实验二图像增强和去噪
- 格式:doc
- 大小:40.00 KB
- 文档页数:2
测绘技术中的图像去噪和增强技巧图像去噪和增强是测绘技术中重要的一环。
随着科技的不断发展,图像采集设备的精度和灵敏度不断提高,但在实际应用中,图像中常常包含有噪声、模糊以及其他干扰因素,这些因素会影响图像的质量和准确性。
因此,提高图像的质量和清晰度,进行图像去噪和增强是测绘工作者必须面对的问题。
图像去噪是指通过一系列算法和方法,减少或消除图像中的噪声干扰。
在测绘技术中,图像去噪是十分关键的一项工作。
测绘图像中的噪声主要有模拟噪声和数字化噪声两类。
其中,模拟噪声是在图像采集和传输过程中产生的,包括了由于环境因素、光照等原因引起的噪声;数字化噪声则是由于图像传感器或数字化设备的非线性响应引起的。
在图像去噪的算法中,常用的有空间域滤波和频域滤波两种方法。
空间域滤波主要通过对图像像素周围进行统计分析,去除掉图像中的噪声,例如中值滤波、均值滤波等。
而频域滤波则是通过对图像进行傅里叶变换,将噪声从频域传输到空域,然后通过低通滤波去除噪声。
这些算法和方法能够有效地消除图像中的噪声,提高图像的质量和清晰度,从而减少误差和提高测绘数据的准确性。
另一方面,图像增强是指通过一系列的算法和方法,改善图像的质量和清晰度。
在测绘技术中,图像增强是为了更好地观察和分析图像中的地物和信息,提高测绘数据的可视化效果和解释能力。
图像增强的方法可以分为直方图均衡化、对比度增强和细节增强等。
直方图均衡化是一种常用的图像增强方法,通过将图像的灰度级分布均匀化,使得图像的对比度和亮度得到改善。
对比度增强是通过调整图像中的亮度差和灰度级之间的差异来改善图像,例如线性变换、非线性映射等。
细节增强是通过对图像中的细节进行突出和强化,例如锐化滤波、边缘增强等。
这些图像增强方法能够提升图像的可视化效果,使得图像更加清晰、鲜明,便于测绘数据的解释和分析。
除了上述常规的图像去噪和增强方法,近年来,基于深度学习的图像去噪和增强技术也取得了显著的进展。
深度学习是一种基于神经网络的机器学习方法,通过学习大量的数据,自动学习和提取图像中的特征和模式,从而实现图像的去噪和增强。
数字媒体中的图像去噪与图像增强方法比较在数字媒体领域中,图像处理是一项重要的技术,旨在改善图像的质量和外观。
在图像处理中,图像去噪和图像增强是两个相关但又略有不同的概念。
图像去噪旨在从图像中消除噪声,以改善图像的清晰度和细节。
而图像增强则是通过增强图像的亮度、对比度和色彩等特征,使图像更加清晰和吸引人。
本文将比较数字媒体中常用的图像去噪和图像增强方法,旨在帮助读者更好地了解各种方法的特点和适用场景。
1. 图像去噪方法比较1.1 统计滤波器法统计滤波器法是一种基于图像的统计特性,通过对图像像素值进行统计分析,判断是否为噪声并进行去除。
其中一种常见的统计滤波器是中值滤波器,它通过计算像素值的中位数来消除孤立的噪声点。
统计滤波器法简单易用,对整体像素值分布影响较小,适用于高斯噪声、椒盐噪声等。
1.2 小波变换法小波变换法是一种基于信号频域特性的滤波方法。
它能够将图像分解成不同尺度和频率的子带,通过控制不同尺度的权重,去除高频噪声和低频噪声。
小波变换法能够有效去除多种类型的噪声,并保持图像的细节信息。
1.3 自适应滤波法自适应滤波法是一种基于邻域像素值的滤波方法。
它通过定义邻域大小和权重函数来计算每个像素的新值,以降低噪声对图像的影响。
自适应滤波法能够在保持图像细节的同时去除噪声,适用于各种类型的噪声。
2. 图像增强方法比较2.1 直方图均衡化直方图均衡化是一种常见的图像增强方法,它通过对图像像素值的分布进行重新调整,使得图像的整体对比度得到增强。
直方图均衡化适用于低对比度的图像,可以使得图像更加清晰明亮,但有时可能会引入噪声。
2.2 高斯滤波高斯滤波是一种平滑图像的方法,通过对图像进行高斯模糊处理,降低噪声干扰,使图像更加平滑。
高斯滤波适用于高斯噪声和孤立噪声的去除,但可能会损失图像的细节。
2.3 锐化增强锐化增强是一种通过增强图像的边缘和细节来改善图像质量的方法。
常用的锐化增强算法包括拉普拉斯算子和梯度算子等。
实验三空域图像增强一、实验目的与要求1、掌握灰度直方图的概念及其计算方法;2、熟练掌握直力图均衡化和直方图规定化的计算过程;3、熟练掌握空域滤波中常用的平滑和锐化滤波器;4、掌握色彩直方图的概念和计算方法5、利用MATLAB程序进行图像增强。
二、实验内容与步骤1、图像的直方图与直方图均衡方法a. 从硬盘加载cameraman.tif图象(using function imread).b. 显示图象.c. 显示图象的直方图(using function imhist).d. 用直方图均衡方法进行图象增强.e. 对处理后的图象显示其直方图.f. 比较图象的质量并且进行讨论.代码如下:I=imread(‘原图像名.gif); % 读入原图像J=histeq(I); %对原图像进行直方图均衡化处理Imshow(I); %显示原图像Title(‘原图像’); %给原图像加标题名Figure;imshow(J); %对原图像进行屏幕控制;显示直方图均衡化后的图像Title(‘直方图均衡化后的图像’) ; %给直方图均衡化后的图像加标题名Figure; subplot(1,2,1) ;%对直方图均衡化后的图像进行屏幕控制;作一幅子图作为并排两幅图的第1幅图Imhist(I,64); %将原图像直方图显示为64级灰度Title(‘原图像直方图’) ; %给原图像直方图加标题名Subplot(1,2,2); %作第2幅子图Imhist(J,64) ; %将均衡化后图像的直方图显示为64级灰度Title(‘均衡变换后的直方图’) ; %给均衡化后图像直方图加标题名从处理前后的图像可以看出,许多在原始图像中看不清楚的细节在直方图均衡化处理后所得到的图像中都变得十分清晰。
2、对图象加入躁声,改变噪声参数(均值、方差或比例),比较其影响。
使用3x3或7x7的均值滤波器、中值滤波器对不同强度的高斯噪声和椒盐噪声,进行滤波处理;能够正确地评价处理的结果;能够从理论上作出合理的解释。
图像识别是一种通过计算机对图像进行分析和解读的技术。
在图像识别中,预处理是非常重要的一步,它能够帮助提高图像识别的准确性和效果。
本文将介绍图像识别中常见的预处理技术。
一、图像增强图像增强是一种常见的图像预处理技术,旨在提高图像的质量和清晰度。
在图像识别中,清晰度对于识别准确性至关重要。
常见的图像增强技术包括:锐化:通过增加图像的边缘和细节,使图像更加清晰和鲜明。
这可以通过应用滤波器来实现,如拉普拉斯滤波器或边缘增强滤波器。
对比度增强:通过调整图像的亮度和对比度来增强图像。
这可以通过直方图均衡化或自适应对比度增强等算法来实现。
二、图像去噪噪声是在图像中引入的不希望的干扰信号。
在图像识别中,噪声会干扰图像特征的提取和识别。
图像去噪是一种常见的预处理技术,旨在减少图像中的噪声并提高图像质量。
常见的图像去噪技术包括:中值滤波:采用中值滤波器对图像进行滤波,通过将图像中的每个像素替换为周围像素的中值来减少噪声。
小波去噪:使用小波变换对图像进行去噪,通过将图像分解成不同的频率分量,并进行去噪处理来消除噪声。
三、图像标准化图像标准化是一种常见的预处理技术,旨在使不同图像具有相似的亮度、对比度和颜色分布。
标准化可以消除不同图像之间的差异,从而提高图像识别的稳定性和准确性。
常见的图像标准化技术包括:灰度拉伸:通过调整图像中灰度值的范围,使图像的亮度和对比度在整个范围内均匀分布。
归一化:将图像中的像素值缩放到0到1的范围内,使不同图像的像素值具有相似的尺度。
四、图像裁剪和旋转在图像识别中,裁剪和旋转是常见的预处理技术,用于去除图像中的不相关部分或调整图像的朝向。
常见的图像裁剪和旋转技术包括:目标检测:使用目标检测算法来识别和定位图像中的特定对象或兴趣区域,并裁剪出这些区域作为识别的输入。
几何变换:通过对图像进行旋转、平移、缩放等几何变换来调整图像的朝向和大小,从而使其适应于不同的识别任务。
综上所述,图像识别中的预处理技术对于提高识别准确性和效果至关重要。
图像处理中的图像去噪与图像增强技术图像处理是一门广泛应用于多个领域的技术,其中图像去噪与图像增强技术是其中重要的两大方向。
图像去噪是指在图像处理过程中,将图像中的噪声去除,从而提高图像的质量和清晰度;而图像增强则是指通过各种算法和技术手段,改善图像的视觉效果,使得图像更加美观和易于分析。
本文将围绕图像去噪与图像增强技术展开,深入探讨它们的原理、应用与未来发展方向。
第一章:图像去噪技术1.1图像噪声的来源与分类图像噪声是指在采集、传输、存储等过程中由于各种因素引起的图像中的无意义的像素值。
图像噪声的来源主要包括传感器本身的噪声、传输过程中的干扰、存储设备的误差等。
根据噪声的性质,可以将图像噪声分为加性噪声、乘性噪声等不同类型。
1.2常用的图像去噪技术目前,常用的图像去噪技术包括空域滤波、频域滤波、小波去噪、基于深度学习的去噪等。
空域滤波是最早被应用于图像去噪的技术之一,主要包括均值滤波、中值滤波等。
频域滤波则通过利用图像的频谱信息,对图像进行滤波。
小波去噪利用小波变换的多尺度分析特性,可以有效地去除图像中的不同尺度的噪声。
基于深度学习的去噪技术则是近年来兴起的一种新技术,通过训练深度神经网络,可以实现高效的图像去噪效果。
1.3图像去噪技术的应用图像去噪技术在各个领域都有着广泛的应用。
在医学影像领域,图像去噪技术可以帮助医生更准确地诊断疾病;在无人驾驶领域,图像去噪技术可以提高驾驶辅助系统的精度和可靠性;在工业检测领域,图像去噪技术可以帮助工程师更准确地检测产品的质量等。
1.4图像去噪技术的挑战与发展方向尽管图像去噪技术取得了显著的进展,但是在实际应用中仍然存在一些挑战。
例如,对于复杂场景中的图像,传统的图像去噪技术往往效果不佳;另外,图像去噪技术的算法复杂度较高,需要大量的计算资源。
未来,如何进一步提高图像去噪技术的鲁棒性和实时性将成为重点研究方向。
第二章:图像增强技术2.1图像增强技术的分类图像增强技术根据不同的目的,可以分为对比度增强、边缘增强、细节增强等不同类型。
利用Matlab进行图像去噪和图像增强随着数字图像处理技术的不断发展和成熟,图像去噪和图像增强在各个领域都有广泛的应用。
而在数字图像处理的工具中,Matlab凭借其强大的功能和易于使用的特点,成为了许多研究者和工程师首选的软件之一。
本文将介绍如何利用Matlab进行图像去噪和图像增强的方法和技巧。
一、图像去噪图像去噪是指通过一系列算法和技术,将图像中的噪声信号去除或减弱,提高图像的质量和清晰度。
Matlab提供了多种去噪方法,其中最常用的方法之一是利用小波变换进行去噪。
1. 小波变换去噪小波变换是一种多尺度分析方法,能够对信号进行时频分析,通过将信号分解到不同的尺度上,实现对图像的去噪。
在Matlab中,可以使用"dwt"函数进行小波变换,将图像分解为低频和高频子带,然后通过对高频子带进行阈值处理,将噪声信号滤除。
最后通过逆小波变换将去噪后的图像重构出来。
这种方法能够有效抑制高频噪声,保留图像的细节信息。
2. 均值滤波去噪均值滤波是一种基于平均值的线性滤波方法,通过计算像素周围邻域内像素的平均值,替代原始像素的值来去除噪声。
在Matlab中,可以使用"imfilter"函数进行均值滤波,通过设置适当的滤波模板大小和滤波器系数,实现对图像的去噪。
二、图像增强图像增强是指通过一系列算法和技术,改善图像的质量、增强图像的细节和对比度,使图像更容易被观察和理解。
Matlab提供了多种图像增强方法,以下将介绍其中的两种常用方法。
1. 直方图均衡化直方图均衡化是一种通过对图像像素值的分布进行调整,增强图像对比度的方法。
在Matlab中,可以使用"histeq"函数进行直方图均衡化处理。
该函数能够将图像的像素值分布拉伸到整个灰度级范围内,提高图像的动态范围和对比度。
2. 锐化增强锐化增强是一种通过增强图像边缘和细节来改善图像质量的方法。
在Matlab中,可以使用"imsharpen"函数进行图像的锐化增强处理。
基于机器学习的像去噪与增强技术研究基于机器学习的图像去噪与增强技术研究随着数字图像技术的快速发展,人们对图像质量和清晰度的要求越来越高。
然而,由于种种因素的影响,图像往往会受到噪声的干扰,失去一部分细节和精度。
因此,研究基于机器学习的图像去噪与增强技术具有重要的理论意义和实际应用价值。
一、图像去噪技术的研究与应用1. 传统图像去噪方法传统的图像去噪方法包括基于统计模型、频域滤波以及局部平滑等技术。
这些方法通常是基于先验假设和数学模型的,对于特定类型的噪声有较好的效果,但是对于复杂的噪声和实际场景中的图像噪声去除效果较差。
2. 基于机器学习的图像去噪方法基于机器学习的图像去噪方法通过从大量样本中学习图像的噪声和对应的清晰图像之间的映射关系,来实现对图像的去噪。
这种方法不依赖于先验假设和模型,具有较强的灵活性和鲁棒性,在复杂场景中具有更好的去噪效果。
二、基于机器学习的图像增强技术的研究与应用1. 传统图像增强方法传统的图像增强方法包括对比度增强、直方图均衡化以及滤波等技术。
这些方法主要通过改变图像的灰度分布和卷积运算来实现图像的增强,但是在一些复杂场景中效果有限。
2. 基于机器学习的图像增强方法基于机器学习的图像增强方法通过学习输入图像与对应的增强图像之间的映射关系,来实现对图像的增强。
这种方法可以根据不同场景和需求进行自适应的图像增强,并且在保持图像信息完整性的同时提高图像的质量和清晰度。
三、基于机器学习的图像去噪与增强技术的研究进展与挑战1. 研究进展近年来,随着深度学习技术的不断发展,基于机器学习的图像去噪与增强技术取得了显著的进展。
深度学习模型如卷积神经网络(CNN)和生成对抗网络(GAN)在图像去噪与增强任务上显示出强大的性能。
2. 研究挑战尽管基于机器学习的图像去噪与增强技术取得了很大进展,但仍面临一些挑战。
例如,如何处理不同类型的噪声、如何保持图像细节的同时增强图像质量等问题仍待解决。
物理实验技术中图像处理的技巧与注意事项在物理实验中,图像处理技术被广泛应用于数据采集、分析以及实验结果的展示中。
良好的图像处理能够提高实验数据的准确性和可靠性,并给实验结果的呈现带来更多的信息和视觉效果。
本文将介绍一些物理实验中图像处理的技巧与注意事项。
一、图像采集与处理的准备工作在进行物理实验之前,需要进行图像采集与处理的准备工作。
首先,选择合适的图像采集设备,如数码相机或高速相机等。
其次,要设置合适的摄像参数,包括曝光时间、白平衡、对焦等。
在进行图像处理时,还需要选择合适的图像处理软件,如Photoshop、ImageJ等。
二、图像采集与处理的技巧1. 标定图像尺度:在使用图像进行测量时,需要确定图像中的物理尺度。
一种简单的方法是在实验中放置一个已知尺寸的标尺或物体,通过测量标尺或物体在图像中的像素尺寸,可以得到像素与物理尺寸的转换关系。
2. 图像去噪:在一些实验条件不理想的情况下,图像中可能会存在噪声。
为了减少噪声的影响,可以使用图像处理软件中的降噪滤波算法,如中值滤波、均值滤波等。
对于一些特定类型的噪声,还可以采用适应性滤波算法进行去噪处理。
3. 图像增强:为了提高图像的清晰度和对比度,可以使用图像处理软件中的增强功能。
例如,可以调整图像的亮度、对比度、色彩等参数,以达到更好的视觉效果。
4. 图像分割:在一些实验中,需要对图像进行分割,提取感兴趣的目标物体。
常见的分割方法包括阈值分割、边缘检测、区域生长等。
通过图像分割,可以对实验结果进行精确的量化分析。
5. 图像配准:在一些需要比较差异图像的实验中,需要对图像进行配准,使得它们具有相同的尺度和方向。
常见的图像配准方法包括基于特征点匹配的配准和基于图像变换的配准。
三、图像采集与处理的注意事项1. 光照条件的控制:光照条件对图像采集有很大的影响,因此需要对实验环境的光照进行控制。
避免强烈的直射光以及背光情况,尽量保持均匀的光照条件。
2. 采样率与分辨率的选择:在进行图像采集时,需要选择适当的采样率和分辨率。
图像识别中常见的预处理技术图像识别是计算机视觉领域的一个重要研究方向,它通过对图像进行处理和分析,使计算机能够理解和识别图像中的内容。
在图像识别中,预处理技术起着至关重要的作用。
本文将介绍图像识别中常见的预处理技术,并分析其应用和效果。
一、图像去噪图像去噪是图像预处理的一项基础工作。
图像中的噪声会影响到图像的质量和后续处理的效果,因此在进行图像识别之前,首先需要对图像进行去噪处理。
常用的图像去噪方法有中值滤波、均值滤波和高斯滤波等。
中值滤波通过计算像素邻域的中值来去除噪声,适用于椒盐噪声等。
均值滤波通过计算像素邻域的平均值来去除噪声,适用于高斯噪声等。
高斯滤波通过计算像素邻域的加权平均值来去除噪声,并能保持图像的细节特征。
二、图像增强图像增强是指对图像的明暗、对比度等参数进行调整,以提高图像的视觉效果。
图像增强可以改善图像的可视化效果,同时也能提高图像在识别算法中的准确性。
常见的图像增强方法有直方图均衡化、对数变换和伽马变换等。
直方图均衡化通过将直方图拉伸到整个灰度范围内,来增强图像的对比度。
对数变换通过对图像的像素值进行对数变换,来增强图像的低对比度区域。
伽马变换通过对图像的灰度级进行非线性映射,来增强图像的亮度和对比度。
三、图像标准化图像标准化是指对图像的尺度、方向和光照等进行校正,以便于后续的图像识别。
图像标准化可以消除因图像采集设备和环境等因素引起的差异,提高图像识别的鲁棒性。
常见的图像标准化方法有尺度标准化、方向标准化和光照标准化等。
尺度标准化通过将图像缩放到固定的尺寸,来消除尺度的差异。
方向标准化通过计算图像的梯度方向,来将图像的方向统一到一个范围内。
光照标准化通过对图像的亮度进行校正,来消除光照的差异。
四、图像分割图像分割是将图像划分成若干个具有独立特征的区域或对象的过程。
图像分割可以将复杂的图像场景分解为易于识别的子图像,提高图像识别的准确性和效率。
常见的图像分割方法有阈值分割、边缘检测和区域生长等。
使用计算机视觉技术进行图像去噪和增强的方法介绍图像去噪和增强是计算机视觉领域中的重要研究方向之一。
在现实生活中,图像数据往往受到噪声、模糊、低对比度等因素的影响,这些问题会降低图像的质量,降低了人们对图像的理解和分析能力。
为了提升图像的质量和准确性,科学家们提出了许多方法和算法,本文将介绍其中几种常见的方法。
一、主成分分析法(PCA):主成分分析法是一种常见的图像去噪和增强方法,它通过线性变换的方式将原始图像数据转换为新的坐标系。
在新的坐标系中,通过选择合适的主成分,可以达到去除图像噪声和增强图像细节的目的。
主成分分析法的基本步骤如下:1. 对原始图像进行预处理,包括灰度处理、归一化等;2. 将图像数据矩阵重构为一个向量;3. 计算协方差矩阵,并对其进行特征值分解;4. 选择合适的主成分进行图像变换,得到去噪或增强后的图像。
二、小波变换法:小波变换是一种基于信号处理的方法,在图像去噪和增强中也得到了广泛应用。
小波变换的基本思想是将图像分解为不同尺度上的平滑部分和细节部分,其中细节部分通常是我们关注的目标。
小波变换法的基本步骤如下:1. 对原始图像进行灰度处理;2. 将灰度图像进行小波分解,得到不同尺度上的频域系数;3. 根据不同尺度上的频域系数进行图像去噪和增强;4. 将去噪或增强后的频域系数进行小波反变换,得到最终的图像。
三、非局部均值滤波法:非局部均值滤波法是一种经典的图像去噪方法,它通过利用图像中的冗余信息来降低噪声的影响。
该方法的基本思想是通过计算图像中相似像素点的平均值来去除噪声。
非局部均值滤波法的基本步骤如下:1. 对原始图像进行灰度处理;2. 在给定窗口内,计算每个像素点与邻域像素点之间的相似度;3. 根据相似度计算图像中每个像素点的非局部均值;4. 基于计算得到的非局部均值,生成最终去噪后的图像。
四、卷积神经网络(CNN):卷积神经网络是近年来在图像处理领域取得重大进展的方法之一。
实验二图像增强和去噪
1实验目的:
1)熟悉图像的灰度变换方法可增强图像。
2)掌握图像的邻域均值滤波和中值滤波方法。
2 实验原理及实验内容:
图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。
其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。
图像增强技术主要有直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。
本实验以直方图均衡化增强图像对比度的方法为主要内容,其他方法同学们可以在课后自行学习。
直方图是多种空间城处理技术的基础。
直方图操作能有效地用于图像增强。
除了提供有用的图像统计资料外,直方图固有的信息在其他图像处理应用中也是非常有用的,如图像压缩与分割。
直方图在软件中易于计算,也适用于商用硬件设备,因此,它们成为了实时图像处理的一个流行工具。
直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。
直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。
灰度直方图是图像预处理中涉及最广泛的基本概念之一。
图像的直方图事实上就是图像的亮度分布的概率密度函数,是一幅图像的所有象素集合的最基本的统计规律。
直方图反映了图像的明暗分布规律,可以通过图像变换进行直方图调整,获得较好的视觉效果。
直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。
处理后的图像直方图分布更均匀了,图像在每个灰度级上都有像素点。
从处理前后的图像可以看出,许多在原始图像中看不清楚的细节在直方图均衡化处理后所得到的图像中都变得十分清晰。
下面给出直方图均衡化增强图像对比度的MA TLAB程序:
I=imread(‘原图像名.gif); % 读入原图像
J=histeq(I); %对原图像进行直方图均衡化处理
Imshow(I); %显示原图像
Title(‘原图像’); %给原图像加标题名
Figure;imshow(J); %对原图像进行屏幕控制;显示直方图均衡化后的图像
Title(‘直方图均衡化后的图像’) ; %给直方图均衡化后的图像加标题名
Figure; subplot(1,2,1) ;%对直方图均衡化后的图像进行屏幕控制;作一幅子图作为并排两幅图的第1幅图
imhist(I,64); %将原图像直方图显示为64级灰度
Title(‘原图像直方图’) ; %给原图像直方图加标题名
Subplot(1,2,2); %作第2幅子图
imhist(J,64) ; %将均衡化后图像的直方图显示为64级灰度
Title(‘均衡变换后的直方图’) ; %给均衡化后图像直方图加标题名
其他图像增强滤波方法:
• 1. 二维卷积线性滤波:
•RGB=imread('gyy2.jpg');
•I=rgb2gray(RGB);
•J1=imnoise(I,'gaussian',0,0.02);
•h=[1,1,1;1,1,1;1,1,1];
•h=h/9;
•K=conv2(J1,h);
•subplot(2,2,1),imshow(I);
•subplot(2,2,2),imshow(J1);
•subplot(2,2,3),imshow(K,[])
• 2. 中值滤波:
•RGB=imread('gyy2.jpg');
I=rgb2gray(RGB);
•J=imnoise(I,'salt & pepper',0.02);
•K=medfilt2(J);
•subplot(2,2,1),imshow(I);
•subplot(2,2,2),imshow(J);
•subplot(2,2,3),imshow(K);
• 3. 灰度分层法伪彩色处理:
•RGB=imread('gyy2.jpg');
•I=rgb2gray(RGB);
•X=grayslice(I,16);
•figure,imshow(X)
•figure,imshow(X,hot(16))
•补充:
• 1 利用低通邻域平均模板进行平滑:
RGB=imread('gyy1.jpg');
•subplot(2,2,1),imshow(RGB);title('原图');
•I=rgb2gray(RGB);
•I=imnoise(I,'gaussian',0,0.02)
•J=fspecial('average',3); J1=filter2(J,I)/255;
•subplot(2,2,2),imshow(I);
•subplot(2,2,3),imshow(J1);title('3*3滤波');
•K=fspecial('average',9); K1=filter2(K,I)/255;
•subplot(2,2,4),imshow(K1);title('9*9滤波');
•* 掌握h=fspecial(type)或h= fspecial(type,parameters), J=filter2(h,I)/255
•2、中值滤波和平均滤波
I=imread('gyy1.jpg');
•J1=rgb2gray(I);
•J=imnoise(J1,'gaussian',0,0.01);
•subplot(2,2,1);imshow(I);title('原图');
•subplot(2,2,2);imshow(J);title('noise');
•K=fspecial('average',5);
•K1=imfilter(J,K); %掌握J=imfilter(I,h)
•subplot(2,2,3);imshow(K1);title('average');
•L=medfilt2(J,[3 5]);
•subplot(2,2,4);imshow(L);title('medium');
3 实验报告内容
提交实验的原始图像和结果图像。
4 思考题
1.直方图是什么概念?它反映了图像的什么信息2.直方图均衡化是什么意思?它的主要用途是?。