2023年初中数学培优竞赛讲座第讲乘法公式
- 格式:doc
- 大小:1.05 MB
- 文档页数:8
七年级竞赛数学培优辅导——乘法公式甲内容提要1.乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。
完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2立方和(差)公式:(a±b)(a2 ab+b2)=a3±b33.公式的推广:①多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd即:多项式平方等于各项平方和加上每两项积的2倍。
②二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5)…………注意观察右边展开式的项数、指数、系数、符号的规律③由平方差、立方和(差)公式引伸的公式(a+b)(a3-a2b+ab2-b3)=a4-b4(a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6…………注意观察左边第二个因式的项数、指数、系数、符号的规律在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1-a2n-2b+a2n-3b2-…+ab2n-2-b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n4.公式的变形及其逆运算由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得a3+b3=(a+b)3-3ab(a+b)由公式的推广③可知:当n为正整数时a n-b n能被a-b整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b及a-b整除。
17 乘法公式只有通过数学,我们才能彻底了解科学的精髓.至有在数学中,我们才能发现科学规律的高度简洁性、严格性和抽象性.任何科学教育如果不以数学为出发点,则其基础势必有缺陷。
-------科姆特知识纵横乘法公式是在多项式乘法的基础上,将多项式乘法的一半法则应用一一些特殊形式的多项式相乘,出的既有特殊性、又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用。
在学习乘法公式时,应该做到以下几点:1.熟悉每个公式的结构特征,理解掌握公式;2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式.例题求解例1 (1) 在2004、2005、2006、2007这四个数中,不能表示为两个整数平方差是______.(第10届江苏竞赛题)(2) 已知(2000-a)(1998-a)=1999,那么, = _________.(重庆竞赛题) 思路点拨:(1),m+n,m-n的奇偶性相同,这是解本例题的基础。
(2)视(2000-a)•(1998-a)为整体,•由平方和想到完全平方公式及其变形例2 (1) 已知a、b、c满足,,,则a+b+c 的值等于( ).A. 2B. 3C. 4D.5(2) a、b、b不全为0, 满足a+b+c=0,,称使得恒成立的正整数n为”好数”,则不超过2007的正整数中”好数”的个数为( )A. 2B. 1004C. 20006D. 2007思路点拨:对于(1) ,由条件等式联想到完全平方式,解题的关键是整体考虑;对于(2) , 由条件出发,探求a,b,c之间的关系。
例3 观察下列算式(1) 1x3-;(2)2x4-(3)3x5-(4)__________________________;……..(1) 请你按照以上规律写出第四个算式.(2) 把这个规律用含字母的式子表示出来.(3) 你认为(2)中所写出的式子一定成立吗?并说明理由(2011年湖南省益阳市考题) 思路点拨: 从特殊情形归纳一般结论,并证明这个结论例4 已知a+b=1, 求。
人教版初一数学培优和竞赛二合一讲炼教程(14)乘法公式【知识精读】1.乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。
完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2立方和(差)公式:(a±b)(a2 ab+b2)=a3±b33.公式的推广:①多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd即:多项式平方等于各项平方和加上每两项积的2倍。
②二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5)…………注意观察右边展开式的项数、指数、系数、符号的规律③由平方差、立方和(差)公式引伸的公式(a+b)(a3-a2b+ab2-b3)=a4-b4(a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6…………注意观察左边第二个因式的项数、指数、系数、符号的规律在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1-a2n-2b+a2n-3b2-…+ab2n-2-b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n 4.公式的变形及其逆运算由(a+b)2=a2+2ab+b2得 a2+b2=(a+b)2-2ab由 (a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得 a3+b3=(a+b)3-3ab(a+b)由公式的推广③可知:当n为正整数时a n-b n能被a-b整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b及a-b整除。
第十八讲 乘法公式乘法公式是在多项式乘法的基础上,将多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性、又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用,在学习乘法公式时,应该做到以下几点:1.熟悉每个公式的结构特征,理解掌握公式; 2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式. 例题【例1】 (1)已知两个连续奇数的平方差为2000,则这两个连续奇数可以是 .(江苏省竞赛题)(2)已知(2000一a)(1998一a)=1999,那么(2000一a)2+(1998一a)2= . (重庆市竞赛题)思路点拨 (1)建立两个连续奇数的方程组;(2)视(2000一a)·(1998一a)为整体,由平方和想到完全平方公式及其变形.注:公式是怎样得出来的?一种是由已知的公式,通过推导,得到一些新的公式;另一种是从大量的特殊的数量关系入手,并用字母表示数来揭示一类数量关系的一般规律—一公式.从特殊到一般的过程是人类认识事物的一般规律,而观察、发现、归纳是发现数学规律最常用的方法.乘法公式常用的变形有:(1)ab b a b a 2)(222±=+,2)()(2)()(222222b a b a b a b a ab --+=+-+=. (2)222222)()(b a b a b a +=-++; (3) ab b a b a 4)()(22=--+;(4)4)()(22b a b a ab --+=,)(2)(2222ac bc ab c b a c b a ++-++=++【例2】 若x 是不为0的有理数,已知)12)(12(22+-++=x x x x M ,)1)(1(22+-++=x x x x N ,则M 与N 的大小是( )A .M>NB . M<NC . M=ND .无法确定思路点拨 运用乘法公式,在化简M 、N 的基础上,作差比较它们的大小. 【例3】 计算:(1)6(7十1)(72十1)(74十1)(78十1)+1; (天津市竞赛题)(2)1.345×0.345×2.69—1.3452一1.345×0.3452.(江苏省赛试题)思路点拨 若按部就班计算,显然较繁.能否用乘法公式,简化计算,关键是对待求式恰当变形,使之符合乘法公式的结构特征,对于(2),由于数字之间有联系,可用字母表示数(称为换元),将数值计算转化为式的计算,更能反映问题的本质特征.【例4】 (1)已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +的值.(“希望杯”邀请赛试题)(2)整数x ,y 满足不等式y x y x 22122+≤++,求x+y 的值.(第14届“希望杯”邀请赛试题)(3)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为a ,第二次提价的百分率为b ,乙商场:两次提价的百分率都是2ba +(a>0,b>o),丙商场:第一次提价的百分率为b ,第二次提价的百分率为a ,则哪个商场提价最多?说明理由. (河北省竞赛题)思路点拔 对于(1),(2)两个未知数一个等式或不等式,须运用特殊方法与手段方能求出x 、y 的值,由平方和想到完全平方公式及其逆用,解题的关键是拆项与重组;对于(3)把三个商场经两次提价后的价格用代数式表示,作差比较它们的大小.注: 有些问题常常不能直接使用公式,而需要创造条件,使之符合乘法公式的特点,才能使用公式.常见的方法是:分组、结合,拆添项、字母化等. 完全平方公式逆用可得到两个应用广泛的结论: (1)0)(2222≥±=+±b a b ab a ;揭示式子的非负性,利用非负数及其性质解题. (2)ab b a 222≥+应用于代数式的最值问题.代数等式的证明有以下两种基本方法:(1) 由繁到简,从一边推向另一边; (2)相向而行,寻找代换的等量.【例5】 已知a 、b 、c 均为正整数,且满足222c b a =+,又a 为质数. 证明:(1)b 与c 两数必为一奇一偶; (2)2(a+b+1)是完全平方数.思路点拨 从222c b a =+的变形入手;222b c a -=,运用质数、奇偶数性质证明.学力训练1.观察下列各式:(x 一1)(x+1)=x 2一l ; (x 一1)(x 2+x+1)=x 3一1;(x 一1)(x 3十x 2+x+1)=x 4一1. 根据前面的规律可得(x 一1)(x n +x n-1+…+x+1)= . (武汉市中考题)2.已知052422=+-++b a b a ,则ba ba -+= . (杭州市中考题) 3.计算:(1)1.23452+0.76552+2.469×0.7655: ;(2)19492一19502+19512一19522+…+19972一19982+19992 = ;(3)2199919991999199719991998222-+ . 4.如图是用四张全等的矩形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法写出一个关于a 、b 的恒等式 . (大原市中考题)5.已知51=+a a ,则2241aa a ++= . (菏泽市中考题)6.已知5,3-=+=-c b b a ,则代数式ab a bc ac -+-2的值为( ). A .一15 B .一2 C .一6 D .6(扬州市中考题)7.乘积)200011)(199911()311)(211(2222---- 等于( ). A .20001999 B .20002001 C .40001999 D .40002001(重庆市竞赛题)8.若4,222=+=-y x y x ,则20022002y x+的值是( ).A .4B .20022C . 22002D .42002 9.若01132=+-x x ,则441x x +的个位数字是( ). A .1 B .3 C . 5 D .710.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ).A .))((22b a b a b a -+=- B .2222)(b ab a b a ++=+ C .2222)(b ab a b a +-=- D .222))(2(b ab a b a b a -+=-+(陕西省中考题)11.(1)设x+2z =3z ,试判断x 2一9y 2+4z 2+4xz 的值是不是定值?如果是定值,求出它的值;否则请说明理由.(2)已知x 2一2x=2,将下式先化简,再求值:(x —1)2+(x+3)(x 一3)+(x 一3)(x 一1). (上海市中考题)12.一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个自然数.13.观察:2514321=+⋅⋅⋅ 21115432=+⋅⋅⋅ 21916543=+⋅⋅⋅……(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算2000×2001×2002×2003+1的结果(用一个最简式子表示). (黄冈市竞赛题)14.你能很快算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,任意一个个位数为5的自然数可写成l0n+5(n 为自然数),即求(10n+5)2的值,试分析 n=1,n=2,n =3……这些简单情形,从中探索其规律,并归纳猜想出结论. (1)通过计算,探索规律.152225可写成100×1×(1+1)+25;252=625可写成100×2×(2+1)+25;352=1225可写成100× 3×(3+1)+25;452=2025可写成100×4×(4+1)+25;……752=5625可写成 ;852=7225可写成 .(2)从第(1)题的结果,归纳、猜想得(10n+5)2= . (3)根据上面的归纳猜想,请算出19952= . (福建省三明市中者题)15.已知014642222=+-+-++z y x z y x ,则z y x ++= .(天津市选拔赛试题)16.(1)若x+y =10,x 3+y 3=100,则x 2+y 2= . (2)若a-b=3,则a 3-b 3-9ab = .17.1,2,3,……,98共98个自然数中,能够表示成两整数的平方差的个数是 . (全国初中数学联赛试题)18.已知a-b=4,ab+c 2+4=0,则a+b=( ). A .4 B .0 C .2 D . 一2 19.方程x 2-y 2=1991,共有( )组整数解. A .6 B .7 C .8 D .920.已知a 、b 满足等式)2(4,2022a b y b a x -=++=,则x 、y 的大小关系是( ). A .x ≤y B .x ≥y C .x<y D .x>y (大原市竞赛题)21.已知a=1999x+2000,b =1999x+2001,c =1999x+2002,则多项式a 2+b 2+c 2一ab —bc-ac 的值为( ).A .0B .1C .2D .3 (全国初中数学竞赛题)22.设a+b=1,a 2+b 2=2,求a 7+b 7的值. (西安市竞赛题)23.已知a 满足等式a 2-a-1=0,求代数式487-+a a 的值.(河北省竞赛题)24.若b a y x +=+,且2222b a y x +=+,求证:1997199719971997b a y x+=+.(北京市竞赛题)25.有l0位乒乓球选手进行单循环赛(每两人间均赛一场),用xl ,y 1顺次表示第一号选手胜与负的场数;用x 2,y 2顺次表示第二号选手胜与负的场数;……;用x 10、y 10顺次表示十号选手胜与负的场数.求证:21022212102221y y y x x x +++=+++ .26.(1)请观察: 222233351122225,335112225,351225,525====写出表示一般规律的等式,并加以证明.(2)26=52+12,53=72+22,26×53=1378,1378=372+32.任意挑选另外两个类似26、53的数,使它们能表示成两个平方数的和,把这两个数相乘,乘积仍然是两个平方数的和吗?你能说出其中的道理吗? 注:有人称这样的数“不变心的数”.数学中有许多美妙的数,通过分析,可发现其中的奥秘.瑞士数学家欧拉曾对26(2)的性质作了更进一步的推广.他指出:可以表示为四个平方数之和的甲、乙两数相乘,其乘积仍然可以表示为四个平方数之和.即 (a 2+b 2+c 2十d 2)(e 2+f 2+g 2+h 2)=A 2+B 2+C 2+D 2.这就是著名的欧拉恒等式.参考答案。
平方差公式、完全平方公式是特殊的乘法公式,它既是前面知识“多项式乘多项式”的应用,也是后继知识因式分解、分式等的基础,对整个知识体系也起到了承上启下的作用,在初中阶段占有很重要的地位.两个公式都可以由直观图形引导学生观察、实验、猜测,进而论证,最后建立数学模型,逐步培养学生的逻辑推理能力和建模思想.它在本章中起着举足轻重的作用,是前面知识的继承和发展,又是后面的分解因式和解一元二次方程的重要依据,起着承前起后的作用.1、平方差公式定义:两数和与这两数差相乘,等于这两个数的平方差.()()22a b a b a b+-=-.(1)a.b可以表示数,也可以表示式子(单项式和多项式)(2)有些多项式相乘,表面上不能用公式,但通过适当变形后可以用公式:如:()()()()()22a b c b a c b a c b a c b a c+--+=+---=--⎡⎤⎡⎤⎣⎦⎣⎦2、平方差公式的特征:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.(2)右边是乘式中两项的平方差.乘法公式(一)知识结构模块一:平方差公式内容分析知识精讲2/ 10【例1】 下列多项式乘法中,能用平方差公式计算的是( )A .()()11x x ++B .1122a b b a ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭ C .()()a b a b -+- D .()()x y x y --+【例2】 计算: (1)()()3535x x +-; (2)11112323x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭;(3)()()22x y x y +-.【例3】 计算:(1)2211112525x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭;(2)()()2323x y x y -+--; (3)()()2323a b a b ---.【例4】 计算:(1)()()()2232349a a a -++;(2)22111224a b a b a b ⎛⎫⎛⎫⎛⎫+-+ ⎪⎪⎪⎝⎭⎝⎭⎝⎭.【例5】 计算:111111253253x y z x y z ⎛⎫⎛⎫---+- ⎪⎪⎝⎭⎝⎭.例题解析【例6】 计算:(1)()()()()33a b a b a b a b +--+-; (2)()()()()2222y x y x x y x y -+++---+; (3)22111133222233x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+-----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.【例7】 计算:()()()()()2221212245a a a a a a ⎡⎤-+++--+⎣⎦.【例8】 简便运算: (1)10298⨯;(2)30.229.8⨯;(3)12252433⨯.【例9】 计算:(1)2200920072008⨯-;(2)22007200720082006-⨯;(3)22007200820061⨯+.4/ 10【例10】 计算:()()()()242121212121n+++++(n 是正整数).1、完全平方公式定义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们积的两倍.()2222a b a ab b +=++、()2222a b a ab b -=-+. 2、完全平方公式的特征:(1)左边是两个相同的二项式相乘;(2)右边是三项式,是左边两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;(3)公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.【例11】 下列各式中,能用完全平方公式计算的是( )A .()()4774x y y x ---B .()()4774x y x y --+C .()()4774x y y x --+D .()()4747x y x y -+【例12】 下列计算正确的是( )A .()222a b a b +=+B .()2222x y x xy y -=--例题解析模块二:完全平方公式知识精讲C .()2225225420a b a b ab +=++D .2221111132364m n m mn n ⎛⎫+=++ ⎪⎝⎭【例13】 计算: (1)()239x +;(2)223x y ⎛⎫- ⎪⎝⎭;(3)()22xyz --.【例14】 计算:(1)()()()2343x x x -+-+;(2)()()()2232222x x x +----+;(3)()()()2212121a a a +-+-.【例15】 计算:(1)2211113232x y x y ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭;(2)2213133434a b a b ⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭.【例16】 计算:(1)()()()229163434a b a b a b --+;(2)22111111323294a b a b a b ⎛⎫⎛⎫⎛⎫+-- ⎪⎪⎪⎝⎭⎝⎭⎝⎭.6/ 10【例17】 计算: (1)()22a b c --+;(2)()2324x y ++;(3)()()22x y x y +---.【例18】 简便计算: (1)299.8;(2)22005.【例19】 设8,15m n mn +==,求(1)22m n + ;(2)m n -.【例20】 已知16x x -=,求221x x+的值.【例21】 已知:2221440x y x xy y --+++=,则2x y +=___________.【例22】 已知26x x k -+是完全平方式,求k 的值.【例23】 已知2246130x y x y ++-+=,x 、y 都是有理数,求y x 的值.【例24】 已知2416x kx -+是完全平方式,求k 的值.【例25】 已知2310x x ++=,求:(1)221x x +;(2)441x x +.【习题1】 下列各式中,能用平方差公式计算的是( ) A .()()2a b a b -- B .()()22a b a b -+-C .()()22a b a b +--D .()()22a b a b ---+【习题2】 计算: (1)()()2525x x +-;(2)()()1212a a -+;随堂检测8/ 10(3)11113232a b a b ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭.【习题3】 计算: (1)10496⨯ ; (2)30.729.3⨯;(3)1610977⨯.【习题4】 计算:(1)()()3434x y x y --++-;(2)()()2332x y x y ++--.【习题5】 求值:(1)已知:3a b +=,1ab =,求代数式的值:(1)22a b +;(2)44a b +. (2)已知:5a b -=,4ab =,求22a b +的值.【习题6】 求值:(1)已知:()28a b -=,()22a b +=,求ab 的值; (2)已知:()()222315x x -++=,求()()23x x -+的值.【作业1】 下列多项式乘法中,能用平方差公式计算的是( )A .()()22x y x y -+B .()()a b a b ---C .()()2222c d d c --+D .()()22x y xy -+【作业2】 计算: (1)211510x y ⎛⎫-- ⎪⎝⎭;(2)212cd ⎛⎫- ⎪⎝⎭.【作业3】 用简便方法计算: (1)403397⨯;(2)31293044⨯;(3)9910110001⨯⨯;(4)224952+.【作业4】 计算:(1)()()()2222x y x y x y +-+-;(2)()()()2x y x y x y ---++;(3)()()()()22253x y x y x y x y +-+-+-.【作业5】 计算:(1)()()2323x y z x y z +--+;(2)()()2121a b a b -+--.课后作业10/ 10【作业6】 求值:(1)已知6x y +=-,2xy =,求代数式()2x y -的值. (2)已知4x y +=-,8x y -=,求代数式22x y -的值. (3)已知3a b +=,225a b +=,求ab 的值.。
第13讲有理数的乘法知识点01有理数的乘法法则(1)两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数同0相乘,都得0.(3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.倒数:乘积是1的两个有理数互为倒数.【注意】:①0没有倒数;②倒数等于它本身的数有1和-1.知识点02有理数的乘法运算律(1)乘法交换律:ab ba =;(2)乘法结合律:()()ab c a bc =;(3)乘法分配律:()a b c ab ac +=+.知识点03确定乘积符号(1)若a <0,b >0,则ab <0;(2)若a <0,b <0,则ab >0;(3)若ab >0,则a 、b _______;(4)若ab <0,则a 、b _______;(5)若ab =0,则a 、b 中至少有一个数为0.考点精析考点一概念辨析例下列说法中,不正确的个数有()①符号相反的数叫相反数;②四个有理数相乘,若有两个负因数,则积为正;③倒数等于本身的数只有1;④相反数等于本身的数只有0;A.0个B.1个C.2个D.3个变1列说法中正确的有()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③数a、b互为相反数,它们的积一定为负;④绝对值等于本身的数是正数.A.1个B.2个C.3个D.4个变2下列叙述正确的是()A.互为相反数的两数的乘积为1B.所有的有理数都能用数轴上的点表示C.绝对值等于本身的数是0D.n个有理数相乘,负因数的个数为奇数个时,积为负考点二因数符号判断例1若a为正数,b为负数,则()A.0ab<ab>D.0a b+<C.0a b+>B.0例2a、b是两个有理数,若ab<0,且a+b>0,则下列结论正确的是()A.a>0,b>0B.a、b两数异号,且正数的绝对值大C.a<0,b<0D.a、b两数异号,且负数的绝对值大变1若ab<0,a﹣b<0,则a、b这两个数()A.a<0,b<0B.a>0,b<0C.a<0,b>0D.a>0,b>0变2已知a +b >0,ab <0,且a >b ,则a 、b 的符号是()A .同为正B .同为负C .a 正b 负D .a 负b 正例3有理数a ,b 在数轴上对应点的位置如图所示,下列式子正确的是()A .a b >B .||||a b >C .0a b +>D .0ab >例4如图,数轴上A 、B 两点分别对应有理数a 、b ,则下列结论:①0ab >;②0a b ->;③0a b +>;④||||0a b ->;⑤10a +<;⑥10b -<;其中正确的有()A .1个B .2个C .3个3D .4个变3有理数m 、n 在数轴上的位置如图所示,则下面结论正确的是()A .0mn <B .0m n -<C .||n m -<3D .||||m n <变4若有理数a ,b ,c 在数轴上的位置如图所示,下列说法正确的是()A .()0b a c ->B .0ab <C .0a b +>3D .0a b ->考点三倒数例12||3-的倒数是()A .23B .23-C .323D .32-例2若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为()A .-8B .-5-5C .-13D .16变1下列说法正确的个数是()①2022-的相反数是2022;②2022-的绝对值是2022;③12022的倒数是2022.A .3B .2-5C .13D .0变2已知a 与b 互为相反数,c 与d 互为倒数,则代数式2a-cd+2b 的值为.考点四有理数的乘法及其运算规律例1计算:(1)1(3)(3-⨯-(2)8(0.25)3⨯-(3)(2)3(4)-⨯⨯-(4)1(1000)()010-⨯-⨯变1计算:(1)(5)(7)-⨯-(2)4156(54-⨯⨯-⨯例2计算:(1)3475()75128⨯-⨯⨯(2)1(4)(25)(6)3-⨯⨯-⨯-变2计算:4125(0.125)(4)()(8)154⨯-⨯-⨯-⨯-⨯.变3计算:(0.02)(20)(5) 4.5-⨯-⨯-⨯.例3学习了有理数的乘法后,老师给同学们出了这样一道题目:计算:2449(5)25⨯-,看谁算的又快又对.小明的解法:原式12491249452492555=-⨯=-=-;小军的解法:原式24244(49)(5)49(5)(5)24925255=+⨯-=⨯-+⨯-=-.(1)对于以上两种解法,你认为谁的解法较好?(2)小强认为还有更好的方法:把244925看作1(5025-,请把小强的解法写出来.(3)请你用最合适的方法计算:59(3)6⨯-.例4在简便运算时,把4724(9948⨯-变形成最合适的形式是()A .124(100)48⨯-+B .124(100)48⨯--C .4724(99)48⨯--D .4724(9948⨯-+变4用简便方法计算:(1)1799(9)18⨯-(2)539(6)6-⨯-例5计算:(1)53124(6812-⨯-+-(2)457(36)(9612-⨯-+-变5用简便方法计算:117313()(48)126424-+-⨯-.变5计算:572((81)2793+-⨯-.考点五有理数乘法的应用例1已知||2x =,||5y =,且0xy <,求23x y -的值.例2已知||5a =,||3b =,回答下列问题:(1)由||5a =,||3b =,可得a =,b =;(2)若0a b +>,求a b -的值;(3)若0ab <,求||a b +的值.变1已知||4x =,1||2y =,且0xy <,求x y +的值.变2已知||4x =,||7y =.①若0x y ->,求x y +的值;②若0xy <,求||x y -的值.课后强化1.若0a b +>,且0ab <,则以下正确的选项为()A .a ,b 都是正数B .a ,b 异号,正数的绝对值大C .a ,b 都是负数D .a ,b 异号,负数的绝对值大2.计算2(3)-⨯-的结果是()A .6B .-6C .5D .-53.计算14(1()45-⨯-的结果()A .1-B .15-C .1D .154.有理数a ,b 在数轴上的位置如图所示,则下列结论,错误的是()A .b a b a -<<<-B .0a b +<C .0ab <D .||||b a <5.有理数a ,b ,c 在数轴上的对应点的位置如图所示,现给出以下结论:①||3a >;②0ab >;③0b c +<;④0b a ->.其中正确的是()A .①②B .②③C .②④D .③④6.若||2x =,||3y =,且0xy <则x y +的值为()A .5或5-B .1-或1C .5或1-D .1或5-7.321的倒数是;2.5的倒数是.8.计算:30993131⨯.9.用简便算法计算下列各题.(1)1111((24)46812-+-+⨯-(2)899(13)9⨯-.10.用简便方法计算:(1)( 3.7)(0.125)(8)-⨯-⨯-(2)111()(12) 3612--⨯-(3)1617(317-⨯-(4)1111115(13(3()555-⨯-+⨯--⨯-11.若||4x=,||1y=,且0xy>,求x y-的值.12.学习有理数的乘法后,老师给同学们这样一道题目:计算:2449(5)25⨯-,看谁算的又快又对,有两位同学的解法如下:小明,原式12491249452492555=-⨯=-=-;小军:原式24244 (49)(5)49(5)(5)24925255 =+⨯-=⨯-+⨯-=-;(1)根据上面的解法对你的启发,请你再写一种解法;(2)用你认为最合适的方法计算:1519816-⨯.13.定义:对于一个两位自然数,如果它的个位和十位上的数字均不为零,且它正好等于其个位和十位上的数字的和的n倍(n为正整数),我们就说这个自然数是一个“n喜数”.例如:24就是一个“4喜数”,因为244(24)=⨯+;25就不是一个“n喜数”,因为25(25)n≠+.(1)判断44和72是否是“n喜数”?请说明理由;(2)请求出所有的“7喜数”之和.。
第二十五讲奇数、偶数与奇偶分析整数按能否被2整除分为两大类:奇数和偶数,奇数与偶数有下列基本性质:1.奇数≠偶数2.两个整数相加(减)或相乘,结果的奇偶性如下表所示3.若干个奇数之积是奇数,偶数与任意整数之积是偶数;偶数个奇数的和为偶数,若干个偶数的和为偶数.4.设m、n是整数,则m土n,nm±的奇偶性相同.5.设m是整数,则m与m,m n的奇偶性相同.奇偶性是整数的固有属性,通过度析整数的奇偶性来解决问题的方法叫奇偶分析法.例题【例1】三个质数之和为86,那么这三个质数是.(“希望杯”邀请赛试题)思绪点拨运用奇数、偶数、质数、合数性质,从分析三个加数的奇偶性人手.注:18世纪的哥尼斯堡,有7座桥把这儿的普雷格尔河中两个小岛与河岸联系起来,在这迷人的地方,人们议论着一个有趣的问题.一个游人如何才干不反复地一次走遍7座桥,而最后又回到出发点.1736年彼得堡院士欧拉巧妙地解决了这个问题.欧拉把一个复杂的实际问题化为一个简朴的几何图形,他指出只要我们能从一点出发,不反复地一笔把这样的图形画出来,那么就可说明游人可以不反复地一次走遍这7座桥,这就是著名的“一笔画”问题的来历.运用奇偶分析不难得到一般的结论:凡是能一笔画成的图形,它上面除了起点和终点外的每一个点总是一笔进来,一笔出去.因此,除了起点和终点外的每一个点都有偶数条线和它相连.简朴地说,当且仅当图形中的奇结点(每点出发有奇数字线)的个数不大于2时,这个图形才干一笔画.【例2】假如a、b、c是三个任意的整数,那么222accbba+++、、().A.都不是整数B.至少有两个整数C.至少有一个整数D.都是整数(2023年TI杯全国初中数学竞赛题)思绪点拨 举例验证或从a 、b 、c 的奇偶性说明.【例3】 (1)设1,2,3,…,9的任一排列为a l ,a 2,a 3…,a 9.求证:(a l l 一1)( a 2 —2)…(a 9—9)是一个偶数.(2)在数11,22,33,44,54,…20232023,20232023,这些数的前面任意放置“+”或“一”号,并顺次完毕所指出的运算,求出代数和,证明:这个代数和必然不等于2023.思绪点拨 (1)转换角度考察问题,化积的奇偶性为和的奇偶性来研究;(2)由于任意添“十”号或“一”号,形式多样,因此不也许一一尝试再作解答,从奇数、偶数的性质人手.【例4】已知n x x x x 、、、、 321都是+1或一1,并且011433221=+++++-x x x x x x x x x x n n n ,求证:n 是4的倍数.思绪点拨 可以分两步,先证n 是偶数2k ,再证明k 是偶数,解题的关键是从已知等式左边各项的特点受到启发,挖掘隐含的一个等式.【例5】 游戏机的“方块”中共有下面?种图形.每种“方块”都由4个l ×l 的小方格组成.现用这7种图形拼成一个7× 4的长方形(可以反复使用某些图形).问:最多可以用这7种图形中的几种图形?思绪点拨 为了形象化地说明问题,对7×4的长方形的28个小方格黑白相间染色,除“品字型”必占3个黑格1个白格或3个白格1个黑格,其余6个方格各占2个黑格2个白格.注:对同一个数学对象,从两个方向考虑(n 项和与积),再将这两个方面合在一起整体考虑,得出结论,这叫计算两次原理,通过计算两次可以建立方程,证明恒等式等.在一定的规则下,进行某种操作或变换,问是否(或证明)可以达成一个预期的目的,这就是所谓操作变换问题,此类问题变化多样,解法灵活,解题的关键是在操作变换中,挖掘不变量,不变性.一些非常规数字问题需要恰本地数学化,以便计算或推理.引入字母与赋值法是数学化的两种常用方式方法.所谓赋值法就是在解题时,将问题中的某些元素用适当的数表达,然后运用这些数值的大小,正负性、奇偶性等进行推理论证的一种解题方法.【例6】桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否通过若干次这样的翻动,使所有的杯子口都朝下?思绪点拨 这不也许.我们将口向上的杯于记为:“0”,口向下的杯子记为“1”.开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l 变为0,改变了奇偶性.每一次翻动四个杯子,因此,七个之和的奇偶性仍与本来相同.所以,不管翻动多少次,七个数之和仍为偶数.而七个杯子所有朝下,和为7,是奇数,因此,不也许.整数可以分为奇数和偶数两类.【例7】在1,2,3,…,2023前面任意添上一个正号或负号,它们的代数和是奇数还是偶数?思绪点拨 两个整数之和与这两个整数之差的奇偶性相同,只要知道1+2+3+...+2023的奇偶性即可. 因两个整数的和与差的奇偶性相同,所以,在1,2,3,...,2023中每个数前面添上正号或负号,其代数和应与1+2+3+...+2023的奇偶性相同,而1+2+3+ (2023)21(1+ 2023)×2023=1003 ×2023为奇数;因此,所求代数和为奇数.注:抓住“a+b 与a —b 奇偶性相同”,通过特例1十2十3十…十2023得到答案.【例8】“ 元旦联欢会上,同学们互赠贺卡表达新年的:良好祝愿.“无论人数是什么数,用来互换的贺卡的张数总是偶数.”这句话对的吗?试证明你的结论.思绪点拨 用分类讨论的思想方法,从“无论人数是什么数”入手,考虑人数为奇数或偶数的两种情况.这句话是对的的.下面证明之.若联欢会上的人数为偶数,设为2m (m 为整数),则每个人赠送给同学们的贺卡张数为奇数,即(2m —1).那么,贺卡总张数为2m(2m —1)=4m 2-2m ,显然是偶数.若联欢会上的人数为奇数,设为2m+1(m 为整数,则每个人赠送给同学们的贺卡张数应是2m ,为偶数.贺卡总张数为(2m+1)·2m ,仍为偶数.故“用来互换的贺卡张数总是偶数”是对的.注:按奇数和偶数分类考虑问题是常见的解决此类问题的策略之一.【例9】桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由.思绪点拨 若要把一枚硬币原先朝下的一面朝上,应当翻动该硬币奇数次.因此,要把1993枚硬币原先朝下的一面都朝上,应当翻动这1993枚硬币的总次数为奇数.现在1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997是个奇数,故猜想可以使桌面上1993枚硬币原先朝下的一面都朝上. 理由如下:按规定,1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997,所以翻动的次数为奇数,并且可见每个硬币平均翻动了997次.而事实上,只要翻动一枚硬币奇数次,就能使这枚硬币原先朝下的一面朝上.按如下的方法进行翻动:第1次翻动所有1993枚,第2次翻动其中的1992枚,第1993次翻动第2次未翻动的那1枚,第3次翻动其中的1991枚,第1992次翻动第3次未翻动的2枚,第997次翻动其中的997枚,第998次翻动第997次未翻动的996枚.这样,正好每枚硬币被翻动了997次,就能使每一枚硬币本来朝下的一面都朝上.注:灵活、巧妙地运用奇俩性分析推理,可以解决许多复杂而有趣的问题,并故意想不到的效果.【例10】在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱顺序后,将纸片翻过来,在它们的反面也随意分别写上1-6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的.思绪点拨 从反面人手,即设这6个数两两都不相等,运用bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同,引入字母进行推理证明.设6张卡片正面写的数是654321a a a a a a 、、、、、,反面写的数相应为654321b b b b b b 、、、、、,则这6张卡片正面写的数与反面写的数的绝对值分别为11b a -,22b a -,33b a -,44b a -,55b a -,66b a -.设这6个数两两都不相等,则它们只能取0,1,2,3,4,5这6个值.于是11b a -+22b a -+33b a -+44b a -+55b a -+66b a -=0+1+2+3+4+5=15是个 奇数. 另一方面,bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同.所以11b a -+22b a -+33b a -+44b a -+55b a -+66b a -与(a 1一b 1)+(a 2一b 2)+(a 3一b 3)+(a 4一b 4)+(a 5一b 5)+(a 6一b 6)= )(654321a a a a a a +++++一)(654321b b b b b b +++++ =(1+2+3+4+5+6)一(1+2+3+4+5+6)=O 的奇偶性相同,而0是个偶数,15是奇数,两者矛盾.所以,11b a -,22b a -,33b a -,44b a -,55b a -,66b a -这6个数中至少有两个是相同的. 注:反证法是解决奇、偶数问题中常用的方法.【例11】有一只小渡船往返于一条小河的左右两岸之间,问:(1)若最初小船是在左岸,往返若干次后,它又回到左岸,那么这只小船过河的次数是奇数还是偶数? 假如它最后到了右岸,情况又是如何呢?(2)若小船最初在左岸,它过河99次之后,是停在左岸还是右岸?思绪点拨 (1)小船最初在左岸,过一次河就到了右岸,再过一次河就由右岸回到左岸,即每次由左岸出发到右岸后再回到左岸,都过了两次河.因此,小船由左岸开始,往返多次后又回到左岸,则过河的次数必为2的倍数,所以是偶数.同样的道理,不难得出,若小船最后停在右岸,则过河的次数必为奇数.(2)通过(1),我们发现,若小船最初在左岸,过偶数次河后,就回到左岸;过奇数次河后,就停在右岸.现在小船过河99次,是奇数次.因此,最后小船该停在右岸.注 关键是对过河次数的理解:一个单程,即由左岸到右岸(或由右岸到左岸)就过河一次;往返一个来回就过河两次.【例12】黑板上写了三个整数,任意擦去其中一个,把它改写成另两个数的和减去1,这样继续下去,得到1995、1996、1997,问本来的三个数能否是2、2、2?思绪点拨 假如本来的三个整数是2、2、2,即三个偶数,操作一次后,三个数变成二偶一奇,这时假如擦去其中的奇数,操作后三个数仍是二偶一奇.假如擦去的是其中的一个偶数,操作后三个数仍是二偶一奇.因此,无论如何操作,得到的三个数都是二偶一奇,不也许得到1995、1996、1997. 所以,本来的三个数不也许是2、2、2.注 解决本题的诀窍在于考察数字变化后的奇偶性.【例13】(苏州市中考题)将正偶数按下表排成五列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24… … 28 26根据上面的排列规律,则2023应位于( )A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列思绪点拨 观测表格,第1行最右边的数为8,第2行最左边的数为16,第3行最右边的数为24,于是可猜测:当行数为奇数时,该行最右边的数为8×行数;当行数为偶数时,该行最左边的数为8×行数.通过验证第4行、第5行、第6行知,上述猜想是对的的,由于2023=8×250,所以2023应在第250行,又由于250为偶数,故2023应在第250行最左边,即第250行第1列,故应选C .注:观测、寻找规律是解决这类问题的妙招.【例14】(2023年山东省竞赛题)如图18—1,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字.若左轮子上方的箭头指着的数字为a ,右轮子上方的箭头指着的数字为b ,数对(a ,b)所有也许的个数为n ,其中a+b 恰为偶数的不同数对的个数为m ,则nm 等于( ) A .21 B .61 C .125 D .43 思绪点拨 依题意可知所有的数对n=4×3=12,其中a+b 恰为偶数的数对m=3×1+1×2=5.因此,n m =125,故选C . 【例15】(第江苏省竞赛题)已知a 、b 、c 中有两个奇数、一个偶数,n 是整数,假如S=(a+2n+1)(b+2n 十2)(c+2n 十3),那么( )A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D . S 的奇偶性不能拟定思绪点拨 弄清a+2n+1,b+2n+2,c+2n+3的奇偶性即可.依题得:(a+2n+1)+(b+2n+2)+(c+2n+3)=a+b+c+6(n+1).∵a+b+c 为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴a+2n+1,b+2n+2,c+2n+3中至少有一个为偶数,∴S 是偶数.故选A .注:三个数的和为偶数,则至少有一个为偶数;三个数中有一个为偶数,则三数之和为偶数.学力训练1.若按奇偶性分类,则12+22+32+…+20232023是 数.2.能不能在下式, 的各个方 框中分别填入“+”号或“一”号,使等式成立?答: .3.已知三个质数a 、b 、c 满足a+b+c+abc =99,那么a c c b b a -+-+-的值等于 .4.已知n 为整数,现有两个代数式:(1)2n+3,(2)4n 一1,其中,能表达“任意奇数”的( )A .只有(1)B .只有(2)C .有(1)和(2)D .一个也没有5.假如a ,b ,c 都是正整数,且a ,b 是奇数,则3a +(b 一1)2c 是( ).A .只当c 为奇数时,其值为奇数B .只当c 为偶数时,其值为奇数C .只当c 为3的倍数,其值为奇数D .无论c 为任何正楚数,其值均为奇数6.已知a ,b ,c 三个数中有两个奇数、一个偶数,n 是整数,假如S=(a+n+1)(b+ 2n+2)(c+3n+3),那么( ).A . S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能拟定(第16届江苏省竞赛题)7.(1)是否有满足方程x 2-y 2=1998的整数解x 和y?假如有,求出方程的解;假如没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?8.甲、乙两人玩纸牌游戏,甲持有所有的红桃牌(A 作1,J ,Q ,K 分别作11,12,13,不同),乙持有所有的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否拟定?9.在1,2,3,…,1998之前任意添上“十”或“一”号,然后相加,这些和中最小的正整数是 . 10.1,2,3,…,98共98个自然数,可以表达成两整数平方差的数的个数是 .(全国初中数学联赛试题)11.在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人记录百这次比赛中所有得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核算,其中有一人记录无误,则这次比赛共有名选手参与.12.已知p、q、pq+1都是质数,且p一q>40,那么满足上述条件的最小质数p=;q=.(第15届“希望杯”邀请赛试题)13.设a,b为整数,给出下列4个结论:(1)若a+5b是偶数,则a一3b是偶数;(2)若a十5b是偶数,则a一3b是奇数;(3)若a+5b是奇数,则a一3b是偶数;(4)若a+5b是奇数,则a一3b是奇数其中结论对的的个数是( ).A.0个B.2个C.4个D.1个或3个14.下面的图形,共有( )个可以一笔画(不反复也不漏掉;下笔后笔不能离开纸) .A.0 B.1 C .2 D.3 ( “五羊杯”竞赛题)15.π的前24位数值为3....,在这24个数字中,随意地逐个抽取1个数字,并依次记作a1,a2, (24)则(a1一a2)( a3一a4)…(a23一a24)为( ).A.奇数B.偶数C.奇数或偶数D.质数16.没标有A、B、C、D、C、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A、C、E、G 4盏灯开着,其余3盏灯是关的,小刚从灯A开始,顺次拉动开关,即从A到G,再从A始顺次拉动开关,即又从A到G…,他这样拉动了1999次开关后,问哪几盏是开的?17.有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现规定每一次翻转其中任意6枚,使它们的国徽朝向相反,问能否通过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明.(太原市竞赛题)18.对一个正整数作如下操作:假如是偶数则除以2,假如是奇数则加1,如此进行直到1时操作停止,求通过9次操作变为l的数有多少个?( “华杯赛”决赛题)19.高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.(汉城国际数学竞赛题)参考答案。
(14)乘法公式【知识精读】1.乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。
完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2立方和(差)公式:(a±b)(a2 ab+b2)=a3±b33.公式的推广:①多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd即:多项式平方等于各项平方和加上每两项积的2倍。
②二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5)…………注意观察右边展开式的项数、指数、系数、符号的规律③由平方差、立方和(差)公式引伸的公式(a+b)(a3-a2b+ab2-b3)=a4-b4(a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6…………注意观察左边第二个因式的项数、指数、系数、符号的规律在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1-a2n-2b+a2n-3b2-…+ab2n-2-b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)=an-bn 4.公式的变形及其逆运算由(a+b)2=a2+2ab+b2得 a2+b2=(a+b)2-2ab由 (a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得 a3+b3=(a+b)3-3ab(a+b)由公式的推广③可知:当n为正整数时an-bn能被a-b整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b及a-b整除。
第十八讲 乘法公式乘法公式是在多项式乘法的基础上,将多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性、又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用,在学习乘法公式时,应当做到以下几点:1.熟悉每个公式的结构特性,理解掌握公式;2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式.例题【例1】 (1)已知两个连续奇数的平方差为2023,则这两个连续奇数可以是 .(江苏省竞赛题)(2)已知(2023一a)(1998一a)=1999,那么(2023一a)2+(1998一a)2= . (重庆市竞赛题) 思绪点拨 (1)建立两个连续奇数的方程组;(2)视(2023一a)·(1998一a)为整体,由平方和想到完全平方公式及其变形.注:公式是如何得出来的?一种是由已知的公式,通过推导,得到一些新的公式;另一种是从大量的特殊的数量关系入手,并用字母表达数来揭示一类数量关系的一般规律—一公式.从特殊到一般的过程是人类结识事物的一般规律,而观测、发现、归纳是发现数学规律最常用的方法. 乘法公式常用的变形有:(1)ab b a b a 2)(222 ±=+,2)()(2)()(222222b a b a b a b a ab --+=+-+=. (2)222222)()(b a b a b a +=-++;(3) ab b a b a 4)()(22=--+; (4)4)()(22b a b a ab --+=,)(2)(2222ac bc ab c b a c b a ++-++=++ 【例2】 若x 是不为0的有理数,已知)12)(12(22+-++=x x x x M ,)1)(1(22+-++=x x x x N ,则M 与N 的大小是( ) A .M>N B . M<N C . M=N D .无法拟定 思绪点拨 运用乘法公式,在化简M 、N 的基础上,作差比较它们的大小.【例3】 计算:(1)6(7十1)(72十1)(74十1)(78十1)+1; (天津市竞赛题)(2)1.345×0.345×2.69—1.3452一1.345×0.3452. (江苏省竞赛题)思绪点拨 若按部就班计算,显然较繁.能否用乘法公式,简化计算,关键是对待求式恰当变形,使之符合乘法公式的结构特性,对于(2),由于数字之间有联系,可用字母表达数(称为换元),将数值计算转化为式的计算,更能反映问题的本质特性.【例4】 (1)已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +的值. (“希望杯”邀请赛试题) (2)整数x ,y 满足不等式y x y x 22122+≤++,求x+y 的值. (第14届“希望杯”邀请赛试题)(3)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为a ,第二次提价的百分率为b ,乙商场:两次提价的百分率都是2b a +(a>0,b>o),丙商场:第一次提价的百分率为b ,第二次提价的百分率为a ,则哪个商场提价最多?说明理由. (河北省竞赛题)思绪点拔 对于(1),(2)两个未知数一个等式或不等式,须运用特殊方法与手段方能求出x 、y 的值,由平方和想到完全平方公式及其逆用,解题的关键是拆项与重组;对于(3)把三个商场经两次提价后的价格用代数式表达,作差比较它们的大小.注: 有些问题经常不能直接使用公式,而需要发明条件,使之符合乘法公式的特点,才干使用公式.常见的方法是:分组、结合,拆添项、字母化等.完全平方公式逆用可得到两个应用广泛的结论: (1)0)(2222≥±=+±b a b ab a ;揭示式子的非负性,运用非负数及其性质解题. (2)ab b a 222≥+应用于代数式的最值问题.代数等式的证明有以下两种基本方法:(1) 由繁到简,从一边推向另一边; (2)相向而行,寻找代换的等量.【例5】 已知a 、b 、c 均为正整数,且满足222c b a =+,又a 为质数.证明:(1)b 与c 两数必为一奇一偶;(2)2(a+b+1)是完全平方数.思绪点拨 从222c b a =+的变形入手;222b c a -=,运用质数、奇偶数性质证明.学力训练1.观测下列各式:(x 一1)(x+1)=x 2一l ;(x 一1)(x 2+x+1)=x 3一1;(x 一1)(x 3十x 2+x+1)=x 4一1.根据前面的规律可得(x 一1)(x n +x n-1+…+x+1)= . (武汉市中考题) 2.已知052422=+-++b a b a ,则ba b a -+= . (杭州市中考题) 3.计算:(1)1.23452+0.76552+2.469×0.7655: ;(2)19492一19502+19512一19522+…+19972一19982+19992 = ; (3)2199919991999199719991998222-+ .4.如图是用四张全等的矩形纸片拼成的图形,请运用图中空白部分的面积的不同表达方法写出一个关于a 、b 的恒等式 . (大原市中考题)5.已知51=+a a ,则2241aa a ++= . (菏泽市中考题) 6.已知5,3-=+=-cb b a ,则代数式ab a bc ac -+-2的值为( ).A .一15B .一2C .一6D .6 (扬州市中考题) 7.乘积)200011)(199911()311)(211(2222----等于( ). A .20001999 B .20002001 C .40001999 D .40002001 (重庆市竞赛题) 8.若4,222=+=-y x y x ,则20022002y x +的值是( ).A .4B .20232C . 22023D .420239.若01132=+-x x ,则441xx +的个位数字是( ). A .1 B .3 C . 5 D .710.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ).A .))((22b a b a b a -+=-B .2222)(b ab a b a ++=+C .2222)(b ab a b a +-=-D .222))(2(b ab a b a b a -+=-+ (陕西省中考题)11.(1)设x+2z =3z ,判断x 2一9y 2+4z 2+4xz 的值是不是定值?假如是定值,求出它的值;否则请说明理由.(2)已知x 2一2x=2,将下式先化简,再求值:(x —1)2+(x+3)(x 一3)+(x 一3)(x 一1). (上海市中考题)12.一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个自然数.13.观测:2514321=+⋅⋅⋅21115432=+⋅⋅⋅21916543=+⋅⋅⋅……(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算2023×2023×2023×2023+1的结果(用一个最简式子表达). (黄冈市竞赛题)14.你能不久算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,任意一个个位数为5的自然数可写成l0n+5(n 为自然数),即求(10n+5)2的值,试分析 n=1,n=2,n =3……这些简朴情形,从中探索其规律,并归纳猜想出结论.(1)通过计算,探索规律.152225可写成100×1×(1+1)+25;252=625可写成100×2×(2+1)+25;352=1225可写成100× 3×(3+1)+25;452=2025可写成100×4×(4+1)+25;……752=5625可写成 ;852=7225可写成 .(2)从第(1)题的结果,归纳、猜想得(10n+5)2= .(3)根据上面的归纳猜想,请算出19952= . (福建省三明市中者题)15.已知014642222=+-+-++z y x z y x ,则z y x ++= . (天津市选拔赛试题)16.(1)若x+y =10,x 3+y 3=100,则x 2+y 2= .(2)若a-b=3,则a 3-b 3-9ab = .17.1,2,3,……,98共98个自然数中,可以表达成两整数的平方差的个数是 . (初中数学联赛)18.已知a-b=4,ab+c 2+4=0,则a+b=( ). A .4 B .0 C .2 D .一219.方程x 2-y 2=1991,共有( )组整数解. A .6 B .7 C .8 D .920.已知a 、b 满足等式)2(4,2022a b y b a x -=++=,则x 、y 的大小关系是( ).A .x ≤yB .x ≥yC .x<yD .x>y (大原市竞赛题)21.已知a=1999x+2023,b =1999x+2023,c =1999x+2023,则多项式a 2+b 2+c 2一ab —bc-ac 的值为( ).A .0B .1C .2D .3 (全国初中数学竞赛题)22.设a+b=1,a 2+b 2=2,求a 7+b 7的值. (西安市竞赛题)23.已知a 满足等式a 2-a-1=0,求代数式487-+a a 的值. (河北省竞赛题)24.若b a y x +=+,且2222b a y x +=+,求证:1997199719971997b a y x+=+. (北京市竞赛题)25.有l0位乒乓球选手进行单循环赛(每两人间均赛一场),用xl ,y 1顺次表达第一号选手胜与负的场数;用x 2,y 2顺次表达第二号选手胜与负的场数;……;用x 10、y 10顺次表达十号选手胜与负的场数.求证:21022212102221y y y x x x +++=+++ .26.(1)请观测: 222233*********,335112225,351225,525====写出表达一般规律的等式,并加以证明.(2)26=52+12,53=72+22,26×53=1378,1378=372+32.任意挑选此外两个类似26、53的数,使它们能表达成两个平方数的和,把这两个数相乘,乘积仍然是两个平方数的和吗?你能说出其中的道理吗?注:有人称这样的数“不变心的数”.数学中有许多美妙的数,通过度析,可发现其中的奥秘.瑞士数学家欧拉曾对26(2)的性质作了更进一步的推广.他指出:可以表达为四个平方数之和的甲、乙两数相乘,其乘积仍然可以表达为四个平方数之和.即(a 2+b 2+c 2十d 2)(e 2+f 2+g 2+h 2)=A 2+B 2+C 2+D 2.这就是著名的欧拉恒等式.第十八讲 乘法公式参考答案。