高中数学必修 1 高端备课
- 格式:doc
- 大小:53.50 KB
- 文档页数:7
高中数学备课教案必修一
课程名称:必修一
教学内容:一次函数
教学目标:
1. 了解一次函数的定义和特点;
2. 掌握一次函数的图像和性质;
3. 能够应用一次函数解决实际问题。
教学重点:
1. 一次函数的定义;
2. 一次函数的图像和性质。
教学难点:
1. 一次函数的应用。
教学过程:
Step 1:导入新知识(5分钟)
教师简要介绍一次函数的定义和特点,引导学生思考一次函数和常数函数的区别。
Step 2:讲解一次函数的定义和图像(15分钟)
教师通过PPT展示一次函数的一般形式和图像,讲解一次函数的斜率和截距的概念,并与x轴、y轴的关系进行对比说明。
Step 3:练习一次函数的性质(15分钟)
教师设计练习题,让学生计算一次函数的斜率和截距,并绘制对应的图像进行验证。
Step 4:应用一次函数解决实际问题(15分钟)
教师设计实际问题,让学生运用一次函数的知识解决,并讨论解题思路和方法。
Step 5:总结与提高(10分钟)
教师对本节课内容进行总结,强调一次函数的重要性和应用领域,鼓励学生多加练习,掌握一次函数的知识和技巧。
课堂作业:
1. 计算以下一次函数的斜率和截距:y=2x+3,y=3x-4;
2. 绘制一次函数y=2x+3的图像,并写出对应的斜率和截距。
教学反思:
本节课主要介绍了一次函数的定义和特点,通过讲解和练习,学生对一次函数有了初步的认识和了解。
提高学生对一次函数的应用能力,可以设计更多实际问题进行训练,激发学生学习兴趣,增强学生的学习动力。
高一数学必修一教案(精选10篇)第一篇:数学初识教学目标:•了解数学的起源和发展历程;•掌握数学基本概念和术语;•培养对数学的兴趣和好奇心。
教学内容:•数学的定义和分类;•数学的起源和发展;•数学的基本概念和术语。
教学重点和难点:•掌握数学的基本概念和术语;•了解数学的起源和发展历程。
教学方法:•课堂讲解结合小组讨论;•配合多媒体教学工具展示数学的发展历程;•指导学生进行实际例子分析。
教学过程:1.导入:通过提问引起学生的兴趣,如“你们对数学有什么认识吗?”2.课堂讲解:介绍数学的定义和分类,并与学生进行互动讨论。
3.小组活动:分成小组,让学生在小组内讨论并展示自己对数学起源和发展的了解。
4.多媒体展示:使用多媒体教学工具展示数学的发展历程,以图表和视频的形式呈现。
5.实例分析:指导学生通过实际例子来理解数学的基本概念和术语。
6.总结:通过课堂总结,巩固学生对数学的认识和理解。
第二篇:函数与方程教学目标:•掌握函数和方程的基本概念;•理解函数与方程之间的关系;•学会用函数解决实际问题。
教学内容:•函数的定义和性质;•方程的定义和性质;•函数与方程之间的关系;•使用函数解决实际问题。
教学重点和难点:•函数与方程之间的关系;•使用函数解决实际问题。
教学方法:•课堂讲解结合实例演练;•小组合作学习;•独立解决实际问题。
教学过程:1.导入:回顾上节课的内容,引出本节课的主题。
2.课堂讲解:介绍函数和方程的基本概念,并与学生进行互动讨论。
3.实例演练:通过具体的函数和方程实例,让学生理解函数与方程之间的关系。
4.小组合作学习:分成小组,让学生在小组内解决一系列与函数和方程相关的问题。
5.独立解决实际问题:指导学生通过函数解决实际问题,提高实际应用能力。
6.总结:通过课堂总结,巩固学生对函数和方程的理解。
第三篇:三角函数初步教学目标:•掌握三角函数的基本概念和性质;•学会计算三角函数的值;•熟练应用三角函数解决实际问题。
新人教版高中数学必修一精品教案全册课题:1.1集合的含义及表示内容分析:1.集合是中学数学的一个重要的基本概念的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主教科书给出的“一般地,某些指定”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合N,{}N=,2,1,0(2)正整数集:非负整数集内排除0的集记作N*或N+{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {}0±±Z=1,2,,(4)有理数集:全体有理数的集合记作Q ,{}整数与分数Q=(5)实数集:全体实数的集合记作R{}数R=数轴上所有点所对应的注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数(2)非负整数集内排除0的集N*或N+、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作Aa∉4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……⑵“∈”的开口方向,不能把a ∈A 颠倒过来写(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合 例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条 件写在大括号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或 23|{>-x x所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?答:不是}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值(三) 有限集与无限集1、有限集2、无限集3、空集记作Φ,如:}01|{2=+∈x R x课 题:1.2子集 全集 补集内容分析在研究数的时候,通常都要考虑数与数之间的相等与不相等(大于或小于)关系,而对于集合而言,类似的关系就是“包含”与“相等”关系本节讲子集,先介绍集合与集合之间的“包含”与“相等”关系,并引出子集的概念,然后,对比集合的“包含”与“相等”关系,得出真子集的概念以及子集与真子集的有关性质 本节课讲重点是子集的概念,难点是弄清元素与子集、属于与包含之间的区别教学过程:一、复习引入:(1)回答概念:集合、元素、有限集、无限集、空集、列举法、描述法、(2)用列举法表示下列集合:①}022|{23=+--x x x x {-1,1,2}②数字和为5的两位数} {14,23,32,41,50} (3)用描述法表示集合:}51,41,31,21,1{ }5,1|{*≤∈=n N n n x x 且 (4)集合中元素的特性是什么?(5)用列举法和描述法分别表示:“与2相差3的所有整数所组成的集合”}3|2||{=-∈x Z x {-1,5}问题:观察下列两组集合,说出集合A 与集合B 的关系(共性)(1)A={1,2,3},B={1,2,3,4,5}(2)A=N ,B=Q(3)A={-2,4},}082|{2=--=x x x B(集合A 中的任何一个元素都是集合B 的元素)二、讲解新课:(一) 子集1 定义:(1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一 个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A记作:A B B A ⊇⊆或 ,A ⊂B 或B ⊃A读作:A 包含于B 或B 包含AB A B x A x ⊆∈⇒∈,则若任意当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A注:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,同时集合B 的任何..一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或B A, 读作A真包含于B 或B 真包含A(4)子集与真子集符号的方向不同与同义;与如B A B A A B B A ⊇⊆⊇⊆(5)空集是任何集合的子集Φ⊆A 空集是任何非空集合的真子集Φ A 若A ≠Φ,则Φ A 任何一个集合是它本身的子集A A ⊆(6)易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合如 Φ⊆{0}不能写成Φ={0},Φ∈{0}全集与补集1 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A的补集(或余集),记作A C S ,即C S A=},|{A x S x x ∉∈且2、性质:C S (C S A )=A ,C S S=φ,C S φ3、全集:如果集合S 集合就可以看作一个全集,全集通常用U 表示课 题:1.3 交集、交集内容分析这小节研究集合的运算,即集合的交与并,本节课的重点是交集与并集的概念,难点是弄清交集与并集的概念,符号之间的区别与联系教学过程:一、复习引入:1.说出A C S2.填空:若全集U={x|0≤x <6,X ∈Z},A={1,3,5},B={1,4},那么=A C U {0,2,4} =B C U {0,2,3,5}3.已知B={1,2,5,10},2}) 4有什么关系?图1图2如上图,集合A 和B 的公共部分叫做集合A 和集合B 的交(图1的阴影部分),集合A 和B 合并在一起得到的集合叫做集合A 和集合B 的并(图2的阴影部分).观察问题3中A 、B 、C 三个集合的元素关系易知,集合C={1,2}是由所有属于集合A 且属于集合B 的元素所组成的,即集合C 的元素是集合A 、B 的公共元素,此时,我们就把集合C 叫做集合A 与B 的交集,这是今天我们要学习的一个重要概念.问题:观察下列两组集合,说出集合A 与集合B 的关系(共性)(1)A={1,2,3},B={1,2,3,4,5}(2)A=N ,B=Q(3)A={-2,4},}082|{2=--=x x x B(集合A 中的任何一个元素都是集合B 的元素)二、讲解新课:1.交集的定义一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集. 记作A B (读作‘A 交B ’),即A B={x|x ∈A ,且x ∈B }.如:{1,2,3,6} {1,2,5,10}={1,2}.又如:A={a,b,c,d,e },B={c,d,e,f}.则A B={c,d,e}.2.并集的定义一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集.记作:A B (读作‘A 并B ’),即A B ={x|x ∈A ,或x ∈B}).如:{1,2,3,6} {1,2,5,10}={1,2,3,5,6,10}.3、交集、并集的性质用文图表示(1)若A ⊇B,则A B=B, A B=B(2)若A ⊆B 则A B=A A B=A(3)若A=B,则A A=A A A=A (4)若A,B 相交,有公共元素,但不包含则A B A,A B BA B A, A B B (5) )若A,B 无公共元素,则A B=Φ(学生思考、讨论、分析:从图中你能看出那些结论?):从图中观察分析、思考、讨论,完全归纳以下性质,并用集合语言证明:1.交集的性质(1)A A=A A Φ=Φ,A B=B A (2)A B ⊆A, A B ⊆B .2.并集的性质(1)A A=A (2)A Φ=A (3)A B=B A (4)A B ⊇A,A B ⊇B B A (B)A BA联系交集的性质有结论:Φ⊆A B ⊆A ⊆A B .3. 德摩根律:(C u A) (C u B)= C u (A B),(C u A) (C u B)= C u (A B)(可以用韦恩图来理解).结合补集,还有①A (C u A)=U, ②A (C u A)= Φ.容斥原理一般地把有限集A 的元素个数记作card(A).对于两个有限集A ,B ,有card(A ∪B)= card(A)+card(B)- card(A ∩B).三、讲解范例:例1 设A={x|x>-2},B={x|x<3},求A B.解:A B={x|x>-2} {x|x<3}={x|-2<x<3}.例2 设A={x|x 是等腰三角形},B={x|x 是直角三角形},求A B. 解:A B={x|x 是等腰三角形} {x|x 是直角三角形}={x|x 是等腰直角三角形}.例3 A={4,5,6,8},B={3,5,7,8},求A B.解:A B={3,4,5,6,7,8}.例4设A={x|x 是锐角三角形},B={x|x 是钝角三角形},求A B.解:A B={x|x 是锐角三角形} {x|x 是钝角三角形}={x|x 是斜三角形}.例5设A={x|-1<x<2},B={x|1<x<3},求A ∪B.解:A B={x|-1<x<2} {x|1<x<3}={x|-1<x<3}.说明:求两个集合的交集、并集时,往往先将集合化简,两个数集的交集、并集,可通过数轴直观显示;利用韦恩图表示两个集合的交集,有助于解题例6(课本第12页)设A={(x,y)|y=-4x+6},B={(x,y)|y=5x-3},求A B. 解:A B={(x,y)|y=-4x+6} {(x,y)|y=5x-3}={(x,y)|⎩⎨⎧-=+-=3564x y x y }={(1,2)} 注:本题中,(x,y)可以看作是直线上的的坐标,也可以看作二元一次方程的一个解.形如2n (n ∈Z )的整数叫做偶数,形如2n+1(n ∈Z )的数叫做奇数,全体奇数的集合叫做奇数集全体偶数的集合叫做偶数集. 交集与并集性质例题例1(课本第12页)设U={1,2,3,4,5,6,7,8},A={3,4,5},B={4,7,8},求C u A, C u B, (C u A) (C u B), (C u A) (C u B), C u (A B) , C u (A B).解:C u A={1,2,6,7,8} C u B={1,2,3,5,6}(C u A) (C u B)= C u (A B)={1,2,6}(C u A) (C u B)= C u (A B)={1,2,3,5,6,7,8}例2 已知集合A={y |y=x 2-4x+5},B={x |y=x -5}求A ∩B,A ∪B .解:A ∩B= {x |1≤x ≤5}, A ∪B=R .例3 已知A={x |x 2≤4}, B={x |x>a },若A ∩B=Ф,求实数a 的取值范围. 解:a ≧2例4 集合M={(x,y) |∣xy ∣=1,x >0},N={(x,y) |xy=-1},求M ∪N . 解:M ∪N={(x,y) |xy=-1,或xy=1(x >0)}.例5 已知全集U={x |x 2-3x+2≥0},A={x ||x-2|>1},B=⎭⎬⎫⎩⎨⎧≥--021x x x , 求C U A ,C U B ,A ∩B ,A ∩(C U B ),(C U A )∩解:∵U={x |x 2-3x+2≥0}={x|x ≤1或x ≥2},A={x ||x-2|>1}={x|x<1或x>3}, B=⎭⎬⎫⎩⎨⎧≥--021x x x ={x| x ≤1或x>2} ∴C U A={}321≤≤=x x x 或C U B={}2=x xA ∩B=A={x|x<1或x>3},={x|x<1或x>3},A ∩(C UB )=φ(C U A )∩B={}3212≤<=x x x 或课 题:1.4 逻辑联结词内容分析:学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解).由此,这一大节首先给出含有“或”、“且”、“非”的复合命题的意义,介绍了判断含有“或”、“且”、“非”的复合命题的真假的方法.接下来,讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法.然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识.这一大节的重点是逻辑联结词“或”、“且”、“非”与充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.这一大节的难点是对一些代数命题真假的判断.初中阶段,学生只是对简单的推理方法有一定程度的熟悉,并且,相关的技能和能力,主要还是通过几何课的学习获得的,初中代数侧重的是运算的技能和能力,因此,像对代数命题的证明,学生还需要有一个逐步熟悉的过程.教学过程:一、复习引入:命题的概念:可以判断真假的语句叫命题正确的叫真命题,错误的叫假命题例如:①11>5 ②3是15的约数③0.7是整数①②是真命题,③是假命题反例:④3是15的约数吗?⑤x>8都不是命题,不涉及真假(问题) 无法判断真假“这是一棵大树”;“x<2”.都不能叫命题.由于“大树”没有界定,就不能判断“这是一棵大树”的真假.由于x是未知数,也不能判断“x<2”是否成立.注意:①初中教材中命题的定义是:判断一件事情的句子叫做命题;这里的定义是:可以判断真假的语句叫做命题.②判断命题的关键在于能不能判断其真假,即能不能判断其是否成立;不能判断真假的语句,就不是命题.③与命题相关的概念是开语句例如,x<2,x-5=3,(x+y)(x-y)=0.这些语句中含有变量x或y,在没有给定这些变量的值之前,是无法确定语句真假的.这种含有变量的语句叫做开语句(有的逻辑书也称之为条件命题).在教学时,不要在判断一个语句是不是命题上下功夫,因为这个工作过于复杂,要求学生能够从正面的例子了解命题的概念就可以了.二、讲解新课:1.逻辑连接词例⑥10可以被2或5整除;(10可以被2整除或10可以被5整除)⑦菱形的对角线互相垂直且平分;(菱形的对角线互相垂直且菱形的对角线互相平分)⑧ 0.5非整数 .( 非“0.5是整数”)逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词2.简单命题与复合命题: 简单命题:不含有逻辑联结词的命题叫做简单命题复合命题:由简单命题再加上一些逻辑联结词构成的命题叫复合命题其实,有些概念前面已遇到过如:或:不等式 2x -x -6>0的解集 { x | x<-2或x>3 }且:不等式2x -x -6<0的解集 { x | -2< x<3 } 即 { x | x>-2且x<3 }3.复合命题的构成形式如果用 p, q, r, s ……表示命题,则复合命题的形式接触过的有以下三种:即:p 或q 记作 p ∨q p 且q 记作 p ∧q非p (命题的否定) 记作 ⌝p释义:“p 或q ”是指p,q 中的任何一个或两者.例如,“x ∈A 或x ∈B ”,是指x 可能属于A 但不属于B (这里的“但”等价于“且”),x 也可能不属于A 但属于B ,x 还可能既属于A 又属于B (即x ∈A B );又如在“p 真或q 真”中,可能只有p 真,也可能只有q 真,还可能p,q 都为真.“p 且q ”是指p,q 中的两者.例如,“x ∈A 且x ∈B ”,是指x 属于A ,同时x 也属于B (即x ∈A B ).“非p ”是指p 的否定,即不是p. 例如,p 是“x ∈A ”,则“非p ”表示x 不是集合A 的元素(即x ∈A C U ).开语句:语句中含有变量x 或y ,在没有给定这些变量的值之前,是无法确定语句真假的.这种含有变量的语句叫做开语句(有的逻辑书也称之为条件命题).也可以把简单的开语句用逻辑联结词“或”、“且”、“非”连结起来,构成复合的开语句(有的逻辑书也称之为复合条件命题),这里的“或”、“且”、“非”与复合命题中的“或”、“且”、“非”符号与意义相同.在进行命题教学时,要注意命题与开语句的区别,特别在举有关逻辑联结词“或”、“且”、“非”的例子时,容易把两者混淆.例1(课本第26页例1)分别指出下列复合命题的形式及构成它们的简单命题:⑴24既是8的倍数,也是6的被数;⑵李强是篮球运动员或跳高运动员;⑶平行线不相交.解:⑴这个命题是p且q的形式,其中p:24是8的倍数,q:24是6的倍数.⑵这个命题是p或q的形式,其中p:李强是篮球运动员,q:李强是跳高运动员.⑶这个命题是非p的形式,其中p:平行线相交.例 2 命题“方程|x|=1的解是x=±1”中,使用逻辑联结词的情况是()A:使用了逻辑联结词“或”B:使用了逻辑联结词“且”C:使用了逻辑联结词“非”D:没有使用逻辑联结词判断复合命题真假的方法1.“非p”形式的复合命题例1 (1)如果p表示“2是10的约数”,试判断非p的真假.(2) )如果p表示“3≤2”,那么非p表示什么?并判断其真假.解:(1)中p表示的复合命题为真,而非p“2不是10的约数”为假.(2)中p表示的命题“3≤2”为假,非p表示的命题为“3>2”,其显然为真.小结:非p复合命题判断真假的方法当p为真时,非p为假;当p为假时,非p为真,即“非p”形式的2.“p且q”形式的复合命题例2.如果p表示“5是10的约数”,q表示“5是15的约数”,r表示“5是8的约数”,试写出p且q,p且r的复合命题,并判断其真假,然后归纳出其规律.解:p且q即“5是10的约数且是15的约数”为真(p、q为真);p且r即“5是10的约数且是8的约数”为假(r为假)小结:“p且q”形式的复合命题真假判断当p、q为真时,p且q为真;当p、q中至少有一个为假时,p且q 为假可用下表表示3.“p或q”形式的复合命题:例3.如果p表示“5是12的约数”q表示“5是15的约数”,r表示“5是8的约数”,写出,p或r,q或s,p或q的复合命题,并判断其真假,归纳其规律.p或q即“5是12的约数或是15的约数”为真(p为假、q为真);p或r即“5是12的约数或是8的约数”为假(p、r为假)小结:“p或q”形式的复合命题真假判断当p,q中至少有一个为真时,“p或q”为真;当p,q都为假时,“p 或q”为假. 即“p或q”形式的复合命题,当p与q同为假时为假,其他情像上面三个表用来表示命题的真假的表叫做真值表.在真值表中,是根据简单命题的真假,判断由这些简单命题构成的复合命题的真假,而不涉及简单命题的具体内容.例4(课本第28页例2)分别指出由下列各组命题构成的“p或q”,“p且q”,“非p”形式的复合命题的真假:①p:2+2=5,q:3>2;②p:9是质数,q:8是12的约数;③p:1∈{1,2},q:{1}⊂{1,2};④p:φ⊂{0},q:φ={0}.解:①p或q:2+2=5或3>2 ;p且q:2+2=5且3>2 ;非p:2+2≠5.∵p假q真,∴“p或q”为真,“p且q”为假,“非p”为真.②p或q:9是质数或8是12的约数;p且q:9是质数且8是12的约数;非p:9不是质数.∵p假q假,∴“p或q”为假,“p且q”为假,“非p”为真.③p或q:1∈{1,2}或{1}⊂{1,2};p且q:1∈{1,2}且{1}⊂{1,2};非p:1∉{1,2}.∵p真q真,∴“p或q”为真,“p且q”为真,“非p”为假.④p或q:φ⊂{0}或φ={0};p且q:φ⊂{0}且φ={0} ;非p:φ⊄{0}.∵p真q假,∴“p或q”为真,“p且q”为假,“非p”为假.4.逻辑符号“或”的符号是“∨”,“且”的符号是“∧”,“非”的符号是“┐”.例如,“p或q”可记作“p∨q”;“p且q”可记作“p∧q”;“非p”可记作“┐p”.注意:数学中的“或”与日常生活用语中的“或”的区别“或”这个逻辑联结词的用法,一般有两种解释:一是“不可兼有”,即“a或b”是指a,b中的某一个,但不是两者.日常生活中有时采用这一解释.例如“你去或我去”,人们在理解上不会认为有你我都去这种可能.二是“可兼有”,即“a或b”是指a,b中的任何一个或两者.例如“x∈A 或x∈B”,是指x可能属于A但不属于B(这里的“但”等价于“且”),x 也可能不属于A但属于B,x还可能既属于A又属于B(即x∈A∩B);又如在“p真或q真”中,可能只有p真,也可能只有q真,还可能p,q都为真.数学书中一般采用这种解释,运用数学语言和解数学题时,都要遵守这一点.还要注意“可兼有”并不意味“一定兼有”.另外,“苹果是长在树上或长在地里”这一命题,按真值表判断,它是真命题,但在日常生活中,我们认为这句话是不妥的.课题:1.5 四种命题内容分析:学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解).由此,这一大节首先讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法.然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识.这一大节的重点是充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.这一大节的难点是对一些代数命题真假的判断.初中阶段,学生只是对简单的推理方法有一定程度的熟悉,并且,相关的技能和能力,主要还是通过几何课的学习获得的,初中代数侧重的是运算的技能和能力,因此,像对代数命题的证明,学生还需要有一个逐步熟悉的过程.教学过程:一、复习引入:复习初中学过的命题与逆命题,并举例说明(学生回答,教师整理补充)两个命题,如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题;如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题.例如,(1)同位角相等,两直线平行;条件(题设):同位角相等;结论:两直线平行它的逆命题就是:(2)两直线平行,同位角相等二、讲解新课:1.引例(3)同位角不相等,两直线不平行;(4)两直线不平行,同位角不相等.比较命题(1)与(3)、(1)与(4)的条件与结论的异同(学生回答,教师整理原命题若p 则q 否命题逆命题若q 则p 逆否命题互为逆否互逆否互为逆否互否互补充)在命题(1)与命题(3)中,一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,我们称命题(1)与命题(3)互为否命题;在命题(1)与命题(4)中,一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,我们称命题(1)与命题(4)互为逆否命题;(让学生取名字)思考:由原命题怎么得到逆命题、否命题、逆否命题?(学生回答,教师整理补充)交换原命题的条件和结论,所得的命题是逆命题;同时否定原命题的条件和结论,所得的命题是否命题;交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.2.概括:(1)为原命题 (2)为逆命题(3)为否命题 (4)为逆否命题反问:若(2)为原命题,则(1)(3)(4)各为哪种命题?若(3)为原命题,则(1)(2)(4)各为哪种命题?若(4)为原命题,则(1)(2)(3)各为哪种命题?强调:“互为”的含义3.四中命题的形式若p 为原命题条件,q 为原命题结论(学生回答,教师整理补充)则:原命题:若 p 则 q逆命题:若 q 则 p否命题:若 ⌝p 则 ⌝q逆否命题:若 ⌝q 则 ⌝p4.四种命题的相互关系互逆命题、互否命题与互为逆否命题都是说两个命题的关系,若把其中一个命题叫做原命题时,另一个命题就叫做原命题的逆命题、否命题与逆否命题.因此,四种命题之间的相互关系,可用右下图表示:5.四种命题的真假关系一个命题的真假与其他三个命题的真假有如下三条关系:①、原命题为真,它的逆命题不一定为真②、原命题为真,它的否命题不一定为真③、原命题为真,它的逆否命题一定为真6.反证法:要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法7.反证法的步骤:(1)假设命题的结论不成立,即假设结论的反面成立(2)从这个假设出发,通过推理论证,得出矛盾(3)由矛盾判定假设不正确,从而肯定命题的结论正确注意:可能出现矛盾四种情况:①与题设矛盾;②与反设矛盾;③与公理、定理矛盾④在证明过程中,推出自相矛盾的结论课题:1.6 充分条件与必要条件内容分析:这一大节通过若干实例,讲述充分条件、必要条件和充要条件的有关知识.这一大节的重点是充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.关于充分条件、必要条件与充要条件,本章对教学要求的尺度,还是控制在对初中代数、几何的有关问题的理解上为宜.教学过程:一、复习引入:同学们,当某一天你和你的妈妈在街上遇到老师的时候,你向老师介绍你的妈妈说:“这是我的妈妈”.那么,大家想一想这个时候你的妈妈还会不会补充说:“你是她的孩子”呢?不会了!为什么呢?因为前面你所介绍的她是你的妈妈就足于保证你是她的孩子.那么,这在数学中是一层什么样的关系呢?今天我们就来学习这个有意义的课题—充分条件与必要条件.二、讲解新课:⒈符号“⇒”的含义前面我们讨论了“若p则q”形式的命题,其中有的命题为真,有的命题为假.“若p则q”为真,是指由p经过推理可以得出q,也就是说,如果p成立,那么q一定成立,记作p⇒q,或者q⇐p;如果由p推不出q,命题为假,记作p q.简单地说,“若p则q”为真,记作p⇒q(或q⇐p);“若p则q”为假,记作p q(或q p).符号“⇒”叫做推断符号.例如,“若x>0,则x2>0”是一个真命题,可写成:x>0 ⇒x2>0;又如,“若两三角形全等,则两三角形的面积相等”是一个真命题,可写成:两三角形全等⇒两三角形面积相等.说明:⑴“p⇒q”表示“若p则q”为真;也表示“p蕴含q”.⑵“p⇒q”也可写为“q⇐p”,有时也用“p→q”.⒉什么是充分条件?什么是必要条件?如果已知p⇒q,那么我们就说,p是q的充分条件,q是p的必要条件.在上面是两个例子中,“x>0”是“x2>0”的充分条件,“x2>0”是“x>0”的必要条件;“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件.⒊充分条件与必要条件的判断1.直接利用定义判断:即“若p⇒q成立,则p是q的充分条件,q是p 的必要条件”.(条件与结论是相对的)例1指出下列各组命题中,p是q的什么条件,q是p的什么条件:⑴ p:x=y;q:x2=y2.⑵ p:三角形的三条边相等;q:三角形的三个角相等.分析:可根据“若p则q”与“若q则p”的真假进行判断.解:⑴由p⇒q,即x=y⇒x2=y2,知p是q的充分条件,q是p的必要条件.⑵由p⇒q,即三角形的三条边相等⇒三角形的三个角相等,知p是q的充分条件,q是p的必要条件;又由q⇒p,即三角形的三个角相等⇒三角形的三条边相等,知q也是p。
备课教案高中数学必修一
教学目标:
1. 了解数列的定义和基本性质。
2. 学会求等差数列的通项公式和前n项和公式。
3. 掌握等比数列的性质及通项公式。
4. 能够解决实际问题中的数列应用题。
教学重点:
1. 理解数列的定义和性质。
2. 求等差数列的通项公式和前n项和公式。
3. 等比数列的性质及通项公式。
教学难点:
1. 解决实际问题中的数列应用题。
教学准备:
1. 课本、教学PPT
2. 板书、彩色粉笔
3. 数列相关的练习题
教学过程:
一、复习导入(10分钟)
通过反馈上节课内容,复习数列的定义及基本性质。
二、讲解数列的概念和分类(15分钟)
1. 数列的定义和性质。
2. 等差数列的概念及通项公式。
3. 等比数列的概念及通项公式。
三、练习与讨论(20分钟)
教师出示练习题,让学生在小组内讨论解题思路,并进行归纳总结。
四、解答疑惑(10分钟)
学生提出问题,教师解答疑惑并进行相关知识的拓展。
五、课堂小结(5分钟)
对本节课所学内容进行总结,并展望下节课内容。
六、作业布置(5分钟)
布置相关作业,要求学生巩固所学知识,并预习下节课内容。
教学反思:
本节课主要介绍了数列的概念及分类,通过讲解和练习,学生对等差数列和等比数列有了一定的了解。
在接下来的教学中,需要更多的实际应用题,帮助学生更好地理解和应用数列的知识。
同时,要注重激发学生的兴趣,培养其数学思维能力和解决问题的能力。
人教版高一数学必修一教案(优秀4篇)人教版高一数学必修一教案篇一教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课型:新授课教学重点:集合的交集与并集的概念;教学难点:集合的交集与并集“是什么”,“为什么”,“怎样做”;教学过程:一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。
二、新课教学1、并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B 读作:“A并B”即:A∪B={x|x∪A,或x∪B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题1求集合A与B的并集① A={6,8,10,12} B={3,6,9,12}② A={x|-1≤x≤2} B={x|0≤x≤3}(过度)问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。
2、交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B 读作:“A交B”即:A∩B={x|∪A,且x∪B}交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。
例题2求集合A与B的交集③ A={6,8,10,12} B={3,6,9,12}④ A={x|-1≤x≤2} B={x|0≤x≤3}拓展:求下列各图中集合A与B的并集与交集(用彩笔图出)说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3、例题讲解例3(P12例1):理解所给集合的含义,可借助venn图分析例4 P12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。
高一数学教案必修一高一数学教案必修一 1教材:逻辑联结词(1)目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。
过程:一、提出课题:简单逻辑、逻辑联结词二、命题的概念:例:125 ① 3是12的约数② 0.5是整数③定义:可以判断真假的语句叫命题。
正确的`叫真命题,错误的叫假命题。
如:①②是真命题,③是假命题反例:3是12的约数吗? x5 都不是命题不涉及真假(问题) 无法判断真假上述①②③是简单命题。
这种含有变量的语句叫开语句(条件命题)。
三、复合命题:1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。
2.例:(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除(2)菱形的对角线互相菱形的对角线互相垂直且菱形的垂直且平分⑤ 对角线互相平分(3)0.5非整数⑥ 非0.5是整数观察:形成概念:简单命题在加上或且非这些逻辑联结词成复合命题。
3.其实,有些概念前面已遇到过如:或:不等式 x2x60的解集 { x | x2或x3 }且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }四、复合命题的构成形式如果用 p, q, r, s表示命题,则复合命题的形式接触过的有以下三种:即: p或q (如④) 记作 pqp且q (如⑤) 记作 pq非p (命题的否定) (如⑥) 记作 p小结:1.命题 2.复合命题 3.复合命题的构成形式高一数学教案必修一 2一、教材首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。
二、学情教材是我们教学的工具,是载体。
但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。
高中数学必修一教案全套优秀6篇高一上册数学教案篇一一、教材《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。
从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。
从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。
二、学情学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。
三、教学目标(一)知识与技能目标能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。
(二)过程与方法目标经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。
(三)情感态度价值观目标激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。
四、教学重难点(一)重点用解析法研究直线与圆的位置关系。
(二)难点体会用解析法解决问题的数学思想。
五、教学方法根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持。
在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。
高中数学必修1教案篇二一、教材分析本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1函数的概念》共3课时,本节课是第1课时。
高中数学必修1教案最新人教版高一数学必修一教案(大全(优秀11篇)高中数学必修一教案全套篇一本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。
本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。
更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。
因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。
二、教学目标定位为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。
根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标:一、知识与技能.理解合力、分力、力的合成的概念。
理解力的合成本质上是从等效的角度进行力的替代。
.探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力。
二、过程与方法.通过学习合力和分力的概念,了解物理学常用的方法——等效替代法。
.通过实验探究方案的设计与实施,体验科学探究的过程。
三、情感态度与价值观.培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯。
.培养认真细致、实事求是的实验态度。
根据以上分析确定本节课的重点与难点如下:一、重点.合力和分力的概念以及它们的关系。
.实验探究力的合成所遵循的法则。
二、难点平行四边形定则的理解和运用。
三、重、难点突破方法——教法简介本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。
因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。
体现学生主体性。
实验归纳法的步骤如下。
高中优秀教案数学必修1
1. 学习并掌握直线的斜率及斜率的性质
2. 学习并掌握直线的方程一般形式及点斜式
3. 能够独立解决直线方程的相关问题
教学重点:
1. 直线的斜率及性质
2. 直线的方程一般形式及点斜式
3. 直线方程相关问题的解决
教学难点:
1. 点斜式的运用
2. 解决斜率与截距相关问题
教学准备:
1. 教材《高中数学必修1》
2. 教学投影仪
3. 黑板、彩色粉笔
4. 相关练习题
教学过程:
一、导入(5分钟)
教师向学生提出一个问题:如何描述一条直线的斜率?引导学生思考直线斜率的定义及性质。
二、讲解斜率及性质(15分钟)
1. 推导直线斜率的定义
2. 解释直线斜率的性质
3. 举例说明斜率的计算方法
三、讲解直线方程一般形式及点斜式(15分钟)
1. 定义直线的一般形式及点斜式
2. 解释直线方程的表示方法
3. 演示点斜式的应用
四、练习及讨论(20分钟)
1. 学生进行相关练习题的解答
2. 教师带领学生讨论解题方法及思路
五、作业布置(5分钟)
布置相关作业,巩固学生对直线方程的理解与掌握。
教学反思:
通过本节课的教学,学生能够初步掌握直线的斜率及直线方程的表示方法,同时能够独立解决直线方程相关问题。
但是在教学过程中,需要更多的引导学生进行实践操作,提高学生的数学思维能力和解决问题的能力。
高一数学必修一教案(5篇)高一数学必修一优秀教案1一、教学目标1.学问与技能:把握画三视图的根本技能,丰富学生的空间想象力。
2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。
二、教学重点:画出简洁几何体、简洁组合体的三视图;难点:识别三视图所表示的.空间几何体。
三、学法指导:观看、动手实践、争论、类比。
四、教学过程(一)创设情景,揭开课题展现庐山的风景图——“横看成岭侧看成峰,远近凹凸各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比拟真实反映出物体,我们可从多角度观看物体。
(二)讲授新课1、中心投影与平行投影:中心投影:光由一点向外散射形成的投影;平行投影:在一束平行光线照耀下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:正视图:光线从几何体的前面对后面正投影,得到的投影图;侧视图:光线从几何体的左面对右面正投影,得到的投影图;俯视图:光线从几何体的上面对下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规章:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;高平齐:正视图与侧视图的高度相等,且相互对齐;宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观看到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
高一数学必修一优秀教案2【考点阐述】两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.【考试要求】(3)把握两角和与两角差的正弦、余弦、正切公式;把握二倍角的正弦、余弦、正切公式.(4)能正确运用三角公式,进展简洁三角函数式的`化简、求值和恒等式证明.【考题分类】(一)选择题(共5题)1.(海南宁夏卷理7) =( )A. B. C. 2 D.解:,选C。
高中数学必修 1 高端备课王尚志:首都师范大学教授张思明:北京大学附属中学特级教师罗强:江苏省苏州五中特级教师孙宁:山东师范大学附属中学中学高级张思明:各位老师大家好,在必修一整体介绍中我们已经请张老师和王老师就第一模块整体进行了数学分析,并举出了三个案例和大家一起分享了老师们在备课中的思考。
今天,我们就第一模块教学中的一些问题展开进一步的讨论,参加我们讨论的几位嘉宾:最右边首都师范大学博士生导师王尚志教授,山东师范大学附属中学的孙宁老师,也是山东省的教学能手。
我旁边这位是江苏省苏州五中的罗强校长,一位特级教师。
我们特别想请两位课改实验区的老师帮我们介绍一下通过这么多年的课程改革,老师们在课程改革中有哪些变化。
罗强:江苏进入高中新课程已经是五年的时间了。
第一个最大的变化,就是校本教研普遍加强,学术研究的氛围加强,成为了很多学校的常态。
新课程带来的变化非常大,这个变化具体体现在就是教材的变化。
比如说,对内容的处理,不同的教材有不同的处理方式,和老教材又有不一样的处理方式。
这些问题正好是校本教研很重要的载体。
比如说,立体几何。
立体几何现在是先学空间几何体,再学点线面的位置关系。
就是这样的编排不同的教材也不一样,我看了一下人教A版、人教B版都是空间几何体在前面,点线面位置关系在后面。
那么,苏教版把空间几何体拆成两部分,其中空间几何体的侧面积和体积放到了最后。
对于这些问题,我们校本教研就有了一个研究的载体。
同时,也有了一个大家民主探讨的氛围。
大家可以各抒己见,为什么教材这样安排,哪种安排更合理。
因为疑问多,所以老师们之间必须加强合作,通过集体备课,群策群力来解决这些问题。
然后,因为大家都研究起来了,所以我们的智慧可以互通,我们的资源可以共享。
这也是校本教研的办法。
校本教研还有一个最大的变化,就是我们所有的疑问,所有的思考最后都聚焦到了课堂上。
我们的不同思考最后可以用课堂教学来展现出来,然后把思考成果回到课堂去。
这是校本教研的第一个变化。
第二,就是教师的教育理念和教学行为也普遍发生了可喜的变化。
首先,比如说是教学目标,我们着眼于学生的全面发展,长远发展。
现在教学目标中间我们要落实三个目标,最初我们感觉到有一点误区,特别是情感、态度、价值观。
但是,随着我们实践的深入,我就感觉到三个目标是:第一个是知识与技能的目标,就是让学生学会。
第二个是过程与方法这个目标,就是让学生会学。
第三个情感、态度、价值观这个目标就是让学生乐学。
教育理念在不知不觉发生变化,在影响着我们的教学行为。
同时,教师的角色,从知识的传授者向教学的组织者、引导者、合作者转变,这些也都能够在我们的课堂教育中间看到。
还有就是学生的学习方式也在发生变化,课堂里面学生自主、合作、探究的学习方式也越来越多。
还有一个就是信息技术也更多的和我们的数学教学整合起来。
我觉得这是教育理念和教学行为的一种变化。
第三个变化,就是对于数学教学的思考在向更深层次深入。
比如说,我们苏州最近在研究一个很重要的课题,就是如何提高教学的有效性。
从教学来讲,首先追求的是效果。
但是,我们现在不满足于追求这个效果,还希望追求效率。
效率就是说在单位时间内取得的效果,在有限的时间里面取得的效果。
还要追求效益,就是这个效果对于学生持续的影响力,对于学生思维的迁移程度,还追求这些。
还有我们对于教学的思考,从研究关注教师的教向关注学生的学转变,在教学中间有一个很普遍的现象值得我们思考,就是学生一听就懂,但是一做就错。
这个问题有时候从教师教这个角度来讲,甚至可以找不出毛病。
但是,站在学生学这个角度来思考,那这里面就有很多需要我们研究的问题。
孙宁:山东省第二轮课程改革的一些措施给我们的教育带来了一些可喜的变化。
就数学而言,第一点变化就是课堂教学发生了可喜的变化。
老师的角色进行了转变,承认学生在课堂上的价值。
老师的课堂教学让学生能够在课堂上充分、最大限度的得到发展。
第二点变化,评价机制发生了根本的变化。
对教师的评价改变了过去单纯的以分数的评价,现在更加关注老师对学生的关注程度,教师对校本课程的开发,教师对于教研活动的参与等等各个方面更加科学。
对于学生的评价更加关注学生的发展,注重了过程的评价。
力求建立一种全面的、适合学生全面发展一个多元化的评价机制,这两点是最可喜的变化。
王尚志:我们新课程强调了一个基点,就是关注学生。
整个教育的目的就是要促进学生的全面发展,我们教师应该在这里面扮演一个组织者、引导者、支持者、激励者。
不是放弃对于学生知识的传授,更重要的目的是希望学生能动起来,思维活跃,和我们一起把课程学好。
我在听课的过程中感觉,实验区的老师在尽量把自己的数学课上得活一些,让学生喜欢。
有的学生跟我讲,上某些老师的数学课是一种享受。
我觉得大家都在这方面不断的追求,我想我们中国的数学教育就会做得越来越好。
据我了解山东省第二轮课程改革的力度还是很大的。
为了保证我们的学生在一个很好的教育氛围里成长提出了一系列的要求,所有这些要求都围绕着怎么促进学生全面的发展展开,对老师、对学校、对管理,甚至对于教育局的领导都提出了一系列的、非常严格的要求。
我刚从江苏回来,江苏省也在酝酿着一次新一轮的变革,这些变革和山东省的一些变革会有一些类似。
随着新课程的发展,会出现很多的问题,我想大家不能回避问题,不断的探索解决问题的办法,我们的最终目的是要让学生获得更大的收获。
张思明:在这次备课活动中我们特别听取了大家对于新课程中存在一些问题的分析和反应,我们下面也请实验区的两位老师帮我们就这些问题进行一下分析。
孙宁:在具体实施新课标教学过程中,我们发现这样一些问题。
第一,新课程标准里面降低了要求的内容,有些老师还在人为的拔高。
比如说,几何的概念和运算,不少老师上来就把含参数的方程不等式以及平面点集等等内容抛售给学生,使得学生对于几何的概念没有产生很好的巩固理解。
再比如说映射的概念,映射的概念是作为函数概念的一个推导来呈现的。
不少老师也搞了一些稀奇古怪的比较难的题目抛给学生,使得学生对映射的概念没有牢固的掌握。
王尚志:老师可以适度的补充一些内容,比如说在几何里面,像几何的参数,有一些带参变量的。
但切记拔高的程度,有些老师搞的已经不是数学了,比如说有一些几何参性的讨论已经超出了我们数学的范围。
我们数学要讨论的几何,元素和几何的属于关系是清楚的,不清楚的我们没有必要去研究,刚才孙老师说的都是非常重要的,希望我们老师能够参考。
张思明:这里面可能也有这样一些想法,比如说老师在以前教学过程中,对于教学过程的认识都是先从映射,然后再特殊化,标准和教材有这样一些变动以后,老师比较习惯的按传统的惯性来做,认为那是容易做的事情。
但是,跟学生接受程序是不是一致考虑的不一定很充分。
王尚志:数学强调两种思维模式,一种是演义,一种是归纳。
这两种思维方式都是重要的。
我们既要让学生能够有一个归纳的过程,脑子里要有具体的、生动的函数,映射的例子。
然后在这个基础上建立起函数的概念和映射的概念。
而函数又是映射的一个特殊情况。
同时,一旦我们掌握了一般的概念,再分析它和特殊概念之间的差异。
这样两种思维模式,我们都要关注。
新课程强调了归纳推理的作用,因为大部分的概念的来源都是通过归纳得到的。
思明刚才讲的这一点,是值得我们老师关注的。
罗强:刚刚进入新课改时,我们老师其实对教材缺乏一个整体的认识,教材的变化,内容有删减增流的变化,要求有升降的变化,教学顺序有前后倒置,还有螺旋上升,分布到位。
老师很容易按照一种惯性,原来习惯的,原来教到这个地方就要讲反函数了,讲到这个例子很自然就引申出负函数了,也还存在老师觉得老课程很好,几何之后马上讲一元二次不等式,然后就对几何的多种性质进行研究,可能还有一个不适应的过程,从内心还没有能够完全接受新课程编排的理念。
随着新课程的逐步推进,特别是一轮课改完成以后,我想这个问题会逐步的得到改变。
孙宁:第二个问题就是忽视学习过程的层次性和渐进性,追求一步到位。
比如说,函数的定义域。
这个问题很多老师上来讲定义域以后,就把很复杂的复合函数拿出来,然后让学生进行讨论。
最典型的问题就是函数的单调性和奇偶性。
很多老师有些都是高三下来的老师,讲到这部分内容的时候,很自然的就把函数、复合函数单调性的讨论,单调性、对称性、奇偶性的关系以专题的形式带到课堂上来,增加了教学时间,学生也不大理解。
王尚志:孙老师说的这一点,正是我们在前面单调性课程里希望老师能够思考的问题。
就是什么样的数学内容需要螺旋式上升?大体上,我们认为重要的数学内容是不大可能一步到位的。
比如说单调性的问题,在我们整个高中阶段大概分成两个阶段:第一个阶段,就是我们用代数的办法去处理函数的单调性。
在这个阶段里我们需要认识单调性的作用和意义,它反应了函数的变化,反应了函数图像的形状。
在这个基础上,我们要帮助学生建立函数单调性的概念,从图形的语言变成自然语言,从自然语言抽象成符号语言,给一个比较简洁的表述。
我们还要帮助学生依托于一些具体问题,掌握单调函数判断的过程,也就是证明的过程。
孙宁:王老师说的这个是不是就是从定性的分析到定量?王尚志:对,到定量的分析。
我们要不断的依托要教给学生的一些基本的函数模型,简单的幂函数、指数函数、对数函数、三角函数、等差数列、等比数列,不断的加深。
在讨论这些具体函数中单调性应该发挥的作用,经历这么一些过程,才有可能在我们必修阶段形成单调性的第一个阶段的认识。
到了第二个阶段,我们用变化来研究函数,用导数来研究函数,对于函数单调性有一个再认识。
通过这样两轮,我们才有可能对于单调性有一个比较完整的,比较全面的认识。
这样就为大学的学习奠定了基础。
在这些重要的函数概念、数学概念、数学技能上,我们可能很难一步到位,需要有一个层次递进。
老师必须清楚这些东西,在教学中才能更好的把握住这个度和这个递进的程度。
张思明:这也是刚才罗强校长考虑的教学效率、效益、效果的问题。
我们先要保证效果,老师常认为最可靠的效果是所遇到的题都用题形的方式一个一个全弄出来,老师用这种东西来保效果。
按照王老师提出的道理,我们要分析一下,把难度一到难度十的题怎样给出来效果好,是刚开始我们难度一到三做一个半开,有其他的例子帮助学生积累经验以后再出三、四、五,再出六、七、八?还是一起给学生?哪样效果好,在这个讨论中,希望老师们向这个方向有更多的思考,然后采用保效果,提效率和效益的措施。
王尚志:再举另外一个例子,比如说在必修一的教学中,有一种非常重要的方法要教给学生,就是我们通常所说的待定系数,这样一种方法也不是一步能到位的。
因为,待定系数之所以被我们称之为一个通性通法,代表一类问题。
比如说指数函数,,要解决问题时,我们首先要做出判断,我们是不是在处理一个与函数有关的问题,用哪一个函数来解决这类问题。