反比例函数课时练习题及答案
- 格式:doc
- 大小:375.00 KB
- 文档页数:8
第二十六章 反比例函数26.1 反比例函数第1课时 反比例函数1.下列函数中,不是反比例函数的是( )A .y =-3xB .y =-32xC .y =1x -1D .3xy =22.已知点P (-1,4)在反比例函数y =kx(k ≠0)的图象上,则k 的值是( )A .-14 B.14C .4D .-43.反比例函数y =15x 中的k 值为( )A .1B .5 C.15D .04.近视眼镜的度数y (单位:度)与镜片焦距x (单位:m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m ,则y 与x 的函数解析式为( )A .y =400xB .y =14xC .y =100xD .y =1400x5.若一个长方形的面积为10,则这个长方形的长与宽之间的函数关系是( ) A .正比例函数关系 B .反比例函数关系 C .一次函数关系 D .不能确定6.反比例函数y =kx的图象与一次函数y =2x +1的图象都经过点(1,k ),则反比例函数的解析式是____________.7.若y =1x2n -5是反比例函数,则n =________.8.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数解析式是__________(不考虑x 的取值范围).9.已知直线y =-2x 经过点P (-2,a ),反比例函数y =kx(k ≠0)经过点P 关于y 轴的对称点P ′.(1)求a 的值;(2)直接写出点P ′的坐标; (3)求反比例函数的解析式.10.已知函数y =(m +1)xm 2-2是反比例函数,求m 的值.11.分别写出下列函数的关系式,指出是哪种函数,并确定其自变量的取值范围. (1)在时速为60 km 的运动中,路程s (单位:km)关于运动时间t (单位:h)的函数关系式;(2)某校要在校园中辟出一块面积为84 m 2的长方形土地做花圃,这个花圃的长y (单位:m)关于宽x (单位:m)的函数关系式.第2课时 反比例函数的图象和性质1.反比例函数y =-1x(x >0)的图象如图26-1-7,随着x 值的增大,y 值( )图26-1-7A .增大B .减小C .不变D .先增大后减小2.某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( ) A .(-3,2) B .(3,2) C .(2,3) D .(6,1)3.反比例函数y =k 2+1x的图象大致是( )4.如图26-1-8,正方形ABOC 的边长为2,反比例函数y =kx的图象经过点A ,则k 的值是( )图26-1-8A .2B .-2C .4D .-45.已知反比例函数y =1x,下列结论中不正确的是( )A .图象经过点(-1,-1)B .图象在第一、三象限C .当x >1时,0<y <1D .当x <0时,y 随着x 的增大而增大6.已知反比例函数y =bx(b 为常数),当x >0时,y 随x 的增大而增大,则一次函数y=x +b 的图象不经过第几象限.( )A .一B .二C .三D .四7.若反比例函数y =kx(k <0)的函数图象过点P (2,m ),Q (1,n ),则m 与n 的大小关系是:m ____n (填“>”“=”或“<”).8.已知一次函数y =x -b 与反比例函数y =2x的图象,有一个交点的纵坐标是2,则b的值为________.9.已知y 是x 的反比例函数,下表给出了x 与y 的一些值:x -2 -1 121 y 232 -1(1)(2)根据函数解析式完成上表.10.(广东)如图26-1-9,直线y =2x -6与反比例函数y =kx(x >0)的图象交于点A (4,2),与x 轴交于点B .(1)求k 的值及点B 的坐标;(2)在x 轴上是否存在点C ,使得AC =AB ?若存在,求出点C 的坐标;若不存在,请说明理由.图26-1-911.当a ≠0时,函数y =ax +1与函数y =ax在同一坐标系中的图象可能是( )12.如图26-1-10,直线x =t (t >0)与反比例函数y =2x ,y =-1x的图象分别交于B ,C 两点,A 为y 轴上的任意一点,则△ABC 的面积为( )图26-1-10A .3 B.32t C.32D .不能确定13.如图26-1-11,正比例函数y =12x 的图象与反比例函数y =kx(k ≠0)在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知△OAM 的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使P A +PB 最小.图26-1-1126.2 实际问题与反比例函数1.某学校食堂有1500 kg 的煤炭需运出,这些煤炭运出的天数y 与平均每天运出的质量x (单位:kg)之间的函数关系式为____________.2.某单位要建一个200 m 2的矩形草坪,已知它的长是y m ,宽是x m ,则y 与x 之间的函数解析式为______________;若它的长为20 m ,则它的宽为________m.3.近视眼镜的度数y (单位:度)与镜片焦距x (单位:m)成反比例⎝⎛⎭⎫即y =kx (k ≠0),已知200度近视眼镜的镜片焦距为0.5 m ,则y 与x 之间的函数关系式是____________.4.小明家离学校1.5 km ,小明步行上学需x min ,那么小明步行速度y (单位:m/min)可以表示为y =1500x;水平地面上重1500 N 的物体,与地面的接触面积为x m 2,那么该物体对地面的压强y (单位:N/m 2)可以表示为y =1500x……函数关系式y =1500x还可以表示许多不同情境中变量之间的关系,请你再列举一例:________________________________________________________________________. 5.已知某种品牌电脑的显示器的寿命大约为2×104小时,这种显示器工作的天数为d (单位:天),平均每天工作的时间为t (单位:小时),那么能正确表示d 与t 之间的函数关系的图象是( )6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (单位:kPa)是气体体积V (单位:m 3)的反比例函数,其图象如图26-2-2.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )图26-2-2A .不小于54 m 3B .小于54 m 3C .不小于45 m 3D .小于45m 37.某粮食公司需要把2400吨大米调往灾区救灾.(1)调动所需时间t (单位:天)与调动速度v (单位:吨/天)有怎样的函数关系?(2)公司有20辆汽车,每辆汽车每天可运输6吨,预计这批大米最快在几天内全部运到灾区?8.如图26-2-3,先在杠杆支点左方5 cm 处挂上两个50 g 的砝码,离支点右方10 cm处挂上一个50 g 的砝码,杠杆恰好平衡.若在支点右方再挂三个砝码,则支点右方四个砝码离支点__________cm 时,杠杆仍保持平衡.图26-2-39.由物理学知识知道,在力F (单位:N)的作用下,物体会在力F 的方向上发生位移s (单位:m),力F 所做的功W (单位:J)满足:W =Fs ,当W 为定值时,F 与s 之间的函数图象如图26-2-4,点P (2,7.5)为图象上一点. (1)试确定F 与s 之间的函数关系式; (2)当F =5时,s 是多少?图26-2-410.一辆汽车匀速通过某段公路,所需时间t (单位:h)与行驶速度v (单位:km/h)满足函数关系:t =kv ,其图象为如图26-2-5所示的一段曲线,且端点为A (40,1)和B (m,0.5).(1)求k 和m 的值;(2)若行驶速度不得超过60 km/h ,则汽车通过该路段最少需要多少时间?图26-2-511.甲、乙两家商场进行促销活动,甲商场采用“满200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元.乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱? (2)若顾客在甲商场购买商品的总金额为x (400≤x <600)元,优惠后得到商家的优惠率为p ⎝ ⎛⎭⎪⎫p =优惠金额购买商品的总金额,写出p 与x 之间的函数关系式,并说明p 随x 的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x (200≤x <400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.第二十六章 反比例函数26.1 反比例函数 第1课时 反比例函数 【课后巩固提升】1.C 2.D 3.C 4.C 5.B6.y =3x 解析:把点(1,k )代入函数y =2x +1得:k =3,所以反比例函数的解析式为:y =3x. 7.3 解析:由2n -5=1,得n =3.8.y =90x 解析:由题意,得12⎝⎛⎭⎫13x +x ·y =60,整理可得y =90x. 9.解:(1)将P (-2,a )代入y =2x ,得 a =-2×(-2)=4.(2)∵a =4,∴点P 的坐标为(-2,4). ∴点P ′的坐标为(2,4).(3)将P ′(2,4)代入y =k x 得4=k2,解得k =8,∴反比例函数的解析式为y =8x.10.解:由题意,得m 2-2=-1,解得m =±1. 又当m =-1时,m +1=0,所以m ≠-1. 所以m 的值为1.11.解:(1)s =60t ,s 是t 的正比例函数,自变量t ≥0.(2)y =84x ,y 是x 的反比例函数,自变量x >0.第2课时 反比例函数的图象和性质 【课后巩固提升】 1.A 2.A3.D 解析:k 2+1>0,函数图象在第一、三象限. 4.D 5.D6.B 解析:当x >0时,y 随x 的增大而增大,则b <0,所以一次函数不经过第二象限.7.> 解析:k <0,在第四象限y 随x 的增大而增大.8.-1 解析:将y =2代入y =2x,得x =1.再将点(1,2)代入y =x -b ,得2=1-b ,b=-1.9.解:(1)设y =k x (k ≠0),把x =-1,y =2代入y =k x 中,得2=k-1,∴k =-2.∴反比例函数的解析式为y =-2x.(2)如下表:10.解:(1)把A (4,2)代入y =k x ,2=k4,得k =8,对于y =2x -6,令y =0,即0=2x -6,得x =3,∴点B (3,0). (2)存在.如图D55,作AD ⊥x 轴,垂足为D ,图D55则点D (4,0),BD =1. 在点D 右侧取点C , 使CD =BD =1, 则此时AC =AB , ∴点C (5,0). 11.C12.C 解析:因为直线x =t (t >0)与反比例函数y =2x ,y =-1x的图象分别交于B ⎝⎛⎭⎫t ,2t ,C ⎝⎛⎭⎫t ,-1t ,所以BC =3t ,所以S △ABC =12·t ·3t =32. 13.解:(1)设点A 的坐标为(a ,b ),则b =ka ,∴ab =k . ∵12ab =1,∴12k =1.∴k =2. ∴反比例函数的解析式为y =2x.(2)由⎩⎨⎧y =2x ,y =12x 得⎩⎪⎨⎪⎧x =2,y =1.∴A 为(2,1).设点A 关于x 轴的对称点为C ,则 点C 的坐标为(2,-1).令直线BC 的解析式为y =mx +n .∵B 为(1,2),∴⎩⎪⎨⎪⎧ 2=m +n ,-1=2m +n .∴⎩⎪⎨⎪⎧m =-3,n =5.∴BC 的解析式为y =-3x +5.当y =0时,x =53.∴P 点为⎝⎛⎭⎫53,0. 26.2 实际问题与反比例函数 【课后巩固提升】1.y =1 500x 2.y =200x 10 3.y =100x4.体积为1500 cm 3的圆柱底面积为x cm 2,那么圆柱的高y cm 可以表示为y =1500x(答案不唯一,正确合理均可)5.C6.C 解析:设p =k V ,把V =1.6,p =60代入,可得k =96,即p =96V.当p ≤120 kPa时,V ≥45m 3.7.解:(1)根据题意,得v t =2400,t =2400v . (2)因为v =20×6=120,把v =120代入t =2400v ,得t =2400120=20.即预计这批大米最快在20天内全部运到灾区.8.2.5 解析:设离支点x 厘米,根据“杠杆定律”有100×5=200x ,解得x =2.5. 9.解:(1)把s =2,F =7.5代入W =Fs ,可得W =7.5×2=15,∴F 与s 之间的函数关系式为F =15s.(2)把F =5代入F =15s,可得s =3.10.解:(1)将(40,1)代入t =k v ,得1=k40,解得k =40.函数关系式为:t =40v .当t =0.5时,0.5=40m,解得m =80.所以,k =40,m =80.(2)令v =60,得t =4060=23.结合函数图象可知,汽车通过该路段最少需要23小时.11.解:(1)400≤x <600,少付200元, ∴应付510-200=310(元). (2)由(1)可知少付200元,∴函数关系式为:p =200x.∵k =200,由反比例函数图象的性质可知p 随x 的增大而减小.(3)购x 元(200≤x <400)在甲商场的优惠金额是100元,乙商场的优惠金额是x -0.6x =0.4x .当0.4x <100,即200≤x <250时,选甲商场优惠; 当0.4x =100,即x =250时,选甲乙商场一样优惠; 当0.4x >100,即250<x <400时,选乙商场优惠.。
九年级数学:反比例函数练习题(含解析)一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为( )A.y =2x +1B.y =22xC.y =-15xD.y =x 2-2x 2﹒函数y =k 23kx 是反比例函数,则k 的值是( )A.-1B.2C.±2D.±2 3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数4﹒一次函数y =-x +a -3(a 为常数)与反比例函数y =-4x的图象交于A 、B 两点,当A 、B 两点关于原点对称时,a 的值是( )A.0B.-3C.3D.45﹒反比例函数y =-2x的图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( )A.y 1<y 2<0B.y 1<0<y 2C.y 1>y 2>0D. y 1>0>y 26﹒如图,直线y =-x +3与y 轴交于点A ,与反比例函数y =k x(k ≠0)的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的解析式为( )A.y =4xB.y =-4xC.y =2xD.y =-2x7﹒已知反比例函数y =kx的图象经过点P (-1,2),则这个函数的图象位于( )A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限8﹒如果等腰三角形的底边长为x ,底边上的高为y ,它的面积为10时,则y 与x 的函数关系式为( ) A.y =10x B.y =5xC.y =20xD.y =20x9﹒已知变量y 与x 成反比例函数关系,当x =3时,y =-6,那么当y =3时,x 的值是( )A.6B.-6C.9D.-910. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )m 1 2 3 4 5 6 7v -6.10 -2.90 -2.01 -1.51 -1.19 -1.05 -0.86A.v =m 2-2B.v =-6mC.v =-3m -1D.v =-m二、细心填一填11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3.13.若函数y =-kx +2k +2与y =k x(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____. 14.如图,直线y =-x +b 与双曲线y =-1x(x <0)交于点A ,与x 轴交于点B ,则OA 2-OB 2=__________.(第14题图)15.一批零件300个,一个工人每小时做15个,用关系表示人数x 与完成任务所需时间y 之间的函数关系为_______________________.16.把一个长、宽、高分别为3cm ,2cm ,1cm 的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S (cm 2)与高h (cm )之间的函数关系式为________________________. 三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M(件)与所需天数t(天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件?19.已知y=y1+y2,y1与x2成正比例关系,y2与x成反比例关系,且当x=1时,y=3;当x=-1时,y=1.(1)求y与x之间的函数表达式;(2)当x=-12时,求y的值.20.反比例函数y=k(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A(1,3)x作AB⊥x轴于点B,交反比例函数图于点D,且AB=3BD.(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标.21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x(小时)之间的函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系;(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x(元)与销售量y(张)之间有如下关系:x/元 3 4 5 6y/张20 15 12 10(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.21.5 反比例函数课时练习题(1)参考答案一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为()A.y =2x +1B.y =22x C.y =-15xD.y =x 2-2x 解答:A.y =2x+1,y 是x 的一次函数,故A 不合题意;B.y =22x ,y 是x 2的反比例函数,故B 不合题意; C.y =-15x,y 是x 的反比例函数,故C 符合题意;D.y =x 2-2x ,y 是x 的二次函数,故D 不合题意, 故选:C. 2﹒函数y =k 23kx -是反比例函数,则k 的值是( )A.-1B.2C.±2D. 解答:∵y =k 23kx -是反比例函数,∴k 2-3=-1,且k ≠0, 解得:k , 故选:D.3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数 解答:∵y 与x 成反比例,x 与z 成反比例, ∴设y =1k x①,x =k 2z ②, 把②代入①得:y =12k k z, 故y 与z 成反比例函数关系, 故选:B.4﹒一次函数y=-x+a-3(a 为常数)与反比例函数y=-4x的图象交于A、B两点,当A、B 两点关于原点对称时,a的值是()A.0B.-3C.3D.4【解答】设A(t,-4t),∵A、B两点关于原点对称,∴B(-t,4t),把A(t,-4t ),B(-t,4t),分别代入y=-x+a-3得:4343t att at⎧-=-+-⎪⎪⎨⎪=+-⎪⎩①②,①+②得:2a-6=0,则a=3,故选:C.5﹒反比例函数y=-2x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0B.y1<0<y2C.y1>y2>0D. y1>0>y2【解答】∵反比例函数y=﹣2x中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选:D.6﹒如图,直线y=-x+3与y轴交于点A,与反比例函数y=kx(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为()A.y=4x B.y=-4xC.y=2x D.y=-2x【解答】∵直线y=﹣x+3与y轴交于点A,∴A(0,3),即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为﹣1,∵点C在直线y=﹣x+3上,∴点C(﹣1,4),把C(﹣1,4)代入y=kx得:k=-4,∴反比例函数的解析式为:y=-4x.故选:B.7﹒已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限【解答】∵反比例函数y=kx的图象经过点P(-1,2),∴k=-1×2=-2<0,∴反比例函数的图象分布在二、四象限,故选:D.8﹒如果等腰三角形的底边长为x,底边上的高为y,它的面积为10时,则y与x的函数关系式为()A.y=10xB.y=5xC.y=20xD.y=20x解答:根据题意,得:12xy=10,∴y=20x,故选:C.9﹒已知变量y与x成反比例函数关系,当x=3时,y=-6,那么当y=3时,x的值是()A.-6B. 6C.-9D.9解答:设y=kx,把x=3,y=-6代入得:k=-18,∴y=18x,∴当x=3时,y=-6,故选:A.10. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )A.v =m 2-2B.v =-6mC.v =-3m -1D.v =-m解答:将m 的值代入各选项的函数关系式中,看v 的值是否与表中数据相近,若相近,则为正确的解析式,如把m =1代入各式:A.v =-1;B.v =-6;C.v =-4;D.v =-6.再把m =2代入各式:A.v =2;B.v =-12;C.v =-7;D.v =-3.由此可发现D 选项的值与表中数据相近,故D 选项符合题意, 故选:D. 二、细心填一填11. 3; 12. m ≠1,4; 13. y =6x; 14. 2; 15. y =20x ; 16. S =6h. 11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 解答:∵函数y =(m +3)28m x-是反比例函数,∴8-m 2=-1,且m +3≠0, ∴m =3, 故答案为:3. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3. 解答:∵函数y =1m x-是反比例函数, ∴m -1≠0,则m ≠1, 由m -1=3得:m =4, 故答案为:m ≠1,4.13.若函数y =-kx +2k +2与y =kx(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____.【解答】把方程组22y kx kkyx=-++⎧⎪⎨=⎪⎩消去y得:-kx+2k+2=kx,整理得:kx2-(2k+2)x+k=0,由题意得:△=(2k+2)2-4k2>0,解得:k>-12,∴当k>-12时,函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,故答案为:k>-12且k≠0.14.如图,直线y=-x+b与双曲线y=-1x(x<0)交于点A,与x轴交于点B,则OA2-OB2=__________.【解答】∵直线y=﹣x+b与双曲线y=﹣1x(x<0)交于点A,设A的坐标(x,y),∴x+y=b,xy=﹣1,而直线y=﹣x+b与x轴交于B点,∴OB=b,∴又OA2=x2+y2,OB2=b2,∴OA2﹣OB2=x2+y2﹣b2=(x+y)2﹣2xy﹣b2=b2+2﹣b2=2.故答案为:2.15.一批零件300个,一个工人每小时做15个,用关系表示人数x与完成任务所需时间y之间的函数关系为_______________________.解答:由题意得:人数x与完成任务所需时间y之间的函数关系为y=30015x=20x,故答案为:y=20x.16.把一个长、宽、高分别为3cm,2cm,1cm的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S(cm2)与高h(cm)之间的函数关系式为________________________.解答:由题意得:Sh=3×2×1,则S=6h,故答案为:S=6h.三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?解答:(1)每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式为:w =1600t(t >4), (2)由题意,得:16004t --1600t=16001600(4)(4)t t t t ---=264004t t -,答:每天要多做264004t t-(t >4)件夏凉小衫才能完成任务. 18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件? 解答:(1)60×8=480(件), 故答案为:480;(2)乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式为y =480t(t >0), (3)把t =5代入上式得M =96,故如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工96件.19.已知y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系,且当x =1时,y =3;当x =-1时,y =1.(1)求y 与x 之间的函数表达式; (2)当x =-12时,求y 的值. 解答:∵y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系, ∴可设y 1=k 1x 2,y 2=2k x,把x =1时,y =3和x =-1时,y =1代入得:121231k k k k +=⎧⎨-=⎩,解得:1221k k =⎧⎨=⎩,∴y 与x 之间的函数表达式为y =2x 2+1x, (2)当x =-12时, y =2×(-12)2+(-2)=-32.20.反比例函数y =k x(k ≠0,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图于点D ,且AB =3BD . (1)求k 的值; (2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C 、D 两点距离之和d =MC +MD 最小,求点M 的坐标. 【解答】(1)∵A (1,3), ∴AB =3,OB =1, ∵AB =3BD , ∴BD =1, ∴D (1,1),将D (1,1)代入反比例函数解析式得:k =1; (2)由(1)知,k =1, ∴反比例函数的解析式为:y =1x,由31y x y x =⎧⎪⎨=⎪⎩得:33x y ⎧=⎪⎨⎪=⎩或33x y ⎧=-⎪⎨⎪=-⎩, ∵x >0,∴C (3,3), (3)如图,作C 关于y 轴的对称点C ′,连接C ′D 交y 轴于M ,则d =MC +MD 最小, ∴C ′(-3,3), 设直线C ′D 的解析式为y =kx +b ,∴331k b k b ⎧=-+⎪⎨⎪=+⎩,解得:323232k b ⎧=-⎪⎨=-⎪⎩, ∴y =(3-23)x +23-2, 当x =0时,y =23-2, ∴M (0,23-2).21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x (小时)之间的函数关系如图所示(当4≤x ≤10时,y 与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系; (2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【解答】(1)当0≤x <4时,设直线解析式为:y =kx , 将(4,8)代入得:8=4k , 解得:k =2,故直线解析式为:y =2x ,当4≤x ≤10时,设直反比例函数解析式为:y =k x, 将(4,8)代入得:8=4k , 解得:k =32,故反比例函数解析式为:y =32x ; 因此血液中药物浓度上升阶段的函数关系式为y =2x (0≤x <4),下降阶段的函数关系式为y =32x(4≤x ≤10). (2)当y =4,则4=2x ,解得:x =2, 当y =4,则4=32x,解得:x =8, ∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x (元)与销售量y(张)之间有如下关系:(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.解答:(1)由表中数据可以发现x与y的乘积是一个定值,所以可知y与x成反比例,设y=kx,把(3,20)代入得:k=60,∴y与x的函数关系式为y=60x;(2)当x=10时,y=6,所以日销售单价为10元时,贺卡的日销售量是6张;(3)∵W=(x-2)y=60-120x,又∵x≤10,∴当x=10时,W最大=60-12010=48,故日销售单价为10元时,每天获得的利润最大,最大利润为48元.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.解答:∵点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,∴a=4,∵点M(2,4)在反比例函数y=kx(k为常数,k≠0)图象上∴k=2×4=8,∴反比例函数的解析式为y=8x;(2)假设函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”(x,2x), 则有3mx-1=2x,整理得:(3m-2)x=1,当3m-2≠0,即m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当3m-2=0,即m=23时,x无解,综合上述,当m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当m=23时,函数图象上不存在“理想点”.。
八年级数学下册《第六章反比例函数》练习题-附答案(浙教版) 一、选择题1.反比例函数y=15x中的k值为( )A.1B.5C.15D.02.反比例函数y=-2x的图象在( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限3.若点A(-1,y1),B(1,y2),C(3,y3)在反比例函数y=-3x的图象上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y34.已知点P(-12,2)在反比例函数y=kx(k≠0)的图象上,则k的值是( )A.-12B.2C.1D.-15.如图,A,C是函数y=1x的图象上任意两点,过点A作y轴的垂线,垂足为B,过点C作y轴的垂线,垂足为D,记Rt△AOB的面积为S1,Rt△COD的面积为S2,则( )A.S1>S2B.S1<S2C.S1=S2D.S1和S2的大小关系不能确定6.如图,直线y=14x与双曲线y=4x相交于点(-4,-1)和(4,1),则不等式14x>4x的解集为( )A.-4<x<0或x>4B.x<-4或0<x<4C.-4<x<4且x≠0D.x<-4或x>47.在体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )8.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,若以此蓄电池为电源的用电器限制电流不得超过10 A,则此用电器的可变电阻应( )A.不小于4.8 ΩB.不大于4.8 ΩC.不小于14 ΩD.不大于14 Ω9.如图,菱形ABCD的两个顶点B、D在反比例函数y=kx的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是( ) A.﹣5 B.﹣4 C.﹣3 D.﹣210.如图,在第一象限的点A既在双曲线y=12x上,又在直线y=2x﹣2上,且直线y=2x﹣2与x轴相交于点B,C(0,b)、D(0,b+2),当四边形ABCD周长取得最小值时,b=( )A.12B.34C.1D.52 二、填空题11.若y =1x 2n -5是反比例函数,则n =________.12.若反比例函数y =的图象位于第一、三象限,则正整数k 的值是 .13.如图,过x 轴正半轴上的任意一点P 作y 轴的平行线交反比例函数y =2x 和y =-4x 的图象于A ,B 两点,C 是y 轴上任意一点,则△ABC 的面积为________.14.已知点A(-2,y 1),B(-1,y 2)和C(3,y 3)都在反比例函数y =3x 的图象上,则y 1,y 2,y 3的大小关系为____________(用“<”连接).15.小明家离学校1.5 km ,小明步行上学需x min ,那么小明步行速度y(单位:m/min)可以表示为y =1500x ;水平地面上重1500 N 的物体,与地面的接触面积为x m 2,那么该物体对地面的压强y(单位:N/m 2)可以表示为y =1500x ……,函数关系式y =1500x还可以表示许多不同情境中变量之间的关系,请你再列举一例:____________________________________________________________.16.如图,在平面直角坐标系中,反比例函数y =2x (x >0)的图象与正比例函数y =kx ,y =1k x(k>1)的图象分别交于点A ,B ,若∠AOB =45°,则△AOB 的面积是______.三、解答题17.已知y=y1+y2,y1与x2成正比例,y2与x成反比例,且当x=1时,y=3;当x=-1时,y=1.求当x=-12时,y的值.18.已知反比例函数y=kx(k为常数,k≠0)的图象经过点A(2,3).(1)求这个函数的解析式;(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;(3)当-3<x<-1时,求y的取值范围.19.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=mx(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.20.一辆汽车匀速通过某段公路,所需时间t(单位:h)与行驶速度v(单位:km/h)满足函数关系:t=kv,其图象为如图所示的一段曲线,且端点为A(40,1)和B(m,0.5).(1)求k和m的值;(2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多少时间?21.如图,反比例函数y=kx的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.22.如图,已知正方形OABC的面积为4,点O是坐标原点,点A在x轴上,点C在y轴上,点B在函数y=kx(x>0,k>0)的图象上,点P(m,n)是函数y=kx(x>0,k>0)的图象上任意一点.过点P分别作x轴、y轴的垂线,垂足分别为点E,F.若设矩形OEPF和正方形OABC不重合部分的面积为S.求当S>1时,求m的取值范围.23.如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=kx的图象经过点C,一次函数y=ax+b的图象经过点A、C(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.24.如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(-2,0),与反比例函数y=kx(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=kx(x>0)的图象于点N,若以A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.参考答案1.C2.D3.B.4.D5.C6.A7.C8.A9.C. 10.A. 11.答案为:3. 12.答案为:1. 13.答案为:3. 14.答案为:y 2<y 1<y 3.15.答案为:体积为1500 cm 3的圆柱底面积为x cm 2,那么圆柱的高y cm 可以表示为y =1500x(答案不唯一,正确合理均可). 16.答案为:2.17.解:依题意,设y 1=k 1x 2,y 2=k 2x则y =y 1+y 2=k 1x 2+k 2x.∵当x =1时,y =3;当x =-1时,y =1 ∴⎩⎨⎧k 1+k 2=3,k 1-k 2=1,解得⎩⎨⎧k 1=2k 2=1, ∴y =2x 2+1x.当x=-12时,y=12-2=-32.18.解:(1)∵反比例函数y=kx的图象经过点A(2,3)把点A的坐标代入解析式,得3=k2,解得k=6.∴这个函数的解析式为y=6 x .(2)点B不在这个函数的图象上,点C在这个函数的图象上.理由:分别把点B,C的坐标代入y=6 x可知点B的坐标不满足函数解析式,点C的坐标满足函数解析式∴点B不在这个函数的图象上,点C在这个函数的图象上. (3)∵当x=-3时,y=-2;当x=-1时,y=-6.又由k>0,知当x<0时,y随x的增大而减小∴当-3<x<-1时,-6<y<-2.19.解:(1)∵反比例函数y=mx(m≠0)的图象过点A(3,1)∴m=3.∴反比例函数的表达式为y=3 x .∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2). ∴,解得:∴一次函数的表达式为y=x﹣2;(2)令y=0,∴x﹣2=0,x=2∴一次函数y=x﹣2的图象与x轴的交点C的坐标为(2,0). ∵S△ABP=31 2PC×1+12PC×2=3.∴PC=2∴点P的坐标为(0,0)、(4,0).20.解:(1)将(40,1)代入t=kv,得1=k40,解得k=40.函数关系式为:t=40 v.当t=0.5时,0.5=40m,解得m=80.所以,k=40,m=80.(2)令v=60,得t=4060=23.结合函数图象可知,汽车通过该路段最少需要23小时.21.解:(1)把点A(2,6)代入y=kx,得m=12,则y=12x.把点B(n,1)代入y=12x,得n=12,则点B的坐标为(12,1).由直线y=kx+b过点A(2,6),点B(12,1)得,解得则所求一次函数的表达式为y=﹣x+7.(2)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE 则点P的坐标为(0,7).∴PE=|m﹣7|.∵S△AEB =S△BEP﹣S△AEP=5∴×|m﹣7|×(12﹣2)=5.∴|m﹣7|=1.∴m1=6,m2=8.∴点E的坐标为(0,6)或(0,8).22.解:∵正方形OABC 的面积为4∴OA =AB =2∴B 点坐标为(2,2).∵点B 在函数y =k x(x >0,k >0)的图象上 ∴把B(2,2)代入y =k x中,得k =4. ∴反比例函数的解析式为y =4x. ∵P(m ,n)在y =4x上 ∴mn =4∴n =4m. ∵S =AE ·PE +CB ·CF∴S =(m -2)·n +2(2-n)=mn -2n +4-2n =mn -4n +4=8-16m. ∵S >1,∴16m<7. ∵x >0∴m 的取值范围m >167. 23.解:(1)∵点A 的坐标为(0,2),点B 的坐标为(0,﹣3)∴AB =5∵四边形ABCD 为正方形∴点C的坐标为(5,﹣3).∵反比例函数y=kx的图象经过点C∴解得k=﹣15∴反比例函数的解析式为y=﹣;∵一次函数y=ax+b的图象经过点A,C ∴,解得∴一次函数的解析式为y=﹣x+2;(2)设P点的坐标为(x,y).∵△OAP的面积恰好等于正方形ABCD的面积∴12×OA•|x|=52∴12×2•|x|=25,解得x=±25.当x=25时,y=﹣35;当x=﹣25时,y=35.∴P点的坐标为(25,﹣35)或(﹣25,35).24.解:(1)∵一次函数y=x+b的图象经过点A(-2,0) ∴0=-2+b,解得b=2∴一次函数的表达式为y=x+2.∵一次函数y=x+2的图象与反比例函数y=kx(x>0)的图象交于B(a,4)∴4=a+2,解得a=2,∴B(2,4)∴4=k2,解得k=8∴反比例函数的表达式为y=8x(x>0).(2)∵点A(-2,0),∴OA=2.设点M(m-2,m),点N(8m,m)当MN∥AO且MN=AO时,四边形AONM是平行四边形|8m-(m-2)|=2且m>0解得m=22或m=23+2∴点M的坐标为(22-2,22)或(23,23+2).。
反比例函数练习一一.选择题(共22小题)1.(2015春•泉州校级期中)下列函数中,y是x的反比例函数的为()A.y=2x+1 B.C.D.2y=x2.(2015春•兴化市校级期中)函数y=k是反比例函数,则k的值是()A.﹣1 B.2 C.±2 D.±3.(2015春•衡阳县期中)若y=(m﹣1)x|m|﹣2是反比例函数,则m的值为()A.m=2 B.m=﹣1 C.m=1 D.m=04.(2014•汕尾校级模拟)若y与x成反比例,x与z成反比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定5.(2014春•常州期末)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m≥6.(2015•贺州)已知k1<0<k2,则函数y=和y=k2x﹣1的图象大致是()A.B. C.D.7.(2015•滦平县二模)在同一直角坐标系中,函数y=kx+k与y=(k≠0)的图象大致为()A.B.C.D.8.(2015•上海模拟)下列函数的图象中,与坐标轴没有公共点的是()A.B.y=2x+1 C.y=﹣x D.y=﹣x2+19.(2015•宝安区二模)若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.10.(2015•鱼峰区二模)若方程=x+1的解x0满足1<x0<2,则k可能是()A.1 B.2 C.3 D.611.(2012•颍泉区模拟)如图,有反比例函数y=,y=﹣的图象和一个圆,则图中阴影部分的面积是()第11题图第12题图A.πB.2πC.4πD.条件不足,无法求12.(2010•深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=13.(2014•随州)关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小14.(2014•昆明)如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx﹣k 的图象大致是()A.B.C.D.15.(2014•天水)已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()A.4个B.3个C.2个D.1个16.(2014•杭州)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=17.(2014•阜新)反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣118.(2015•凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()第18题图第19题图A.10 B.11 C.12 D.1319.(2015•眉山)如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D 点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.B.C.3 D.420.(2014•绥化)如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()第20题图第21题图A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S2 21.(2014•抚顺)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小22.(2014•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.24二.填空题(共4小题)23.(2015•锦江区一模)已知y=(a﹣1)是反比例函数,则a=.24.(2014•江西模拟)已知反比例函数的解析式为y=,则最小整数k=.25.(2013•路北区二模)函数y=,当y≥﹣2时,x的取值范围是(可结合图象求解).26.(2014•贵阳)若反比例函数的图象在其每个象限内,y随x的增大而增大,则k的值可以是.(写出一个符合条件的值即可)三.解答题(共4小题)27.(2014春•东城区校级期中)已知反比例函数y=﹣(1)说出这个函数的比例系数;(2)求当x=﹣10时函数y的值;(3)求当y=6时自变量x的值.28.(2013春•汉阳区校级期中)已知函数y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?29.(2013•德宏州)如图,是反比例函数y=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?30.(2014•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.答案:一.选择题(共22小题)1.C 2.D 3.B 4.A 5.C 6.C 7.B 8.A 9.C 10.C 11.B 12.D 13.D 14.B 15.B 16.A 17.D 18.C 19.B20.B 21.C 22.C二.填空题(共4小题)23.-1 24.1 25.x≤-2或x>0 26.-1(答案不唯一)三.解答题(共4小题)27.28.29.30.。
北师大版数学九年级上册第六章反比例函数课时作业6.1反比例函数【基础练习】一、填空题:1.A、B两地相距120千米,一辆汽车从A地去B地,则其速度v(千米/时)与行驶时间t(小时)之间的函数关系可表示为;2.有一面积为60的梯形,其上底长是下底长的13,设下底长为x,高为y,则y与x的函数关系式是;3.已知y与x成反比例,并且当x=2时,y=-1,则当x=-4时,y=.二、选择题:1.下列各问题中的两个变量成反比例的是();A.某人的体重与年龄B.时间不变时,工作量与工作效率C.矩形的长一定时,它的周长与宽D.被除数不变时,除数与商2.已知y与x成反比例,当x=3时,y=4,那么当y=3时,x的值为();A.4B.-4C.3D.-33.下列函数中,不是反比例函数的是()A.xy=2B.y=-k3x (k≠0) C.y=3x-1D.x=5y-1三、解答题:1.一水池内有污水60m3,设放净全池污水所需的时间为t(小时),每小时的放水量为w m3,(1)试写出t与w之间的函数关系式,t是w反比例函数吗?(2)求当w=15时,t的值.2.已知y 是x 的反比例函数,下表给出了x 与y 的一些值:(1)写出这个反比例函数表达式;(2)将表中空缺的x 、y 值补全.【综合练习】举出几个日常生活中反比例函数的实例.【探究练习】已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4,当x =2时,y =5.求y 关于x 的函数解析式.答案:【基础练习】一、1.v =120t ; 2.y =90x ; 3.12.二、1.D ;2.A ;3.C.三、1.(1)t =60w,(2)t =4. 2.(1)y =3x ;(2)从左至右:x =-4,-1,2,3;y =-35,-32,3,34,35.【综合练习】略.x -5-3-2145y-34-1-3321【探究练习】y =2x +2x. 6.1反比例函数一.判断题1.如果y 是x 的反比例函数,那么当x 增大时,y 就减小()2.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数()3.如果一个函数不是正比例函数,就是反比例函数()4.y 与x 2成反比例时y 与x 并不成反比例()5.y 与2x 成反比例时,y 与x 也成反比例()6.已知y 与x 成反比例,又知当2=x 时,3=y ,则y 与x 的函数关系式是6xy =()二.填空题7.)0(≠=k xky 叫__________函数,x 的取值范围是__________;8.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是_________=h ,这时h 是a 的__________;9.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成__________;10.如果函数y =222-+k k kx是反比例函数,那么k =________,此函数的解析式是;11.下列函数表达式中,x 均表示自变量,那么哪些是反比例函数,如果是请在括号内填上k 的值,如果不是请填上“不是”①x y 5=;()②x y 4.0=;()③2x y =;()④2=xy ;()⑤πx y =;()⑥xy 5-=()⑦12-=x y ()12.判断下面哪些式子表示y 是x 的反比例函数?①31-=xy ;②x y -=5;③x y 52-=;④)0(2≠=a a xay 为常数且;解:其中是反比例函数,而不是;13.计划修建铁路1200km ,那么铺轨天数y (天)是每日铺轨量x 的反比例函数吗?解:因为,所以y 是x 的反比例函数;14.一块长方形花圃,长为a 米,宽为b 米,面积为8平方米,那么a 与b 成函数关系,列出a 关于b 的函数关系式为;三.选择题:15.若nxm y ++=2)5(是反比例函数,则m 、n 的取值是()(A )3,5-=-=n m (B )3,5-=-≠n m (C )3,5=-≠n m (D )4,5-=-≠n m 16.附城二中到联安镇为5公里,某同学骑车到达,那么时间t 与速度(平均速度)v 之间的函数关系式是()(A )stv =(B )st v +=(C )ts v =(D )st v =17.已知A (2-,a )在满足函数xy 2=,则___=a ()(A )1-(B )1(C )2-(D )218.下列函数中,是反比例函数的是()(A )1)1(=-y x (B )11+=x y (C )21xy =(D )x y 31=19.下列关系式中,哪个等式表示y 是x 的反比例函数()(A )x k y =(B )2xB y =(C )121+=x y (D )12=-xy 20.函数y m x mm =+--()2229是反比例函数,则m 的值是()(A )m =4或m =-2(B )m =4(C )m =-2(D )m =-1四.解答题:21.在某一电路中,保持电压V (伏特)不变,电流I (安培)与电阻R (欧姆)成反比例,当电阻R=5时,电流I=2安培。
一、选择题(每小题3分,共36分)1.(2022河口模拟)下列关系式中,y是x的反比例函数的是( C )A.x(y-1)=1B.y=1x+1C.y=13x D.y=1x32.对于反比例函数y=-5x,下列说法不正确的是( D )A.图象分布在第二、四象限B.当x<0时,y随x的增大而增大C.图象经过点(5,-1)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y23.若点A(-1,y1),B(1,y2),C(3,y3)在反比例函数y=-3x的图象上,则y1,y2,y3的大小关系是( B )A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y34.若A(2,4)与B(-2,a)都是反比例函数y=kx(k≠0)图象上的点,则a 的值是( B )A.4B.-4C.2D.-25.在一个可以改变容积的密闭容器内,装有质量为m的某种气体,当改变容积V时,气体的密度ρ也随之改变,ρ与V在一定范围内满足,它的图象如图所示,则该气体的质量m为( C )ρ=mV第5题图A.1.4 kgB.5 kgC.7 kgD.6.4 kg6.正比例函数y=6x的图象与反比例函数y=6的图象的交点位于x( D )A.第一象限B.第二象限C.第三象限D.第一、三象限(k≠0)与一次函数y=kx+k(k≠0)在同一平面直角7.反比例函数y=kx坐标系内的图象可能是( D )A B C D的图象相交于点M(1,m),N(-2,n).8.如图所示,函数y1=x+1与函数y2=2x若y1>y2,则x的取值范围是( D )第8题图A.x<-2或0<x<1B.x<-2或x>1C.-2<x<0或0<x<1D.-2<x<0或x>19.如图所示,在平面直角坐标系中,点A是x轴负半轴上一个定点,点(x<0)图象上一个动点,PB⊥y轴于点B,当点P的横坐标P是函数y=-6x逐渐增大时,四边形OAPB的面积将会( D )第9题图A.先增后减B.先减后增C.逐渐减小D.逐渐增大10.如图所示的是某公园“水上滑梯”的侧面图,其中BC段可看成是双曲线的一段,建立如图所示的坐标系后,其中,矩形AOEB中有一向上攀爬的梯子,OA=5 m,进口AB∥OD,且AB=2 m,出口C点距水面的距离CD为1 m,则B,C之间的水平距离DE为( D )A.5 mB.6 mC.7 mD.8 m第10题图11.如图所示,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′BC′.若反比例函数的图象恰好经过A′B的中点D,则k的值是( C )y=kx第11题图A.9B.12C.15D.18(x>0)的图象上,点C在反比例函12.如图所示,点B在反比例函数y=6x(x>0)的图象上,且BC∥y轴,AC⊥BC于点C,交y轴于点A,则数y=-2x△ABC的面积为( B )第12题图A.3B.4C.5D.6二、填空题(每小题3分,共18分)13.(2022栖霞模拟)一批零件有200个,一个工人每小时生产5个,则完成任务所需时间y(小时)与人数x之间的函数表达式为y=40.x与一次函数y=2x-1的图象的交点为(1,a),则14.已知反比例函数y=kxk的值为 1 .15.双曲线y=k+1在每个象限内,函数值y随x值的增大而增大,则k x的取值范围是k<-1 .16.王师傅用一根撬棒撬动一块大石头,已知阻力臂和阻力不变,分别为0.5 m和1 000 N,当动力臂l为2 m 时,撬动这块大石头需用的动力F为250 .17.如图所示,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为10 .18.在平面直角坐标系xOy中,直线y=x与双曲线y=mx交于A,B两点.若点A,B的纵坐标分别为y1,y2,则y1+y2的值为0 .三、解答题(共46分)19.(6分)已知反比例函数y=kx(k为常数,k≠0)的图象经过点A(2,3).(1)求这个函数的表达式;(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;(3)当-2<x<-1时,求y的取值范围.解:(1)把A(2,3)代入y=kx ,得k=2×3=6,∴y=6x.(2)点B(-1,6)不在这个函数的图象上,点C(3,2)在这个函数的图象上.理由如下:当x=-1时,y=-6,∴点B(-1,6)不在这个函数的图象上.当x=3时,y=2,∴点C(3,2)在这个函数的图象上.(3)当x=-1时,y=-6;x=-2时,y=-3,∵k=6>0,∴当-2<x<-1时,y随x的增大而减小.∴当-2<x<-1时,y的取值范围为-6<y<-3.20.(8分)一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系式t=kv ,其图象为如图所示的一段曲线,且端点为A(40,1)和B(m,0.5).(1)求k 和m 的值;(2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多长 时间?解:(1)由题意,得函数图象经过点(40,1),(m,0.5),把(40,1)代入t=kv ,得k=40,故可得关系式为t=40v .再把(m,0.5)代入t=40v,得m=80.(2)把v=60代入t=40v,得t=23,故汽车通过该路段最少需要23h.21.(10分)某商场出售一批进价为2元的贺卡,在销售中发现此商品的日销售单价x(元)与日销售量y(张)之间有如下关系:(1)猜测并确定y 与x 的函数表达式.(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此贺卡的日销售利润为W 元,试求出W 与x 之间的函数表达式.若物价部门规定此贺卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.解:(1)由题意设y=k(k为常数,且k≠0),x把(3,20)代入,得k=60,.∴y与x的函数表达式是y=60x=6,(2)当x=10时,y=6010∴当日销售单价为10元时,贺卡的日销售量是6张.,且2≤x≤10,(3)∵W=(x-2)y=60-120x=48(元).∴当x=10时,W最大,W最大=60-12010∴当日销售单价为10元时,每天获得的利润最大,最大利润为48元.22.(10分)如图所示,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=-12的图象交于A,B两点,且与x轴交于点C,与y轴交于x点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;的解集.(3)写出不等式kx+b>-12x解:(1)∵一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数的图象交于A,B两点,y=-12x且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3,∴当y=3时,3=-12,解得x=-4;x当x=3时,y=-123=-4.故点B 的坐标为(-4,3),点A 的坐标为(3,-4), 把点A,B 的坐标代入y=kx+b,得 {-4k +b =3,3k +b =-4,解得{k =-1,b =-1, 故一次函数的表达式为y=-x-1. (2)y=-x-1,当y=0时,x=-1, 故点C 的坐标为(-1,0),∴S △AOB =S △BOC +S △AOC =12OC ·|y B |+12OC ·|y A |=12×1×3+12×1×4=72.∴△AOB 的面积为72.(3)由图象,知不等式kx+b>-12x 的解集为x<-4或0<x<3.23.(12分)(2022莱西模拟)如图所示,正比例函数y=12x 的图象与反比例函数y=kx(k ≠0)在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M,已知△OAM 的面积为1.(1)求反比例函数的表达式;(2)如果点B(a,b)为反比例函数在第一象限图象上的点,且b=2a,试探究在x 轴上是否存在点P,使△PAB 周长最小.若存在,求点P 的坐标;若不存在,请说明理由.解:(1)∵反比例函数y=kx (k ≠0)的图象在第一象限,∴k>0.∵△OAM 的面积为1,∴12k=1,解得k=2,故反比例函数的表达式为y=2x.(2)存在.∵点A 是正比例函数y=12x 与反比例函数y=2x图象的交点,且x>0,y>0,∴{y =12x ,y =2x ,解得{x =2,y =1,∴A(2,1). ∵B(a,b)为反比例函数在第一象限图象上的点,∴b=2a.又∵b=2a,∴a=1,b=2,∴B(1,2).∵AB 的距离为定值,∴若使△PAB 周长最小,则PA+PB 的值最小. 如图所示,作A 点关于x 轴的对称点C,并连接BC,交x 轴于点P,P 为所求点.设A 点关于x 轴的对称点为C,则C 点的坐标为(2,-1).设直线BC 的表达式为y=mx+n,将B,C 两点的坐标代入,得{2m +n =-1,m +n =2,解得{m =-3,n =5,故直线BC 的表达式为y=-3x+5.当y=0时,x=53,则点P 坐标为(53,0).。
完整版)反比例函数经典习题及答案反比例函数练题1.下列函数中,经过点(1.-1)的反比例函数解析式是()A。
y = 1/xB。
y = -1/xC。
y = 2/xD。
y = -2/x2.反比例函数y = -(k/ x)(k为常数,k ≠ 0)的图象位于()A。
第一、二象限B。
第一、三象限C。
第二、四象限D。
第三、四象限3.已知反比例函数y = (k - 2)/x的图象位于第一、第三象限,则k的取值范围是()A。
k。
2B。
k ≥ 2C。
k ≤ 2D。
k < 24.反比例函数y = k/x的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果三角形MON 的面积是2,则k的值为()A。
2B。
-2C。
4D。
-45.对于反比例函数y = 2/x,下列说法不正确的是()A。
点(-2.-1)在它的图象上B。
它的图象在第一、三象限C。
当x。
0时,y随x的增大而增大D。
当x < 0时,y随x的增大而减小6.反比例函数y = (2m - 1)x/(m^2 - 2),当x。
0时,y随x 的增大而增大,则m的值是()A。
±1B。
小于1的实数C。
-1D。
1/27.如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形P1A1O、P2A2O、P3A3O,设它们的面积分别是S1、S2、S3,则()。
A。
S1 < S2 < S3B。
S2 < S1 < S3C。
S3 < S1 < S2D。
S1 = S2 = S38.在同一直角坐标系中,函数y = -2与y = 2x的图象的交点个数为()A。
3B。
2C。
1D。
09.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()10.如图,直线y = mx与双曲线y = k/(x-2)交于A、B两点,过点A作AM⊥x轴,垂足为M,连结BM,若三角形ABM的面积为2,则k的值是()A。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练6.1反比例函数一.选择题(共10小题)1.下列函数中,y是关于x的反比例函数的是()A.B.C.D.y=5x﹣12.下列问题中,两个变量间的函数关系式是反比例函数的是()A.小颖每分钟可以制作2朵花,x分钟可以制作y朵花B.体积为10cm3的长方体,高为h cm,底面积为S cm2C.用一根长50cm的铁丝弯成一个矩形,一边长为x cm,面积为S cm2D.汽车油箱中共有油50升,设平均每天用油5升,x天后油箱中剩下的油量为y升3.下列选项中,能写成反比例函数的是()A.人的体重和身高B.正三角形的边长和面积C.速度一定,路程和时间的关系[中国@^*%教育出#版网]D.销售总价不变,销售单价与销售数量的关系4.下列函数中,y是x的反比例函数的是()A. B.53yx=- C.11yx=+D.1y xp=5.下列等式中,一定表示y是关于x的反比例函数的是()A.y=B.y=C.y=D.2xy=﹣1 6.已知变量y与x成反比例,当3x=时,6y=-,则该反比例函数的表达式为()A.18yx= B.18yx=- C.2yx= D.2yx=-7.已知反比例函数20yx=,下列问题情境符合的是()A.已知三角形的面积为20,其中一边长y与该边上的高x的关系B.矩形的长为20,矩形的面积y与宽x的关系C.购买橡皮的总价为20元,橡皮的块数y与橡皮的单价x(元)的关系D.一部20集的电视剧,已看集数y与未看集数x的关系8.当1k=-时,下列函数是反比例函数的是()A.1kyx+= B.2()ky k k x-=+ C.1y kx-=- D.(1)y k x=-9.下面四个关系式中,y是x的反比例函数的是()A.y=B.y=﹣C.y=5x+4D.10.下列函数:①y=﹣2x;②y=;③y=x﹣1;④y=5x2+1,是反比例函数的个数有()A.0个B.1个C.2个D.3个二.填空题(共5小题)11.若函数y=(m﹣1)x是反比例函数,则m=.12.已知y与x成正比例,z与y成反比例,那么z与x的关系是:函数.13.判断下面哪些式子表示y是x的反比例函数?①;②y=5﹣x;③;④;解:其中是反比例函数,而不是.14.已知y与x成反比例,且当x=﹣3时,y=4,则当x=6时,y的值为.15.若是反比例函数,则m满足的条件是.三.解答题(共6小题)16.已知函数是反比例函数,求k的值.17.已知y=(m2+2m)x.(1)当m为何值时,y是x的正比例函数?(2)当m为何值时,y是x的二次函数?(3)当m为何值时,y是x的反比例函数?18.已知函数y=是关于x的反比例函数,求m的值并写出函数表达式.18.已知函数y=(m2﹣m)(1)当m为何值时,此函数是正比例函数?(2)当m为何值时,此函数是反比例函数?19.分别写出下列函数的表达式,并指出其中哪些是正比例函数,哪些是反比例函数.(1)当速度v=3m/s时,路程s(m)关于时间t(s)的函数;(2)当电压U=220V时,电阻R(Ω)关于电流I(A)的函数;(3)当圆柱体的体积V=100cm3时,其底面积S(cm2)关于高h(cm)的函数.20.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.参考答案一.选择题(共10小题)1.D.2.B3.D4.B5.D.6.B.7.C.8.C.9.B.10.C.二.填空题(共5小题)11.﹣1.12.z与x的关系是反比例函数.13.①③④;②.14.﹣2.15.m≠0.5.三.解答题(共6小题)16.解:∵是反比例函数,∴k2﹣k﹣3=﹣1且k﹣2≠0,解得:k=﹣1.17.解:(1)根据题意得,,由①得:m≠0,m≠﹣2,由②得:m=﹣2或1,解得m=1,故当m=1,y是x的正比例函数;(2)根据题意得,,由①得:m≠0,m≠﹣2,由②得:m=,故当m=,y是x的二次函数;(3)根据题意得,,由①得:m≠0,m≠﹣2,由②得:m=0或﹣1,解得m=﹣1,故当m=﹣1,y是x的反比例函数.18.解:由函数y=是关于x的反比例函数,得.解得m=﹣1,反比例函数是y=.19.解:(1)由y=(m2﹣m)是正比例函数,得m2﹣3m+1=1且m2﹣m≠0.解得m=3,当m=3时,此函数是正比例函数(2)由y=(m2﹣m)是反比例函数,得m2﹣3m+1=﹣1且m2﹣m≠0.解得m=2,当m=2时,此函数是反比例函数.20解:(1)由题意可得:s=3t,是正比例函数关系;(2)由题意可得:R==,是反比例函数关系;(3)由题意可得:S==,是反比例函数关系.。
反比例函数测试题及答案一、选择题1. 反比例函数y= \frac{k}{x}(k≠0)的图象是双曲线,下列说法正确的是()A. 函数图象在一、三象限内,k>0B. 函数图象在二、四象限内,k<0C. 函数图象在一、三象限内,k<0D. 函数图象在二、四象限内,k>0答案:A2. 若点(2,3)在反比例函数y= \frac{k}{x}(k≠0)的图象上,则k的值是()A. 6B. -6C. 2D. -2答案:A二、填空题3. 反比例函数y= \frac{k}{x}(k≠0)的图象经过点(1,-2),则k的值为______。
答案:-24. 反比例函数y= \frac{k}{x}(k≠0)的图象是中心对称图形,若点(a,b)在函数图象上,则点(-a,-b)也在函数图象上,且k=ab,若点(2,-1)在函数图象上,则点(-2,1)也在函数图象上,且k=______。
答案:-2三、解答题5. 已知反比例函数y= \frac{k}{x}(k≠0)的图象经过点(3,-1),求k的值,并判断图象在哪个象限。
解:将点(3,-1)代入反比例函数y= \frac{k}{x}得,-1=\frac{k}{3},解得k=-3。
因为k=-3<0,所以图象在第二、四象限。
6. 已知反比例函数y= \frac{k}{x}(k≠0)的图象经过点(2,3),求k的值,并写出函数的表达式。
解:将点(2,3)代入反比例函数y= \frac{k}{x}得,3=\frac{k}{2},解得k=6。
因此,函数的表达式为y= \frac{6}{x}。
结束语:通过以上题目的练习,可以检验你对反比例函数性质和图象特征的掌握程度,希望同学们能够通过这些题目加深对反比例函数的理解。
北师大版初中数学九年级(上) 第六章反比例函数分节练习及本章复习(带答案)第1节 反比例函数1、【基础题】下列函数中是反比例函数的有 _________ (填序号). ★★★ ①3xy =-; ②x y 2=-; ③x y 23-=; ④21=xy ; ⑤1-=x y ; ⑥2=xy; ⑦xky =(k 为常数,0≠k )2、【基础题】请写出下列各题中变量y 与x 的关系,并判断y 是x 的反比例函数吗? ★ (1)一个矩形的面积是20 2cm ,相邻的两条边长分别为 x (cm )和 y (cm ); (2)某种大米的单价是元/千克,当购买x 千克大米时,花费为y 元;(3)京沪高速公路全长约为1262 km ,汽车沿京沪高速公路从上海驶往北京,所需的时间为y (h ),行驶的平均速度为x (km/h ); (4)一个圆柱的体积为120 3cm ,它的高y (cm )与底面半径x (cm )之间的关系.3、【综合题】 当=k ______ 时,)-=(k k y 232-+k k x 是反比例函数. ☆第2节 反比例函数的图象与性质4、【基础题】下列各点中,不在反比例函数xy 6-=图象上的点是( ) ★★★ A. ()6,1- B. ()2,3- C. ⎪⎭⎫⎝⎛-12,21 D. ()5,2-、【综合题】已知A (m+3,2)和B (3,3m)是同一个反比例图象上的两个点,求m 的值. ☆ 5、【基础题】下列函数中,其图象位于第一、三象限的有_______;在其所在象限内,y 的值随x 值的增大而增大的有_______. ★★★ (1)x y 21=; (2);=x y 3.0 (3);=x y 10 (4)xy 1007-=、【基础题】已知反比例函数xm y 1+=的图象具有下列特征:在所在象限内,y 的值随x 的增大而增大,那么m的取值范围是 . ★★★6、【基础题】已知点A (-2,1y ),B (-1,2y )和C (3,3y )都在反比例函数xy 4=的图象上,比较1y 、2y 与3y 的大小. ★★★、【基础题】已知点A ),2(1y -,B ),1(2y -和C ),3(3y 都在反比例函数xy 4-=的图象上,则1y ,2y 与3y 的大小关系为 . ★★★、【综合题】已知在反比例函数xa y 12--= (a 为常数)的图象上有A (-3,1y ),B (-1,2y )和C (2,3y )三点,则1y ,2y 与3y 的大小关系为 . ★7、【基础题】如左下图,设P (m ,n )是双曲线 xy 6= 上任意一点,过P 作x 轴的垂线,垂足为A ,则=∆OAP S _____.【综合题】如右上图,反比例函数xky =在第一象限内的图象如图所示,则k 的值可能是 ( ) ★A. 1B. 2C. 3D. 4第3节 反比例函数的应用8、【综合题】在同一直角坐标系中,函数y=kx -k 与y= kx (k ≠0)的图象大致是 ( )★★★【综合题】函数xay =(0≠a )与)-(=1x a y (0≠a )在同一平面直角坐标系中的大致图象是( )9、【综合题】如图,正比例函数x k y 1=的图象与反比例函数xk y 2=的图象相交于A ,B 两点,其中点A 的坐标 为()32,3. (1)分别写出这两个函数的表达式;(2)求出点B 的坐标. ★★★、【综合题】在同一坐标系内作出函数xy 2=与函数1-=x y 的图象,并求出它们的图象的交点坐标. ★★★、【综合题】 如图,一次函数的图像与反比例函数的图像相交于A (-2,1)、B (1,n )两点. ★★★(1)求n 的值,并写出反比例函数和一次函数的解析式;(2)写出使一次函数的值大于反比例函数的值的的取值范围.10、【综合题】在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函数xk y 2=的图象没有公共点,则 21k k _____ 0 (填“<”“>”“≤”“≥”) ★、【综合题】若一次函数 4-=mx y 的图象与反比例函数 xy 2=的图象有交点,求m 的取值范围. ★本章复习一、选择题1、如果反比例函数的图像经过点(-3,-4),那么函数的图像应在( )A. 第一、三象限B. 第一、二象限C. 第二、四象限D. 第三、四象限2、下列函数中y 随x 的增大而减小的是( ) A. B. C. D.3、若反比例函数的图像在第二、四象限,则的值是( )A. -1或1B. 小于 的任意实数C. -1D. 不能确定4、在函数y=(k<0)的图像上有A(1,y)、B(-1,y)、C(-2,y)三个点,则下列各式中正确的是( )A. y<y<yB. y<y<yC. y<y<yD. y<y<y5、(2006绍兴)如图,正方形OABC 和正方形ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函 数1(0)y x x=>的图象上,则点E 的坐标是 A.11,22⎛⎫⎪ ⎪⎝⎭; B.3322⎛⎫+ ⎪ ⎪⎝⎭ C.11,22⎛⎫⎪ ⎪⎝⎭; D . 二、填空题6、如图是反比例函数在第一象限内的图象,点M 是图像上一点,MP 垂直轴于点P ,如果△MOP 的面积为1,那么的值是 _____ .7、如果点(a ,a 2-)在双曲线=y kx上,那么双曲线在第_______象限.8、对于函数,当时,y 的取值范围是________;当时且时,y 的取值范围是_______.9、在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是 (只写出符合条件的一个即可).10、(2009莆田)如图,在x 轴的正半轴上依次截取OA 1=A 1A 2 =A 2A 3=A 3A 4=A 4A 5,过点A 1、A 2、A 3、A 4、A 5分别作x 轴的垂 线与反比例函数y=(x≠0)的图象相交于点P 1、P 2、P 3、P 4、P 5, 得直角三角形OP 1A 1、A 1P 2A 2、A 2P 3A 3、A 3P 4A 4、A 4P 5A 5,并设 其面积分别为S 1、S 2、S 3、S 4、S 5,则S 5的值为 .三、解答题11、已知一次函数b kx y +=1 (b k ,为常数,且0≠k )与反比例函数xmy =2 (0≠m )的图象交于A (2,4)和B (-4,n )两点. (1)分别求出1y 和2y 的解析式; (2)写出1y =2y 时x 的值;(3)写出1y >2y 时x 的取值范围. 新|课 | 标|第 |一| 网12、如图,Rt△ABO 的顶点A 是双曲线与直线在第二象限的交点,AB ⊥轴于B ,且ABO S △=23(1)求这两个函数的解析式; (2)求△AOC 的面积.分节练习答案第1节 反比例函数 答案 1、【答案】 ②③④⑦2、【答案】(1)=y x20, 是反比例函数. (2)x y 2.2=, 不是反比例函数,是一次函数,也是正比例函数.(3)x y 1262=, 是反比例函数.(4)2120xy =, 不是反比例函数.3、【答案】 2=-k第2节 反比例函数的图象与性质 答案4、【答案】 选D【答案】 m =-6 5、【答案】 位于第一、三象限的有(1)(2)(3);在各象限内y 的值随x 值的增大而增大的有(4).、【答案】 1<-m6、【答案】 3y >1y >2y、【答案】 2y >1y >3y【答案】 2y >1y >3y 7、【答案】 =∆OAP S 3【答案】 选C第3节 反比例函数的应用 答案 8、【答案】 选D【答案】 选A9、【答案】(1)正比例函数表达式为x y 2=,反比例函数表达式为xy 6=; (2)(3-,32-)、【答案】 它们的图象有两个交点,分别是(2,1)和(-1,-2)【答案】 (1)2=-n ,反比例函数表达式为 ,一次函数表达式为 ;(2)x ﹤-2或0﹤x ﹤110、【答案】 21k k <0【答案】 2-≥m 且0≠m本章复习 答案一、选择题答案 1、【答案】 选A 2、【答案】 选C 3、【答案】 选C 4、【答案】 选B 5、【答案】 选A二、填空题答案6、【答案】 27、【答案】 二、四8、【答案】 10<<y ; 1≥y 或0<y . 9、【答案】18=y x (只要=k y x 中的k 满足9>2k 即可) 10、【答案】 S 1=1,S 2=S 1=,S 3=S 1=,S 4=S 1=,S 5=S 1=. 三、解答题答案11、【答案】 (1)21+=x y ,xy 82=; (2)x 的值为2或-4; (3)x 的取值范围是04<<-x 或2>x12、【答案】 (1) ,2+=-x y ; (2)4.。