列方程找等量关系窍门
- 格式:docx
- 大小:37.41 KB
- 文档页数:2
一元一次方程找等量关系的小窍门
找一元一次方程等量关系的小窍门有很多,以下是一些常见的技巧:
1. 分析题意:仔细阅读题目,理解题目的意思和要求。
明确题目中的已知量和未知量,以及它们之间的关系。
2. 找出关键词:在题目中找出与等量关系相关的关键词,如“等于”、“是”、“等于多少”等。
这些关键词可以帮助你确定等量关系的表达式。
3. 利用常识:根据常识和经验,理解题目中的情境和背景。
例如,在购物问题中,通常涉及到价格、数量和总价的关系;在行程问题中,通常涉及到速度、时间和距离的关系。
4. 列出关系式:根据题意和关键词,列出等量关系的数学表达式。
注意表达式的正确性和完整性,确保每个量都正确地表示出来。
5. 简化表达式:如果表达式过于复杂或冗长,尝试对其进行简化或化简。
这有助于更清晰地表达等量关系。
6. 验证答案:在找到等量关系并解出方程后,要验证答案的正确性。
可以通过代入原方程或利用其他方法来验证答案是否符合题意。
通过以上技巧,可以帮助你更好地找出一元一次方程的等量关系,从而正确地解决问题。
小学生如何寻找等量关系列方程等量关系是表示数量间的相等关系。
列方程解应用题时,思路的重点是找出等量关系,这样就比较容易列出方程了。
1、根据题目中的关键句找等量关系。
这种方法一般适用于和差关系、倍数关系的应用题,在题中常有这样的提示:“一共有”、“比……多(少)”、“是……的几倍”、“比……的几倍多(少)”等。
在解题时,可根据这些关键字词来找等量关系,按叙述的顺序列出方程。
◆例如:星期天,妈妈上街买了一些水果,妈妈买20个苹果,买苹果的个数是西瓜的3倍多1个,西瓜有多少个?这道题的关键句是:苹果的个数是西瓜的3倍多1个,从中可以找出等量关系:西瓜×3-1=苹果的个数。
设西瓜的个数为ⅹ,就可以列方程为:3X-1=20◆又如:小红在假日里折纸花71朵,是小军折叠的朵数的3倍还多2朵,小军折叠了多少朵?紧扣题中的关键句“是小军折的朵数的3倍还多2朵”,我们即可以来列出等量关系式:小军折叠的朵数×3+2=小红折叠的朵数。
设小军折叠的朵数为ⅹ,则有ⅹ×3+2=712、用公式、常见数量关系式作等量关系。
每份数×份数=总数结余=收入-支出已生产的量+还需生产量=生产总量单价×数量=总价工作效率×工作时间=工作总量或工作效率和×工作时间=工作总量速度×时间=路程或速度和×时间=路程等等◆例如:甲、乙两人加工520个零件,甲每小时加工5个,乙每小时加工8个,两人合做几小时完成?根据工程问题等量关系式:工作效率[和]×工作时间=工作总量设两人合做X小时完成,列方程:(5+8)X=520◆在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。
如:一个梯形的面积是30平方分米,它的上底是4分米,下底是8分米。
求梯形的高。
梯形的面积公式作为等量关系即:“(上底+下底)×高÷2=梯形的面积”列出方程:设梯形的高为X分米,(4+8)X÷2=303、根据生活的经验找出等量关系列方程◆例如:我有10块糖,吃了几块后,又买来4块,现在我有11块糖,我吃了几块?本题的等量关系:原来的糖数-吃的糖数+又买来的糖数=现在的糖数。
找等量关系式的四种方法在数学中,等量关系式是指具有相等关系的数学表达式,即两个或多个数学表达式之间的数值相等。
寻找等量关系式的四种方法如下:1.代换法:通过代换法可以求得等量关系式。
首先,我们将一个数或变量代入另一个数或变量的表达式中,然后求解出两者之间的数值关系。
这种方法常见于解方程问题,例如解一次方程、二次方程或其他高次方程。
例如,对于方程2x+3=11,我们可以通过代换法找到等量关系式。
首先,我们将x代入方程中,得到2*4+3=11,进而可以得到等量关系式2x+3=112.化简法:通过化简法可以找到等量关系式。
化简就是对一个数学表达式进行简化,将复杂的表达式转化为简单的形式。
通过将两个或多个数学表达式化简为同一形式,可以得到等量关系式。
例如,对于表达式2x+3x,我们可以进行化简得到5x。
因此,可以得到等量关系式2x+3x=5x。
3.分解法:通过分解法可以找到等量关系式。
分解就是将一个复杂的数学表达式分解为几个简单的数学表达式之和或乘积的形式。
通过将两个或多个数学表达式进行分解,可以得到等量关系式。
例如,对于表达式4x+5,我们可以将其分解为2x+2x+1+1+1,进而得到等量关系式4x+5=2x+2x+1+1+14.变换法:通过变换法可以找到等量关系式。
变换就是对一个数学表达式进行等式变形,得到等价但形式不同的数学表达式。
通过对数学表达式进行变换,可以得到等量关系式。
例如,对于表达式4x=2x+6,我们可以通过变换法得到等量关系式4x-2x=6总结起来,寻找等量关系式的方法有代换法、化简法、分解法和变换法。
每种方法都有其应用的场景,根据具体问题选择适应的方法可以更快有效地求得等量关系式。
找等量关系式的四种方法
等量关系式指的是具有相同数值的两个或多个数的关系。
以下是四种方法来找到等量关系式:
1.字母代换法:通过字母代换法,我们可以用一个字母或符号代替一个或多个未知数。
通过这种方式,我们可以将一个问题转化为一个或多个方程,从而找到等量关系式。
例如,假设一个数字与它本身加上12的和的两倍之差等于36,则可以设这个数字为x。
根据给定条件,我们可以列出等式2x-(x+12)=36、通过解这个方程,我们可以找到等量关系式x=24
2.图形法:图形法通过绘制图表或图形来找到等量关系式。
例如,如果给定一个线性方程y=2x+3,并要求找到使得y=7的x的值,我们可以绘制这个线性方程的图表。
通过在图表中找到y=7对应的x值,我们可以找到等量关系式x=2
3.实例法:实例法通过列举具体的实例来找到等量关系式。
例如,假设一辆汽车每小时以60公里的速度行驶,我们可以通过具体的实例来找到等量关系式。
如果汽车行驶了2小时,那么汽车行驶的总距离为60公里/小时×2小时=120公里。
通过这一实例,我们可以找到等量关系式总距离=60公里/小时×时间。
4.探究法:探究法通过不断的探究和推断来找到等量关系式。
例如,在解决几何问题时,我们可以根据已知条件和几何关系来推断出等量关系式。
通过不断地探究几何图形的特征和性质,我们可以找到等量关系式来解决问题。
需要注意的是,在寻找等量关系式时,我们还需要考虑问题的上下文和特定要求。
在确定等量关系式后,我们还需要进行验证和求解,以确保等量关系式的准确性和可行性。
找等量关系式的四种方法1、依据题目中的重点句找等量关系。
应用题中反应等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人” 、“桃树和杏树一共有180棵”这样的句子叫做应用题的重点句。
在列方程解应用题时,同学们能够依据重点句来找等量关系。
比如:买3支钢笔比买5支圆珠笔要多花元。
每支圆珠笔的价格是元,每支钢笔多少钱我们能够依据题目中的重点句“ 3 支钢笔比 5 支圆珠笔要多花元”找出等量关系:3支钢笔的价格-5支圆珠笔的价格=元设:每支钢笔X元。
3X-×5=2、用常有数目关系式作等量关系。
我们已学过了如“工效×工时=工作总量” 、“速度×时间=行程” 、“单价×数目=总价”、“单产量×数目=总产量”等常有数目关系式,能够把这些常有数量关系式作为等量关系式来列方程。
比如:甲乙两辆汽车同时从相距237千米的两个车站相向开出,经过3小时两车相遇,甲车每小时行38千米,乙车每小时行多少千米我们能够依据“速度 (和 )×时间=行程”找出等量关系:“(甲速+乙速)×相遇时间=行程”设:乙车每小时行X千米(38+X)×3=2373、把公式作为等量关系。
在解答一些几何形体的应用题时,我们能够把相关的公式作为等量关系。
比如:一个梯形的面积是30平方分米,它的上底是4分米,下底是8分米。
求梯形的高。
我们就把梯形的面积公式作为等量关系即:“(上底+下底)×高÷2=梯形的面积”列出方程。
设:梯形的高是X分米(4+8)×X÷2=304、画出线段图找等量关系关于数目关系比较复杂,等量关系不够显然的应用题我们能够先画出线段图,再依据线段图找出等量关系。
比如:东乡农场计划耕6420 公顷耕地,已经耕了5天,均匀每日耕780 公顷,剩下的要3天耕完,均匀每日要耕多少公顷依据题意画出线段图:从图中我们能够看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:设:均匀每日要耕X公顷780×5+3X= 6420想想:依据上边的线段图还能够找出哪些等量关系。
列方程解决问题找等量关系常用的几种方法1、抓住题目中的关键句。
比如男生有63人,比女生人数的3倍还多3人。
女生有多少人?题目中的关键句是男生人数比女生人数的3倍多3人,抓住此关键句可以列出这样的等量关系式:女生人数×3+3=男生人数。
(当然还可以列出等量关系式:男生人数-女生人数×3=3等)。
2、运用常用的数量关系和计算公式。
如速度×时间=路程,底×高÷2=三角形的面积等等。
3、抓住不变量。
如正反比例解决问题中的比值或乘积一定。
又如四(1)男生人数是女生人数的5/6。
这学期转来1名女生,现在男生人数是女生的4/5。
四(1班)原来有多少名同学?这里男生人数是一个不变量,原来女生人数是男生的6/5,现在女生人数是男生的5/4。
现在女生人数-原来女生人数=1,也就是男生人数的5/4-男生人数的6/5=1,根据此等量关系就能列出方程,求出男生的人数,进而求出原来女生人数和原来全班人数。
4、根据题目叙述情节找等量关系。
如仓库上午运进货物123吨,下午又运进一批货物,现在仓库里一共有货物345吨。
下午运进货物多少吨?根据题目的叙述列出这样的等量关系式样:上午运进货物吨数+下午运进货物吨数=现又货物吨数。
5、画线段图找等量关系。
例如美术兴趣小组一共有男女生24人,其中女生人数是男生人数的2倍。
美术兴趣小组中男女生各有几人?先引导学生找出其中的1倍量(男生人数),再画出线段图(男生人数是1份,女生人数就是这样的2份,从图上可以看出:女生人数+女生人数×2=24。
据此可以列出方程。
再如,用分数解决实际问题,历来是学习的难点,学生不容易理解。
教师可以引导学生画出线段图,帮助学生理解,找准对应关系,进而列出等量关系式。
画线段图的关键仍是找准哪个量是单位“1”,其它量都是与单位“1”相比较而言的。
而理解单位“1”,重点要看清是哪个量的几分之几。
列方程怎么找等量关系初中
在解决实际问题时,我们经常需要找到等量关系来列方程。
等量关系是指两个量之间相等的关系。
以下是一些常见的等量关系:
1. 总量等量关系:总量 = 部分量 + 部分量
2. 差量等量关系:差量 = 被减数 - 减数
3. 速度、时间、距离等量关系:速度 = 距离 / 时间,距离 = 速度× 时间,时间 = 距离 / 速度
4. 工作、效率、时间等量关系:工作效率 = 工作量 / 工作时间
5. 比例等量关系:比例关系 = 一个量 / 另一个量
例如,我们可以根据速度、时间和距离的关系来列方程。
假设我们有一个问题:一辆汽车以60公里/小时的速度行驶了3小时,求汽车行驶的距离。
我们可以根据速度、时间和距离的关系列出方程:
速度 = 60公里/小时
时间 = 3小时
距离 = 速度× 时间
所以,我们可以得到方程:60 × 3 = d,其中d是汽车行驶的距离。
通过这个例子,我们可以看到,找到等量关系是列方程的关键。
我们需要理解问题的背景,明确各个量之间的关系,然后根据这些关系列出方程。
初中方程找等量关系的口诀
1.抓住关键句,寻找等量关系:
●找到题目中的“等于”、“比…多”、“比…少”、“是…的几倍”、“一共”、
“相差”等关键词汇,这些往往暗示着等量关系的存在。
●例如:“小明和小红共收集了100个瓶子”,其中的“共”字就提示了等
量关系。
2.运用数量关系式建立等量关系:
●根据常见数学模型建立等式,如:工作总量=工作效率×工作时间、
路程=速度×时间、总价=单价×数量、总产量=单产量×面积等。
●如题目描述的是某个具体问题的情景时,可以利用这些公式来构建
等量关系。
3.根据图形或线段图找等量关系:
●对于几何问题,通过画出线段图、面积图等可视化工具,直观地展
示出各个部分之间的数量关系。
●比如在解梯形面积问题时,可以通过梯形面积公式(上底+下底)×
高÷2建立等量关系。
4.应用代数思想抽象化处理:
●把未知量用字母表示,并根据题意列出方程,通过运算求解。
●例如:“已知甲车速度为每小时38千米,两车相遇时,它们走过的
路程之和等于总路程237千米。
”可以设乙车速度为X,得到等量关
系式(38+X)×3=237。
总结起来就是:
•关键句里抓等式,
•数量关系建模快,
•几何图形显关系,
•未知字母列方程。
列方程找等量关系的一些常用方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!在解决数学问题时,找到等量关系是非常关键的一步。
等量关系指的是两个量之间存在的相等关系,这种关系可以帮助我们建立方程,从而求解问题。
找等量关系式的四种方法1、根据题目中的关键句找等量关系应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。
在列方程解应用题时,同学们可以根据关键句来找等量关系。
例如:买3支钢笔比买5支圆珠笔要多花0.9元。
每支圆珠笔的价钱是0.6元,每支钢笔多少钱?我们可以根据题目中的关键句“3支钢笔比5支圆珠笔要多花0.9元”找出等量关系:3支钢笔的价钱-5支圆珠笔的价钱=0.9元设:每支钢笔X元。
3X-0.6×5=0.92、用常见数量关系式作等量关系。
我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。
例如:甲乙两辆汽车同时从相距237千米的两个车站相向开出,经过3小时两车相遇,甲车每小时行38千米,乙车每小时行多少千米?我们可以根据“速度(和)×时间=路程”找出等量关系:“(甲速+乙速)×相遇时间=路程”设:乙车每小时行X千米(38+X)×3=2373、把公式作为等量关系在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。
例如:一个梯形的面积是30平方分米,它的上底是4分米,下底是8分米。
求梯形的高。
我们就把梯形的面积公式作为等量关系即:“(上底+下底)×高÷2=梯形的面积”列出方程。
设:梯形的高是X分米(4+8)×X÷2=304、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。
例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷?根据题意画出线段图:从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:设:平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系。
列方程找等量关系窍门
常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程,在解题时,可以根据这些数量关系去找等量关系.
一、从关键句入手找等量关系。
关键句就是应用题充分反映数量关系的核心。
解题前~必须深入细致审题~从题中找到关键句~再把关键句用语言文字等式则表示出~从而列举方程~例如:某班存有女生38人~比男生的2倍多4人~男生存有多少人,
把关键句“比男生人数的2倍多4人”替换成女生人数,男生人数×2,4或女生人数,4,男生人数×2~可分别得到方程2x+4=38~2x=38-4。
二、利用基本等量关系列方程
学习列方程应用题之前~要熟记“速度×时间,路程~单价×数量,总价~工作效率×工作时间,工作量~总数量?总份数,平均数”等基本数量关系。
通过这些基本数量关系分
析三者的关系而列出方程。
三、根据计算公式列方程:
我们在几何初步知识的学习中掌握了一些计算公式~这些公式就是一种等量关系。
如:平行四边形面积、三角形面积、梯形面积、圆面积公式。
四、画线段图打听等量关系:
一幅规范的线段图清晰直观地再现题目的数量关系~可以从中找出等量关系。
五、利用排序性质打听等量关系:
在四则计算中~我们已经学习了运算定律性质~这些定律性质实质上体现了一种等量关系~根据它可以列出方程~如某数除以9商7余5~它除以10商6余几,
根据“被除数,商×除数,余数”得方程:10×6+x=9×7+5
六、根据几何图形特征找等量关系。
特定的几何形体都就是存有某些特征~根据这些特征能够寻得等量关系从而列举方程~例如:一个等腰三角形顶角存有40度~一个底角就是多少度,
等腰三角形具有两底角相等的特征~从而得到等量关系:一个底角的度数×2,顶角的度数,度~可得方程:2x+40=。
七、从题目叙述的事理中找等量关系。
不少承叙利亚题目~可以边念题目边将它萃取成文字描述等式~根据题意列举方程~
例如~商店旧有74千克水果糖~又运到25千克~买了一天以后还剩63千克。
这一天买
了多少千克,
边读边提炼为:原有的,运来的,卖了的,剩下的~得方程:74,25,,63
八、根据“同一量”打听等量关系
有的题目~尽管其他情节发生了变化~但叙述前后都指向某“同一量”~这“同一量”前后相等~如~某车从甲地到乙地计划每小时行35千米~6小时到达~实际提前2小时到达~每小时要行多少千米,
题中的时间~速度虽然出现了变化~但计划与实际高速行驶的路程都就是甲乙两地距
离的路程~即为计划高速行驶的路程,实际高速行驶的路程~因而可以得方程:(6-
2)x=35×6.。