初三总复习四边形专题复习课件.doc
- 格式:doc
- 大小:1.46 MB
- 文档页数:7
九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)(一)1.综合与实践问题情境在数学活动课上,老师提出了这样一个问题:如图①,已知正方形ABCD,点E是边上一点,连接AE,以AE为边在BC的上方作正方形AEFG.数学思考(1)连接GD,求证:△ABE≌△ADG;(2)连接FC,求∠FCD的度数;实践探究(3)如图②,当点E在BC的延长线上时,连接AE,以AE为边在BC的上方作正方形AEFG,连接FC,若正方形ABCD的边长为4,CE=2,则CF的长是.2.如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,最终到达点D,若点Q运动时间为x秒.(1)当x=1时,S△AQE=平方厘米;当x=时,S△AQE=平方厘米.(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求x的取值范围.(3)若△AQE的面积为平方厘米,直接写出x值.3.如图,在平行四边形ABCD中,∠BAD的平分线交C于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG.(1)求证:四边形ECFG是菱形;(2)连结BD、CG,若∠ABC=120°,则△BDG是等边三角形吗?为什么?(3)若∠ABC=90°,AB=10,AD=24,M是EF的中点,求DM的长.4.如图1,正方形ABCD沿GF折叠,使B落在CD边上点E处,连接BE,BH.(1)求∠HBE的度數;(2)若BH与GF交于点O,连接OE,判断△BOE的形状,说明理由;(3)在(2)的条件下,作EQ⊥AB于点Q,连接OQ,若AG=2,CE=3,求△OQR 的面积.5.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.6.如图,已知正方形ABCD的面积是8,连接AC、BD交于点O,CM平分∠ACD交BD于点M,MN⊥CM,交AB于点N,(1)求∠BMN的度数;(2)求BN的长.7.如图,四边形OABC为矩形,其中O为原点,A、C两点分别在x轴和y轴上,B点的坐标是(4,6),将矩形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC,BC于点E、D,且D点坐标是(,6).(1)求F点的坐标;(2)如图2,P点在第二象限,且△PDE≌△CED,求P点的坐标;(3)若M点为x轴上一动点,N点为直线DE上一动点,△FMN为以FN为底边的等腰直角三角形,求N点的坐标.8.已知,在平行四边形ABCD中,点F是AB上一点,连接DF交对角线AC于E,连接BE.(1)如图1,若∠EBC=∠EFA,EC平分∠DEB,求证:平行四边形ABCD是菱形;(2)如图2,对角线AC与BD相交于点O,当点F是AB的中点时,直接写出与△ADF 面积相等的三角形(不包括以AD为边的三角形).9.如图,四边形ABCD是平行四边形,∠BAC=90°,AB=AC,点H为边AB的中点,点E在CH的延长线上,且AE⊥BE.点F在线段AE上,且BF⊥CE,垂足为G.(1)若BF=AF,且EF=3,BE=4,求AD的长;(2)求证:BF+2EH=CE.10.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,则线段AE与DF的关系是;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(3)如图2,连接AC,当△ACE为等腰三角形时,请你求出CE:CD的值.参考答案1.(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠ABE=∠ADG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS);(2)解:如图①,过点F作FH⊥BC,交BC的延长线于点H,∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠ABE=90°,∴△EHF≌△ABE(SAS),∴FH=EB,EH=AB=BC,∴CH=BE,∴CH=FH,∴∠FCH=45°,∴∠FCD=45°;(3)解:过点F作FH⊥BC,交BC的延长线于点H,如图②,由(2)知△EHF≌△ABE,∴EH=AB,FH=BE,∵AB=BC=4,CE=2,∴BE=FH=6,CH=CE+EH=6,∴CF==6.故答案为:6.2.解:(1)①∵E为CD的中点,∴DE=1,∵动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,∴当x=1时,AQ=1,∴S△AQE=×AQ×AD=×1×2=1,②∵AQ=,∴点Q在AB上,∴S△AQE=×AQ×AD=;故答案为:①1;②.(2)根据题意,得,解得:.∴x的取值范围是.(3)①当点Q在AB上,∵S△AQE=×x×2=,∴x=,②当点Q在BC上时,∵S△AQE=S梯形ABCE﹣S△ABQ﹣S△CQE=×2×(x﹣2)﹣×1×(4﹣x)=.∴x=,③当点Q在CD上时,∵S△AQE=,∴x=.综合以上可得x=或或.3.证明:(1)∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)△BDG是等边三角形,理由如下:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°,由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=10,AD=24,∴BD===26,∴DM=BD=13.4.解:(1)如图1中,过点E作EN⊥AB于N,过点B作BM⊥EA′于M.由翻折可知,∠ABF=∠FEA′=90°,FB=FE,∴∠FBE=∠FEB,∴∠EBN=∠BEM,∵∠ENB=∠BME=90°,BE=EB,∴△ENB≌△BME(AAS),∴EN=BM,∵四边形ABCD是正方形,∴∠NBC=∠C=∠A=∠ENB=90°,AB=BC,∴AB=BM=BC,∵BH=BH,BE=BE,∴Rt△BAH≌Rt△BMH(HL),Rt△BME≌Rt△BCE,∴∠ABH=∠MBH,∠EBM=∠EBC,∴∠HBE=∠MBH+∠EBM=∠ABC=45°.(2)结论:△BOE是等腰直角三角形.理由:如图2中,由翻折的旋转可知,FG垂直平分线段BE,∴∠OBE=∠OEB=45°,∴OB=OE,∠BOE=90°,∴△BOE是等腰直角三角形.(3)如图3中,过点O作OM⊥EQ于M,ON⊥AB于N,过点G作GJ⊥BC于J.∵∠A=∠ABJ=∠BJG=90°,∴四边形ABJG是矩形,∴AG=BJ=2,AB=GJ=BC,∵FG⊥BE,∴∠EBC+∠BFG=90°,∠BFG+∠JGF=90°,∴∠CBE=∠JGF,∵∠C=∠GJF=90°,BC=GJ,∴△GJF≌△BCE(AAS),∴FJ=CE=3,∴BF=EF=5,CF==4,∴BC=BF+CF=9,∴BE===3,∴OB=OE=3,∵EQ⊥AB,∴∠ONB=∠OME=∠OMQ=∠MQN=90°,∴四边形MQNO是矩形,∴∠MON=∠BOE=90°,∴∠BON=∠EOM,∴△ONB≌△OME(AAS),∴ON=OM,∴四边形MQNO是正方形,设OM=OM=NQ=MQ=x,∵∠C=∠CBQ=∠BQE=90°,∴四边形BCEQ是矩形,∴BQ=EC=3,EQ=BC=9,在Rt△BON中,则有x2+(x+3)2=(3)2,解得x=3或﹣6(舍弃),∴OM=QM=3,EM=BN=6,∵∠BQR=∠OMR=90°,∠BRQ=∠ORM,BQ=OM=3,∴△BQR≌△OMR(AAS),∴QR=MR=∴S△OQR=•QR•OM=××3=.5.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=GE=2,∴BG=4,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=AD cos∠A=4×=2,∴BD===2.6.解:(1)∵正方形ABCD的面积是8,∴BC=CD==2,∴BD=×2=4.∵四边形ABCD为正方形,∴∠DCO=∠BCO=∠CDO=∠MBN=45°,∵CM平分∠ACD,∴∠DCM=∠MCO=22.5°,∴∠BMC=∠CDO+∠DCM=45°+22.5°=67.5°.∵MN⊥CM,∴∠CMN=90°,∴∠BMN=90°﹣67.5°=22.5°,∴∠BMN的度数为22..5°.(2)∵∠MCO=22.5°,∠BCO=45°,∴∠BCM=∠BCO+∠MCO=67.5°,又∵∠BMC=67.5°,∴∠BCM=∠BMC,∴BM=BC=CD=2,∴DM=BD﹣BM=4﹣2.∵∠DCM=22.5°,∠BMN=22.5°,∴∠DCM=∠BMN.∴在△DCM和△BMN中,,∴△DCM≌△BMN(ASA),∴BN=DM=4﹣2,∴BN的长为4﹣2.7.解:(1)∵点D坐标是(,6),B点的坐标是(4,6),四边形OABC为矩形,∴BC=AO=4,OC=AB=6,CD=,BD=BC﹣CD=,∵将矩形沿直线DE折叠,∴DF=CD=,∴BF===2,∴AF=6﹣2=4,∴点F(4,4).(2)如图2中,连接PF交DE于J.当四边形EFDP是矩形时,△PDE≌△FED≌△CED,∵C(0,6),F(4,4),∴直线CF的解析式为y=﹣x+6,∵DE垂直平分线段CF,∴直线DE的解析式为y=2x+1,∴E(0,1),D(,6),∵DJ=JE,∴J(,),∵PJ=JF,∴P(﹣,3).(3)如图3中,连接FN,以FN为对角线构造正方形NMFM′,连接MM′交FN于K.设N(m,2m+1),则K(,),M(,),M′(,),当点M落在x轴上时,=0,解得m=﹣,当点M′落在X轴上时,=0,解得m=﹣9,∴满足条件的点N的坐标为(﹣,)或(﹣9,﹣17).8.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EDC=∠EFA,∵∠EBC=∠EFA,∴∠EBC=∠EDC,∵EC平分∠DEB,∴∠DCE=∠BCE,在△CED和△CEB中,,∴△CED≌△CEB(AAS),∴CD=CB,∵四边形ABCD为平行四边形,∴平行四边形ABCD为菱形;(2)解:与△ADF面积相等的三角形(不包括以AD为边的三角形)为△AOB、△BOC、△COD、△DFB;理由如下:∵四边形ABCD是平行四边形,∴OA=OB,OC=OD,∴△AOB的面积=△BOC的面积=△COD的面积=△ABD的面积,∵点F是AB的中点,∴△ADF的面积=△DFB的面积=△ABD的面积,∴△AOB的面积=△BOC的面积=△COD的面积=△DFB的面积=△ADF的面积.9.解:(1)∵AE⊥BE.EF=3,BE=4,∴BF=,∵BF=AF,∴AF=5,∴AE=3+5=8,∴AB,∵∠BAC=90°,AB=AC,∴BC=,∵四边形ABCD是平行四边形,∴AD=BC=4;(2)在CH上截取HM=HE,连接BM和AM,如图,∵BE⊥AE,∴∠AEB=90°,∵点H为边AB的中点,∴EH=AH=BH=MH,∴四边形AEBM是矩形,∴∠EAM=90°,∵∠BAC=90°,∴∠BAF=∠CAM,∵BF⊥CE,∴∠EGB=90°,∴∠EBG+∠BEG=90°,∵∠EBG+∠BFE=90°,∴∠BEG=∠BFE,∵矩形AEBM中,BE∥AM,∴∠BEG=∠AMH,∴∠BFE=∠AMH,∴∠AFB=∠AMC,∵AB=AC,∴△ABF≌△ACM(AAS),∴BF=CM,∵CM+EM=CE,EM=EH+MH=2EH,∴BF+2EH=CE.10.解:(1)结论:AE=DF,AE⊥DF,理由:如图1中,∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°﹣90°=90°,∴AE⊥DF;故答案为:AE=DF,AE⊥DF.(2)成立.理由如下:如图2中,∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°,∴AE⊥DF.(3)有两种情况:①如图3﹣1中,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得:AC=CE==a,则CE:CD=a:a=.②如图3﹣2中,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:AC=AE==a,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2,即CE:CD=或2.。
中考数学专题复习六四边形一、教学目标二、知识点归纳考点一:多边形有关概念1. n边形的内角和为.外角和为.2.如果一个多边形的边数增加一条,则这个多边形的内角和增加,外角和增加.3.n边形过每一个顶点的对角线有条,n边形的对角线有条.4.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个____________时,就拼成一个平面图形. 只用一种正多边形铺满地面,你能写出多少个这样的正多边形.例1、多边形基础题(1)、若一凸多边形的内角和等于它的外角和,则它的边数是 .(2)、内角和为1440°的多边形是.(3)、一个正多边形的每一个外角都等于72°,则这个多边形的边数是 .(4)、若多边形的边数增加2,则该多边形的内角和增加。
(5)、若一个多边形的每个内角都为钝角,则边数最少是。
(6)、四边形四个内角之比1:2:3:4,则这四个角中最小的一个为度。
(7)、某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有种.(8)、已知多边形的内角和为其外角和的5倍,求这个多边形的边数.(9)、请你用正三角形、正方形、正六边形三种图形设计一个能铺满整个地面的美丽图案.例2、在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.例3、写出从正三角形到正八边形的各个内角的度数.正三角形正四边形正五边形正六边形正七边形正八边形例4、求下图中x的值.例5、一个多边形少一个内角的度数和为2300°.(1)求它的边数;(2)求少的那个内角的度数.考点二:平行四边形及特殊平行四边形1、平行四边形的性质(1)平行四边形对边______,对角______;角平分线___ ___;邻角______.(2)平行四边形两个邻角的平分线互相______,两个对角的平分线互相______.(填“平行”或“垂直”)2.平行四边形的判定(1)定义法:________________________.(2)边:________________________或_______________________.(3)角:________________ ________.(4)对角线:_______ _________________.3. 特殊的平行四边形的判别条件ABCD成为矩形,需增加的条件是_______ _____ ;要使 ABCD成为菱形,需增加的条件是_______ _____ ;要使矩形ABCD成为正方形,需增加的条件是______ ____ ;要使菱形ABCD成为正方形,需增加的条件是______ ___ _ .4. 特殊的平行四边形的性质边角对角线矩形菱形正方形例1、平行四边形基础题(1)、在四边形ABCD中,给出下列条件:①AB∥CD,②AD=BC,③∠A=∠C,④AD∥BC.能判断四边形是平行四边形的组合是(2)下面给出四边形ABCD中∠A、∠B、∠C、∠D的度数之比,其中能判别四边形ABCD是平行四边形的是() A.l:2:3:4 B.2:3:2:3 C.2:3:3:2 D.1:2:2:3(3)、以不在同一直线上的三点作平行四边形的三个顶点,则可作出平行四边形()A.1个 B.2个 C.3个 D.4个(4)、如图,□ABCD中,对角线AC和 BD相交于点O,如果AC=12,BD=10,AB=m,则m的取值范围是() A.1<m<11;B.2<m<22;C.10<m<12;D.5<m<6(5)、平行四边形一组对角的平分线()A.在同一条直线上;B.平行;C.相交; D.平行或在同一直线上(6)、已知□ABCD的周长为30㎝,AB:BC=2:3,则AB=___________㎝.(7)、顺次连结梯形四边中点,所成的四边形是()A.梯形 B.矩形 C.平行四边形 D.菱形例2、特殊平行四边形基础题(1)、下列四个命题中,假命题是()A.两条对角线互相平分且相等的四边形是正方形 B.菱形的一条对角线平分一组对角C.顺次连结四边形各边中点所得的四边形是平行四边形 D.等腰梯形的两条对角线相等(2)、正方形具有而矩形不一定具有的性质是()A.四个角都是直角;B.对角线相等;C.对角线互相平分;D.对角线互相垂直(3)、正方形的对角线长为a,则它的对角线的交点到各边的距离为。
中考数学专题复习:四边形综合1.如图,四边形ABCD中,AD∥BC,∠A=∠D=90°,点E是AD的中点,连接BE,将△ABE沿BE折叠后得到△GBE,且点G在四边形ABCD内部,延长BG交DC于点F,连接EF.(1)求证:△EGF≌△EDF;(2)求证:BG=CD;(3)若点F是CD的中点,BC=8,求CD的长.2.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE 交AD延长线于点F.(1)求证:四边形AECF为矩形;(2)连接OE,若AE=4,AD=5,求tan∠OEC的值.3.在矩形ABCD中,AB=3,BC=4,E、F是对角线AC上的两个动点,分别从A、C同时出发相向而行,速度均为每秒1个单位长度,运动时间为t秒,其中0≤t≤5.(1)若G,H分别是AB,DC中点,则四边形EGFH是______________(E、F相遇时除外,写出图形名称);(2)在(1)条件下,若四边形EGFH为矩形,求t的值;(3)若G,H分别是折线A﹣B﹣C,C﹣D﹣A上的动点,与E,F相同的速度同时出发,若四边形EGFH为菱形,求t的值.4.如图,已知正方形ABCD,AB=8,点M为射线DC上的动点,射线AM交BD于E,交射线BC于F,过点C作CQ⊥CE,交AF于点Q.(1)当BE=2DE时,求DM的长.(2)当M在线段CD上时,若CQ=3,求MF的长.(3)①当DM=2CM时,作点D关于AM的对称点N,求tan∠NAB的值.②若BE=4DE,直接写出△CQE与△CMF的面积比_________________.5.阅读材料:平面直角坐标系中点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的折线距离,记为[P],即[P]=|x|+|y|,其中的“+”是四则运算中的加法,例如点P(1,2)的折线距离[P]=|1|+|2|=3.【解决问题】(1)已知点A(﹣2,4),B(+,﹣),直接写出A、B的折线距离[A],[B];(2)若点M满足[M]=2,①当点M在x轴的上方时,且横坐标为整数,求点M的坐标;②正方形EFGH的两个顶点坐标分别为E(t,0),F(t﹣1,0),当正方形EFGH上存在点M时,直接写出t的取值范围.6.如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC,BD的交点,连接CE,DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,且∠OMD =75°,求CE的长;(3)在(2)的条件下,把正方形OEFG绕点O旋转,直接写出点B到点F的最短距离.7.如图,在Rt△ABC中,∠C=90°,AC=10,∠A=60°.点P从点B出发沿BA方向以每秒2个单位长度的速度向点A匀速运动,同时点Q从点A出发沿AC方向以每秒1个单位长度的速度向点C匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点P、Q运动的时间是t秒.过点P作PM⊥BC于点M,连接PQ、QM.(1)请用含有t的式子填空:AQ=,AP=,PM=;(2)是否存在某一时刻使四边形AQMP为菱形?如果存在,求出相应的t值;如果不存在,说明理由;(3)当t为何值时,△PQM为直角三角形?请说明理由.8.【基础巩固】(1)如图1,在△ABC 中,M 是AB 的中点,过B 作BD ∥AC ,交CM 的延长线于点D .求证:AC =BD ;【尝试应用】(2)在(1)的情况下,在线段CM 上取点E (如图2),已知BE =AC =,CE =2,EM =4,求tan D ;【拓展提高】(3)如图3,菱形ABCD 中,点P 在对角线AC 上,且CP =2AP ,点E 为线段DP 上一点,BE =BC .若PE =2,PD =3,求菱形ABCD 的边长.9.如下图所示,解答问题.例1:求证:三角形的一条中位线与第三边上的中线互相平分. 已知:如图,在△ABC 中,AD =DB ,BE =EC ,AF =FC . 求证:AE 、DF 互相平分. 证明:连接DE 、EF .请写出完整的解题过程.【拓展】如图②,设图①中的AE 与DF 的交点为G ,连接CD ,分别交AE 、EF 于点H 、K . (1)=__________.(2)若四边形FGHK 的面积为3,则四边形ADEF 的面积为__________.10.如图1,四边形ABCD是矩形,点P是对角线AC上的一个动点(不与A、C重合),过点P作PE⊥CD于点E,连接PB,已知AD=3,AB=4,设AP=m.(1)当m=1时,求PE的长;(2)连接BE,试问点P在运动的过程中,能否使得△PAB≌△PEB?请说明理由;(3)如图2,过点P作PF⊥PB交CD边于点F,设CF=n,试判断5m+4n的值是否发生变化,若不变,请求出它的值;若变化,请说明理由.11.如图1,在矩形ABCD中,点E是边CD的中点,点F在边AD上,EF⊥BD,垂足为G.(1)如图2,当矩形ABCD为正方形时,求的值;(2)如果=,AF=x,AB=y,求y与x的函数关系式,并写出函数定义域;(3)如果AB=4cm,以点A为圆心,3cm长为半径的⊙A与以点B为圆心的⊙B外切.以点F为圆心的⊙F与⊙A、⊙B都内切.求的值.12.如图1,正方形ABCD和正方形AEFG,连接DG,BE.(1)[发现]:当正方形AEFG绕点A旋转,如图2,线段DG与BE之间的数量关系是_______;位置关系是__________;(2)[探究]:如图3,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE,猜想DG与BE的数量关系与位置关系,并说明理由;(3)[应用]:在(2)情况下,连接GE(点E在AB上方),若GE∥AB,且AB=,AE=1,求线段DG的长.13.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E.(1)如图,当α=60°时,连接BD、BE,并延长BE交AD于点F,则BE=__________;(2)当α=90°时,请画出图形并求出BE的长;(3)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE.当∠DAG =∠ACB,且线段DG与线段AE无公共点时,请猜想四边形AEBC的形状并说明理由.14.(1)如图1,正方形ABCD和正方形DEFG(其中AB>DE),连接CE,AG交于点H,请直接写出线段AG与CE的数量关系__________,位置关系__________;(2)如图2,矩形ABCD和矩形DEFG,AD=2DG,AB=2DE,AD=DE,将矩形DEFG 绕点D逆时针旋转α(0°<α<360°),连接AG,CE交于点H,(1)中线段关系还成立吗?若成立,请写出理由;若不成立,请写出线段AG,CE的数量关系和位置关系,并说明理由;(3)矩形ABCD和矩形DEFG,AD=2DG=6,AB=2DE=8,将矩形DEFG绕点D逆时针旋转α(0°<α<360°),直线AG,CE交于点H,当点E与点H重合时,请直接写出线段AE的长.15.定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.(1)如图①,四边形ABCD与四边形AEEG都是正方形,135°<∠AEB<180°,求证:四边形BEGD是“等垂四边形”;(2)如图②,四边形ABCD是“等垂四边形”,AD≠BC,连接BD,点E,F,G分别是AD,BC,BD的中点,连接EG,FG,EF.试判定△EFG的形状,并证明;(3)如图③,四边形ABCD是“等垂四边形”,AD=4,BC=6,试求边AB长的最小值.参考答案1.(1)证明:∵将△ABE沿BE折叠后得到△GBE,∴△ABE≌△GBE,∴∠BGE=∠A,AE=GE,∵∠A=∠D=90°,∴∠EGF=∠D=90°,∵EA=ED,∴EG=ED,在Rt△EGF和Rt△EDF中,,∴Rt△EGF≌Rt△EDF(HL);(2)证明:由折叠性质可得,AB=BG,∵AD∥BC,∠A=∠D=90°,∴四边形ABCD是矩形,∴AB=CD,∴BG=DC.(3)解:由折叠可知AB=GB,由(1)知Rt△EGF≌Rt△EDF,∴GF=DF,又∵∠C=90°,AB=CD,FD=CF,∴GB=2GF,BF+GF=3GF,∵BF2=BC2+CF2,∴(3GF)2=64+GF2,∴GF=2,∴CD=2GF=4.2.(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∵CF∥AE,∴四边形AECF是平行四边形,∵AE⊥BC,∴四边形AECF是矩形;(2)连接OE,∵在菱形ABCD中,AD=AB=BC=5,AO=CO,∴∠OEC=∠OCE,由(1)知,四边形AECF为矩形;∴∠AEC=90°,∵AE=4,∴BE==3,∴CE=3+5=8,∴tan∠OEC=tan∠ACE===.3.解:(1)∵矩形ABCD,∴AB∥CD,AB=CD,∴∠GAE=∠HCF,∵G,H分别是AB,DC中点,∴AG=CH,∵E、F分别从A、C同时出发相向而行,速度均为每秒1个单位长度,∴AE=CF,∴△AGE≌△CHF(SAS),∴GE=FH,∠AEG=∠CFH,∴∠GEF=∠EFH,∴GE∥FH,∴四边形EGFH是平行四边形,故答案为:平行四边形;(2)连接GH,如图:∵矩形ABCD,G,H分别是AB,DC中点,∴四边形GBCH是矩形,∵矩形ABCD中,AB=3,BC=4,∴GH=BC=4,AC==5,由①知四边形EGFH是平行四边形,当EF=GH=4时,四边形EGFH是矩形,∴5﹣2t=4,解得t=,∴四边形EGFH为矩形,则t=;(3)∵E、F分别从A、C同时出发相向而行,速度均为每秒1个单位长度,∴AE=CF,∴四边形EGFH的对角线EF的中点即是AC中点,若四边形EGFH为菱形,则对角线垂直,且GH必经过AC中点,过AC的中点O作GH⊥AC交BC于G,交AD于H,如图:∵AB+GB=AE=CF=CD+DH=t,∴CG=AH,而由矩形ABCD可得AD∥BC,∴∠FAH=∠ECG,∵AE=CF,∴AF=CE,∴△AHF≌△CGE(SAS),∴GE=FH,∠AFH=∠CEG,∴∠HFE=∠FEG,∴GE∥FH,∴四边形EGFH为平行四边形,又GH⊥AC,∴四边形EGFH为菱形,此时,以B为原点,BC所在直线为x轴,建直角坐标系,则A(0,3),C(4,0),∴直线AC解析式为y=﹣x+3,线段AC的中点O(2,),∵GH⊥AC,且GH过O(2,),∴GH解析式为y=x﹣,令y=0得x=,∴G(,0),∴AB+BG=,∴t=.4.解:(1)∵四边形ABCD是正方形,∴AB∥CD,∴△ABE∽△MDE,∴=,∵BE=2DE,AB=8,∴==2,∴DM=AB=4;(2)∵四边形ABCD是正方形,∴AD=CD=AB=8,∠ADC=∠BCD=90°,∠ADE=∠CDE=45°,AD∥BC,∴∠EAD=∠F,又∵DE=DE,∴△ADE≌△CDE(SAS),∴∠EAD=∠ECM,∵CQ⊥CE,∴∠ECQ=90°=∠BCD,∴∠ECM=∠QCF,∴∠F=∠QCF,∴CQ=FQ,又∵∠F+∠CMQ=∠QCF+∠MCQ=90°,∴∠CMQ=∠MCQ,∴CQ=MQ,∴CQ=MQ=FQ=MF=3,∴MF=6;(3)①a、当点N在正方形内部时,延长AN交BC于点G,如图1所示:∵DM=2CM,CD=8,∴CM=CD=,∵四边形ABCD是正方形,∴BC=AB=8,AB∥CD,AD∥BC,∴∠DAF=∠F,△MCF∽△ABF,∴==,∴CF=BF,∴CF=AB=4,∴BF=AB+CF=12,由对称的性质得:∠GAF=∠DAF,∴∠GAF=∠F,∴AG=FG,设BG=x,则AG=FG=12﹣x,在Rt△ABG中,由勾股定理得:AB2+BG2=AG2,即82+x2=(12﹣x)2,解得:x=,∴BG=,∴tan∠NAB===;b、当点N在正方形外部时,连接AN、MN,延长AB交MN于点G,如图2所示:由得出的性质得:∠N=∠ADC=90°,AN=AD=8,∠AMN=∠AMD,同上得:∠BAM=∠AMD=∠NMA,∴AG=MG,设NG=x,则AG=MG=16﹣x,在Rt△ANG中,由勾股定理得:AN2+NG2=AG2,即82+x2=(16﹣x)2,解得:x=6,∴NG=6,∴tan∠NAB===;综上所述,tan∠NAB的值为或;②过E作EP⊥CD于P,如图3所示:则EP∥BC,∴△DEP∽△DBC,∴==,∵BE=4DE,∴BD=5DE,∴===,∴DP=EP=BC=,∵AB∥CD,∴△MDE∽△ABE,∴===,∴DM=AB=2,=,∴CM=CD﹣DM=8﹣2=6,AM===2,∴EM=AM=,∵AB∥CD,∴△MCF∽△ABF,∴===,∴MF=3AM=6,同(2)得:CQ=MQ=FQ=MF=3,∴EQ=EM+MQ=+3=,∴△CQE与△CMF的面积比===,故答案为:.5.解:(1)∵点A(﹣2,4),B(+,﹣),∴[A]=|﹣2|+|4|=2+4=6,[B]=|+|+|﹣|=++﹣=2;(2)①∵点M在x轴的上方,其横坐标为整数,且[M]=2,∴x=±1时,y=1或x=0时,y=2,∴点M的坐标为(﹣1,1)或(1,1)或(0,2);②∵正方形EFGH的两个顶点坐标分别为E(t,0),F(t﹣1,0),∴EF=1,若M(﹣1,1)在正方形EFGH上时,∴t﹣1≤﹣1≤t,∴﹣1≤t≤0,若M(1,1)在正方形EFGH上时,∴t﹣1≤1≤t,∴1≤t≤2,若M(2,0)在正方形EFGH上时,∴t﹣1≤2≤t,∴2≤t≤3,若M(﹣2,0)在正方形EFGH上时,∴t﹣1≤﹣2≤t,∴﹣2≤t≤﹣1,综上所述:t的取值范围为﹣2≤t≤0或1≤t≤3.6.解:(1)∵正方形ABCD与正方形OEFG,对角线为AC、BD,∴DO=OC,∵DB⊥AC,∴∠DOA=∠DOC=90°,∵∠GOE=90°,∴∠GOD+∠DOE=∠DOE+∠COE=90°,∴∠GOD=∠COE,∵GO=OE,∴在△DOG和△COE中,DO=CO,∠GOD=∠COE,GD=OE,∴△DOG≌△COE(SAS);(2)∵四边形ABCD为正方形,故∠ODM=45°,故OD=,∵∠OMD=75°,∴∠DOG=60°,∵DG⊥BD,故∠ODG=90°,∴∠OGD=30°,∴OG=2OD=2,∴DG===,∵△DOG≌△COE(SAS),∴CE=DG=;(3)正方形OEFG绕点O旋转,当点O、B、F共线且点B在OF之间时,点B到点F 的距离最短,由(2)知,在正方形OEFG中,OG=2,则OF=OG=4,而OB=OD=,故OF﹣OB=4﹣.故B到点F的最短距离为4﹣.7.解:(1)∵点Q从点A出发沿AC方向以每秒1个单位长度的速度向点C匀速运动,∴AQ=t,∵∠C=90°,AC=10,∠A=60°,∴∠B=30°,∴AB=2AC=20,∴AP=AB﹣BP=20﹣2t,∵PM⊥BC,∴∠PMB=90°,∴PM==t.故答案为:t,20﹣2t,t;(2)存在,理由如下:由(1)知:AQ=PM,∵AC⊥BC,PM⊥BC,∴AQ∥PM,∴四边形AQMP是平行四边形,当AP=AQ时,平行四边形AQMP是菱形,即20﹣2t=t,解得t=,则存在t=,使得平行四边形AQMP成为菱形.(3)当△PQM为直角三角形时,有三种可能:①当∠MPQ=90°时,此时四边形CMPQ为矩形,在Rt△PAQ中,∠A=60°,∴∠APQ=90°﹣∠A=30°,∴AP=2AQ,即20﹣2t=2t,解得:t=5;②当∠MQP=90°时,由(2)知MQ∥AP,∴∠APQ=∠MQP=90°,∵∠A=60°,∴∠AQP=90°﹣∠A=30°,∴AQ=2AP,即t=2(20﹣2t),解得:t=8.③当∠PMQ=90°时,此种情况不存在.综上所述:当t为5或8时,△PQM为直角三角形.8.解:(1)∵M是AB的中点,则AM=BM,∵BD∥AC,∴∠ABD=∠A,∵∠AMC=∠BMD,∴△AMC≌△BMD(AAS),∴AC=BD;(2)过点B作BH⊥CD于点H,由(1)得,CM=DM=CE+EM=6,∴BE=AC=BD=,则EH=HD=5,在Rt△BDH中,BH===3,∴tan D=;(3)连接CE,延长DP交CB的延长线于点F,交AB于点G,∵AG∥CD,∴△CPD∽△APG,∴,即AG=CD=AB,即点G是AB的中点,由(1)知,△AGD≌△BGF(AAS),∴AD=BF,PD=2PG=1+2=3,GD=GF,∴BE=BF=BC,∴∠CEF=90°,设菱形ABCD的边长为x,在Rt△DEC中,CE2=CD2﹣ED2=x2﹣1,∵PD=2PG=1+2=3,则PG=1.5,则DG=PD+PG=4.5,则DF=2DG=9,∴EF=PD﹣DE=9﹣1=8,在Rt△CEF中,CE2=CF2﹣EF2,即x2﹣1=4x2﹣82,解得x=(负值已舍去),故菱形ABCD的边长为:.9.证明:连接DE、EF,则DE是△ABC的中位线,故DE∥AC,且DE=AC=AF,故四边形DAFE为平行四边形,∴AE、DF互相平分;【拓展】(1)解:同理可得,四边形DFCE为平行四边形,则KD=KC,DF=EC=BE,∵DG=BE,FG=EC,∴DG=FG=EC,∵DF∥BC,∴△DHG∽△CHE,∴=,即DH=HC,设DH=x,则HC=2x,CD=DH+HC=3x,则CK=CD=x,故=,故答案为;(2)解:设△HKE的面积为a,∵DH=x,HK=x,则△DHE的面积为2a,∵G是DF的中点,+S△EHK,∴S△DHE+S△DHG=S四边形GFKH即2a+S△DHG=3+a,故S△DHG=3﹣a,∵K是平行四边形DFCE的对角线的交点,故K是EF的中点,+S△DGH,同理S△DHE+S△EHK=S四边形GFKH即3a=6﹣a,解得a=,故S△EFG=a+3=,∵四边形ADEF为平行四边形,故四边形ADEF的面积=4S△EFG=18,故答案为18.10.解:(1)连接BE,由已知:在Rt△ADC中,AC=,当AP=m=1时,PC=AC﹣AP=5﹣1=4,∵PE⊥CD,∴∠PEC=∠ADC=90°,∵∠ACD=∠PCE,∴△ACD∽△PCE,∴,即,∴PE=;(2)如图1,当△PAB≌△PEB时,∴PA=PE,∵AP=m,则PC=5﹣m,由(1)得:△ACD∽△PCE,∴,∴PE=,由PA=PE,即,解得:m=,∴EC=,∴BE=,∴△PAB与△PEB不全等,∴不能使得△PAB≌△PEB;(3)如图2,延长EP交AB于G,∵BP⊥PF,∴∠BPF=90°,∴∠EPF+∠BPG=90°,∵EG⊥AB,∴∠PGB=90°,∴∠BPG+∠PBG=90°,∴∠PBG=∠EPF,∵∠PEF=∠PGB=90°,∴△BPG∽△PFE,∴,由(1)得:△PCE∽△ACD,PE=,∴,即,∴EC=,∴BG=EC=,∴,∴5m+4n=16.11.解:(1)如图,延长FE交BC的延长线于点M,设正方形ABCD的边长为k,则AB=BC=CD=AD=k,∵E为CD中点,∴DE=CE=,∵正方形ABCD中,∠ADC=90°,∠BDC=∠ADC,∴∠BDC=45°,∵EF⊥BD,∴∠DEF=45°,∴∠DFE=45°,∴DF=DE=k,∵正方形ABCD中,AD∥BC,∴,∴,∵AD∥BC,∴;(2)如图,延长FE交BC的延长线于M,设DF=a,则CM=a,∵,,∴BM=5a,BC=4a,∴AF=x=3a,∴a=,∴DF=,∵AB=y,∴DE=,∵∠ADC=90°,EF⊥BD,∴∠ADB=∠DEF,∴tan∠ADB=tan∠DEF,∴,∴,∴,∵x>0,y>0,∴y与x的函数关系式为,函数定义域为:x>0;(3)设⊙F的半径为rcm,则根据题意得:⊙B的半径为1cm,AF=cm,BF=cm,∵矩形ABCD中,∠A=90°,∴AF2+AB2=BF2,∴(r﹣3)2+42=(r﹣1)2,∴r=6,即⊙F的半径为6cm,∴AF=3cm,∵tan∠ADB=tan∠DEF,∴,∴AD2﹣3AD﹣8=0,∴或(舍去),∴=.12.解:(1)DG=BE,DG⊥BE,理由如下:∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∴△ABE≌△ADG(SAS),∴BE=DG;如图2,延长BE交AD于Q,交DG于H,∵△ABE≌△DAG,∴∠ABE=∠ADG,∵∠AQB+∠ABE=90°,∴∠AQB+∠ADG=90°,∵∠AQB=∠DQH,∴∠DQH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:DG=BE,DG⊥BE;(2)DG=2BE,BE⊥DG,理由如下:如图3,延长BE交AD于K,交DG于H,∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴==,∠ABE=∠ADG,∴DG=2BE,∵∠AKB+∠ABE=90°,∴∠AKB+∠ADG=90°,∵∠AKB=∠DKH,∴∠DKH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图4,(为了说明点B,E,F在同一条线上,特意画的图形)设EG与AD的交点为M,∵EG∥AB,∴∠DME=∠DAB=90°,在Rt△AEG中,AE=1,∴AG=2AE=2,根据勾股定理得:EG==,∵AB=,∴EG=AB,∵EG∥AB,∴四边形ABEG是平行四边形,∴AG∥BE,∵AG∥EF,∴点B,E,F在同一条直线上,如图5,∴∠AEB=90°,在Rt△ABE中,根据勾股定理得,BE===2,由(2)知,△ABE∽△ADG,∴==,即=,∴DG=4.13.解:(1)∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°.∴△ABD是等边三角形,∴AB=BD.∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE.又∵AC=BC,∴EA=ED.∴点B、E在AD的中垂线上.∴BE是AD的中垂线.∵点F在BE的延长线上,∴BF⊥AD,AF=DF;∴AF=DF=3,∵AE=AC=5,∴EF===4,在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4,故答案为:3﹣4;(2)依据题意画图如图1,过点E作EG⊥AB于点G,过点C作CH⊥AB于点H,∵CA=CB,CH⊥AB,∴AH=AB=6=3,在Rt△ACH中,∵AC=5,AH=3,∴CH===4,∵∠CAE=90°,∴∠CAH+∠EAG=90°,∵CH⊥AB,∴∠CAH+∠ACH=90°,∴∠EAG=∠ACH,∵△ABC围绕点A顺时针方向旋转得到△ADE,∴AC=AE,∵EG⊥AB,CH⊥AB,∴∠EGA=∠AHC=90°,在△AHC和△EGA中,,∴△AHC≌△EGA(AAS),∴GA=CH=4,EG=AH=3,∴BG=AB﹣AG=6﹣4=2,∵BG=2,EG=3,则BE===;(3)如图2所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB,∵CH=HE,AH=BH,∴四边形AEBC为平行四边形,∵AC=BC,∴四边形AEBC为菱形.14.解:(1)如图1,在正方形ABCD和正方形DEFG中,∠ADC=∠EDG=90°,∴∠ADE+∠EDG=∠ADC+∠ADE,即∠ADG=∠CDE,∵DG=DE,DA=DC,∴△GDA≌△EDC(SAS),∴AG=CE,∠GAD=∠ECD,∵∠COD=∠AOH,∴∠AHO=∠CDO=90°,∴AG⊥CE,故答案为:相等,垂直;(2)不成立,CE=2AG,AG⊥CE,理由如下:如图2,由(1)知,∠EDC=∠ADG,∵AD=2DG,AB=2DE,AD=DE,∴,==,∴=,∴△GDA∽△EDC,∴=,即CE=2AG,∵△GDA∽△EDC,∴∠ECD=∠GAD,∵∠COD=∠AOH,∴∠AHO=∠CDO=90°,∴AG⊥CE;(3)①当点E在线段AG上时,如图3,在Rt△EGD中,DG=3,ED=4,则EG=5,过点D作DP⊥AG于点P,∵∠DPG=∠EDG=90°,∠DGP=∠EGD,∴△DGP∽△EGD,∴=,即,∴PD=,PG=,则AP===,则AE=AG﹣GE=AP+GP﹣GE=+﹣5=;②当点G在线段AE上时,如图4,过点D作DP⊥AG于点P,∵∠DPG=∠EDG=90°,∠DGP=∠EGD,同理得:PD=,AP=,由勾股定理得:PE==,则AE=AP+PE=+=;综上,AE的长为.15.解:(1)如图①,延长BE,DG交于点H,∵四边形ABCD与四边形AEFG都为正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°.∴∠BAE=∠DAG.∴△ABE≌△ADG(SAS).∴BE=DG,∠ABE=∠ADG.∵∠ABD+∠ADB=90°,∴∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即∠EBD+∠BDG=90°,∴∠BHD=90°.∴BE⊥DG.又∵BE=DG,∴四边形BEGD是“等垂四边形”.(2)△EFG是等腰直角三角形.理由如下:如图②,延长BA,CD交于点H,∵四边形ABCD是“等垂四边形”,AD≠BC,∴AB⊥CD,AB=CD,∴∠HBC+∠HCB=90°∵点E,F,G分别是AD,BC,BD的中点,∴,,EG∥AB,GF∥DC,∴∠BFG=∠C,∠EGD=∠HBD,EG=GF.∴∠EGF=∠EGD+∠FGD=∠ABD+∠DBC+∠GFB=∠ABD+∠DBC+∠C=∠HBC+∠HCB=90°.∴△EFG是等腰直角三角形.(3)延长BA,CD交于点H,分别取AD,BC的中点E,F.连接HE,EF,HF,则,由(2)可知.∴AB最小值为.。
四边形复习知识点回顾 【性质】【判定】⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎧⎨⎪⎩⎪⎪⎪⎪⎩两组对边分别平行的四边形边两组对边分别相等的四边形一组对边平行且相等的四边形平行四边形对角相等的四边形角邻角互补的四边形对角线对角线互相平分的四边形⎧⎪⎨⎪⎩平行四边形+一组邻边相等菱形平行四边形+对角线相等四边形+四条边相等⎧⎪⎨⎪⎩平行四边形+一个直角矩形平行四边形+对角线相等四边形+三个角是直角+⎧⎧⎪⎨⎩⎪⎪⎧⎪+⎨⎨⎪⎩⎪⎪⎪⎩一组邻边相等矩形+对角线互相垂直一个直角正方形菱形对角线相等平行四边形一个菱形特征+一个矩形特征四边形+对角线相等且互相垂直平方【平行四边形性质】1.如图1,平行四边形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC +BD =24厘米,△OAB 的周长是20厘米,则EF = 厘米.2.如图2,在平行四边形ABCD ,∠B =110°,延长AD 至F ,延长CD 至E ,连结EF ,则∠E +∠F 的度数为( ) A .110°B .30°C .50°D .70° 3.如图3,已知□ABCD 中,AB =3,AD =2,∠B =150°,则□ABCD 的面积为( ) A .2 B .3 C . D .6FEODCBAFEDCBA图1 图2 图34.如图4,在□ABCD 中,AC ⊥BD ,若AB =6,则BC =_____________.5.如图5,平行四边形ABCD 的对角线相交于点O ,且AB ≠AD ,过O 作OE ⊥BD 交BC 于点E .若△CDE 的周长为10,则平行四边形ABCD 的周长为 .图4 图5图66.如图6,在矩形ABCD 中,AB =3cm ,AD =9cm ,将此矩形折叠,使点B 与点D 重合,折痕为EF ,则AE = ,EF = .7.如图7,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4).点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是等腰三角形时,点P 的坐标为 .8.如图8,菱形ABCD 的对角线AC 、BD 交于点O ,且AC =16cm ,BD =12cm ,则菱形ABCD 的高DH 为______.9.如图9,在菱形ABCD 中,∠A =110°,E 、F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =______10.菱形的周长为16cm ,一条对角线长为4cm ,则菱形的面积是( )cm2. A .B .C .D .11.菱形ABCD 中,AB =4,高DE 垂直平分边AB ,则BD = ,AC =12.正方形ABCD 的边长为1cm ,以对角线AC 为一边作等边△ACE ,则BE 的长为 cm13.如图10,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP =EF ;②AP ⊥EF ;③△APD 一定是等腰三角形;④∠PFE =∠BAP ;⑤PD .其中正确的结论14.如图11,在正方形ABCD 中,M 是BC 上一点,连结AM ,作AM 的垂直平分线GH 交AB 于G ,交CD 于H ,若AM =10cm ,则GH =______15.如图12,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:①S 1+S 2=S 3+S 4;②S 2+S 4= S 1+ S 3;③若S 3=2S 1,则S 4=2S 2;④若S 1=S 2,则P 点在矩形的对角线上,其中正确的结论的序号是______________.P F EDCBA图10图11图12【平行四边形判定与证明】1.用两个全等的三角形按照不同的拼法,可以拼成平行四边形的个数是( ) A .1个 B .2个 C .3个 D .4个2.如图1,要使□ABCD 成为菱形,可添加一个条件: .(请填一个你认为正确的条件,不再添加其他辅助线)3.如图,在平行四边形ABCD 中,AC 与BD 交与E 点,不再添加辅助线,请你补充一个条件:当时,平行四边形ABCD 是矩形.A4.(6分)如图,四边形ABCD 是平行四边形,E ,F 是对角线AC 上的两点,∠1=∠2,求证;四边形EBFD 是平行四边形.21F E DCBA5.(6分)如图,M ,N 分别是平行四边形ABCD 的对边AD ,BC 的中点,且AD =2AB ,求证;四边形PMQN 为矩形.QM DCPN BA6.(8分)已知:如图,在□ABCD 中,AE 平分∠BAD ,与BC 相交于点E ,EF ∥AB ,与AD 相交于点F ,求证:四边形ABEF 是菱形.B7.如图,在□ABCD 中,E 、F 分别为AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1) 求证:AD =BG ;(2) 若四边形BEDF 是正方形,则四边形AGBD 是什么特殊四边形?并证明你的结论.A8.将矩形OABC置于平面直角系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E,随着m的变化,试探索;点E能否恰好在x轴上?若能,请求出m的值;若不能,请说明理由.9.如图,在四边形ABCD中,AB=AD,∠A=∠C=90°.(1)若CD=3,CB=5,求四边形ABCD的面积;(2)过点C作CE∥BD,交AD的延长线于E点,若BC+CD=a,△ABE的面积为9,求a的值.【综合提高】1.如图,矩形ABCD的两边AB=4,BC=3,P是AD上任一点,PE⊥AC于点E,PF⊥BD于点F。
中考数学第一轮总复习典例精讲考点聚集查漏补缺拓展提升第五单元 四边形专题5.2 特殊平行四边形知识点矩 形01菱 形02正 方 形03中点四边形04拓展训练05【例1-1】如图,在□ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF.求证:四边形ABFC是矩形.A EFD CB利用对角线相等的平行四边形是矩形证明方法一:利用△ABE≌△FCE证平行四边形;证法二:利用△ABE∽△FCE证平行四边形考点聚焦一个角为直角对角线相等平行四边形平行四边形直角证明四边形ABCD 是矩形的方法(三种)①先证明四边形ABCD为___________,再证明□ABCD的任意_____________;②先证明四边形ABCD为___________,再证明□ABCD的____________;【例1-2】如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为( ) A.1 B.1.5 C.2 D.4AHGECBD F C 考点聚焦对边平行且相等四角都是直角对角线互相平分且相等矩形的性质(1)边:________________;(2)角:________________;(3)对角线:______________________.1.已知□ABCD,下列条件中,不能判定这个平行四边形为矩形的是( ) A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC2.如图,矩形ABCD的对角线AC=10,P,Q分别为AO,AD的中点,则PQ=_____.3.如图,矩形ABCD中,AB=3,BC=4,则图中四个小矩形的周长之和为____.4.如图,矩形OCDE,矩形OFGH,矩形OMNP各有一边在半⊙O的直径AB上,D,G,N都在半⊙O上,比较EC,HF,MP的大小_________.B 2.514EC=HF=EP5.如图,在矩形ABCD中,AB=8,AD=4,E为CD边上一点,CE=5,点P从B点出发,以每秒1个单位的速度沿着BA边向终点A运动,设点P运动的时间为t秒,则当t=_______时,△PAE是以PE为腰的等腰三角形.6.如图,将矩形ABCD绕点B顺时针旋转,得到矩形EBFG,且点E落在CD上,过点C作FG的垂线,垂足为H,若FH=HG,则BC:AB的值为_______.7.如图,在Rt△ABC中,∠BAC=90º,BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小最为_____.M2.4知识点矩 形01菱 形02正 方 形03中点四边形04拓展训练05【例2-1】如图,在等腰△ABC中,AD平分顶角∠BAC,交底边BC于点H,点E在AD上,BE=BD,求证:四边形BDCE是菱形.考点聚焦证明四边形ABCD 是菱形的方法(三种)①先证明四边形ABCD为___________,再证明□ABCD的任意_____________;②先证明四边形ABCD为___________,再证明□ABCD的________________平行四边形一组邻边相等平行四边形对角线互相垂直四边相等AH E DCB利用“三线合一”得出AD 垂直平分BC,从而得出四边相等。
中考四边形专题
【知识要点】
一一般四边形 A
D 1.四边形的内角和与外角和定理:
(1)四边形的内角和等于360°;(2)四边形的外角和等于360°.
2.多边形的内角和与外角和定理:
B C (1)n 边形的内角和等于( n-2)180 °;(2)任意多边形的外角和等于360°.
3.若n 是多边形的边数,则对角线条数公式是:n (n
2
3)
.
A 4
二平行四边形的判定与性质
D 1. 平行四边形定义:两组对边分别平行的四边形叫做平行四边形。
3 2. 平行四边形是中心对称图形,对称中心是两条对角线的交点。
1 2 3.平行四边形的性质:
B C
(1
)两组对边分别平行;
(2)两组对边分别相等;
因为ABCD是平行四边形
(3
)两组对角分别相等;
D C
(4)对角线互相平分;
O
(5)邻角互补.
A B
4. 平行四边形的判定:
(1
)两组对边分别平行
D C
(2
)两组对边分别相等(3
)两组对角分别相等ABCD 是平行四边形
.
O
(4)一组对边平行且相等
A B
(5
)对角线互相平分
三矩形的判定与性质
1. 矩形定义1:有一个角是直角的平行四边形叫做矩形
2. 矩形定义2:有三个角是直角的四边形叫做矩形
3. 矩形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线。
4. 矩形的性质:
D C
(1)具有平行四边形的所;
有通性
因为ABCD是矩形
(2)四个角都是直角;
O
(3)对角线相等.
A
B
5. 矩形的判定:
D C (1
)平行四边形一个直角
(2)三个角都是直角四边形ABCD是矩形.
(3)对角线相等的平行四
边形
四菱形的判定与性质
A B
1. 菱形定义1:有一组邻边相等的平行四边形叫做菱形.
D
2. 菱形定义2:四条边都相等的四边形叫做菱形。
3. 菱形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,
对称轴是对角线所在的直线。
O 4.菱形的性质:
A C 因为ABCD是菱形
B
()具有平行四边形的所有通性;1
()四个边都相等;
2
(
3)对角线垂直且平分对角.
D
5.菱形的判定:
(1
)平行四边形(2
)四个边都相等一组邻边等
四边形四边形ABCD是菱形.
O
A C
(3)对角线垂直的平行四
边形
五正方形的判定与性质
B
1. 正方形定义1:有一组邻边相等的矩形叫做正方形。
2. 正方形定义2:有一个角是直角的菱形叫做正方形。
3. 正方形定义3:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
4. 正方形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线和对角线所在的直线。
5.正方形的性质:
因为ABCD是正方形
D C D C
(1)具有平行四边形的所
有通性;
O (2)四个边都相等,四个
角都是直角;
A B A B
(3)对角线相等垂直且平.
分对角
(1)(2)(3)6.正方形的判定:
(1
)平行四边形一组邻边等一个直角
D C
(2)菱形四边形ABCD是正方形.
一个直角
(3)矩形
一组邻边等
(3) ∵ABCD是矩形 A B
又∵AD=AB
∴四边形ABCD是正方形
【考点精析】
考点1. 一般多边形角度﹑对角线和面积的相关计算. :
例1.一个正多边形的每个外角都是36°,这个正多边形的边数是__________.
例2.一个边长为 2 的正多边形的内角和是其外角和的 2 倍,则这个正多边形的内切圆半径是
1
A.2 B. 3 C.1 D.
2
例3.一个多边形截取一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是()。
A.10 B.11 C.12 D.以上都有可能
例4.下列命题是假.命.题.的是
o.
A.三角形的内角和是180
o
B.多边形的外角和都等于360 .
o.
C.五边形的内角和是900
D.三角形的一个外角等于和它不相邻的两个内角的和.
考点2. 平行四边形的判定和性质
例5. 点A、B、C 是平面内不在同一条直线上的三点,点 D 是平面内任意一点,若A、B、C、D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点 D 有()
A.1 个B.2 个C.3 个D.4 个
例6. 如图2,E 是□ABCD的边AD 的中点,CE 与BA 的延长
线交于点F,若∠FCD =∠D,则下列结论不成立的是()
A、AD =CF
B、BF =CF
C、AF= C D
D、DE= E F
例7. 如图3,在□ABCD中,AE=EB,A F=2,则FC 等于_____.(图2)
D C
F
A E B
图3
例8. 如图5,在□ABCD 中,AC 平分∠DAB,AB = 3,
A C
则□ABCD 的周长为
A.6 B.9
B 图5
C.12 D.15
例9. 如图6,在□ABCD 中,点E、F 是对角线AC 上两点,且AE=CF.
求证:∠EBF =∠FDE.
A D
E
O
F
B C
图6
例10. 如图8,分别以RtΔABC 的直角边AC 及斜边AB 向外作等边ΔACD、等边ΔABE.已知∠BAC =0
30 ,EF⊥AB,
垂足为F,连结DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE 是平行四边形.
图8
考点3. :矩形的判定和性质
例11. 如图9,点P 是矩形ABCD 的边AD 的一个动点,
矩形的两条边AB、BC 的长分别为 3 和4,那么点P 到矩形的两条对
角线AC 和BD 的距离之和是()
图9
12 6 24
B.C.D.不确定
A.
5 5 5
例12. 如图12,四边形ABCD 是矩形,∠EDC =∠CAB,∠DEC=90°.
(1) 求证:AC∥D E;
(2) 过点 B 作BF ⊥AC 于点F,连结EF,试判断四边形BCEF 的
形状,并说明理由.
图12
【举一反三】
1.如图13,将矩形纸片ABC(D)折叠,使点(D)与点 B 重合,点 C 落在点C 处,折痕为EF ,若ABE 20 ,那么EFC
的度数为度。
图13
考点4. 菱形的判定和性质:
例13. 如图所示,菱形ABCD的周长为20cm,D E⊥AB,垂足为E,
sin 3
A ,则下列结论正确的个数有
5
①DE 3cm ②BE 1cm
③菱形的面积为 2
15cm ④BD 2 10cm
A.1 个B.2 个
C.3 个D.4 个
例14. 如图所示,在菱形ABCD 中,两条对角线AC=6,BD=8,则此菱形的边长为
A A.5 B.6 C.8 D.10
B D
C
(第14 题)
例15. 如图7,在菱形ABCD中,∠A=60°, AB =4, O为对角线 B D的中点,过O点作OE⊥AB,垂足为E.
(1) 求∠ABD的度数;
(2) 求线段BE 的长.
D C
O
60
A B
E
例16. 如图,在菱形ABCD 中,DE⊥AB,则tan∠DBE 的值是cos
3
A ,BE=2,
5
图
7
A.1
2
B.2 C.
5
2
D.
5
5
例17. 如图,O 为矩形ABCD 对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED 的形状,并说明理由;
A D
(2)若AB=6,BC=8,求四边形OCED 的面积.
O E
B C
考点5. 正方形的判定和性质:
例18. 如图,将一张正方形纸片剪成四个小正方形,得到
4 个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个
小正方形,共得到7 个小正方形,称为第二次操作;再将其中的一个正方
形再剪成四个小正方形,共得到10 个小正方形,称为第三次操作;...,根
据以上操作,若要得到2011 个小正方形,则需要操作的次数是( ) .
A. 669
B. 670
C.671
D. 672
【举一反三】
1. 下列说法中,你认为正确的是
A.四边形具有稳定性B.等边三角形是中心对称图形
o D.矩形的对角线一定互相垂直
C.任意多边形的外角和是360
2.已知:如图,在正方形ABCD 中,点E、F 分别在BC 和CD 上,AE = AF.
(1)求证:BE = DF;
(2)连接AC 交EF 于点O,延长OC 至点M,使OM = OA,连接EM、FM.判断四边形AEMF 是什么特殊四边形?并证明你的结论.。