螺纹牙强度校核计算
- 格式:docx
- 大小:3.54 KB
- 文档页数:2
已知:M52x3螺纹,压强70MPa ,螺纹材料Q235。
由已知条件可得:螺纹大径D=52mm ,小径d=52-3=49mm ,螺距p =3mm ,压强P=70MPa ,S σ=235MPa平均所受轴向力()232652107010132000z 44F D P N ππ-⨯⨯=•=⨯⨯=1、抗剪切强度校核螺纹受剪应力应满足 []FDbzττπ=≤式中,平均所受轴向力——2132000z 4F D P N π=•= 螺纹大径——D=52mm螺纹齿根宽——b=0.75p (普通螺纹)因此,螺纹受剪应力-3-3S132000==359MPa 52100.7510235>[]=0.6[]0.6=0.6=28.2MPa S5F Dbz τππστσ=⨯⨯⨯⨯=⨯⨯故不安全2. 抗弯曲强度校核 螺纹受弯曲强度应满足23[]b b Fh σσπDb z=≤ 式中,平均所受轴向力——2132000z 4F D P N π=•=螺纹工作高度h =p =0.541p 螺纹大径——D=52mm螺纹齿根宽——b=0.75p (普通螺纹)因此,32332331320000.541310777MPa [][]235MPa 5210(0.75310)b b Fh σσσπDb z π---⨯⨯⨯⨯===>==⨯⨯⨯⨯⨯故不安全1. 抗剪切强度校核应满足[]FDbzττπ=≤式中● F :轴向力,单位N ;●1d :计算公扣时使用螺纹小径,单位mm ;● D :计算母扣时使用螺纹大径,单位mm ; ● b● z z 不宜大于10);●][τ:许用剪应力,单位MPa ,对于材质为钢,一般可以取][6.0][στ=,][σ为材料的许用拉应力,S[]Sσσ=,单位MPa ,其中S σ为屈服应力,单位MPa ,S 为安全系数,一般取3~5。
2. 抗弯曲强度校核应满足23[]b FhσπDb z≤。
其推导过程如下:一般来讲,螺母材料强度低于螺杆,所以螺纹牙抗弯和抗剪强度校核以螺母为对象,即校核母扣;但当螺母和螺杆材料相同时,则螺杆的强度要低于螺母,所以此时应校核螺杆强度,即校核公扣。
螺纹牙强度校核计算机械手册螺纹牙强度校核计算机械手册一、引言螺纹连接是机械设计中常见的连接方式,而螺纹牙的强度校核则是设计中的重要环节。
本文将深入探讨螺纹牙强度校核的相关知识,并根据机械手册对该内容进行全面评估和解析。
二、螺纹牙强度校核概述1. 螺纹牙的定义和作用螺纹牙是螺纹连接中的关键部件,它通过与螺纹环的互锁,在受力情况下承受连接件的拉伸、剪切及扭矩载荷,承担着重要的传力作用。
螺纹牙的强度校核是确保连接安全可靠的重要环节。
2. 螺纹牙强度校核的重要性螺纹连接在工程实践中应用广泛,而螺纹牙的强度不足可能导致连接失效,造成严重的安全隐患。
对螺纹牙的强度进行准确的校核,对于保证连接的可靠性和安全性至关重要。
三、螺纹牙强度校核计算方法1. 根据机械手册的指导,螺纹牙的强度校核主要包括静载强度、疲劳强度和抗松强度三个方面。
其中,静载强度主要考虑连接在正常工作状态下的受力情况,疲劳强度则考虑连接在长期振动、变载荷等条件下的耐久性,而抗松强度则确保连接在震动等情况下不会自行松动。
2. 静载强度校核静载强度校核通过计算螺纹牙在受力状态下的承载能力,采用等效应力法或有限元分析等方法,结合材料强度和载荷条件进行计算。
根据机械手册提供的公式和数据,可进行相应的计算和校核。
3. 疲劳强度校核疲劳强度校核是考虑螺纹牙在长期振动、变载荷等条件下的抗疲劳能力。
通过应力循环法、极限应力法等方法,结合疲劳曲线和载荷条件进行计算,以确保连接在长期使用中不会发生疲劳失效。
4. 抗松强度校核抗松强度校核是保证连接在振动、冲击等条件下不会自行松动。
通过计算连接的阶跃响应、松动频率等参数,结合材料和载荷条件进行校核,以确保连接的抗松性能。
四、个人观点和总结螺纹牙的强度校核是机械设计中至关重要的环节,对于保证连接的安全可靠性起着关键作用。
在实际应用中,需要根据机械手册提供的相关数据和方法进行全面的计算和校核,以确保连接的质量和可靠性。
螺纹牙强度校核是机械设计中不可或缺的一部分,而且对于设计师和工程师来说,掌握和运用好螺纹牙强度校核的方法是至关重要的。
物理量单位公称直径d(或D)mm13824.00螺距pmm 轴向力FN 螺纹小径d 1mm 19.006859.00螺纹中径d2mm 21.50螺纹牙底宽度bmm 3.17螺纹工作高度hmm 2.50螺旋升角ψdeg 4.230.07牙型倾角βdeg 摩擦系数f无量纲当量摩擦系数f v无量纲0.10当量摩擦角ψvdeg 0.18螺纹圈数z无量纲屈服强度σsMPa 极限强度σbMPa σs /σb泊松比许用安全系数[S]无量纲许用拉应力[σ]MPa 螺纹摩擦力矩M t1N ·m 96.17挤压应力σpMPa 26.92σp<[σp]?抗挤压:合格许用剪应力[τ]MPa 120.00剪切应力τMPa 24.02τ<[τ]?抗剪切:合格[σb ]MPa 200.00弯曲应力σbMPa 56.84σb <[σb ]?抗弯曲:合格螺杆强度σMPa 176.35螺杆强度σ<[σ]?螺杆强度:合格自锁性?自锁性:满足适用范围:梯形螺纹联接螺纹牙强度校核。
原始条件计算结果说明:只填写绿色格,其余的均由计算机自动计算。
单位数据转速r/min 60.8700螺母轴向移动速度v mm/s 5.0699螺纹摩擦力矩Mt1N.mm 96122.0735摩擦系数ƒ0.1000驱动转矩Mq N.m 150.0603驱动功率P1W 956.4578956.4578输出功率P2W 253.4964342.4120螺纹传动效率η0.3967螺纹传动轴向支承面摩擦力矩N.mm 53938.2558。
螺旋传动的校核计算方法一.耐磨性计算锯齿螺纹公式:螺纹中径d2>=0.65*SQRT(Q/(w[p])) mm 式中:Q——轴向载荷[N]W——引用系数W=H/d2 (H——螺母高度、d2——螺纹中径)整体螺母:W=1.2~2.5;剖分式螺母:W=2.5~3.5螺母中的扣数Z<=10。
[p]——许用挤压强度[N/mm2]v<=12 M/min(旋转线速度):淬火钢(HRC)—青铜[p]=10~13 Mpa手动:调质钢(HB)——青铜[p]=15~25 Mpa 二.螺杆螺纹部位的强度校核当量应力σt=SQRT(SQR(4Q/(πd2))+3SQR(T/(πd3/16)))<=[σ]式中:d——螺杆小径;d2—小径平方;d3—小径3次方[σ]——螺杆材料许用应力,优质碳钢、低合金碳钢取[σ]=50~80MpaT——螺旋副摩擦阻力矩N-m,T=fQd2/2;f-摩擦系数;d2-中径n——圆周率;n=3.1415926三.螺杆稳定性校核柔度λ=μL/SQRT(I/A)=4μL/d式中:μ——长度系数;千斤顶μ=2;压力机μ=0.7L——最大工作长度I——危险截面惯性矩;I=πd4/64;d4—小径4次方A——危险截面面积;A=πd2/4;d2—小径平方n——圆周率;n=3.1415926柔度λ>=100,临界载荷按材料力学的欧拉公式计算Qc=π2EI/SQR(μL)……[N]π2——圆周率的平方柔度λ<100;σb>=370 Mpa碳钢Qc=(304-1.12λ)A柔度λ<100;σb>=470 Mpa优质碳钢、低合金碳钢Qc=(461-2.57λ)A柔度λ<40,不作稳定性校核。
稳定性条件:Q<= Qc/n;n——安全系数,n=2.5~4。
四.螺母螺纹强度校核剪切强度校核:τ=Q/(πDbZ)<=[τ]弯曲强度校核:σ=3Qh/(πDb2Z)<=[σ]式中:b—螺纹牙根宽度;锯齿螺纹b=0.74t(t——螺距);b2——b的平方h—牙高Z—牙扣数D—螺母螺纹根径;πD—根径周长n——圆周率;n=3.1415926青铜螺母:[τ]=30~40Mpa;[σ]=40~60MPa2.螺母的长度如何确定?螺母的长度L=ZtZ-扣数;Z<10t-螺距3.千斤顶的螺纹如何计算承载力的?见<螺杆稳定性校核>注:SQRT:开平方函数;SQR:平方函数。
螺母螺纹牙的强度计算螺纹牙多发生剪切和挤压破坏,一般螺母的材料强度低于螺杆,故只需校核螺母螺纹牙的强度。
如图5-47所示,如果将一圈螺纹沿螺母的螺纹大径D处展开,则可看作宽度为πD的悬臂梁。
假设螺母每圈螺纹所承受的平均压力为Q/u,并作用在以螺纹中径D2为直径的圆周上,则螺纹牙危险截面a-a的剪切强度条件为【5-50】螺纹牙危险截面a-a的弯曲强度条件为【5-51】式中:b——螺纹牙根部的厚度,mm,对于矩形螺纹,b=0.5P对于梯形螺纹,b一0.65P,对于30o锯齿形螺纹,b=0.75P,P为螺纹螺距;l——弯曲力臂;mm参, l=(D-D2)/2;[τ]——螺母材料的许用切应力,MPa,;[σ]b——螺母材料的许用弯曲应力,MPa,。
当螺杆和螺母的材料相同时,由于螺杆的小径d l小于螺母螺纹的大径D,故应校核杆螺纹牙的强度。
此时,上式中的D应改为d1。
螺母外径与凸缘的强度计算。
在螺旋起重器螺母的设计计算中,除了进行耐磨性计算与螺纹牙的强度计算外,还要进行螺母下段与螺母凸缘的强度计算。
如下图所示的螺母结构形式,工作时,在螺母凸缘与底座的接触面上产生挤压应力,凸缘根部受到弯曲及剪切作用。
螺母下段悬置,承受拉力和螺纹牙上的摩擦力矩作用。
设悬置部分承受全部外载荷Q,并将Q增加20~30%来代替螺纹牙上摩擦力矩的作用。
则螺母悬置部分危险截面b-b内的最大拉伸应力为式中[σ]为螺母材料的许用拉伸应力,[σ]=0.83[σ]b,[σ]b为螺母材料的许用弯曲应力,见表5-15。
螺母凸缘的强度计算包括:凸缘与底座接触表面的挤压强度计算式中[σ]p为螺母材料的许用挤压应力,可取[σ]p=(1.5 1.7)[σ]b凸缘根部的弯曲强度计算式中各尺寸符号的意义见下图。
凸缘根部被剪断的情况极少发生,故强度计算从略。
螺杆的稳定性计算:对于长径比大的受压螺杆,当轴向压力Q大于某一临界值时,螺杆就会突然发生侧向弯曲而丧失其稳定性。
计算公式计算值注释1.5设计给出517.5设计给出235260设计给出38设计给出4.23设计给出50设计给出11.8203309693h = 0.541p 2.28843 3227.60672.8899376194 345计算结果合格剪切强度计算公式计算值备注235260设计给出35.5设计给出41.78设计给出11.8203309693设计给出1.5设计给出4.23设计给出B = 0.75p 3.1725 517.5设计给出34556.280613618 207安全系数n材料屈服强度(MPA)轴向力F(n)螺距D2(mm)螺纹工作长度L(mm)连接螺纹齿Z螺纹工作高度h(mm)挤压面积a(mm2)挤压应力(MPA)的计算允许将挤压小直径D1(mm)用于外螺纹时使用的挤压直径(MPA)轴向力F(n),使用大直径D(mm)连接的螺纹数Z安全系数s间距P(mm)螺纹底宽b(mm)屈服强度(MPA)螺钉的允许拉伸应力(MPA),计算剪切应力(MPA)表示螺母,如果合格,则计算螺母(MPA)允许剪应力(MPA)的剪应力(MPA);否则,不合格。
弯曲强度计算项目计算公式计算值的计算结果备注28.58 28.52 24.22 26.82 0.85 71.8724621016 B = 0.75p 2.38125 138112 3.175 H = 0.541p 1.717675 9.26 1.5517.5345 178.2251152336 151.0361193477计算结果自锁性能检查计算螺母大直径D(mm )当使用大直径D(mm)螺丝外螺纹时,小直径D1(mm)外螺纹螺距直径D2(mm)弯曲臂L(mm)单圈外螺纹截面弯曲模数w(mm)螺纹底宽b (mm)轴向力F(n)螺距P(mm)螺纹工作高度h(mm)连接螺纹数Z安全系数s屈服强度(MPA)允许的拉应力(MPA)对于螺钉,请计算以下值的弯曲应力(MPA)螺母,计算弯曲应力(MPA),允许弯曲应力(MPA),如果螺钉和螺母合格,则为不合格。
螺纹的承载力量怎么计算1.耐磨性校核公式:P=Fmax/(π*d2*h*z)≤[P]式中:最大轴向载荷Fmax=350000N螺杆中径d2=128mm螺纹工作高度h=12mm旋合圈数z=10.00计算工作压强P=7Mpa许用工作压强[P]=25Mpa因为P≤[P],所以满足耐磨性要求。
2.自锁校核公式:λ=arctg(n*p/(π*d2))≤ψ式中:螺纹头数n=1螺纹螺距p=16mm螺旋升角λ=2.28°当量摩擦角ψ=5.14°因为λ≤[ψ],所以满足自锁要求。
3.螺杆强度校核公式:σ=4*Fmax*sqrt(1+12*[d2*tg(λ+ψ)/d1]^2)/(π*d1^2)≤[σ]式中:螺杆小径d1=112.231mm计算应力σ=40Mpa许用应力[σ]=40Mpa因为σ≤[σ],所以满足螺杆强度要求。
4.螺纹牙强度校核公式:τ=Fmax/(π*dt*b*z)≤[τ]σ=3*Fmax*h/(π*dt*b^2*z)≤[σ]式中:螺纹牙底宽度b=11.84mm螺母和螺杆材料不同,取dt=d+2*Y=143.769mm 螺杆大径d=140mm螺纹顶隙Y=1.88432mm计算剪切强度τ=7Mpa许用剪切强度[τ]=35Mpa计算弯曲强度σ=20Mpa许用弯曲强度[σ]=45Mpa因为τ≤[τ]且σ≤[σ],所以满足螺纹牙强度要求。
5.螺杆稳定性校核公式:Scr=20600*π^3*d1^4/(64*Fmax*(μ*l)^2)〉Sc 式中:螺杆长度系数μ=0.7螺杆工作长度l=300mm稳定性计算安全系数Scr=102.59稳定性安全系数Sc=3.8因为Scr〉Sc,所以满足稳定性要求。
螺纹牙强度校核计算
螺纹牙强度校核计算是机械设计中的重要内容之一,它用于确定螺纹牙在受到负载时的强度是否满足设计要求。
螺纹牙强度的校核计算涉及到许多因素,包括材料的强度、螺纹几何参数以及载荷的大小。
本文将从这些方面详细介绍螺纹牙强度校核计算的方法和步骤。
螺纹牙的强度主要取决于材料的强度。
常见的螺纹牙材料有普通碳钢、合金钢和不锈钢等。
这些材料的强度参数可以通过实验或查阅相关资料得到。
在校核计算中,需确定螺纹牙材料的屈服强度(yield strength)和抗拉强度(ultimate strength)。
螺纹牙的几何参数对其强度也有重要影响。
螺纹牙的几何参数包括螺纹直径、螺距和牙型等。
校核计算中,需要确定螺纹牙的剖面形状(如三角形、矩形等)以及螺纹的尺寸参数(如螺纹高度、螺纹深度等)。
这些参数可以通过螺纹测量仪器或螺纹规进行测量和计算得到。
载荷的大小对螺纹牙的强度校核也至关重要。
螺纹牙通常承受拉伸力、剪切力或扭矩等载荷。
在校核计算中,需要确定螺纹牙所受到的最大载荷,并将其转化为应力值。
应力值的计算可以通过应力公式和载荷分析等方法得到。
根据上述要点,进行螺纹牙强度校核计算的一般步骤如下:
1. 确定螺纹牙材料的强度参数。
根据设计要求和所使用的材料,确定螺纹牙的屈服强度和抗拉强度。
2. 测量和计算螺纹牙的几何参数。
使用螺纹测量仪器或螺纹规测量螺纹牙的剖面形状和尺寸参数。
3. 确定螺纹牙所受到的最大载荷。
根据具体的设计情况和工作条件,确定螺纹牙所承受的最大拉伸力、剪切力或扭矩。
4. 根据材料的强度参数和载荷的大小,计算螺纹牙的应力值。
根据应力公式和载荷分析,将最大载荷转化为螺纹牙的应力值。
5. 比较螺纹牙的应力值和材料的强度参数。
根据设计要求,比较螺纹牙的应力值与材料的屈服强度和抗拉强度,判断螺纹牙的强度是否满足设计要求。
以上是螺纹牙强度校核计算的一般步骤,根据具体的设计要求和工作条件,可以进行相应的修正和调整。
此外,在实际的设计中,还需要考虑螺纹牙的疲劳寿命、腐蚀等因素,以确保螺纹牙的可靠性和使用寿命。
螺纹牙强度校核计算是机械设计中重要的一部分,它涉及到材料的强度、螺纹几何参数和载荷的大小等多个因素。
通过合理的计算和分析,可以确定螺纹牙的强度是否满足设计要求,为机械设备的安全运行提供保障。