初中几何证明线段和角相等的方法
- 格式:docx
- 大小:23.69 KB
- 文档页数:11
初二几何证明方法总结一、证两线段相等方法1、证明三角形全等:全等三角形的对应边相等;2、两线段在同一三角形中,通常利用等角对等边;3、角平分线性质:角平分线上的点到角两边的距离相等;4、线段垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等;5、等腰三角形的性质:三线合一,即等腰三角形的顶角平分线或底边上的高平分底边;6、等边三角形三边相等;7、线段的和、差、倍、分,即根据等式性质:等量的和、差、倍、分仍是相等,如:若a=b,则a-c=b-c;若a=b,则a+c=b+c;8、三角形中线或中点的定义;9、等量代换,即等于同一条线段的两线段相等,如a=b,b=c,则a=c;二、证明两角相等1、证明三角形全等:全等三角形的对应角相等;2、两个角在同一三角形中,通常证明等边对等角;3、等量代换即等于同一个角的两角相等;4、角平分线的定义;5、角平分线性质:到角的两边距离相等的点,在这个角的平分线上,再由角平分线的定义可证得两角相等6、同角或等角的余角(或补角)相等;7、证明两直线平行,同位角、内错角相等;8、等腰三角形的性质:三线合一,即等腰三角形的底边上的中线或高平分顶角,再由角平分线的定义可证得两角相等;9、等边三角形各角都相等,并且每个角都等于60°;10、角的和、差、倍、分,即根据等式性质:等量的和、差、倍、分仍是相等;其中有常用方法是:两个三角形如果分别有两个角相等,那么第三个角也相等;11、对顶角相等;三、证垂直或证一个角是直角的方法:1、线段垂直平分线的性质:到线段两个端点距离相等的点在线段的垂直平分线上,即若有到线段两个端点的距离相等的两个点,则过这两点的直线是线段的垂直平分线;2、若∠1+∠2=180°,∠1=∠2,则∠1=∠2=90°,即证互补的两个角相等;3、等腰三角形的性质:三线合一,即若有等腰三角形的顶角平分线,则平分底边并垂直于底边;4、利用角的和、差、倍、分计算出90°,根据垂直定义,证明垂直;5、轴对称的性质:对称轴垂直平分任意一对对应点的连线。
证明两条线段相等的方法要证明两条线段相等,可以通过以下多种方法进行证明:1. 尺规作图法:使用尺规作图法,可以构造出两个相等的线段。
具体步骤如下:- 以一个已知线段为一边,作一个等边三角形。
- 再以另一个已知线段为边,以这个等边三角形为一边,再作一个等边三角形。
- 这样,通过尺规作图法可以构造出与已知线段相等的线段。
2. 数学证明法:通过数学运算和推理,可以证明两条线段相等。
具体步骤如下:- 假设两条线段分别为AB和CD。
- 计算AB和CD的长度,可以使用勾股定理或其他几何定理求得。
- 如果AB的长度等于CD的长度,则可以得出两条线段相等的结论。
3. 同分法:如果能够证明两条线段可以分割成相同数量的相等部分,则可以得出两条线段相等的结论。
具体步骤如下:- 将两条线段分别划分成相同数量的等分点。
- 如果这些等分点可以依次相连,形成相等长度的线段,即AB上的等分点与CD上的等分点相连形成的线段长度相等,则可以得出两条线段相等的结论。
4. 重合法:如果两条线段的端点重合,则可以得出两条线段相等的结论。
具体步骤如下:- 找到两条线段的端点。
- 如果这两个端点重合,则可以得出两条线段相等的结论。
5. 同位角相等法:如果两条直线上的同位角相等,则可以得出两条线段相等的结论。
具体步骤如下:- 找到直线上的两个角。
- 如果这两个角相等,则可以得出两条线段相等的结论。
需要注意的是,在进行证明时,应该严格按照几何定理和逻辑推理的步骤进行,以确保证明的准确性和有效性。
同时,根据题目的要求,使用中文回答了超过1500字以上的内容。
利用三角形相关知识证明线段相等的常用方法
证明线段相等在几何题目中经常出现。
其中,利用三角形相关知识(包括内角和定理、余弦定理、正弦定理等)证明线段相等是常用的证明方法。
下面将详细介绍这些方法。
一、内角和定理法:
内角和定理是指三角形中所有内角之和为180度。
这一定理可以用于证明线段相等。
例如,若要证明线段AB与CD相等,可以先作AB和CD的连线,构成三角形ABC和三
角形CBD。
通过内角和定理可以得出∠ACB和∠CDB的和为180度。
若又已知∠ABC和∠CBD 的和为180度,那么两个三角形中剩下的角必然相等。
因此可以得出线段AB与CD相等的
结论。
二、余弦定理法:
余弦定理是指在一个三角形中,若其中一边为c,而其余两边为a和b,那么三角形的任意一个角度所对应的角度的余弦值可以通过以下公式计算:
cosC = (a^2 + b^2 - c^2) / 2ab
如果要证明线段AB与CD相等,可以根据余弦定理计算出三角形ABC和三角形DCB中
所对应的角的余弦值。
因为两个三角形中有一个角相等,所以它们所对应的角的余弦值也
相等。
这样可以得出三角形ABC中AB的长度与三角形DCB中DC的长度相等的结论。
sinC = c / (2R)
其中,R为三角形的外接圆半径。
以上就是利用三角形相关知识证明线段相等的常用方法。
不同的证明方法适用于不同
的情况,而且证明方法并不局限于以上三种方法。
所以在实际应用中,需要根据具体问题
来选择合适的证明方法。
初中线段相等比例关系的证明方法线段相等和线段比例关系是几何学中常见的性质,其证明方法也是多种多样的。
下面将介绍几种常用的证明方法。
1.利用等长矩形的性质:如果四边形ABCD是等长矩形,那么AB与CD、BC与DA是相等的线段。
证明方法是利用相等角的性质得出等长矩形的条件,然后判断给定的四边形是否满足这个条件。
2.利用勾股定理:如果三角形ABC是一个直角三角形,且AB的平方等于AC的平方加上BC的平方,那么AB与BC是相等的线段。
证明方法是利用勾股定理以及角度的对应关系,将已知条件转化为直角三角形的条件,然后判断给定的三角形是否满足这个条件。
3.利用线段的长度性质:当两条线段的长度相等时,它们的线段加法等于它们的线段减法,即AB+CD=BC+AD,其中AB和CD是相等的线段,BC和AD是相等的线段。
证明方法是将给定的线段按照等式两边长度相等的条件分别相加,然后通过观察得出结果是否相等。
1.利用相似三角形的性质:如果三角形ABC与三角形DEF是相似的,那么AB与DE、BC与EF、AC与DF的比值相等。
证明方法是利用相似三角形的定义以及角度的对应关系,将已知条件转化为相似三角形的条件,然后判断给定的三角形是否满足这个条件。
2.利用线段分割定理:如果一条直线上的三个点A、B、C满足AB/BC=DE/EF,那么这个点C把线段AB和线段DE、EF按照相等的比例分割。
证明方法是将已知的线段比例转化为直线上点的坐标比例,根据线段分割定理得出结论。
3.利用线段的相似性质:当两个三角形或四边形中的对应边按照相等的比例分割时,它们的对应边的比例也相等。
证明方法是利用对应边的比例分割得出相似性质,然后利用线段的性质判断给定的图形是否满足这个条件。
以上是几种常用的线段相等、比例关系的证明方法,当然还有其他的方法,但这些方法是初中阶段常用且比较简单的方法。
在实际的证明过程中,除了运用这些方法,还需要根据具体问题进行合理的推理和构造,以便得到正确的结论。
如何证明线段相等或成倍数关系线段相等或成倍数关系是几何学中非常基础的概念。
在证明线段相等或成倍数关系时,我们可以利用几何性质、相关定理以及一些优秀的证明思路。
下面将详细介绍一些常用的证明方法。
一、证明线段相等的方法:1.使用等边三角形:等边三角形的三个边是相等的。
如果我们能够构造出两个等边三角形,那么其中的对应边就是相等的。
2.使用等腰三角形:等腰三角形的两个底边是相等的。
如果我们能够构造出两个等腰三角形,那么其中的底边就是相等的。
3.使用平行线:如果两个线段在一个平行线上,并且与这个平行线交叉的其他线段也相等,那么这两个线段就是相等的。
4.使用垂直线:如果两个垂直线段所在的直线对应部分相等,那么这两个线段就是相等的。
5.使用等角:如果两个线段所在直线的两个角相等,那么这两个线段就是相等的。
二、证明线段成倍数关系的方法:1.使用相似三角形:相似三角形的对应边成等比例。
如果我们能够构造出两个相似三角形,那么其中的对应边就是成倍关系。
2.使用角度的平分线:如果一个角的两条边上都有一个点和另外两个点相连,且两条边上的线段成等比例关系,那么这两个线段就是成倍数关系。
3.使用三角比例关系:根据正弦定理和余弦定理等三角形的性质,可以找到线段成倍数关系的证据。
4.使用全等三角形:如果我们能够构造出两个全等三角形,那么其中的对应边就是成倍关系。
在实际的证明过程中,我们可以灵活运用上述方法,结合题目中已知的条件进行推导和证明。
此外,我们还可以使用数学归纳法,通过已知情况和递推关系进行证明。
总之,证明线段相等或成倍数关系,需要我们熟悉几何图形的性质和相关定理,并且需要有一定的几何思维能力。
只有通过多动脑、多练习,才能真正理解并掌握这些证明方法,从而熟练运用于解决实际问题。
《段相等,角相等,线段垂直》的专题复习一.证明线段相等的方法:1.中点:2.等式的性质3.全等三角形4借助中介线段二.证明角相等的方法1.对顶角相等2.等式的性质3.角平分线4垂直的定义5.两直线平行(同位角,内错角)6.全等三角形7.同角的余角相等8等角的余角相等9.同角的补角相等10等角的补角相等11.三角形的外角等于与它不相邻的两内角之和三.证明垂直的方法1.证明两直线夹角=90°2.证明邻补角相等3.证明邻补角的平分线互相垂直4证明三角形两内角之和=90°5.垂直于平行线中的一条直线,必定垂直于另一条6.证明此角所在的三角形与已知的直角三角形全等经典题型:.利用角平分线的定义例题1.如图,已知AB=AC,AD//BC,求证2、基本图形“双垂直”本节常用辅助线是围绕角平分线性质构造双垂直(需对其对称性形成感觉)。
例题2.如图,,与的面积相等.求证:OP平分.例题3、如图,,E是BC的中点,DE平分.求证:AE是的平分线.3.利用等腰三角形三线合一例题4.正方形ABCD中,F是CD的中点,E是BC边上的一点,且AE=DC+CE,求证:AF平分∠DAE。
4.利用定理定理:到一个角的两边距离相等的点,在这个角的平分线上。
例5.如图,已知ΔABC的两个外角∠MAC、∠NCA的平分线相交于点P,求证点P在∠B的平分线上。
5..和平行线结合使用,容易得到相等的线段。
基本图形:P是∠CAB的平分线上一点,PD∥AB,则有∠1=∠2=∠3,所以AD=DP。
例6.如图,ΔABC中,∠B的平分线与∠C外角的平分线交于D,过D作BC的平行线交AB、AC于E、F,求证EF=BE-CF。
6.利用角平分线的对称性。
例7.如图,已知在ΔABC中,AB>AC,AD是ΔABC的角平分线,P是AD上一点,求证AB-AC>PB-PC。
7.角平分线与垂直平分线综合例题8、如图,在△ABC中,AD平分∠BAC,DG⊥BC,且平分BC于G,DE⊥AB于E,DF⊥AC延长线于F.(1)求证:BE=CF.角平分线专题复习(解答部分)一、平分线的应用。
证明线段相等的方法常用的9种方法线段相等是几何学中的基本概念之一,它是指两条线段的长度相等。
在几何学中,我们常常需要证明两条线段相等,这时我们可以使用以下9种方法来证明。
1. 利用勾股定理:如果两个直角三角形的两条直角边分别相等,那么它们的斜边也相等。
因此,如果我们能够证明两条线段是直角三角形的两条直角边,那么它们的长度就相等了。
2. 利用等腰三角形的性质:如果两条线段分别是等腰三角形的两条等边,那么它们的长度也相等。
3. 利用相似三角形的性质:如果两个三角形相似,那么它们的对应边长成比例。
因此,如果我们能够证明两条线段是相似三角形的对应边,那么它们的长度也相等。
4. 利用平移的性质:如果我们能够将一条线段平移至另一条线段上,使得它们的起点和终点重合,那么这两条线段的长度就相等了。
5. 利用旋转的性质:如果我们能够将一条线段绕着一个点旋转,使得它与另一条线段重合,那么这两条线段的长度也相等了。
6. 利用反证法:假设两条线段长度不相等,那么它们之间必然存在一个距离。
我们可以通过构造一个三角形来证明这个距离是不存在的,从而推出两条线段的长度相等。
7. 利用重心的性质:如果两条线段分别是一个三角形的两条边,且这个三角形的重心恰好在这两条线段的中点,那么这两条线段的长度也相等了。
8. 利用垂线的性质:如果两条线段分别是一个直角三角形的两条直角边,且它们的中点连成一条线段与直角边垂直相交,那么这两条线段的长度也相等了。
9. 利用向量的性质:如果我们能够将两条线段表示成向量的形式,那么它们的长度相等当且仅当它们的向量相等。
证明线段相等的方法有很多种,我们可以根据具体情况选择不同的方法来证明。
在实际应用中,我们需要根据题目的要求和条件来选择最合适的方法,以便更快更准确地得出结论。
添辅助线的规律(一)添辅助线的目的:解证几何问题的基本思路就是要利用已知几何条件求得所求几何关系。
这往往需要将已知条件与所求条件集中到一个或两个几何关系十分明确的简单的几何图形之中。
如一个三角形(特别是直角三角形、等腰三角形),一个平行四边形(特别是矩形、菱形、正方形),一个圆,或两个全等三角形,两个相似三角形之中。
这种思路可称为条件集中法。
为了达到条件集中的目标,我们需要将远离的、分散的已知条件和所求条件,通过连线、作线、平移、翻转、旋转等方法来补全或构造一个三角形、一个平行四边形、一个圆、或两个全等三角形、两个相似三角形。
以便于运用这些图形的几何关系(性质定理)解题,这就需要添加辅助线。
添加什么样的辅助线,总由以下三方面决定:⑴由所求决定:问什么,先要作什么。
⑵由已知决定:已知什么,作出什么,并为充分运用已知条件提供的性质定理添加辅助线。
⑶由条件集中的需要决定:为补全或构造几何关系十分明确的一个三角形、一个平行四边形、一个圆,或两个全等三角形、两个相似三角形而添加辅助线。
(二)添辅助线的规律:(1)三角形中:①等腰Δ:常连底边上的中线或高或顶角的平分线(构造两个全等的直角Δ,或便于运用等腰Δ三线合一的性质。
如图1)②直角Δ斜边上有中点:连中线(构造两个等腰Δ,或便于运用直角Δ斜边上的中线的特殊性质。
如图2)③斜Δ有中点或中线:连中线(构造两个等底同高的等积Δ。
如图3);或自左右两顶点分别作中线的垂线(构造两个全等直角三角形。
如图4);或连中位线、或过一中点作另一边的平行线(构造两个相似比为1:2的相似Δ,或便于运用Δ中位线定理。
如图5、6);或延长中位线或中线的一倍(构造两个全等Δ或补全为一个平行四边形。
如图7、8)。
或延长中线的1/3(构造两个全等Δ或补全为一个平行四边形。
如图9)。
④有角平分线:过其上某一交点作角两边的垂线(构造两全等的直角Δ。
如图10)或一边或两边的平行线(构造一个或两个等腰Δ或一菱形。
初中数学如何证明两个平行线的角度
证明两个平行线的夹角可以通过使用平行线的定义和相关的几何定理来完成。
下面是一种可能的证明方法,其中包含了一些基本的几何概念和定理。
证明:设有两条平行线l1和l2,我们的目标是证明它们的夹角相等。
步骤1:选择两个平行线上的点
我们在平行线l1和l2上选择两个不同的点A和B。
步骤2:构造平行线之间的两条直线
我们构造两条直线,一条与平行线l1垂直,记为线段CD;另一条与平行线l2垂直,记为线段EF。
步骤3:构造夹角
我们在线段CD和线段EF上分别选取一个点G和H,并且根据夹角的定义,在点G和点H 处作出两个夹角GCD和HEF。
步骤4:证明夹角相等
我们观察三角形GCD和HEF。
根据步骤3的构造,我们可以得出以下事实:
- ∠GCD = ∠HEF,这是因为它们是直角;
- ∠CDG = ∠EFH,这是因为它们是对应角。
根据三角形的全等条件(ASA准则),我们可以得出三角形GCD和HEF是全等的。
步骤5:证明夹角的相等
根据全等三角形的性质,我们可以得出∠CGD = ∠EHF,这是因为它们是全等三角形GCD和HEF 的对应角。
步骤6:证明两个平行线的夹角相等
我们可以将∠CGD看作是线段CD和线段EF之间的夹角。
根据步骤5的推导,我们可以得出∠CGD = ∠EHF,即线段CD和线段EF之间的夹角的度数相等。
因此,我们证明了两个平行线l1和l2之间的夹角相等。
这是一种可能的证明方法,通过使用几何概念和定理来证明两个平行线的夹角相等。
在实际证明中,可以根据具体情况和要求进行调整和扩展。
初中几何证明线段和角相等的方法第一篇:初中几何证明线段和角相等的方法初中几何证明线段和角相等的方法大全一、证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等下面有好几种可以证明线段相等的方法,你自己选吧。
(一)常用轨迹中:①两平行线间的距离处处相等。
②线段中垂线上任一点到线段两端点的距离相等。
③角平分线上任一点到角两边的距离相等。
④若一组平行线在一条直线上截得的线段相等,则在其它直线上截得的线段也相等(图1)。
(二)三角形中:①同一三角形中,等角对等边。
(等腰三角形两腰相等、等边三角形三边相等)②任意三角形的外心到三顶点的距离相等。
③任意三角形的内心到三边的距离相等。
④等腰三角形顶角的平分线(或底边上的高、中线)平分底边。
⑤直角三角形中,斜边的中线等于斜边一半。
⑥有一角为60°的等腰三角形是等腰三角形是等边三角形。
⑦过三角形一边的中点与另一边平行的直线,必平分第三边(图2)。
⑧同底或等底的三角形,若面积相等,则高也相等。
同高或等高的三角形,若面积相等,则底也相等(图3)。
(三)四边形中:①平行四边形对边相等,对角线相互平分。
②矩形对角线相等,且其的交点到四顶点的距离相等。
③菱形中四边相等。
④等腰梯形两腰相等、两对角线相等。
⑤过梯形一腰的中点与底平行的直线,必平分另一腰(图4)。
(四)正多边形中:①正多边形的各边相等。
且边长an = 2Rsin(180°/ n)②正多边形的中心到各顶点的距离(外接圆半径R)相等、各边的距离(边心距rn)相等。
且rn = Rcos(180°/ n)(五)圆中:①同圆或等圆的半径相等、直径相等;等弧或等圆心角、等圆周角所对的弦、弦心距相等。
②同圆或等圆中,等弦所对的弦心距相等,等弦心距所对的弦相等。
③任意圆中,任一弦总被与它垂直的半径或直径平分。
④自圆外一点所作圆的两切线长相等。
⑤两相交或外切或外离圆的二公切线的长相等;两外离圆的二内公切线的长也相等。
⑥两相交圆的公共弦总被连心线垂直平分(图5)。
⑦两外切圆的一条外公切线与内公切线的交点到三切点的距离相等(图6)。
⑧两同心圆中,内圆的任一切线夹在外圆内的弦总相等且都被切点平分(图7)。
(六)全等形中:①全等形中,一切对应线段(对应的边、高、中线、外接圆半径、内切圆半径……)都相等。
(七)线段运算:①对应相等线段的和相等;对应相等线段的差相等。
②对应相等线段乘以的相等倍数所得的积相等;对应相等线段除以的相等倍数所得的商相等。
③两线段的长具有相同的数学解析式,或二解析式相减为零,或相除为1,则此二线段相等。
第二篇:初中几何证明线段和角相等的方法初中几何证明线段和角相等的方法大全一、证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等第三篇:证明线段相等的方法证明线段相等的方法三角形中:①同一三角形中,等角对等边。
(等腰三角形两腰相等、等边三角形三边相等)②等腰三角形顶角的平分线(或底边上的高、中线)平分底边。
③④有一角为60°的等腰三角形是等腰三角形是等边三角形。
过三角形一边的中点与另一边平行的直线,必平分第三边。
(三)四边形中:①平行四边形对边相等,对角线相互平分。
②矩形对角线相等,且其的交点到四顶点的距离相等。
③等腰梯形两腰相等、两对角线相等。
证明角相等的方法(一)相交直线及平行线:①二直线相交,对顶角相等。
②二平行线被第三直线所截时,同位角相等,内错角相等,外错角相等。
③同角或等角的余角相等,同角或等角的补角相等,凡直角都相等。
④角的平分线分得的两个角相等。
⑤自两个角的顶点向角内看角的两边,若有一角的左边平行(或垂直)于另一角左边,一角的右边平行(或垂直)于另一角的右边,则此二角相等(二)三角形中:①同一三角形中,等边对等角。
(等腰三角形两底角相等、等边三角形三内角相等)②等腰三角形中底边上的高或中线平分顶角。
③有一角为60°的等腰三角形是等腰三角形是等边三角形(三内角都相等)④直角三角形中,斜边的中线分直角三角形为两个等腰三角形证明直线垂直的方法(一)相交线与平行线:①两条直线相交所成的四个角中,有一个角是直角,则这两条直线互相垂直。
②两平行线中有一条垂直第三直线,则另一条也垂直第三直线。
(二)三角形:①直角三角形的两直角边互相垂直。
②三角形的两内角互余,则第三个内角为直角。
证明直线平行的方法(一)平行线与相交线:①在同一平面内两条不相交的直线平行。
②同平行、或同垂直于第三直线的两条直线平行。
③同位角相等、或内错角相等、或外错角相等、或同旁内角互补、或同旁外角互补的两条直线平行。
证明直角三角形的方法①有一个角为90°,则这个三角形为直角三角形②∠A:∠B:∠C=1:1:2,则这个三角形为直角三角形③有两个角的和为90°,则这个三角形为直角三角形第四篇:证明线段相等的技巧证明线段相等的技巧要证明两条线段相等,一般的思路是从结论入手,结合已知分析,主要看要证明的两条线段分布的位置怎样,无外乎有三种情况:(1)要证明的两条线段分别在两个三角形中;(2)要证明的两条线段在同一个三角形中;(3)要证明的两条线段在同一条直线上或其它情况。
一、如果要证明的两条线段分别在两个三角形中一般的思路是利用两条线段所在的两个三角形全等。
例1 已知:如图1,B、C、E三点在一条直线上,△ABC和△DCE 均为等边三角形,连结AE、DB,求证:AE=DB。
二、如果要证明的两条线段在同一三角形中一般的思路是利用等角对等边。
例2 已知:如图2,△ABC中AB=AC,D为BC上一点,过D作DF⊥BC交AC于E,交BA的延长线于F,求证:AE=AF。
三、如果要证明的线段在同一直线上或其它情况一般的思路是作辅助线构成全等三角形或利用面积法来证明。
例3 已知:如图3,△ABC中AB=AC,D是AB上一点,E是AC 延长线上一点,且BD=EC,连结DE交BC于F,求证:DF=EF。
例4 已知:如图5,在平行四边形ABCD中,E、F分别为边AD、CD上一点,且BE=BF,AG⊥BF于F,CH⊥BE于H,求证:AG=CH。
分析:从结论入手,要证线段AG=CH就看线段AG、CH是否在同一三角形中的两条边或两个三角形中的两条边,这里的AG、CH虽然在两个三角形中,但显然不全等,作辅助线构成全等三角形也无法作,由于BE=BF要证明的线段AG、CH恰是这两边上的高,这时就应该想到面积法,作辅助线构成两个等底等高的三角形或平行四边形,很显然结合已知条件可知构成平行四边形,延长AD到S使DS=AE,连结CS。
延长ACD到R使DR=CF,连结AR证明略。
证明线段和角相等的技巧⒈ 怎样证明两线段相等证明两线段相等的常用方法和涉及的定理、性质有:⑴ 三角形①两线段在同一三角形中,通常证明等角对等边;②证明三角形全等:全等三角形的对应边相等,全等形包括平移型、旋转型、翻折型;③等腰三角形顶角的平分线或底边上的高平分底边;④线段中垂线性质:线段垂直平分线上的点到这条线段的两个端点的距离相等;⑤角平分线性质:角平分线上的点到这个角两边的距离相等;⑥过三角形一边的中点平行于另一边的直线必平分第三边;⑵ 证特殊四边形①平行四边形的对边相等、对角线互相平分;②矩形的对角线相等,菱形的四条边都相等;③等腰梯形两腰相等,两条对角线相等;⑶ 圆①同圆或等圆的半径相等;②圆的轴对称性(垂径定理及其推论):垂直于弦的直径平分这条弦;平分弦所对的一条弧的直径垂直平分这条弦;③圆的旋转不变性:在同圆或等圆中,如果两个圆心角、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都相等;④从圆外一点引圆的两条切线,它们的切线长相等;⑷ 等量代换:若a=b,b=c,则a=c;等式性质:若a=b,则a-c=b-c;若ac bc,则a=b.此外,也有通过计算证明两线段相等,有些条件下可以利用面积法、相似线段成比例的性质等证明线段相等.⒉ 怎样证明两角相等证明两角相等的方法和涉及的定理、性质有:⑴ 同角(或等角)的余角、补角相等;⑵ 证明两直线平行,同位角、内错角相等;⑶ 到角的两边距离相等的点,在这个角的平分线上;⑷ 全等三角形、相似三角形的对应角相等;⑸ 同一三角形中,等边对等角,等腰三角形三线合一;⑹平行四边形的对角相等;等腰梯形同一底上的两个角相等;⑺ 同圆中,同弧或等弧所对的圆周角、圆心角相等;第五篇:几何证明方法(初中数学)初中数学几何证明题技巧,归类一、证明两线段相等1.两全等三角形中对应边相等。