利用微机监测设备分析、处理信号设备疑难故障实例
- 格式:doc
- 大小:28.50 KB
- 文档页数:3
浅析铁道信号微机监测应用问题及故障处理铁道信号微机监测应用问题及故障处理随着我国铁路行业的不断发展,铁道信号微机监测技术也得到了广泛的应用。
铁道信号微机监测技术是一项进行故障监测和预警的技术,可以发现和分析信号系统中的故障和问题,为现场工作人员提供实时的问题解决方案,保证了行车安全和信号系统的稳定性。
本篇文章将围绕铁道信号微机监测应用过程中的问题和故障处理,进行浅析。
一、铁道信号微机监测应用的问题:1. 部分设备功能失效或安装不当在铁道信号微机监测系统的应用过程中,有时会出现部分设备功能失效或安装不当的问题。
特别是在设备监测的主线信号灯的吸合铁等在使用过程中,粘着、脱落、磨损、减短等故障是常见的,这些故障会影响到信号系统的正常运行。
2. 信号检测数据的误差信号检测数据的准确性是铁道信号微机监测应用的关键,但是由于信号监测系统中可能存在的误差,会导致监测数据的不准确。
误差的出现可能是由于设备的漏气、误差、不完善的电气接触等方面造成的。
3. 使用过程中的系统故障一些特殊情况下,系统会出现故障,导致监测功能受到影响。
而这些故障又可能是由于电力供应或信号测量等方面出现的问题所引发的。
二、铁道信号微机监测应用故障处理1. 部件检查和更换出现故障时,应首先进行部件检查和更换。
如Controller轮廓次序接线错乱,可根据接线图进行调整;若信号灯亮度过低或不亮,可先检查信号灯的灯管是否失效或损坏,如发现灯管已损坏,需要更换,使信号灯重新亮起。
2. 数据分析和处理在进行故障处理时,必须按照严谨的方式进行数据分析和处理。
对于误差较大的数据,需要进行数据处理和分析,找出问题的根源。
常见的错误数据有重复条目、无效数据、伪造数据、数据不完整等,这些数据有可能导致了整个系统的故障。
3. 系统技术支持在处理复杂的故障时,可能需要铁道信号微机监测系统的系统技术支持,包括现场技术支持和远程技术支持。
如果现场工作人员不能解决故障,需要根据具体情况向技术支持部门进行询问或报告故障。
信号设备故障分析处理—微机监测设备故障案例·内容导读·故障案例由故障现象、故障分析、判断处理三部分组成。
故障现象,阐明了每一个案例的现场反应、信息显示等;故障分析,通过现象判断分析发生故障的可能性,并将故障范围尽量缩小;判断处理,阐述了故障处理的方式、方法和步骤。
内容包括:6502电气集中设备故障、转辙转换设备故障、轨道电路设备故障、区间闭塞设备故障、信号机故障、计算机联锁设备故障、机车信号设备故障、TDCS设备故障、微机监测设备故障、电源设备故障等。
内容丰富、重点突出。
内容摘自原北京铁路局《信号设备故障分析处理380例》,供信号工程技术人员学习参考。
案例1:传感器损坏故障现象巡视电源屏电压状态表中的电压数值偏低。
故障分析首先核对电源屏电压,确认电源屏电压输出是否正常;若正常检查采样熔断器是否熔断,检查熔断器良好,测试电压正常;继续检查传感器,测试传感器采样端子电压是否正常,不正常检查配线,正常检查传感器;传感器无输出电压,更换相同型号的传感器;传感器输出采样电压正常,更换模拟采样板。
判断处理经测试传感器采样端子电压正常,检查传感器无输出电压,更换相同型号的传感器故障恢复。
案例2:CPU板损坏故障现象采集机通信状态窗弹出报警,有采集机图标变成暗灰色,该采集机通道标不再绿蓝闪动。
故障分析首先检查采集机电源开关扳到开的位置,位置正常测试该采集机电源电压(~220V),无电源,检查零层熔断器和配线;采集机电源正常,重启后仍不能恢复,检查CAN总线是否正常;CAN总线正常重新设置采集机;重新设置采集机后仍不正常,需更换CPU板;若不正常,采集机较多应首先查看是否在同一组合架,在同一组合架检查零层熔断器是否熔断。
判断处理检查采集机电源正常,重启后仍未恢复;重新设置采集机后仍不正常,更换CPU板恢复正常。
案例3:水晶头接触不良故障现象站机网络中断。
故障分析检查MODEM指示灯是否正常。
POWER:电源灯;ADSL项LINK点稳定绿灯光:铁通通道正常;LAN项LINK点稳定灯光(绿或桔红):主机与MODEM通道正常;ADSL项LINK灯灭:联系铁通处理。
如何利用微机监测系统分析和处理铁路信号设备故障摘要:现阶段,随着我国经济的迅速发展,有效推动了我国整个社会的前进与发展。
科学技术的进步与经济的快速发展息息相关,密不可分,促使我国的各项科学技术研究均取得了一定成果,获得了突破性进展。
先进科学技术的典范当属信息技术,随着信息技术的不断发展,在各个领域范围内都实现了广泛应用,当前在铁路信号系统中广泛应用也不例外。
为了确保铁路信号设备的正常运行,需要对其进行定期校验和维护。
微机监测技术可以有效提升检测的准确性,减少铁路信号设备的故障发生概率,进而为信号设备的稳定运行提供保障。
关键词:微机监测系统;铁路信号设备;故障前言:新时期背景下,铁路系统设备管理部门工作人员对铁路信号设备维护也给予了更高程度的重视,为切实提高设备维护效果,铁路信号系统管理人员积极引进了微机监测技术,对铁路信号系统运行过程中的各信号设备数据进行高效监测与收集,为设备监测与维护提供可靠数据支持,保障铁路系统的运行稳定性,提升系统监测效率,为我国铁路交通事业的发展奠定了良好基础。
1微机监测技术的功能性特征1.1数据收集功能数据收集功能是微机监测技术最主要的功能之一,在铁路信号设备运行过程中,监测系统需对铁路信号整体网络实施高效管控,收集多方数据进行综合整理。
铁路交通网络范围十分广泛,每一车站及闭塞分区包含多项数据,人工数据采集不仅会造成大量人力、物力的消耗且数据收集效果也无法满足信号设备维护信息准确性需求。
微机监测技术的数据采集功能能对铁路信号设备运行各种情况、各个时段产生的数据信息进行准确记录与收集,还能采取自动化分析措施,为铁路交通发展提供高效保障。
1.2故障报警功能故障报警功能是铁路信号设备运行安全性的重要保障,微机监测技术的故障报警功能也为信号设备维护工作提供了很大便利。
微机监测数据调看分析的目的是准确全面地发现设备隐患,采取措施消除和预防设备故障,以此来保证列车安全运行、监测信号设备运用的重要设备,通过它我们可以发现信号设备存在的隐患、也可以借助它来分析信号设备运用过程中产生故障的原因,从而指导现场维修,提高信号部门维修水平和处理故障效率,其重要性不言而喻其运用好坏直接影响到铁路的安全和效益,微机监测技术能准确掌握铁路信号设备运行过程中存在的故障与风险信息,提前向中心管理系统发出故障警报,辅助维护人员选择最佳处理方案,通过对故障的分析与判断,可以有效地防止故障发生,保证信号设备安全,提高铁路运输效率。
利用微机监测预防及整治信号设备隐患的实践摘要:现代铁路信号系统铁路信号检测、集成、智能分析与决策能力起到很大的帮助,也改变了传统的铁路信号维护模式,使我国铁路信号不仅可以拥有先进的控制设备,也能够具有强大的智能维修网络,它具有非常重要的意义。
关键词:铁路;信号设备;监测前言铁路信号微机监测系统融合了计算机技术、传感器技术、网络技术、自动化信息技术,广泛应用在铁路监测领域中,在线监测铁路信号设备中的信息,实现信息量化和分析,及时发现铁路运行中的安全隐患,进而保证铁路运行的高效性和安全性。
对此,为了保证铁路的安全运行,要积极设计铁路信号微机监测系统,并将其应用在铁路运行中,发挥出铁路信号微机监测系统的在线实时监测作用,发现安全隐患并及时排除,为铁路安全运行提供重要的保障。
在这样的环境背景下,探究铁路信号微机监测系统在铁路运行中运用具有非常重要的现实意义。
1信号微机监测系统微机监测的功能原理是在铁路运行的过程中,适时监测和记录所有现场设备的工作状态,并根据其特性的异常变化来发现和判断哪些设备出现了问题和出现了什么问题,将这些信息通过信号传输的方式传递给电务部门,来做出迅速和准确的判断。
在系统运行的反应机制中,设定有危险预警功能,一旦相关设备超出某一设定限制,通过报警来引起管理人员的重视,并及时做出相应的处理措施。
此项功能对于预防相关人员的违章操作和及时发现设备故障非常重要。
对于在铁路运行过程中出现的各种危险征兆,通过该系统不但可以及时发现,还会基于些做此最佳的解决方案,实现既控制了维修成本又缩短了维修时间,这对于保证铁路安全和提高铁路运输效益非常重要。
2 铁路信号微机监测系统故障分析2.1道岔传感器的故障其中道岔传感器属于直流电流传感器,对于孔内电流变化通过该传感器可以直接反映出来。
该传感器工作电源为±12 V,其工作原理是道岔传感器孔内电流变化时,就会有0 ~ 5 V 直流电压输出,此情况在岔道转换时发生。
关于铁路信号微机监测的主要分析及处理措施汇报人:2023-12-30•铁路信号微机监测系统概述•铁路信号微机监测的主要分析•铁路信号微机监测的处理措施目录•铁路信号微机监测的挑战与对策•案例分享01铁路信号微机监测系统概述铁路信号微机监测系统是一种利用计算机技术对铁路信号设备进行实时监测和数据采集的自动化系统。
系统定义监测信号设备的运行状态、记录设备故障、分析设备性能、预警潜在故障等。
系统功能系统定义与功能保障铁路运输安全、提高运营效率、降低维护成本。
广泛应用于全国各铁路局、车站和编组场的信号设备监测。
系统重要性及应用系统应用系统重要性从早期的模拟监测系统到现代的数字化、网络化、智能化监测系统。
发展历程未来将朝着更高精度、更大数据处理能力、更智能化的方向发展,同时加强与其他信息系统的融合与集成。
发展趋势系统发展历程与趋势02铁路信号微机监测的主要分析信号设备监测分析实时监测信号设备的电压、电流、功率等参数,以及设备的工作温度、湿度等环境参数,确保设备正常运行。
信号设备故障诊断通过分析信号设备的运行数据,识别设备的故障模式,预测设备可能出现的故障,并及时采取处理措施。
列车位置与速度监测实时监测列车的运行位置和速度,确保列车按照预定的时刻表和运行图安全运行。
列车控制与调度监测监测列车的控制信号和调度指令,确保列车在正确的轨道和时间点上运行。
列车运行监测分析故障诊断与预警分析故障诊断通过分析信号设备和列车的运行数据,识别故障的原因和位置,为维修人员提供准确的故障诊断信息。
预警分析根据设备的运行状态和历史数据,预测设备可能出现的问题,及时发出预警信息,避免故障的发生。
数据处理与挖掘分析数据预处理对采集到的原始数据进行清洗、去噪、归一化等处理,提高数据的质量和可用性。
数据挖掘与分析利用数据挖掘和机器学习算法,对处理后的数据进行深入分析,提取有价值的信息和知识,为决策提供支持。
03铁路信号微机监测的处理措施定期检查对铁路信号微机监测系统进行定期检查,确保各部件正常工作,预防潜在故障。
微机监测系统分析地铁信号设备故障摘要:随着新技术、新设备在地铁建设中的不断使用,信号系统承受着越来越大的工作压力。
各种外界干扰、设备病害最终都要反映到信号设备上。
特别是一些原因一时不明的故障,需要信号人员付出较大的精力,大面积分析故障原因。
信号微机监测系统,可以充分利用计算机系统大量信息的存储,实时再现,使疑难故障的定位更加及时准确,为故障处理提供帮助。
基于此,本文就微机监测系统如何分析地铁信号设备故障展开了讨论。
关键词:微机监测系统;分析;地铁信号设备;故障1微机监测系统信号微机监测系统采用基于TCP/IP(传输控制协议/互联网协议)的广域网模式,由车站采集系统、信号中心服务器管理系统、上层网络终端(包括车站机、中心信号监测终端)及广域网数据传输系统等组成。
车站采集系统是微机监测系统的基础,是所有原始信息的源头。
所提供有关信号设备的质量信息应该是精确的,告警信息是可靠的,运输状态的记录是完整的。
信号微机监测系统的网络结构是由信号管理网和远程访问用户网两部分组成,以多级监测管理层自下而上地逐级汇接而成的层次型计算机广域网络系统。
信号管理网由一台中心服务器和若干台终端构成局域网,中心服务器中的数据库服务器兼作通信服务器和远程访问服务器,负责监测信息的管理并接收终端用户的访问;远程用户终端可通过拨号网络与中心服务器或各站工控机连接,索取需要的信息。
信号微机监测系统的网络结构是采用串联加环路的方式实现的。
即一条线路上的各站仅需要一条通道,该通道站站开口,将沿线各站串联在一起,线路末端站再增加一条通道至信号管理中心,使网络成环。
网络上传输的数据到达某个站后,由该站路由器对数据的传输进行路由选择,以确定最佳传输路径并将数据传递给下一站;站站接力,一直到达目的地。
采用先进的CAN(控制器局域网)技术、传感技术和计算机网络通信技术、数据库及软件工程技术,监测并记录信号设备的主要运行状态,为信号维护人员掌握设备运用质量和故障分析提供科学依据。
微机监测设备故障应急处理案例一、微机监测设备故障应急处理案例(24例)案例1:上、下位机不通讯故障现象上、下位机不通讯故障处理上、下位机不通讯,是指工控机看不到各采集机送到的采集信息。
此类故障的现象和处理可分为如下几个方面:1. CAN通讯线断或CAN通讯头与CAN卡接触不良:若各采集机工作正常(CPU板工作灯秒闪正常),但不通讯,故障原因可能为通讯线断。
此时应检查C0-D0(或D9)-01-1到通讯头的7 ;C0-D0(或D9)-01-2到通讯头的2是否断线。
或者查看通讯头与工控机插接是否良好,或检查总线板与D0(或D9)端子之间的通讯线是否插接良好。
2. 某一块CPU板故障而影响所有CPU板与上位机的通讯:从机电源板工作良好,CAN通讯亦工作良好,而所有从机与上位机均不通讯。
此时,可关掉所有采集机,将CPU板拔出2~3厘米,然后逐一将CPU板插入;再打开电源板开关,观察每个采集机单独工作时通讯情况,此时就会发现某一个CPU板不工作或者不通讯的现象。
(更换CPU板时,注意程序片的方向,程序片的缺口与其插座缺口对应。
如果插反,程序片将被烧坏。
)3. 电源板损坏:判断电源板是否有故障,可以通过看其面板上的+5V、+24V、+12V、-12V、+5I各表示灯是否正常。
正常情况下,上述表示灯应常亮(无闪动)。
若某个+5V、+5I电压表示灯不亮,有可能造成从机与上位机不通讯。
可将此电源板与其他从机电源板调换确认。
4. CAN卡损坏造成上下位机不通讯。
案例2:计算机黑屏无显示故障现象计算机黑屏无显示故障处理打开微机后,显示器黑屏无任何显示,原因可能有以下几个方面:(1)显示器电源开关未打开,电源线松动致使显示器没电。
(2)显示器信号输入线与主机接口接触不良。
(3)主机刷新频率不匹配。
(4)主板与工控机底槽松动,接触不良。
(5)工控机键盘被锁定:(6)找不到操作系统或硬盘损坏。
(7)内存条损坏。
(8)工控机电源某一输出电路故障。
利用微机监测设备分析、处理信号设备疑难故障实例
一、道岔故障
1、某站,上行进站、下行出站信号机经常莫明其妙关闭,由于故障发生在瞬间,难以判断故障范围。
利用微机监测设备,查询非正常关闭信号报警信息,首先获得上行进站、下行出站信号机非正常关闭信号的时刻,再用微机监测设备提供的“站场回放”功能查询,发现是该站6/8号道岔多次瞬间失去表示,而且与列车经过有关,这样就把故障范围缩小到道岔表示单元电路的室外部分了。
经故障处理人员到现场检查,系该道岔X1、X3线在箱合蛇管处磨损造成断续混线所致。
2、某站值班员汇报5/7#道岔反位操纵不到位。
值班员同时反映出现了故障电流,但是,故障处理人员到场进行单机试验,转辙机电气特性均达标。
通过微机监测模拟量曲线显示功能,再现当时的5/7#道岔动作电流和道岔启动电源电压曲线综合分析得知:5/7#均为四线制双机牵引道岔,单机试验时故障电流达标,而双机同时出现故障电流时因电缆线路压降增大,导致故障电流减少从而使得道岔密贴不了。
3、12#道岔扳不动故障,通过微机监测道岔动作曲线显示功能,再现当时的道岔动作电流曲线,原因是故障电流小。
可是,维修工区说当天作过道岔检修,故障电流为何仍偏小?查阅当天的道岔12#ADQJ的动作记录,证实计表人未操纵过道岔,亦未做任何试验,确认是一起漏检漏修造成的故障
二、轨道电路故障
1、自闭轨道电路“闪红轨”曾使某段自闭设备故障率居高不下,无微监设备前无法弄清真实情况,也就很难找到闪红的主要原因。
某站在2001年的18天内“闪红轨”达42次,影响行车2次,闪红时间均是3~4秒。
通过微监的模拟量曲线功能观察自闭电子盒功出、滤入电压变化曲线及测试波形,发现了该段普遍存在的模拟电缆造成阻抗失配的问题。
(有关文章详见18信息有绝缘自动闭塞轨道电路模拟电缆盒内移应注意的两个问题)
四、信号电源屏故障
1、2002年3月3日,某段维修中心检查微机监测报警信息,发现某站有大量控制电源超标报警信息,再使用微机监测远程实时测量功能,测得控制电源电压21V,立即通知信号工区检查,原来是控制电源电容脱焊,控制电源上并联的甲电池组也过放,引起得地控制电源电压过低。
信号工立即处理,防止了必将发生的信号故障的发生。
五、控制台、人解盘故障
1、某站在进行跨越正线长调车时,进路上的咽喉道岔轨道道路不能正常解锁,采取区段人工解锁措施也不能奏效,导致两趟旅客列车分别机外停车和站内正线停车的一般事故,信号工区到场后,汇报故障原因不明。
局中心通过微机监测设备提供的“站场回放”功能查询当时的车站作业情况,跨越正线长调车时,车列冒进了区间,是造成咽喉道岔轨道道路不能正常解锁的直接原因,回放信息也证实值班员采取区段人工解锁措施(ZRJD亮,相应的人工解锁盘按钮按下)。
要求该段派出技术人员现场查证不能人工解锁的真实原因,经查,系用于区段人工解锁的按钮接点接触不良所致,信号维修人员为推卸检修不良的责任,谎报故障原因不明。
六、电缆故障
1、某信号工区,在一次“天窗修”前,用微机监测系统调阅有关设备测试数据,发现大部分信号电缆对地绝缘有为零的记录,便利用“天窗修”机会积极查找设备隐患点,最后查明原因是1DG送端变压器箱内电缆中的一芯接地,经轨道电路交流127V、220V电源造成大部分信号电缆对地绝缘有为零,换上备用芯后,隐患排除。
七、联锁电路故障
1、某站多次反映单机通过,出站列车进路最后一个区段不能正常解锁。
通过使用微机监测的历史开关量查询功能,检查电路的动作时序,系18信息自动闭塞分区轨道电路占用响应时间超标造成的不解锁。
(有关文章详见《向18信息移频自动闭塞区间发短列车时进路末岔轨道电路不能正常解锁的原因分析》)
十一、车站值班员操作错误故障
1、2002年1月20日某站,检查运统46电务检修作业登记消记信息发现,25天内值班员登记轨道电路不解锁达48条,到底存在什么问题?经微机监测再现,因闭塞分区占用响应时间超标造成的不解锁6次,其余均是车站调车人员和调机作业没有按照6502操作办法进行导致的不解锁。
我们把信息通报运输人员,使其明了不解锁原因,使用人员知道了原因,也就知道怎样操作。
2、2002年1月20日凌晨,路局调度所通知:“某站进站信号发生故障,造成某次通过列车晚点”。
经调用微机监测记录数据进行数据回放,该次列车进入接近区段已达十余分钟后值班员才办理通过进路,在此之前,一直没有办理通过进路的操作。
我们将此情况上报路局,经路局追查,造成通过列车晚点的真正原因是:凌晨值班员、助理值班员均打瞌睡,没有及时办理进路所致,值班员为推卸责任,谎报调度所:“信号开放不了”。
以往,此类情况发生后,信号人员累死累活永远也查不清楚、说不清楚,心里不但没底,还要背隐瞒故障原因的“黑锅”。
十二、其他疑难故障
1、2002年1月2日,彬江站K779道口发生火车与汽车相撞事故,事故调查过程中道口工称:道口信号常报警,无法使用而关闭了道口信号设备。
通过彬江站微机监测设备再现,确认道口信号此时运用正常。
通过再现也证实道口信号电路确实存在误报的隐患,可以说:如果没有微机设备,电务难脱干系、必背黑锅,同时,隐患也找不出来。
既不利于使事故责任者接受惩罚,对铁路运输而言也解决不了存在的隐患。
2、一段时间反映管内道口信号故障率较高。
我们统计所有道口信号发生故障信息,同时根据故障登记的时间再现相邻站微机监测信息。
发现了大部分人都忽视了的站外调车、电力停电、列车停时过长,轨道车在道口信号接近控制点来回运动等造成道口信号频繁“误”报警的情况。
不仅查清了问题,为路局制定道口信号使用办法也提供了有力的依据。