国内与国外部分高炉炮泥使用的比较
- 格式:pptx
- 大小:3.54 MB
- 文档页数:32
风压力有所降低,使焙烧风及冷却风流量有所增加,这样就使足够的焙烧风及冷却风到达干燥床下,达到提高球团干燥及焙烧效果的目的,从而提高了爆裂温度偏低的七角井及四道沟精矿的搭配比例。
七角井精矿与周边精矿的搭配比例由原来的30%~40%提高到目前的50%~60%,个别时候可以提高到70%。
四道沟精矿与周边精矿的配比原来在30%左右时,生球爆裂严重,现在可以提高到50%,同时烘床上生球爆裂现象明显减轻。
由于热工参数的优化,使竖炉利用系数由7193t/(m2·h)提高到8134t/(m2·h),创下我厂竖炉利用系数的最好水平。
同时成品球中< 1000N/个的球团矿含量也较原来降低3个百分点,成品球中FeO含量较原来降低012个百分点,转鼓指数及抗压强度略有提高,这有利于高炉降焦。
4 结 论1)从工程费用、环保节能及提高球团产质量上讲,从八万柜引富余转炉煤气至球团竖炉是经济可行的。
2)球团竖炉掺烧富余转炉煤气不仅优化了工艺参数,使竖炉球团产质量得到提高,也使爆裂温度偏低的七角井精矿得到大比例配用,四道沟精矿使用比例也有一定幅度的提高,同时烘床上生球爆裂现象明显减轻。
3)受转炉煤气回收量不足的影响,无法实现连续掺烧,对竖炉产质量的稳定造成影响,但随着下一步二炼钢转炉煤气回收量的增加及八万柜与五万柜联网的实现,用转炉煤气掺烧的运转率及转炉煤气的掺烧量会逐步增大,这为下一步继续优化竖炉工艺参数及提高球团矿产质量创造了条件。
PelletizingProductionwithUsin gMixtureofBFGasandBOFGasinJIUGANGHuRongetal1 Abstract Inordertoincreasetheout putand qualityofshaftfurnace pellet,andtoincreasethe proportionin gratioof QIGIOAJINandSIDOAGOUconcentrates,thesur plusBOF gasin80000m3gastankwasled2intotheshaftfurnace,and mixwithBF gastoroast pellets1Througho ptimizing process parameters,the goodeffectswere gained1 Ke ywords BOF gas,BF gas,out put,process parameter国内外高炉球团矿使用比例各钢铁厂的情况不同和矿源不同决定了其不同的高炉炉料结构。
本文摘自再生资源回收-变宝网()选用炮泥应注意的方面高炉用炮泥是炼铁生产中重要的耐火材料,其使用性能要求复杂,任何单一的耐火材料都不能满足要求。
高炉用炮泥的性能要求是什么?在使用过程中,炮泥存在哪些问题?选用炮泥应注意哪些方面?研究者对此进行了调研。
炮泥使用性能要求及其分类:高炉用炮泥是炼铁过程中用来封堵高炉出铁口的耐火材料,使用时用冶炼行业专业的设备———泥炮以一定的压力压入出铁口。
炮泥在生产中起着重要的作用,它首先要很好地堵住铁口;其次,由它形成的铁口通道要保证平稳出铁;最后,要能保持出铁口有足够的深度,以保护炉缸。
任何一项功能完成得不好,将引发事故,因此,对炮泥有如下要求:一、是良好的塑性,能顺利地从泥炮中堆入铁口,填满铁口通道。
二、是具有快干、速硬性能,能在较短的时间内硬化,且具有高强度,这决定着两次出铁的最短时间间隔(这对强化冶炼且只有一个铁口的高炉来说有着重要的意义)和堵口后允许的最短退炮时间(这对保护泥炮嘴有重要的意义)。
三、是开口性能好。
此性能决定了炮泥填入后,在再次出铁时能不能顺利打开铁口,对正常出铁有重大影响。
四、是耐高温和渣铁的侵蚀性能良好,在出铁过程中铁口通道孔径不应扩大,保证铁流稳定。
五、是体积稳定性好且具有一定的气孔率,保证堵入铁口通道后,炮泥在升温过程中不出现过大的收缩而形成断裂,适宜的气孔率使炮泥中的挥发分能顺利地外逸而不出现裂缝,总之要保证铁口密封得好。
六、是对环境不产生污染,为炉前工作创造良好的工作环境。
由于炮泥有以上使用性能的需要,任何单一的耐火材料都不能满足要求,通常采用几种原料配制而成。
目前根据所使用结合剂的不同,炮泥通常分为两类:有水炮泥和无水炮泥。
有水炮泥。
有水炮泥以水作为结合剂。
通常有水炮泥用于低压的中小高炉,最新的配方是由35%左右焦粉、20%~30%的黏土粉、10%~15%的沥青、5%~10%的熟料,加水15%左右混合后在碾泥机上研制。
为适应高炉强化冶炼的需要,现在有水炮泥还添加碳化硅(SiC)、蓝晶石(Al2O3·SiO2,含Al2O362.92%、SiO237.08%)和绢云母(K2O+Na2O:3%~7%,SiO2:71%~77%,Al2O3:14%~18%)等。
高炉用无水炮泥使用方法
宝子们,今天咱们来唠唠高炉用无水炮泥的使用方法呀。
这无水炮泥在高炉里可是个重要角色呢。
在使用之前呀,要先检查一下炮泥的状态。
就像挑水果一样,得看看它有没有什么破损或者不正常的地方。
要是炮泥有裂缝或者看起来松松垮垮的,那可不能用哦,就像穿破了洞的袜子,肯定不顶事儿啦。
装炮泥的时候呢,得小心又仔细。
把炮泥慢慢装进炮筒里,可不能急吼吼的。
就像给心爱的小盒子装宝贝一样,要稳稳当当的。
而且呀,要确保炮泥在炮筒里填得紧实。
如果填得松松的,就像盖房子地基没打牢,在使用的时候就容易出问题。
当要把装了炮泥的炮筒往高炉里送的时候,动作也要轻柔一些。
可不能像个莽撞的小怪兽一样横冲直撞的。
要对准高炉的出铁口,准确无误地送进去。
这就好比投篮,要瞄得准准的,不然就白费劲啦。
在使用的过程中呢,要注意控制好压力。
这个压力就像我们平时给气球打气一样,不能太大也不能太小。
压力太大了,炮泥可能会喷溅出来,到处搞得一团糟,就像调皮的孩子把颜料洒得到处都是。
压力太小呢,又达不到应有的效果,就像挠痒痒没挠到点子上。
还有哦,每次使用完之后,要对炮筒进行清理。
不能让炮筒里残留太多的炮泥渣子,就像吃完饭要洗碗一样,要保持炮筒的干净整洁。
这样下次使用的时候才不会有干扰,就像给下一次的“小任务”创造一个清爽的环境。
宝子们,这高炉用无水炮泥的使用方法虽然看起来有点小复杂,但只要按照这些小窍门去做,就能让它在高炉里好好发挥作用啦。
可千万不能马虎大意哦,毕竟这关系到高炉的正常运转呢。
102研究与探索Research and Exploration ·工艺流程与应用中国设备工程 2021.02 (下)1 炉前泥炮的发展概况炉前泥炮设备是伴随着高炉炼铁技术的高速发展而不断变迁的。
其发展大致可以分为三个阶段:第一阶段是应用在小型高炉上的气动泥炮,由于其活塞推力小、打泥压力不稳定而迅速被淘汰;第二阶段为电动泥炮,其结构较复杂、打泥压力小、泥炮高度大及不能适应恶劣的工况环境等;第三个阶段为液压泥炮,随着高炉容积的不断扩大、炉顶压力及风温的不断提高,冶炼强度不断加强,因此,被性能更好的液压泥炮所取代,且长期以来被国内外各钢铁公司广泛应用。
2 几种液压泥炮的综合分析目前,国内外典型的矮式液压泥炮主要有MHG 型、BG 型、PW 型、DDS 型等。
BG 型是早期由北科大联合西冶、嘉冶等制造厂共同研发制造的一种液压矮身泥炮,其典型特点是带有门型框架支撑压炮油缸的压炮机构,实际使用中,因两个压炮油缸不同步而带来很多操作不便。
在BG 型液压泥炮的基础上改进的KD 型,取消原有的压炮形式,改用斜底座使得压炮动作更为简单。
在此就MHG 型、PW 型、DDS 型进行简单介绍。
2.1 MHG 型泥炮MHG 型液压泥炮是由日本三菱重工神户造船所设计,于20世纪70年代末引进国内,用于宝钢1号4063m 3高炉。
由回转机构、锁紧机构、压炮机构、打泥机构等组成。
其优点在于炮嘴运动轨迹较直线特性较好,接触铁沟的时间较短,缺点是其压炮倾角固定,不能适应新炉与旧炉工艺的变化,且回转液压马达易泄漏,驱动装置繁琐,结构较复杂。
2.2 PW 型泥炮PW 型液压泥炮是由卢森堡保尔沃特(PW 公司)设计的,由打泥机构、吊挂机构、回转机构和斜底座组成。
其采用了独特的并带有倾角的固定斜底座,并为保证转炮系统的平稳,设有支撑装置,并将泥炮的回转、压炮和锁紧的功能集中于一体,由一个回转机构来替代,从而使机构变得更加简单。
回转机构为四连杆机构,采用外置的回转油缸驱动,便于日常检修、维护与更换。
关于450-600立高炉用无水炮泥浅析随着国内炼铁行业的发展,冶炼技术的进步,高炉的生铁产量日益提高。
随着高炉日产量的提高,出铁次数与单炉产量逐渐增加,这样对炮泥的要求也随之更高,相应的也给无水炮泥的制造带来了新的课题。
由于450-600立的高炉利用系数高,综合成本低,项目投资少,近几年来,这一规格的高炉新建特别多,给无水炮泥这一产品带来了巨大的市场。
判定无水炮泥的好坏,主要看一下几个指标:1、炮泥可塑性指数;2、结焦时间的长短;3、炮泥的强度高低;4、耐冲刷性能;5、高温体积变化。
以上指标的制定,是由炮泥这一产品特殊的使用部决定的。
首先,炮泥可塑性指数的高低直接关系到炮泥能否被泥炮顺利的推入铁口。
450-600立高炉通常铁口深度在1.7-1.9米之间,每次打泥量在110-130公斤左右,配备100吨液压泥炮。
在高炉全风全压正常生产情况下,炮泥的可塑性指数不好,泥炮将无法把足够量的炮泥推入铁口,铁口孔道没有足够的炮泥来充填,造成铁口浅,以至于出不净铁、铁口喷溅、假喷等一系列问题,给高炉稳产高产带来极其不利的因素,而且给炉前操作难度增加,工人劳动强度加大。
同时更重要的是炮泥可塑性指数决定着铁口深度这一重要的操作指标。
塑性愈好,则炮泥愈好长铁口,铁口深度愈好维护。
第二,炮泥结焦时间的长短。
这一指标直接关系到高炉的生产节奏问题。
随着高炉产量的提高,炉次日益增加,18次铁已经司空见惯,营口中板高炉最多日出铁21次,出铁间隔时间短,也就在20-25分钟之间。
这就要求炮泥结焦时间越短越好。
炮泥结焦时间长,首先会造成潮铁口出铁,铁口打开后开始喷溅,3-7分钟后停止,正常出铁。
这样不仅给环境造成巨大污染,而且大大增加工人的劳动强度,恶化操作环境。
同时容易造成生产事故,危及操作工人的人身安全。
同时,由于炮泥没有完全烧结,强度低,造成出铁过程中铁口扩径、假喷,渣铁出不净,影响高炉顺行。
第三,强度高低是炮泥重要的指标之一。
高炉的发展趋势及链蓖机—回转窑工艺技术有关问题高炉炉料结构发展趋势及链蓖机—回转窑工艺1、增加球团矿用量是国内外炼铁高炉炉料结构发展趋势1、1、国外高炉炉料结构现状及发展趋势从世界先进的高炉炼铁炉料结构看,球团矿的比例不断增加,一般已增加到30-50%。
当今世界最先进的高炉炼铁在西欧,西欧高炉炼铁球团矿用量已发展到30-70%。
最典型的阿姆斯特丹、霍戈文公司艾莫依登厂的炉料结构是50%球团矿+50%烧结矿。
高炉冶炼焦比为234kg、t,喷煤212kg、t,利用系数平均为2、8t、m³·d,最高达3、1t、m³·d。
日本高炉传统上采用烧结矿为主、不用或较少使用球团矿的炉料结构。
据最新报道,日本钢铁工业巨头神户制钢3#高炉采用“全球团矿”原料方案。
该公司原来高炉炉料的组成为80%烧结矿和20%的块矿。
1999年6月关闭了烧结厂后,神户制钢发现,使用烧结矿的成本是高的。
2000年上半年炉料结构演变成49%烧结矿、25%块矿和26%的球团矿。
现在,已不用烧结矿,高炉的炉料结构为73%球团和27%的块矿。
日本其它钢铁厂的球团矿用量也有所增加。
韩国(浦项为主)为了增加球团矿的用量和保证供应,在巴西合资兴建了400万t、a的球团厂。
1、2、近年国内炼铁球团矿发展现状及趋势精料和合理的炉料结构一直是国内炼铁界努力探索的课题。
球团矿作为良好的高炉炉料,不仅具有品位高、强度好、易还原、粒度均匀等优点,而且酸性球团矿与高碱度烧结矿搭配,可以构成高炉合理的炉料结构,使得高炉达到增产节焦、提高经济效益的目的,因而近年来国内炼铁球团矿产量和用量大幅增加,不仅中小型高炉普遍使用,大型高炉如马钢2500M³高炉、昆钢2000M³高炉、宝钢、攀钢等也加大了球团矿的配料比例。
大力发展球团矿已成为有关权威机构、学术会议以及生产厂家关注的焦点和共识,国内目前已形成一股球团矿“热”。
炮泥的技术进步—中国钢铁新闻⽹ 徐平坤 随着⾼炉朝⼤型化、冶炼不断强化、⾼风压及低炉次⽅向发展,对炮泥的质量要求越来越⾼,⽽从环保的⾓度,要求炮泥在堵铁⼝时不冒烟,铁⼝周边⽓体中不含苯。
炮泥是由⾻料、粉料、结合剂和液体组成的Al2O3—SiO2—SiC—C质材料,对炮泥性能的基本要求是:良好的可塑性,挤出的泥料为致密泥柱,不发⽣断裂或松散;良好的润滑性,平稳挤⼊出铁孔内,不发⽣梗阻;在出铁孔处达到⼀定程度烧结,形成泥包,保护出铁⼝内侧衬体。
对施⼯性能要求,通常⽤“马夏值”来衡量,⼀般要求马夏值0.45 MPa ~1.40MPa。
按结合剂不同,分为有⽔炮泥和⽆⽔炮泥。
有⽔炮泥: 早期开发的⼀种炮泥,由于⽣产⼯艺简单、价格低廉,现在⼀些中⼩⾼炉仍在使⽤。
⼤中型⾼炉只有在开炉或处理炉缸冻结等事故、出铁不正常等情况下,在短期内使⽤有⽔炮泥。
使⽤前⼀般⽤挤泥机挤成圆柱状泥块,使⽤时泥块放⼊泥炮中再挤压⼊出铁⼝内。
按使⽤条件,炮泥⽤各种原料的配⽐波动较⼤,⼀般波动范围为:铝矾⼟熟料和粘⼟熟料占⽐为50%~60%,焦炭和碳化硅占⽐为15%~25%,软质粘⼟占⽐10%~15%,⾼温沥青占⽐5%~10%,添加剂占⽐3%~5%。
其粒度组成⼤致为:3 mm~0.21mm占⽐35%~45%,<0.21mm占⽐ 55%~65%。
添加剂有膨胀剂(⼀般⽤蓝晶⽯或⽯英砂)、润滑剂(⼀般⽤⽯墨或蜡⽯粉)及助烧剂(⼀般⽤长⽯类矿物)。
对有⽔炮泥的理化性能要求:化学成分w(Al2O3)=25%~35%,w(SiO2)=35%~50%,w(C+SiC)=15%~25%。
物理性能指标:体积密度(1300℃,3h)1.6~1.85g/cm3,显⽓孔率(1300℃,3h)30%~35%,耐压强度(1300℃,3h)3.5 MPa ~5.6MPa,烧后线变化率(1300℃,3h)+0.2%~2.0%,马夏值0.45 MPa ~1.4MPa。
3#高炉实现长周期稳定顺行生产实践发布时间:2021-11-12T07:55:58.415Z 来源:《科学与技术》2021年8月23期作者:哈乐章文堪张海成[导读] 针对西钢3#高炉自开炉以来长期处于低状态冶炼,通过改善原燃料质量以及炉缸侵蚀检测和炉型状态跟踪等方法哈乐章文堪张海成青海西钢矿冶科技有限公司青海西宁 810005摘要:针对西钢3#高炉自开炉以来长期处于低状态冶炼,通过改善原燃料质量以及炉缸侵蚀检测和炉型状态跟踪等方法,并结合调整送风制度,调整冷却制度,优化上部装料制度,严控热制度、稳定造渣制度等手段控制合理操作炉型,实现了3#高炉长周期稳定顺行,各项技术经济指标得到明显改善,取得了一定成效。
关键词:高炉炼铁;稳定顺行;制度优化;生产实践引言近年来, 钢铁工业飞速发展, 导致全球优质铁矿石资源逐渐匮乏[1-3]。
目前国内外随着铁矿石的紧缺,铁粉价格不断上涨,尤其是进口铁粉涨价幅度较大[4,5],为降低生产成本,西钢多使用本地区铁精粉,但本地区铁精粉资源品种繁杂,且化学成分差异较大,使得原料的冶金性能频繁变化,整体原料质量不理想,同时由于球团资源紧缺,造成炉料结构频繁调整,进而对高炉的生产产生不利影响。
西钢3#高炉自2012年12月12日投产至今已运行8年5个月,仅于2019年 3月份大修进行了一次炉缸整体浇注。
大修前,3#高炉生产状态持续不佳,受原燃料条件以及高炉炉料结构频繁变化影响,3#高炉炉况状态难于保持长时间稳定,炉墙粘结、煤气流分布不均、炉缸堆积、频繁烧漏小套等一系列问题长期存在,高炉指标严重受到影响。
大修后,通过新技术的完善升级及操作思路的转变,3#高炉炉况状态逐渐改善,稳定性有所提高,较大修前有明显改善,但仍未实现长周期稳定顺行。
针对此问题,2020年11月份开始通过对入炉原燃料质量的严格管控,不断优化高炉装料制度以及调整风口布局,通过一系列技术攻关,3#高炉从2020年1月份至今一直保持着较好的顺行状态,实现了自开炉以来最长周期的稳定顺行。
关于高炉炉前操作和炮泥使用的几点认识高炉是冶炼铁矿石的设备,炉前操作是控制和调节高炉冶炼过程的关键环节。
而炮泥则是炉前操作中的一个重要辅助材料。
下面是我对高炉炉前操作和炮泥使用的几点认识。
首先,高炉炉前操作的主要目标是保持高炉的稳定运行和提高冶炼效果。
炉前操作人员需要根据高炉内部条件的变化,及时采取措施来调整和控制高炉的温度、炉压、燃料供给和爆炸物品的投入等参数,以保证高炉正常冶炼,并合理利用冶炼煤气和生成的炉渣。
其次,高炉炉前操作人员需要根据高炉的冶炼工艺要求,控制和调节炉料的配比和投料速度。
炉料的配比要根据原料的成分和含量来确定,同时要根据高炉的需要来确定投料速度,以保证高炉内部的物料均匀分布和冶炼反应的进行。
另外,炉泥是一种重要的炉前操作辅助材料,它主要用于调节高炉冶炼过程中的炉温和降低炉内的炉结。
炉泥中的有机物能够增加煤气的可燃性,提高高炉内部的燃烧效率;同时,炉泥中的高熔点物质能够增加炉渣的黏度和稠度,有助于提高高炉的操作稳定性和冶炼效果。
在使用炉泥时,需要注意以下几点:首先,要选择合适的炉泥种类。
不同类型的高炉需要使用不同种类的炉泥,所以炉前操作人员需要根据高炉的冶炼工艺要求来选择合适的炉泥种类。
其次,要正确控制炉泥的投放量和投放位置。
投放炉泥的位置和数量直接影响到高炉内部温度的分布和燃烧效果,所以需要根据高炉的冶炼状态和需要来进行调整。
此外,要定期清理和维护炉泥喷吹系统。
炉泥喷吹系统是将炉泥送入高炉的关键设备,如果长期不清理和维护,可能会导致炉泥喷吹系统堵塞或故障,影响高炉的正常运行。
综上所述,高炉炉前操作和炮泥使用是保证高炉正常冶炼和提高冶炼效率的关键环节。
炉前操作人员需要掌握正确的操作方法和技巧,并严格控制炉泥的质量和使用条件,以确保高炉的稳定运行和冶炼效果。
关于高炉炉前操作和炮泥使用的几点认识摘要:本文主要是针对了当前我国高炉平均的出铁次数和发达国家的先进水平相比是偏高的,在吨铁消耗炮泥的数量也是较大的现状进行详细分析,首先从改进高炉炉前出铁的操作与科学合理的选择、使用炮泥选择这两个方面提出针对观点。
其次详细的介绍了高炉标准的出铁次数和空炉缸操作等方面和出铁操作的有关概念,并建议在调节铁口开口的直径中,去实现最低的出铁次数为主要目标,工作人员需要努力的让出铁的速度接近实际高炉的产出铁的速度。
针对在高炉怎样去选择炮泥的原则和使用炮泥提出建议,予以有关单位参考与借鉴。
关键词:高炉;炉前操作;炮泥使用;对策前言:最近几年来,我国高炉操作对于炼铁厂的管理优化重视程度越来越高。
因为大多数国内的高炉针对炉前使用的耐火材料及炮泥,和供应商签订了吨铁结算的协议的,在对于怎样去优化耐材质量,降低炮泥消耗,努力降低吨铁消耗成本方面,承包商也做出了大量的攻关,在相对应的技术经济指标当中也是有了极为明显的变化。
简单来说,对于铁口炮泥使用与高炉炉前的操作完善,等重视程度严重不够。
如:1000立方米左右的高炉,平均一天出铁的次数可以在15次甚至更高,炮泥的消耗能够高达1.6kg/t铁量。
本文认为,当前能够限制高炉炉前生产,降低出铁次数的原因可以大致分为三种类型;第一种是高炉炉前出铁相关的操作方式需要优化改进;第二种是高炉的设计能力受限制;第三种是没有合理的选用铁口炮泥。
在高炉炉前的设计能力中,高炉炉前的铁水罐容量和炼钢匹配的关系等多方面因素有关的,其也是高炉能够更进一步的去降低出铁次数的限制因素。
一、和出铁有关的操作方式分析1.1国际上具有共识的理想出铁模式为第一:出铁过程中见渣的系数能够达到百分之百。
第二:每日标准的出铁次数为8到10次;第三:每日净出铁的实践无限接近于二十四小时且不会出现重叠出铁的现象;第四:铁水与熔渣的可计算排出速度和高炉生成速度是相对等的;第五:空炉缸的实际操作。