9. 31设一个纺织工人照顾800个纱锭,在(0,T ]时间内每个纱锭断头的概率为0.005,求在(0,T ]内:(1)最大可能的断头数;(2)断头次数不超过10的概率.解 设断头数为X ,则X ~B (800,0.005).由于n 很大,p 很小,所以可用近似公式800800()0.0050.995e ,!kk k kP X k Ck λλ--==⨯⨯≈这里λ=np =800×0.005=4.实际上可认为X近似服从P(λ).(1)最大可能的断头数是3和4.(2)1044(10)e0.99716!kkP Xk-=≤≈=∑10.设X~U(0,1),并且Y=X2,求Y的分布密度p2(y).解:(){}{4)2YF y P Y y P X dx y=<=<==<<故()()4)Y Yf y F y y'==<<11.设平面区域D由曲线1yx=及直线20,1,y x x e===所围成,二维随机变量(,)X Y在区域D上服从均匀分布,求(,)X Y的联合分布密度函数.解由于区域D的面积111eA dxx==⎰,所以(,)X Y的联合分布密度函数为111,0(,)x e yF x y x⎧≤≤≤≤⎪=⎨⎪⎩当其他12.设(X,Y)的联合分布密度为(34)e,0,0,(,)0,.x yC x yf x y-+⎧≥≥=⎨⎩其他试求:(1)常数C. (2)P{0<X<1,0<Y<2}.解 (1)由p(x,y)的性质,有(34)001(,)d d e d dx yp x y x y C x y+∞+∞+∞+∞-+-∞-∞==⎰⎰⎰⎰34001e d e d,12x yC x y C+∞+∞--=⋅⋅=⎰⎰即C=12.(2)令D={(x,y)|0<x<1,0<y<2},有{01,02}{(,)}(,)d dDP X Y P X Y D p x y x y<<<<=∈=⎰⎰12(34)34380012e d d12e d e d(1e)(1e).x y x yDx y x y-+----===--⎰⎰⎰⎰13.设二维随机向量(X,Y)的联合分布函数为333,0,0,(,)0,.x y x yC x yF x y----⎧--+≥≥=⎨⎩其他求(1)常数C;(2)分布密度p(x,y).解 (1)由性质F(+∞,+∞)=1,得到C=1.(2)由公式:2(,)Fp x y x y∂=∂∂有3ln33ln3,x x y Fx--∂=-∂ 22(3ln33ln3)3(ln3).x x y x y F x y y-----∂∂=-=∂∂∂ 故 23(ln3),0,0,(,)0,.x y x y p x y --⎧≥≥=⎨⎩其他14.如图3-1,设(X ,Y )的联合分布密度为图3-1(),01,(,)0,.C x y y x p x y +≤≤≤⎧=⎨⎩其他(1)求C .(2)求X ,Y 的边缘分布. (3)讨论X 与Y 的独立性. (4)计算P (X +Y ≤1). 分析(1)由于(,)d 1,p x y σ+∞+∞-∞-∞=⎰⎰即1d ()d 1,xx C x y y +=⎰⎰可导出C =2.(2)当x <0或x >1时,p 1(x )=0;当0≤x ≤1时,210()(,)d 2()d 3.xp x p x y y x y y x +∞-∞==+=⎰⎰因此 213,01,()0,.x x p x ⎧≤≤=⎨⎩其他同理 22123,01,()0,.y y y p y ⎧+-≤≤=⎨⎩其他(3)由于p 1(x )·p 2(y )≠p (x ,y ),故X 与Y 不独立.(4)11201011(1)2()d d 2()d 3y yx y y x P X Y x y y x y x σ-+≤≤≤≤+≤=+=+=⋅⎰⎰⎰⎰15.(,)~(,)(arctan )(arctan ),23x y X Y F x y A B C ξ==++求(1)A ,B ,C 的值; (2)p (x ,y ); (3)p 1(x ),p 2(y ).分析(1)由ππ(,)()()1,22F A B C -∞+∞=++=ππ(,)()()0,22F A B C -∞+∞=-+=ππ(,)()()0,22F A B C +∞-∞=+-=可导出21π,π2A B C ===⋅(2)22222211161132(,)(,)....ππ491()1()23xyp x y F x y x y x y "===⋅++++ (3)由p (x ,y )=f 1(x )·f 2(y ),其中1221().(),π4f x x x =-∞<<+∞+2231().().π9f y y y =-∞<<+∞+考虑到12()d 1,()d 1,f x x f y y +∞+∞-∞-∞==⎰⎰故 12222131().,().π4π9p x p y x y ==⋅++16.设2,02,01,(,)~(,)0,.Axy x y X Y p x y ξ⎧≤≤≤≤==⎨⎩其他试求解:(1)确定常数A ; (2)边缘分布密度; (3)讨论X ,Y 的独立性. 分析(1)由(,)d 1,p x y σ+∞+∞-∞-∞=⎰⎰即212003d 1,2x Axy A =⇒=⋅⎰⎰ (2)由1()(,)d p x p x y y +∞-∞=⎰,分情况讨论:当x <0或x >2时,1()d 0;p x y +∞-∞==⎰当0≤x ≤2时,12103()(,)d d 22xp x p x y y xy y +∞-∞===⋅⎰⎰所以1,02,()20,.xx p x ⎧≤≤⎪=⎨⎪⎩其他同理,可求出223,01,()0,.y y p y ⎧≤≤=⎨⎩其他 (3)由于p 1(x )·p 2(y )=p (x ,y ),因此,X 与Y 相互独立. 习题41.盒中有5个球,其中有3个白球,2个红球.从中任取两球,求白球个数X 的数学期望.解由题意可知23225()(0,1,2),k kC C P X k k C -⋅===因此1631()01211010105E X =⨯+⨯+⨯=⋅ 2.某地区计划明年出生1000个婴儿,若男孩出生率为p =0.512,问明年(1)出生多少男孩?(2)期望出生多少男孩?答案是:(1)0~1000;(2)512.答案是:乙好.4.设随机变量X 的分布密度函数为,01,()2,12,0,.x x p x x x <≤⎧⎪=-<≤⎨⎪⎩其他求E (X ).解 由定义,有1221()()d d (2)d E X xp x x x x x x x +∞-∞==+-⎰⎰⎰312320111|()| 1.33x x x =+-= 5.10个随机地进入15个房间,每个房间容纳的人数不限,设X 表示有人的房间,求()E X (设每个人进入每个房间是等可能的,且每人进入房间是相互独立的). 解 设随机变量i X1, ,0, .i i X i ⎧=⎨⎩在第层有人下梯在第层无人下梯(i =1,2, (15)则151i i X X ==∑,且i X 服从同一分布,因每人进入某个房间的概率均为115. 则 1010114(0)(1)()1515i P X ==-= 于是 1014(1)1()15i P X ==-故有1215()()E X E X X X =+++1215()()()E X E X E X =+++而1014()1()15i E X =-,(i =1,2,…,15),因此 1014()151()7.4715E X ⎛⎫=-≈ ⎪⎝⎭6.假设市场上每年对某种出口商品的需求量X (单位:吨),它服从[2000,4000]上的均匀分布.每年售出这种商品一吨,可为挣得3万元,但假设销售不出去,囤积于仓库,每吨浪费保管费1万元,问应组织多少吨货源,才是收入最大?解 设预备某年销售商品量为s 吨(显然有2000≤s ≤4000),用Y 表示这年的收益(万元),则3,()3(),s X s Y f X X s X X s ≥⎧==⎨--<⎩利用求函数的数学期望公式,可得组织s 吨货源时,所获得的期望收益为4000200011()[()](4)320002000s sE Y E f X x s dx sdx ==-+⎰⎰261(7000410)1000s s -=-+-⨯ 两边对s 求导,得1()(27000)1000E Y s '=-+,令()0E Y '=,得s =3500.即组织3500吨货源时收益最大.7.一辆送客汽车,载有m 位乘客从起点站开出,沿途有n 个车站可以下车,若到达一个车站,没有乘客下车就不停车.设每位乘客在每一个车站下车是等可能的,试求汽车平均停车次数.分析 由于所求的是汽车平均停车的次数,因此,我们从每一个车站有没有人下车来考虑,而不要着眼于每一个乘客在哪一站下车.这里,设1,,0,.i i X i ⎧=⎨⎩第站有人下车第站没有人下车 (1,2,,)i n =于是,我们有11(0)(),(1)1(),m mi i n n P X P X n n--====-因此,随机变量1~(1,1())mi n X B n--,其均值 1()1().mi n E X n-=-又设停车次数为S ,于是有1,ni i S X ==∑其均值1()(1())mn E S n n-=-⋅ 可见,汽车平均停车次数为1(1())mn n n--⋅ 8.地铁到达一站时间为每个整点的第5分钟、25分钟、55分钟,设一乘客在早8点~9点之间随时到达,求侯车时间的数学期望.分析 已知X 在[0,60]上服从均匀分布,其密度为1,060,~()600,.x X p x ⎧≤≤⎪=⎨⎪⎩其他设Y 是乘客等候地铁的时间(单位:分),则5,05,25,525,()55,2555,605,5560.X X X X Y g X X X X X -<≤⎧⎪-<≤⎪==⎨-<≤⎪⎪-+<≤⎩因此601()(())()()d ()d 60E Y E g X g x p x x g x x +∞-∞==⋅=⎰⎰ 525051[(5)d (25)d 60x x x x =-+-⎰⎰55602555(55)d (65)d ]x x x x +-+-⎰⎰1[12.520045037.5]11.67.60=+++= 9.有3个小球和2个杯子,将小球随机地放入杯中,设X 为有小球的杯子数,求X 的分布函数及数学期望E (X ).解 设A ={甲杯有球个数},B ={乙杯有球的个数}.当X =1或2(见表4-1)时,由加法公式有33111(1)(0,3)(3,0),224P X P A B P A B ====+===+=13(2)1,44P X ==-=因此 0,0,1(),12,41,2,x F x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩ 137()12444E X =⨯+⨯=⋅10.设二维随机向量(X ,Y )的联合分布密度函数(5)2e 01,5(,)0y x x y p x y --⎧≤≤≥=⎨⎩其他当求E (XY ).分析 因为p (x ,y )=p 1(x )·p 2(y ),其中1;2,01,()0,x x p x ≤≤⎧=⎨⎩其他 (5)2e ,5,()0,.y y p y --⎧≥=⎨⎩其他所以,X 与Y 相互独立.由于12102()()d 2d ,3E X xp x x x x +∞-∞===⎰⎰(5)25()()d e d 6,y E Y yp y y y y +∞+∞---∞==-=⎰⎰因此2()(())(())6 4.3E XY E X E Y ==⨯=11.已知随机变量X 的分布函数00()04414x x F x x x ≤⎧⎪⎪=<≤⎨⎪>⎪⎩当当当 求E (X ),D (X ).答案是:由于104()40x f x ⎧<≤⎪=⎨⎪⎩当其他,即X 服从(0,4]上的均匀分布,所以4()2,()3E X D X ==⋅12.设随机变量X ~N (0,4),Y ~U (0,4),且X ,Y 相互独立,求E (XY ),D (X +Y )及D (2X -3Y ).答案是:E (XY )=0,1()5,3D X Y +=D (2X -3Y )=28.13.设X 与Y 为相互独立的随机变量,已知X 在[2,4]上服从均匀分布,Y 服从参数为2的指数分布,求E (XY ),()D X Y +.解 由于24()32E X +==,1()2E Y =,2(42)1()123D X -== 13()()()322E XY E X E Y ==⨯=,14.设随机变量X 的密度函数为201()0ax bx c x f x ⎧++<<=⎨⎩当其他 已知E (X )=0.5,D (X )=0.15.求a ,b ,c 的值117()()()3412D X Y D X D Y +=+=+=解 由密度函数的性质1201()()f x dx ax bx c dx +∞-∞==++⎰⎰1132a b c =++,即 11132a b c ++= (1)而120111()()432E X x ax bx c dx a b =++=++⎰,所以1110.5432a b ++= (2)由22()()[()]D X E X E X =-,得22()()[()]E X D X E X =+ 而12220111()()543E X x ax bx c dx a b =++=++⎰,所以1110.150.250.4543a b ++=+= (3)由(1)(2)(3)所组成的方程组,得 12a =,12b =-,3c =15(1)判断X 与Y 是否独立? (2)计算X 与Y 的协方差; (3)计算()D X Y +.解 (1)计算出X 与Y 的边缘分布填入上表.从{0,1}0.1P X Y ==-=,而{0}{1}0.12P X P Y =+=-= 可知X 与Y 不相互独立.(2)因为()0.7E X =,()0E Y =()1(1)0.3110.30i i ij ijE XY x y p ==⨯-⨯+⨯⨯=∑∑.因此(,)()()()0Cov X Y E XY E X E Y =-=(3)()D X Y +2()()2(,)0.70.70.80D X D Y Cov X Y =++=-++ 1.01= 16.设随机变量(X ,Y )的密度函数为1()02,02(,)80x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩当其他求()E X ,()E Y ,(,)Cov X Y ,XY ρ,()D X Y +. 解 当02x ≤≤,时211()()(1)84X f x x y dy x =+=+⎰, 当02y ≤≤,时1()(1)4Y f x y =+ ()E X 2017(1)46x x dx =+=⎰,7()6E Y =,()E XY 220014()83dx xy x y dy =+=⎰⎰(,)Cov X Y 4771()()()36636E XY E X E Y =-=-⋅=-而2()E X 220114(1)43x x dx =+=⎰所以2225711()()[()]3636D X E X E X ⎛⎫=-=-= ⎪⎝⎭,同理11()36D Y =故111111113636XY ρ-==-()()()2(,)D X Y D X D Y Cov X Y +=++11111523636369⎛⎫=++-= ⎪⎝⎭ 17.设随机变量X 的密度函数为102()20x x f x ⎧≤≤⎪=⎨⎪⎩当其他求随机变量X 的1至3阶原点矩和中心矩.解()E X 201423x xdx ==⎰, 22201()22E X x xdx ==⎰,233018()25E X x xdx ==⎰,2041[()]()032E X E X x xdx -=-=⎰,2220412[()]()329E X E X x xdx -=-=⎰,2330418[()]()32135E X E X x xdx -=-=-⎰. 习题51.一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50 kg ,标准差为5 kg .若用最大载重量为5 t 的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.解 设X i (i =1,2,…,n )是装运的第i 箱的重量(单位:kg ),n 是所求箱数.由条件可以把X 1,X 2,…,X n 视为独立同分布随机变量,而n 箱的总重量T n =X 1+X 2+…+X n是独立同分布随机变量之和.由条件知n T D n T E X D X E n n i i 5)(,50)(;5)(,50)(====(单位:kg ). 根据列维-林德伯格中心极限定理,T n 近似服从正态分布N (50n ,25n ). 箱数n 决定于条件⎭⎬⎫⎩⎨⎧-≤-=≤n n nn T P T P n n 5505000550}5000{).2(977.0)101000(ΦnnΦ=>-≈由此可见,2101000>-nn从而n <98.0199,即最多可以装98箱.2.设男孩出生率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率. 解 用X 表示10000个婴儿中男孩的个数,则X ~B (n ,p ),其中n =10000,p =0.515.要求女孩个数不少于男孩个数的概率,即求}5000{≤X P ,由棣莫弗-拉普拉斯中心极限定理,有⋅⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-≤-=≤npq np npq np X X 5000}5000{令),1,0(~N npqnp X Y -=于是有)485.0515.010000515.010*******()5000(⨯⨯⨯-≤=≤Y P X P.00135.0)3(1)3(=-=-≈ΦΦ3.设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为0.9,以95%概率估计,在一次行动中:(1)至少有多少人能够进入? (2)至多有多少人能够进入?解 用X i 表示第i 人能够按时进入掩蔽体(i =1,2,…,1000),令S n =X 1+X 2+…+X 1000.(1)设至少有m 人能进入掩蔽体,要求P (m ≤S n ≤1000)≥0.95.事件⋅⎭⎬⎫⎩⎨⎧-≤⨯⨯⨯-=≤909001.09.010009.01000}{n n S m S m令,90900Y S n =-显然).1,0(~N Y 令,90900a m =-根据中心极限定理,有)(1)()(a Y P a Y P S m P n <-=≥=≤95.0)(1=-=a Φ查正态分布数值表,得a =-1.65,即.65.190900-=-m 故m =900-15.65=884.35≈884人.(2)设至多有M 人能进入掩蔽体,要求P (0≤S n ≤M )≥0.95.P (S n ≤M )=P (Y ≤b )=0.95,b =1.65,即,65.190900=-M M =900+15.65=915.65≈916人.习题61.设x 1,x 2,…,x 25相互独立且都服从N (3,102)分布,求270.57,60(S x P <<<<151.73).解 因22221024~(3,),~(24),2510S X N χ且x 与S 2独立,所以P {0<x <6,57.70<S 2<151.73}=P {0<x <6}·P {57.70<S 2<151.73}, 而6333{06}()()2()12(1.5)1222P x ΦΦΦΦ--<<=-=-=- =2×0.9332-1=0.8664,2224{57.70151.73}{13.84836.415}100S P S p <<=<<)415.3610024()848.1310024(22>->=S P S P=0.95-0.05=0.90,于是 P {0<x <6,57.7<S 2<151.73}=0.8664×0.90≈0.78.2.在整体N (5,22)中抽取一容量为25的样本,求样本均值X 落在4.2到5.8之间的概率,样本方差2S 大于6.07的概率.解 因为2~(5,2)X N ,则22~(5,)25X N ,5~(0,1)2/5X N -, 因此,所求概率为4.2555.85{4.2 5.8}{}2/52/52/5X P X P ---<<=<< 5{22}2/5X P -=-<< 2(2)1=Φ-=0.908又知 222(251)~(24),2S χ- 故222424 6.07{ 6.07}{}44S P S P ⨯>=>2{(24)36.42}0.05P χ=>=最后一步查2χ表或在EXCEL 中键入“= CHIDIST (36.42,24)”求的.3.设总体~(0,1)X N ,1X ,2X ,…,n X 为简单样本,试问:下列各统计量服从什么分布?(1;(2121nX X++;(3)3212413ii nii X nX==⎛⎫-⎪⎝⎭∑∑.解 (1)因为~(0,1)i X N ,i =1,2,…,n,所以12~(0,2)X X N -~(0,1)N ,22234~(2)X X χ+~(2)t = (2)因为~(0,1)i X N ,222~(1)nii Xn χ=-∑,所以121nX X++2~(1)1nt n X=-++-(3)因为3221~(3)ii Xχ=∑,224~(3)ni i X n χ=-∑,所以3212413ii nii X n X==⎛⎫-⎪⎝⎭∑∑321243~(3,3)3ii nii XF n Xn ===--∑∑.4.设总体2~(0,2)X N ,1X ,2X ,3X ,4X 是来自X 的一个样本,若统计量221234(2)(34)Y a X X b X X =-+-服从2χ分布,试确定a ,b 的值.解 因为2~(0,2)i X N ,i =1,2,3,4,所以222122~(0,222)X X N -+⋅,22223434~(0,3242)X X N -⋅+⋅于是~(0,1)N ,3434~(0,1)10X X N -所以2223434~(2)10X X χ-⎛⎫+ ⎪⎝⎭ 因此120a =,1100b =. 5.设X 与Y 都服从标准正态分布,1X ,2X ,…,8X 与1Y ,2y ,…,9Y 分别为是来自总体X 与Y 的两个相互独立的简单随机样本,其样本均值为X ,Y ,记892211()()i i i i Q X X Y Y ===---∑∑试证明随机变量T =服从自由度为15的t 分布. 证明 因为~(0,1)X N ,~(0,1)Y N , 所以1~(0,)9Y N ,3~(0,1)Y N ,而且8221()~(7)ii XX χ=-∑,921()i i Y Y =-∑2~(8)χ且相互独立,所以892211()()ii i i Q XX Y Y ===---∑∑2~(15)χ又因为Y 与821()ii XX =-∑相互独立.Y 与921()i i Y Y =-∑相互独立,所以Y 与Q 相互独立,所以T=~(15)T t = 6.设总体2~(,)X N μσ,1X ,2X ,…,16X 是来自X 的一个样本,求概率(1)2162211{()2}216i i P X σμσ=≤-≤∑; (2)2162211{()2}216i i P X X σσ=≤-≤∑. 解 (1)2162211{()2}216i i P X σμσ=≤-≤∑16212(){832}i i X P μσ=-=≤≤∑2{8(16)32}P χ=≤≤22{(16)8}{(16)32}P P χχ=≥-≥。