当前位置:文档之家› ±800kV直流输电线路标称电场计算

±800kV直流输电线路标称电场计算

±800kV直流输电线路标称电场计算

±800kV直流输电线路标称电场计算

王平1, 李抗1, 钦雨晨1, 赵映宇1

1华北电力大学

Abstract

为提高长距离大容量输电的经济性,我国采用特高压直流技术。随着特高压工程的建设和民众电磁环境意识的增强,电磁环境成为影响输电线路结构和建设费用的重要因素。合成电场是特高压输电工程的电磁环境效应之一,其由导线电荷产生的标称电场和空间电荷产生的离子流场组成。标称电场的计算是合成电场计算的前提,本文采用Comsol软件计算了±800kV直流输电线路周围的标称电场。

计算电场强度的基本方法

计算电场强度的基本方法 电场强度是静电学中最基本最重要的概念之一,是历年高考考查的热点。高考中将静电学与力学、磁学等问题放在一起作为综合题考查在每年是必不可少的。这些题目中往往涉及有电场力、电势和电势能等参数,这些参数与静电场最基本的物理性质参数——电场强度是紧密相关的。因此,要解决好这些问题,我们首先必须熟练掌握计算电场强度的方法。 在这里,我们首先介绍一下计算电场强度的基本方法。结合所分析的静电场的特点,很多求解电场强度的问题都可以用它来解决。对于一些比较特殊的电场,我们将在下一节介绍一些特殊的方法,那些特殊的方法也是由这些基本方法衍生而来的,因此,我们需要掌握好这些基本方法。下面来看一看这些基本方法。 方法特点 电场强度的定义是检验电荷在电场中某点受到的电场力F 与电荷q 的比值,用E 表示。因此,我们可以利用这一定义去求电场中某点的电场强度。想办法求出电荷q 在某点所受的电场力,使用公式F q E =,即可求出电场强度。在这里需要注意两点:(1)这里q 代表 电量,如果带正电则值为正,此时E 的方向与F 相同;如果带负电则值为负,此时E 的方向与F 相反。(2)由于E 有方向,是矢量,因此我们可以使用矢量的运算法则(正交分解法、平行四边形法则、矢量三角形法则等)求几个不同的电场在某一点所产生的合场强。 根据这一定义,点电荷Q 在周围某点所产生的场强为22 Qq F r q k Q E k q r ===。根据这一定义以及匀强电场中电场力做功与电势能的关系有W F d qE d q U === ,因此匀强电场的场强为U d E =。 从定义引出来的方法是最基本的方法,下面我们来看一看具体该怎么用。 经典体验(1) 如图所示,带正电小球质量为m=1×10-2kg ,带电量为q=1.6×10-6 C 。置于光滑绝缘水平面上的A 点,当空间存在着斜向上的匀强电场时,该小 球从静止开始始终沿水平面做匀加速直线 运动,当运动到B 点时,测得速度v B =1.5m/s , 此时小球的位移为s=0.15m ,求此匀强电场 的场强E 的取值范围(g=10m/s 2 )。 体验思路: 要求E 的取值范围,我们已知电量q ,根据上面的定义,即是要求电场力的

§10-怎样计算电场强度

§10 怎样计算电场强度? 静电场的电场强度计算,一般有三种方法: 1、 从点电荷场强公式出发进行叠加; 2、 用高斯定理求解; 3、 从电场强度和电势的微分关系求解。 这三种方法各有优点: 从点电荷的场强公式出发,通过叠加原理来计算,在原则上,是没有不可应用的。但是,叠加是矢量的叠加,因此计算往往十分麻烦。 用高斯定理求电场强度,方法简单,演算方便,它有较大的局限性,只适宜于某些电荷对称分布的场强的计算,或者场强不是对称的,但为几种能用高斯定理求解折场的合成。 用场电势的微分关系求场强也有普遍性,而且叠加是代数叠加。这一种方法也简便,不过还比不上高斯定理。 所以求场强时,一般首先考虑是琐能用高斯定理,其次考虑是否能用场强与电势的微分关系去求。下面分别加以讨论。 一、从点电荷的场强公式出发通过叠加原理进行计算 点电荷的场强公式: 301 (1)4i i i q E r r πε= ∑r r 当电荷连续分布时: ()() 303 0301(2) 4134144r E dl r r E ds r r E d r λπεσπερτπε===???r r r r r r 式中 λ-电荷的线密度; σ-电荷的面密度; ρ-电荷的体密度。 式(2)、(3)、(4)中,积分应普遍一切有电荷分布的地方。计算时,还必须注意这是矢量和。 1、 善于积分变量的统一问题

如果积分上包含有几个相关的变量,只有将它们用同一变量来表示,积分才能积得结果。 这在应用点电荷的场强公式求带电体的场强时,或者应用毕-沙-拉定律求B r 时,常常遇到。 因此,要积分必须先解决积分变量的统一问题。 积分上包含有几个变量,相互之间存在一定的关系。因此,任一变量都可选作自变量,而将其他变量用该变量来统一表示。必须指出,不但可以将积分号中包含的变量选作自变量,而且也可选择不包含在积分号中但与积分号中的变量都有关的量作为自变量,要根据具体情况而定。 现以图2-10-1所示均匀带电直线的场强计算为例来讨论积分变量的统一问题。 由图可知: 2 0cos 4x dl dE r λθπε= 2 0sin 4y dl dE r λθπε= 202 0cos (5) 4sin (6) 4x x y y dl E dE r dl E dE r λθπελθπε∴====?? ?? 上述三个变量中,共有三个相关变量:θ、l 、r 。为了把积分计算出来,必须把三个变量统一用某一个变量,可以θ、l 、r 中的任一个,或者用它的相关变量来表示。究竟选哪 一个好呢? 如果选择θ为自变量,则应把l 、r 都化作θ的函数来表示。由图示几何关系可得: 2222cot l a dl acse d r a cse θθθθ =-== 于是得: ()()2 12 1 21002100cos sin sin 44sin cos cos 44x y E a a E a a θθθθλλ θθθπεπελλ θθθπεπε==-==-? ? x 图2-10-1

架空输电线路设计试卷概要

2011 年春季学期《输电线路设计》课程考试试卷( A 卷) 注意:1、本试卷共 2 页; 2、考试时间:110分钟; 3、姓名、学号、网选班级、网选序号必须写在指定地方。 一、填空题 (每空1分,共30分) 1、 输电线路的主要任务是 ,并联络各发电厂、变电站使 之并列运行。 2、 镀锌钢绞线 1×19-12.0-1370-A YB/T5004-2001中,1×19表示 , 12.0表示 ,1370表示 。 3、 某线路悬垂串的绝缘子个数为 13片,该线路的电压等级是 kV 。 4、 线路设计的三个主要气象参数是 、 、 。 5、 输电线路设计规范规定,导线的设计安全系数不应小于 ;年平 均气象条件下的应力安全系数不应小于 。 6、 导线换位的实现方式主要有 、 、 三种。 7、 架空线呈“悬链线”形状的两个假设条件是 、 。 8、 档距很小趋于零时, 将成为控制气象条件;档距很大趋于无限 大时, 将成为控制气象条件。 9、 判定架空线产生最大弧垂的气象条件,常用方法有 和 。 10、状态方程式建立的原则是 。 11、已知某档档距为 498 m ,高差为40 m ,相同条件下等高悬点架空

线的悬挂曲线长度L h=0=500 m,则该档架空线悬挂曲线长度为______________ m。 12、孤立档的最大弧垂位于相当梁上剪力的地方,最低点位于相当 梁上剪力的地方。 13、排定直线杆塔位置时需使用____________________模板,校验直 线杆塔上拔时需使用_____________________模板。 14、在杆塔定位校验中,摇摆角临界曲线的临界条件是 _____________;悬点应力临界曲线的临界条件是_________________;悬垂角临界曲线的临界条件是________________。 15、发生最大弧垂的可能气象条件是_______ _________或_____ _________。 二、判断题(每题2分,共10分) 1、架空线上任意两点的垂向应力差等于比载与相应高差的乘积。 () 2、架空线的平均应力等于平均高度处的应力。() 3、如果临界档距,则两者中较小者对应的气象条件不起 控制作用。 ( ) 4、导线只有在最低气温时产生最大张力。() 5、在连续倾斜档紧线施工时,各档的水平应力不等,山上档比山下 档大。() 三、简答题 (共24分)

场强公式

在匀强电场中:E=U/d 若知道一电荷受力大小可用:E=F/q点电荷形成的电场:E=kq/r^2 k为一常数q 为此电荷的电量r为到此电荷的距离可看出:随r的增大,点电荷形成的场强逐渐减小,(不与r成正比,只与r^2成正比) 从力的角度研究电场 电场强度是电场本身的一种特性, 与检验电荷存在与否无关, E是矢量。 要区别公式: E=F/q (定义式) E=kQ/r2 (点电荷电场) E=U/d (匀强电场) 1、判断电场强度大小的方法: (1)根据公式判断; (2)根据电场线判断; (3)根据等势面判断。 2、判断电场强度方向的几种方法: 方法一:根据规定,正电荷所受电场力的方向即是该点的场强方向; 方法二:电场线上每一点的切线方向即是该点的场强方向; 方法三:电势降低最快的方向就是场强的方向。 注意事项

(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分; (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的电场线分布要求熟记; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面; (6)电容单位换算:1F=10^6μF=10^12pF; (7)电子伏(eV)是能量的单位,1eV=1.60×10^-19J; (8)其它相关内容:静电屏蔽/ 示波管、示波器及其应用/ 等势面/尖端放电等。

基于三维GIS技术的输电线路地理信息系统的设计与实现

摘 要针对当前计算机图形及GIS技术的发展和电力系统输电线路管理需求的特点,本文以输电线路地理信息系统平台为例,研究了如何利用现有的数字高层模型(DEM)及相应算法实现海量三维地表模型的构建和如何运用设计模式的构造方法实现输电设备的关联组合等问题,并通过建立方位数据中间层的方法将地表数字高层模型、输电设备三维模型及各类属性信息有机的结合在一起,从而满足了输电线路GIS系统的各类维护及查询要求,并为该平台日后成为线路设计、培训模拟等高层应用的平台构建了良好的开放性框架。 1引言 随着计算机技术的飞速发展,地理信息系统(Geographic Information System,简称GIS)在整个电力行业中得到了越来越广泛的应用。将GIS引入配电管理系统(DMS),并与用电MIS,负荷管理及SCADA 等子系统相结合,为各级管理人员提供一套简单、迅速、方便的配电网运行管理系统已成为现代电力企业提高管理水平和工作效率的有效手段。然而,目前在电力系统中广泛应用的主要还是基于二维坐标的GIS 系统,其空间表现和分析能力都有很大的局限性。 输电线路是位于地理空间中的人工构建物,其线路距离长,通过地区的地理条件比较复杂,与众多电力线路和通讯线路交叉跨越,并且通常会通过居民区、公园和其它特殊区域。输电线路及其杆塔位置与地理空间位置密切相关,特别是在垂直方向上的层次信息尤为重要,这使得二维地理信息系统无法达到其管理的需求。近年来,计算机图形学的发展和计算机硬件性能的成倍提高使得三维表现技术日益完善,通过这些技术,我们能够构造更接近于现实的三维地表模型和各类设备模型,使得GIS系统从二维向三维发展。本文通过运用三维GIS技术,结合模式设计方法,提出了一种构建三维输电线路GIS系统的方法,并在实际的工程中得到了实现。 2三维输电线路GIS系统的的特点及其实现难点 相对于二维的GIS系统,三维输电线路GIS在其实现过程中有着明显的特点和实现难点,主要表现在以下几个方面: (1)在三维GIS中,无论是基于矢量结构还是基于栅格结构,对于不规则地学对象的精确表达都会遇到大数据量的存储与处理问题。在输电线路GIS系统中,一条完整的线路往往要延续几十甚至几百公里,这使得相应的数字地面模型规模巨大,加上众多的河流、道路、居民区等地表特征物模型和数以千万计的输电设备模型,导致整个三维场景结构复杂。如果没有较好的数据模型和管理策略,系统难以达到预定的显示效果,更谈不上良好的交互式界面。 (2)在二维配网GIS系统中,一般用点状或线状等抽象符号表达电力设备,无法直观的显示设备本身的结构和相互间的关联;在三维GIS系统中,模拟真实的输电设备(如杆塔、绝缘子、输电线)是虚拟现实的基本要求,这使得模型本身会变得比较复杂,甚至要进行组合构造。以杆塔为例,不但每个杆塔的高度、塔头有差别,而且其包含的绝缘子也会根据杆塔的类型、方位、旋转角度甚至与其它杆塔的关联性而有不同的表现方式,因此,选用合理的设计模式和组织方法来处理电力设备对象也是实现输电GIS系统的一个重点。

电场强度地计算

电场力的性质之考点一(电场强度的理解及计算) 班级::编写:熠 学习目标:1、理解电场强度的矢量性;2、掌握电场强度的计算方法。 自主学习:一、三个公式的比较 二、 (1)电场叠加:多个电荷在空间某处产生的电场的电场强度为各电荷在该处所产生的电场场强的矢量和. (2)计算法则:平行四边形定则. 题型一、点电荷产生的电场 正点电荷电场方向背离电荷负点电荷电场方向指向电荷中心 1、如图所示,真空中有两个点电荷Q1 =+3.0×10-8C和Q2 =-3.0×10-8C,它们相距0.1m,A点与两个点电荷的距离r相等,r=0.1m 。求:电场中A点的场强。 2、如图,A、B两点放有均带电量为+2×10-8C两个点电荷,相距60cm,试求:

(1)AB 连线中点O 的场强; (2)AB 连线的垂直平分线上离开O 点距离为30cm 处的P 点的场强。 合作学习: 【拓展训练】:3、(2013·重点中学联考)如图所示,一个均匀的带电圆环, 带电荷量为+Q ,半径为R ,放在绝缘水平桌面上.圆心为O 点,过O 点作一竖直线,在此线上取一点A ,使A 到O 点的距离为d 。求A 点处的电场强度。 方法归纳: 【变式训练】:4、在某平面上有一个半径为r 的绝缘带电圆环: (1)若在圆周上等间距地分布n (n ≥2)个相同的点电荷,则圆心处的合场强为多少? (2)若有一半径同样为r ,单位长度带电荷量为q (q >0)的均匀带电圆环上有一个很小的缺口Δl (且Δl r ),如图所示,则圆心处的场强又为多少? 方法归纳:补偿法。 解题关键:把带有缺口的带电圆环―――→转化为 点电荷 解析: (1)当n 分别取2、3、4时圆心处的场强均为零,结合点电荷电场的对称性可知,n 个相同的点电荷在圆心处的合场强为零. (2)可以把均匀带电圆环视为由很多点电荷组成,若将缺口补上,再根据电荷分布的对称性可得,圆心O 处的合场强为零,由于有缺口的存在,圆心O 处的电场即为缺口相对圆心O 的对称点产生的电场,其电场强度为该处电荷(可视为点电荷)在O 点的电场强度(包括 大小和方向).其电场强度的大小为E =k q Δl r 2,方向由圆心O 指向缺口. 答案: (1)合场强为零 (2) k q Δl r 2,方向由圆心O 指向缺口 分析电场叠加问题的一般步骤 电场强度是矢量,叠加时应遵从平行四边形定则,分析电场的叠加问题的一般步骤是: (1)确定分析计算的空间位置; (2)分析该处有几个分电场,先计算出各个分电场在该点的电场强度的大小和方向; (3)依次利用平行四边形定则求出矢量和. 题型二特殊带电体产生的电场

输电线路设计计算公式集1~3章

导线截面的选择 1、按经济电流密度选择 线路的投资总费用Z1 Z1 =(F0+αΑ)L 式中:F0—与导线截面无关的线路单位长费用; α—与导线截面相关的线路单位长度单位截面的费用; Α—导线的截面积; L—线路长度。 线路的年运行费用包括折旧费,检修维护费和管理费等,可用百分比 b 表示为 Z 2=bZ 1=b(F 0+aA)L 线路的年电能损耗费用(不考虑电晕损失): Z 3=3I 2max Ci A PL 式中i —最大负荷损耗小时数。可依据最大负荷利用小时数和功率因数 I max —线路输送的最大电流 C —单位电价 P —导线的电阻率 若投资回收年限为 n 得到导线的经济截面A n A m =I max ) 1(3nb a nPCi + 经济电流密度J n Jn= n A I max =nPCi nb a 3) 1(+ An=n J I max 我国的经济电流密度可以按表查取。

2、按电压损耗校验 在不考虑线路电压损耗的横分量时,线路电压、输送功率、功率因数、电压损耗百分数、导线电阻率以及线路长度与导线截面的关系,可用下式表示 )(01 2?δtg X R U L P m += 式中:δ—线路允许的电压损耗百分比; P m —线路输送的最大功率,MW ; U i —线路额定电压KV L —线路长度m ; R —单位长度导线电阻,Ω/m ; X 0—单位长度线咱电抗,Ω/m ,可取0.4×10-3 Ω/m ; tg ?—负荷功率因数角的正切。 3、按导线允许电流校验 (1)按导线的允许最大工作电流校验 导线的允许最大工作电流为 Im= 1 0) R t t F -(β 其中 R1=[] A P t t 0 0)(21-+ 上二式中a —导线的电阻温度系数 t —导线的允许正常发热最高温度。我国钢芯铝绞线一般采用+70℃,大跨越可采用+90℃;钢绞线的允许温度一般采用+125℃; t 0—周围介质温度,应采用最高气温月的最高平均气温,并考虑太阳辐射的影响; β—导线的散热系数; F —单位长度导线的散热面积,F=md ; R 1—温度t 时单位长度导线的电阻; P 0—温度t 0时导线的电阻率; A —导线的截面积 d —导线的直径; (2)按短路电流校验

输电线路设计计算公式集1~3章(DOC)

导线截面的选择 1、按经济电流密度选择 线路的投资总费用Z1 Z1 =(F0+αΑ)L 式中:F0—与导线截面无关的线路单位长费用; α—与导线截面相关的线路单位长度单位截面的费用; Α—导线的截面积; L—线路长度。 线路的年运行费用包括折旧费,检修维护费和管理费等,可用百分比 b 表示为 Z 2=bZ 1=b(F 0+aA)L 线路的年电能损耗费用(不考虑电晕损失): Z 3=3I 2max Ci A PL 式中i —最大负荷损耗小时数。可依据最大负荷利用小时数和功率因数 I max —线路输送的最大电流 C —单位电价 P —导线的电阻率 若投资回收年限为 n 得到导线的经济截面A n A m =I max ) 1(3nb a nPCi + 经济电流密度J n Jn= n A I m ax =nPCi nb a 3)1(+ An= n J I m ax 我国的经济电流密度可以按表查取。

2、按电压损耗校验 在不考虑线路电压损耗的横分量时,线路电压、输送功率、功率因数、电压损耗百分数、导线电阻率以及线路长度与导线截面的关系,可用下式表示 )(01 2?δtg X R U L P m += 式中:δ—线路允许的电压损耗百分比; P m —线路输送的最大功率,MW ; U i —线路额定电压KV L —线路长度m ; R —单位长度导线电阻,Ω/m ; X 0—单位长度线咱电抗,Ω/m ,可取0.4×10-3 Ω/m ; tg ?—负荷功率因数角的正切。 3、按导线允许电流校验 (1)按导线的允许最大工作电流校验 导线的允许最大工作电流为 Im= 1 0) R t t F -(β 其中 R1=[] A P t t 0 0)(21-+ 上二式中a —导线的电阻温度系数 t —导线的允许正常发热最高温度。我国钢芯铝绞线一般采用+70℃,大跨越可采用+90℃;钢绞线的允许温度一般采用+125℃; t 0—周围介质温度,应采用最高气温月的最高平均气温,并考虑太阳辐射的影响; β—导线的散热系数; F —单位长度导线的散热面积,F=md ; R 1—温度t 时单位长度导线的电阻; P 0—温度t 0时导线的电阻率; A —导线的截面积 d —导线的直径; (2)按短路电流校验

电场强度的叠加原理及电场强度的计算

第二讲:电场强度的叠加原理及电场强度的计算 内容:§9-3 电场强度的求法 要求: 1.理解场强叠加原理; 2.掌握用积分的方法计算电场强度。 重点与难点: 1.电场强度及其计算。 作业: 习题:P37:9,11 预习:电场强度的叠加原理

四、电场强度叠加原理 1.点电荷的场强:电荷Q ,空间r 处 2 04r r Q q F E πε== 2.点电荷系: 在点电荷系Q 1,Q 2,…,Q n 的电场中,在P 点放一试验电荷q 0,根据库仑力的叠加原理,可知试验电荷受到的作用力为∑= i F F ,因而P 点的电场强度为 ∑∑∑=== i i i E q F q F q F E = 即 ∑∑3 04r r Q E E i i πε == 点电荷系电场中某点的场强等于各个点电荷单独存在时在该点的场强的矢量和。这就是电场强度的叠加原理。 3.连续分布电荷激发的场强 将带电区域分成许多电荷元d q ,则 ? ?=0 2 04r r dq E d E πε= 其中,对于电荷体分布,d q =ρd v , ???v r r dv E 0 204 περ= 对于电荷面分布,d q =σds ,02 04r r ds E s ??πεσ= 对于电荷线分布,d q =λd l ,?l r r dl E 0 2 04 πελ= 其中体密度 dV dQ V Q V =??→?lim 0 =ρ 单位C/m 3; 面密度 dS dQ S Q S =??→?lim =σ 单位C/m 2;

线密度 dl dQ l Q l =??→?lim =λ 单位C/m 。 五、 电场强度的计算: 1.离散型的:∑∑3 04r r Q E E i i πε == 2.连续型的:? ?=0 2 04r r dq E d E πε= 空间各点的电场强度完全取决于电荷在空间的分布情况。如果给定电荷的分布,原则上就可以计算出任意点的电场强度。计算的方法是利用点电荷在其周围激发场强的表达式与场强叠加原理。计算的步骤大致如下: ● 任取电荷元d q ,写出d q 在待求点的场强的表达式; ● 选取适当的坐标系,将场强的表达式分解为标量表示式; ● 进行积分计算; ● 写出总的电场强度的矢量表达式,或求出电场强度的大小和方向; ● 在计算过程中,要根据对称性来简化计算过程。 例1. 电偶极子(Electric Dipole )的场强。 1. 几个概念: (1)两个电量相等、符合相反、相距为l 的点电荷+q 和-q ,若场点到这两个电荷的距离比l 大得多时,这两个点电荷系称为电偶极子。 (2)从-q 指向+q 的矢量l 称为电偶极子的轴。 (3)l q p =称为电偶极子的电偶极矩 2. 电偶极子的电场强度 (1)电偶极子轴线延长线上一点的电场强度 如图所示,取电偶极子轴线的中点为坐标原点O ,沿极轴的延长线为O x 轴,轴上任意点A 距原点的距离为x ,则正负电荷在点A 产生的场强为 ()i l x q E 2 02/41-= +πε () i l x q E 2 02/41+-=-πε 由叠加原理可知点A 的总场强为 ()()() i l x xl q i l x q l x q E E E ??? ?????-??????-= +22202204/242/2/41πεπε=+-+=- 当x >>l 时,2 224/x l x ≈-

输电线路工程数字化设计全过程应用及展望 杨蒙

输电线路工程数字化设计全过程应用及展望杨蒙 摘要:输电线路工程数字化设计,主要采用的是CAD软件,在数据共享以及专 业协同等方面存在一定的缺陷,将数字化技术应用到这一领域是其未来发展的必 然趋势。本文将对输电线路数字化设计集成系统的功能以及相应的技术进行分析,结合工程实例探究数字化设计系统的具体应用,并对其未来发展进行展望。 关键词:输电线路工程;数字化设计;应用;展望 1输电线路数字化设计系统 输电线路数字化设计系统是一个集成设计和管理系统,实现协同工作和资源 共享的设计平台。该平台可满足线路工程设计的规划选线、可行性研究、招投标、初步设计、施工图设计、竣工图设计等全生命设计周期要求,完成线路走廊地理 信息资料数字化、线路路径选择优化、线路工程本体设计、经济指标估算、数字 化移交等功能,提高了工程咨询设计服务水平。输电线路数字化设计集成系统由 地理信息系统(geographicinformationsystem,GIS)、三维设计系统、数据库系统、文件管理系统并集成专业设计软件所组成。以大型数据库为核心,以高精度 航摄影像、数字高程模型(digitalelevationmodel,DEM)、基础地理等数据为基础,以三维模型为依托,利用航测遥感技术、三维可视化技术、虚拟现实技术和 信息集成技术,结合地理信息和工程信息,通过数据驱动模型,以三维数字化的 形式,整合输电线路走廊的地形地貌信息和建设过程数据,通过构建三维现场环境,面向勘测和设计业务提供服务。输电线路数字化设计系统面向勘测业务,提 供完整的勘测数据管理,包括3D数据管理、外业数据采集与标绘、三维地形数 据管理与发布、工程参数维护、勘测资料管理以及平断面图、房屋分布图、风偏 开方图,林木分布图输出等功能。输电线路数字化设计系统面向设计业务,实现 设计文件管理、线路路径选择、线路电气设计、线路结构设计、技术经济分析、 设计成果数字化移交等功能,并实现各类线路专业软件接口和集成,支持工程全 生命周期后续业务的延伸和扩展。 2输电线路数字化设计系统中关键技术使用情况分析 2.1数字化协同技术的使用分析 相关人员进行输电线路数字化设计过程中经常会出现数字漏洞、设计错误等 问题,影响数字化设计质量。面对此种情况,相关人员在输电线路数字化设计过 程中就可以使用数字化技术,通过数字化技术为设计人员搭建一个数据信息共享 平台,让所有的设计人员通过此平台就可以进行沟通、交流,然后将信息数据进 行共享,从而保证每一位工作人员都能掌握输电线路数字化设计进度,避免输电 线路数字化设计工作中出现问题,提高设计质量。 2.2二、三维数字化设计技术的使用分析 二维数字化设计技术和三维数字化设计技术是保证输电线路数字化设计质量 的基础。面对此种情况,相关人员要想保证输电线路数字化设计质量,就需要在 设计过程中将二维数字化设计技术和三维数字化设计技术相结合,一同展开选线 排位工作,具体可以从以下两个方面展开:一方面,相关人员需要依托三维数字 化设计技术对输电线路工程进行实景仿真三维模拟工作,在实景仿真三维模拟工 作中将线路安装情况、自然灾害等数据信息进行融入,然后自动进行方案制定。 另一方面,在上述基础上,相关就需要将二维数字化设计技术和三维数字化设计 技术结合,对众多设计方案进行选线排位工作,选择出最优方案,保证输电线路 数字化设计质量。

电场强度的几种计算方法

电场强度的几种求法 一.公式法 1.q F E =是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用。 2.2 r k Q E =是真空中点电荷电场强度的决定式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。 3.d U E =是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。 二.对称叠加法 当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。 例:如图,带电量为+q 的点电荷与均匀带电。 例:如图,带电量为+q 的点电荷与均匀带

电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大 例:一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳一分为二,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称。已知一均匀带电球壳内部任一点的电场强度为零,点电荷q 在距离其为r 处的电势为r q k =?。假设左侧部分在M 点的电场强度为 E 1,电势为1?;右侧部分在M 点的电场强 度为E 2,电势为2?;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4,下列说法中正确的是( ) A .若左右两部分的表面积相等,有E 1>E 2,1?>2 ?

B .若左右两部分的表面积相等,有E 1<E 2,1?<2 ? C .只有左右两部分的表面积相等,才有E 1>E 2,E 3=E 4 D .不论左右两部分的表面积是否相等,总有 E 1>E 2,E 3=E 4 答案:D 例:ab 是长为L 的均匀带电细杆,P1、P2是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1处的场强大小为E 1,在P2处的场强大小为E2。则以下说法正确的是( ) A .两处的电场方向相同, E1>E2 B .两处的电场方向相反, E1>E2 C .两处的电场方向相同,E1<E2 D .两处的电场方向相反,E1<E2 A B M O N L

电场强度的几种计算方法

电场强度的几种求法 一. 公式法 1.q F E = 是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用。 2.2r k Q E =是真空中点电荷电场强度的决定式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。 3.d U E = 是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。 二.对称叠加法 当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。 例:如图,带电量为+q 的点电荷与均匀带电。 例:如图,带电量为+q 的点电荷与均匀带电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大? 例:一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳一分为二,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称。已知一均匀带电球壳内部任一点的电场强度为零,点电荷q 在距离其为r 处的电势为r q k =?。假设左侧部分在M 点的电场强度为E 1,电势为1?;右侧部分在M 点的电场强度为E 2,电势为2?;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4,下列说法中正确的是( ) A .若左右两部分的表面积相等,有E 1>E 2,1?>2? B .若左右两部分的表面积相等,有E 1<E 2,1?<2?

C .只有左右两部分的表面积相等,才有E 1>E 2,E 3=E 4 D .不论左右两部分的表面积是否相等,总有 E 1>E 2,E 3=E 4 答案:D 例:ab 是长为L 的均匀带电细杆,P1、P2是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1处的场强大小为E 1,在P2处的场强大小为E2。则以下说法正确的是( ) A .两处的电场方向相同,E1>E2 B .两处的电场方向相反,E1>E2 C .两处的电场方向相同,E1<E2 D .两处的电场方向相反,E1<E2 三.等效替代法 例:均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场,如图,在半球面A 、B 上均匀分布正电荷,总电荷量为q ,球面半径为R ,CD 为通过半球顶点与球心O 的轴线,在轴线上有M 、N 两点,OM=ON=2R ,已知M 点的场强大小为E ,则N 点场强大小为( ) A .E R -22kq B .24kq R C .E R -24kq D .E R +2 4kq 答案:A 例:【2013安徽20】如图所示,xOy 平面是无穷大导体的表面,该导体充满0z <的空间, 0z >的空间为真空。将电荷为q 的点电荷置于z 轴上z=h 处,则在xOy 平面上会产生感应 电荷。空间任意一点处的电场皆是由点电荷q 和导体表面上的感应电荷共同激发的。已知静电平衡时导体内部场强处处为零,则在z 轴上2 h z = 处的场强大小为(k 为静电力常量) A .24q k h B .249q k h C .2329q k h D .2 409q k h 【答案】D C D A B

电场强度的几种计算方法

微专题训练16 电场强度的几种计算方法 1.(公式法)(单选)如图1所示,真空中O 点有一点电荷,在它产生的电场中有a 、 b 两点,a 点的场强大小为E a ,方向与ab 连线成60°角,b 点的场强大小为E b ,方向与ab 连线成30°角.关于a 、b 两点场强大小E a 、E b 的关系,以下结论正确的是 ( ). 图1 A .E a =33E b B .E a =13E b C .E a =3E b D . E a =3E b 解析 由题图可知,r b =3r a ,再由E =kQ r 2可知,E a E b =r 2b r 2a =31,故D 正确. 答案 D 2.(图象斜率法)(多选)如图2甲所示,在x 轴上有一个点电荷Q (图中未画出),Q 、 A 、 B 为轴上三点,放在A 、B 两点的试探电荷受到的电场力跟试探电荷所带电荷量的关系如图乙所示,则 ( ). 图2 A .A 点的电场强度大小为2×103 N/C B .B 点的电场强度大小为2×103 N/C C .点电荷Q 在A 、B 之间 D .点电荷Q 在A 、O 之间 解析 对于电场中任意一点而言,放在该处的试探电荷的电荷量q 不同,其受

到的电场力F的大小也不同,但比值F q是相同的,即该处的电场强度.所以F-q 图象是一条过原点的直线,斜率越大则场强越大.由题图可知A点的电场强度 E A=2×103 N/C,B点的电场强度的大小为E B=0.6×103 N/C,A正确,B错误.A、 B两点放正、负不同的电荷,受力方向总为正,说明A、B的场强方向相反,点电荷Q只能在A、B之间,C正确. 答案AC 3.(叠加法)(多选)如图3所示,在x轴坐标为+1的点上固定一个电荷量为4Q的正点电荷,坐标原点O处固定一个电荷量为Q的负点电荷,那么在x坐标轴上,电场强度方向沿x轴负方向的点所在区域应是(). 图3 A.(0,1)B.(-1,0) C.(-∞,-1)D.(1,+∞) 解析在区域(0,1)中4Q和-Q的电场的电场强度方向都向左,合场强仍向左, A对;在-Q左侧距-Q为x处场强为零,由k Q x2=k 4Q (1+x)2 得x=1,所以区域(-∞,-1)内合场强向左,C对. 答案AC 4.(叠加法)(单选)如图4所示,中子内有一个电荷量为+2e 3的上夸克和两个电荷量 为-e 3的下夸克,3个夸克都分布在半径为r的同一圆周上,则3个夸克在其圆 心处产生的电场强度大小为() 图4

500KV输电线路电磁场计算方法的分析

500KV 输电线路电磁场计算方法的分析 随着超高压输送电线路的发展,电磁环境已经成为决定输电线路结构,影响建设费用等的重要因素,成为制约特高压建设的一个关键问题。因此对超高压输电线路电场的精度计算的要求越来越高。本文根据Markt-Megele 法,用C++语言结合matlab 的数学库函数,对输电线路的电场强度进行计算,并结合实际例子对该方法进行分析与说明。 一、计算原理 Markt-Megele 法计算原理为等效电荷模拟计算法,即电场中任意点的电位是模拟电荷的位置和变量的多元函数。数学表达公式为: φi (r )??????=?P ij ?r j ???,r i ????Q j (i =1,…,m ) (1?1) N j=1 公式中Q j 为第j 个模拟电荷的电量; r j ???为第j 个模拟电荷的位置矢量; r i ???为第i 个场点的位置矢量; P ij 为第j 个模拟电荷对场点i 的电位系数。 模拟电荷的位置由设计者凭经验事先给定,并取导体表面匹配点数与模拟电荷数目相等。则电位函数仅为电量的线性函数,式(1?1)简化为线性方程组: [P ][Q ]=[φ] (1?2)

式中[P]为电位系数N×N阶方阵由模拟电荷的类型及模拟电荷与边界点的相对位置决定; [φ]为由导体表面电位决定的N阶列向量; [Q]为模拟电荷的N阶列向量。 二、输电线路数学模型及计算方法 根据公式(1?2)导线上的电荷Q可用电压和电位系数P的麦克斯韦方程式: [Q]=[P]?1[U] (2?1)式中[U]:各导线对地电压的复数矩阵,由输电线路的电压和相位确定,取额定电压的k倍作为其计算电压,一般取1.05; [P]:由各导线电位系数组成的n阶方阵,n为导线数; [Q]:各导线上等效电荷的列矩阵,为复数矩阵。 电位系数P的公式为: P ii=12πε0ln2H i r eq (2?2) P ij=12πε0ln D ij d ij (2?3)式中H i:为导线的对地高度,m; r eq:为导线半径,m(对分裂导线而言,为等效半径); D ij:为导线i与导线j的镜像间距离,m; d ij:为导线i与导线j的距离,m; ε0:为真空的介电常数,ε0=136π×10?9F/m。

16 电场强度的几种计算方法

微专题训练16 电场强度的几种计算方法1.(公式法)(单选)如图1所示,真空中O点有一点电荷,在它产生的电场中有a、b两点,a点的场强大小为E a,方向与ab连线成60°角,b点的场强大小为E b,方向与ab连线成30°角.关于a、b两点场强大小E a、 E b的关系,以下结论正确的 是 ( ). 图1 A.E a=E b B.E a=E b C.E a=E b D.E a=3E b 解析 由题图可知,r b=r a,再由E=可知,==,故D正确. 答案 D 2.(图象斜率法)(多选)如图2甲所示,在x轴上有一个点电荷Q(图中未画出),Q、A、B为轴上三点,放在A、B两点的试探电荷受到的电场力跟试探电荷所带电荷量的关系如图乙所示, 则 ( ).

图2 A.A点的电场强度大小为2×103 N/C B.B点的电场强度大小为2×103 N/C C.点电荷Q在A、B之间 D.点电荷Q在A、O之间 解析 对于电场中任意一点而言,放在该处的试探电荷的电荷量q不同,其受到的电场力F的大小也不同,但比值是相同的,即该处的电场强度.所以Fq图象是一条过原点的直线,斜率越大则场强越大.由题图可知A点的电场强度E A=2×103N/C,B点的电场强度的大小为E B =0.6×103 N/C,A正确,B错误.A、B两点放正、负不同的电荷,受力方向总为正,说明A、B的场强方向相反,点电荷Q只能在A、B之间,C正确. 答案 AC 3.(叠加法)(多选)如图3所示,在x轴坐标为+1的点上固定一个电荷量为4Q的正点电荷,坐标原点O处固定一个电荷量为Q的负点电荷,那么在x坐标轴上,电场强度方向沿x轴负方向的点所在区域应 是 ( ).

输电线路设计计算公式集

第四章 均布荷载下架空线的计算 在高压架空线路的设计中,不同气象条件下架空线的弧垂、应力、和线长占有十分重要的位置,是输电线路力学研究的主要内容。这是因为架空线的弧垂和应力直接影响着线路的正常安全运行,而架空线线长微小的变化和误差都会引起弧垂和应力相当大的改变。设计弧垂小,架空线的拉应力就大,振动现象加剧,安全系数减少,同时杆塔荷载增大因而要求强度提高。设计弧垂过大,满足对地距离所需杆塔高度增加,线路投资增大,而且架空线的风摆、舞动和跳跃会造成线路停电事故,若加大塔头尺寸,必然会使投资再度提高。因此设计合适的弧垂是十分重要的。 架空线悬链方程的积分普遍形式 假设一:架空线是没有刚度的柔性索链,只承受拉力而不承受弯矩。 假设二:作用在架空线上的荷载沿其线长均布;悬挂在两基杆塔间的架空线呈悬链线形状。 由力的平衡原理可得到一下结论: 1、架空线上任意一点C 处的轴向应力σx 的水平分量等于弧垂最低点处的轴向应力σ0,即架空线上轴向应力的水平分量处处相等。 σx cos θ=σ0 2、架空线上任意一点轴向应力的垂直分量等于该点到弧垂最低点间线长L oc 与比载γ之积。 σx sin θ=γL oc 推导出: 0 t g L o c γ θσ= 0 dy L oc dx γσ= 即 0 'y L o c γσ= (4-3) 由(4-3)推导出 10 ()dy sh x C dx γσ=+ (4-4) 结论:当比值γ/σ0一定时,架空线上任一点处的斜率于该点至弧垂最低点之间的线长成正比。最 后推到得到架空线悬链方程的普遍积分形式。C1、C2为积分常数,其值取决于坐标系的原点位置。

电网三维设计系统在输电线路勘测设计中的应用

电网三维设计系统在输电线路勘测设计中的应用 摘要:输电线路三维数字化设计平台以大型数据库为核心,以高精度影响、DEM、基础地理等数据为基础,以三维精细化模型为依托,利用航测技术、三维可视化 技术、虚拟现实技术和信息集成技术,结合地理信息和工程信息,通过输电线路 走廊地形地貌信息和工程数据建模,构建真实的三维现场环境,为变电站选址、 输电线路优化选线、断面图快速生成、杆塔排杆二维和三维联动展示、金具串三 维设计建模、铁塔三维设计建模、基础三维设计建模、三维输电线路设计成果输出、输电线路全过程机械化施工方案编制、施工管理、辅助运维检修等工作提供 有效的数据支撑和技术手段。 关键词:三维设计;勘测设计;施工应用 引言 随着5G时代的到来,传统的输电线路二维设计已经无法满足要求,国家电 网高度重视数字化设计的革命性意义和对工程建设带来的深远影响,在2018年 工作会议上,明确提出大力推广三维设计,通过三维设计提升设计质量、深化三 维设计成果应用,推动工程数据,实现智能管控数据共享。因此架空输电线路三 维设计已经成为趋势。 1三维数字化设计平台特点 1.1地理信息数据处理 地理信息数据包括高精度基础地理数据、地形图数据、控制点成果等。基础 地理数据包括基础遥感影像数据与数字高程模型,工程高清影像数据,高分辨率 的工程航飞数据、激光电云数据、高精度数字高程数据等;地形图数据主要包括 收集到的地形图数据。系统支持联机模式和脱机模式两种方式开展设计工作,设 计人员输入指定的用户名和密码后登录进入系统主界面。基础GIS平台是整个系 统的基础,涵盖三维视图和三维分析等基础GIS功能,为系统提供基础平台和各 类基础地理数据、DOM、DEM等空间数据的协同展示、渲染以及输入输出等管理支持。 1.2塔位地形分析辅助防雷优化 基于三维数字化设计平台,可实现全线杆塔塔基的坡度分析,通过塔基地形 坡度分析确定每基杆塔地形划分,为差异化防雷提供数据支持,进一步指导差异 化防雷设计。平台提供了塔位坡度、坡度分析、剖面分析以及等高线生成四种小 工具,可用于塔位坡度分析,从而判断塔位地形;通过分析每基杆塔的地形地貌,结合差异化的防雷措施,三维数字化设计平台可一键导出每基杆塔的差异化防雷 措施。 2电网三维设计系统在输电线路勘测设计中的应用 2.1输电线路三维设计 随着电力企业精细化管理水平不断提高和设计精度不断加深,输变电三维设 计技术已经比较成熟并被广泛应用。全国各省、市设计院都已经逐步开展输变电 三维数字化设计工作,并支持将设计成果进行数字化移交。通过三维数字化设计,不仅能够有效提高输电线路设计精度和设计质量,更好服务于工程评审及业主深 度要求,同时也是企业提高自身设计水平和市场竞争力的重要技术支撑。电力三 维数字化设计平台是以技术和生产结合为主要形式,将传统输变电线路设计方法 和新技术手段相结合,服务于输变电工程可研、初设、施工、竣工等设计过程而 打造的三维协同设计平台,已逐步成为当前各个设计院由传统作业模式向新型的

相关主题
文本预览
相关文档 最新文档