螺母螺纹牙的强度计算
- 格式:docx
- 大小:66.28 KB
- 文档页数:7
螺母螺纹牙的强度计算螺纹牙多发生剪切和挤压破坏,一般螺母的材料强度低于螺杆,故只需校核螺母螺纹牙的强度。
如图5-47所示,如果将一圈螺纹沿螺母的螺纹大径D处展开,则可看作宽度为πD的悬臂梁。
假设螺母每圈螺纹所承受的平均压力为Q/u,并作用在以螺纹中径D为直径的圆周上,则螺纹牙危险截面a-a的剪切强度条件为2【5-50】螺纹牙危险截面a-a的弯曲强度条件为【5-51】式中:b——螺纹牙根部的厚度, mm,对于矩形螺纹,b=0.5P对于梯形螺纹,b一0.65P,对于30o锯齿形螺纹,b=0.75P,P为螺纹螺距;l——弯曲力臂;mm参看图 , l=(D-D)/2;2[τ]——螺母材料的许用切应力,MPa,见表;[σ]b——螺母材料的许用弯曲应力,MPa,见表。
当螺杆和螺母的材料相同时,由于螺杆的小径dl小于螺母螺纹的大径D,故应校核杆螺纹牙的强度。
此时,上式中的D应改为d1。
螺母外径与凸缘的强度计算。
在螺旋起重器螺母的设计计算中,除了进行耐磨性计算与螺纹牙的强度计算外,还要进行螺母下段与螺母凸缘的强度计算。
如下图所示的螺母结构形式,工作时,在螺母凸缘与底座的接触面上产生挤压应力,凸缘根部受到弯曲及剪切作用。
螺母下段悬置,承受拉力和螺纹牙上的摩擦力矩作用。
设悬置部分承受全部外载荷Q,并将Q增加20~30%来代替螺纹牙上摩擦力矩的作用。
则螺母悬置部分危险截面b-b内的最大拉伸应力为式中[σ]为螺母材料的许用拉伸应力,[σ]=0.83[σ]b ,[σ]b为螺母材料的许用弯曲应力,见表5-15。
螺母凸缘的强度计算包括:凸缘与底座接触表面的挤压强度计算式中[σ]p 为螺母材料的许用挤压应力,可取[σ]p=(1.5 1.7)[σ]b凸缘根部的弯曲强度计算式中各尺寸符号的意义见下图。
凸缘根部被剪断的情况极少发生,故强度计算从略。
螺杆的稳定性计算:对于长径比大的受压螺杆,当轴向压力Q大于某一临界值时,螺杆就会突然发生侧向弯曲而丧失其稳定性。
螺旋副材料牌号Q235、Q275、45、5040Cr、65Mn、T12、40WMn、18CrMnTi9Mn2V、CrWMn、38CrMoAl ZCu10P1、ZCu5Pb5Zn5ZcuAl9Fe4Ni4Mn2ZCuZn25Al6Fe3Mn3滑动螺旋的磨损与螺纹工作面上的压力、滑动速度、螺纹表面粗糙度以及润滑状态等因素有关。
其中最主要的是螺纹工作面上的压力,压力越大螺旋副间越容易形成过度磨损。
因此,滑动螺旋的耐磨性计算,主要是限制螺纹工作面上的压力p ,使其小于材料的许用压力[p ]。
4.螺母外径与凸缘的强度计算5.螺杆的稳定性计算螺旋传动设计滑动螺旋传动的设计计算设计计算步骤:1.耐磨性计算2.螺杆的强度计算3.螺母螺纹牙的强度计算螺旋传动常用材料见下表:表: 螺旋传动常用的材料耐磨性计算螺母螺杆如图5-46所示,假设作用于螺杆的轴向力为Q(N),螺纹的承压面积(指螺纹工作表面投影到垂直于轴向力的平面上的面积)为A(mm 2),螺纹中径为小(mm),螺纹工作高度为H(mm),螺纹螺距为 P(mm),螺母高度为 D(mm),螺纹工件圈数为 u=H/P 。
则螺纹工作面上的耐磨性条件为上式可作为校核计算用。
为了导出设计计算式,令ф=H/d 2, 则H=фd 2,,代入式(5-43)引整理后可得对于矩形和梯形螺纹,h=0.5P,则对于30o 锯齿形螺纹。
h=0.75P,则螺母高度H=фd 2式中:[P]为材料的许用压力,MPa,见表5-13;ф值一般取1.2~3.5。
对于整体螺母,由于磨损后不能凋整间隙,为使受力分布比较均匀,螺纹工作圈数不宜过多,故取ф=1.2~2.5对于剖分螺母和兼作支承的螺母,可取ф=2.5~3.5只有传动精度较高;载荷较大,要求寿命较长时,才允许取ф=4。
根据公式算得螺纹中径d 2后,应按国家标准选取相应的公称直径d及螺距P。
螺纹工作圈数不宜超过10圈。
螺杆—螺母的材料滑动速度低速≤3.06~12>15淬火钢—青铜6~12<2.46~12表:滑动螺旋副材料的许用压力[ P]钢—青铜钢—铸铁注:表中数值适用于ф=2.5~4的情况。
注塑机设计中常用的计算规范一、螺杆塑化能力:G = 0.017682D·h3·n·ρSD/4*L理论注射容积:V=π2S式中:D s——螺杆直径(cm)L——螺杆行程(cm)实际注射量:G1=ρV式中:ρ—熔料的密度(g/cm3),计算时选PS料,ρ= 0.92。
V——理论注射容积(cm3)注1:计算公式来源于经验公式。
二、螺杆的强度根据螺杆最常见的破坏,是在加料段螺槽根径处发生断裂,所以螺杆的强度计算就以此处计算其应力。
σr =224τσ+c≤〔σ〕 式中:压缩应力σc =sF P 0= 210⎪⎪⎭⎫ ⎝⎛d D 0p剪应力 τ=stW M 材料许用应力〔σ〕=ny σ式中三、熔胶筒的壁厚:(按厚壁筒计算中的能量理论,校核其强度或计算壁厚)熔胶筒的总应力σr = P 1322-K K ≤ 〔σ〕熔胶筒壁厚 δ= 2b D (P3-〔σ〕〔σ〕- 1 ) 式中部分熔胶筒的K 值四、螺杆驱动功率:采用经验公式计算N s = C·5.2D·n4.1S式中:N s——螺杆驱动功率(kw)C ——与螺杆结构参数及传动方式有关的系数取C=0.00016D s——螺杆直径(cm)n ——螺杆转速(r/min)螺杆所需扭矩与直径及转速之间的关系,可用下式表示:M t = 10α·D mS式中:M t——螺杆扭矩(N·m)——螺杆直径(cm)DSα——比例系数,对于热塑性塑料α=1.2~1.5m ——由树脂性能而定的指数,m=2.7~3螺杆的驱动功率一般需留20~30%的余量,以作备用。
五、传动轴的强度:传动轴最常见的破坏是在承受扭矩的最小截面处发生断裂,所以传动轴的强度计算就以此处进行计算:σr =224τσ+c ≤〔σ〕 式中:压缩应力σc = sF P= 210⎪⎪⎭⎫ ⎝⎛d D 0p剪应力 τ=stW M 材料许用应力〔σ〕=ny σ式中六、轴 承1、基本额定动负荷计算:C =Tn dm h f f f f f ·P < C r (或C a ) 式中C ——基本额定动负荷计算值(N ); P ——当量动负荷,见下式(N ); h f ——寿命系数,按表7-2-4选取; n f ——速度系数,按表7-2-5选取;m f ——力矩负荷系数,力矩负荷较小时1.5,力矩负荷较大时2; d f ——冲击负荷系数,按表7-2-6选取; T f ——温度系数,按表7-2-7选取;C r ——轴承尺寸及性能表中所列径向基本额定动负荷(N ); C a ——轴承尺寸及性能表中所列轴向基本额定动负荷(N )。
螺母螺纹牙的强度计算螺纹牙多发生剪切和挤压破坏,一般螺母的材料强度低于螺杆,故只需校核螺母螺纹牙的强度。
如图5-47所示,如果将一圈螺纹沿螺母的螺纹大径D处展开,则可看作宽度为πD的悬臂梁。
假设螺母每圈螺纹所承受的平均压力为Q/u,并作用在以螺纹中径D2为直径的圆周上,则螺纹牙危险截面a-a的剪切强度条件为【5-50】螺纹牙危险截面a-a的弯曲强度条件为【5-51】式中:b——螺纹牙根部的厚度,mm,对于矩形螺纹,b=0.5P对于梯形螺纹,b一0.65P,对于30o锯齿形螺纹,b=0.75P,P为螺纹螺距;l——弯曲力臂;mm参, l=(D-D2)/2;[τ]——螺母材料的许用切应力,MPa,;[σ]b——螺母材料的许用弯曲应力,MPa,。
当螺杆和螺母的材料相同时,由于螺杆的小径d l小于螺母螺纹的大径D,故应校核杆螺纹牙的强度。
此时,上式中的D应改为d1。
螺母外径与凸缘的强度计算。
在螺旋起重器螺母的设计计算中,除了进行耐磨性计算与螺纹牙的强度计算外,还要进行螺母下段与螺母凸缘的强度计算。
如下图所示的螺母结构形式,工作时,在螺母凸缘与底座的接触面上产生挤压应力,凸缘根部受到弯曲及剪切作用。
螺母下段悬置,承受拉力和螺纹牙上的摩擦力矩作用。
设悬置部分承受全部外载荷Q,并将Q增加20~30%来代替螺纹牙上摩擦力矩的作用。
则螺母悬置部分危险截面b-b内的最大拉伸应力为式中[σ]为螺母材料的许用拉伸应力,[σ]=0.83[σ]b,[σ]b为螺母材料的许用弯曲应力,见表5-15。
螺母凸缘的强度计算包括:凸缘与底座接触表面的挤压强度计算式中[σ]p为螺母材料的许用挤压应力,可取[σ]p=(1.5 1.7)[σ]b凸缘根部的弯曲强度计算式中各尺寸符号的意义见下图。
凸缘根部被剪断的情况极少发生,故强度计算从略。
螺杆的稳定性计算:对于长径比大的受压螺杆,当轴向压力Q大于某一临界值时,螺杆就会突然发生侧向弯曲而丧失其稳定性。
螺纹的承载力量怎么计算1.耐磨性校核公式:P=Fmax/(π*d2*h*z)≤[P]式中:最大轴向载荷Fmax=350000N螺杆中径d2=128mm螺纹工作高度h=12mm旋合圈数z=10.00计算工作压强P=7Mpa许用工作压强[P]=25Mpa因为P≤[P],所以满足耐磨性要求。
2.自锁校核公式:λ=arctg(n*p/(π*d2))≤ψ式中:螺纹头数n=1螺纹螺距p=16mm螺旋升角λ=2.28°当量摩擦角ψ=5.14°因为λ≤[ψ],所以满足自锁要求。
3.螺杆强度校核公式:σ=4*Fmax*sqrt(1+12*[d2*tg(λ+ψ)/d1]^2)/(π*d1^2)≤[σ]式中:螺杆小径d1=112.231mm计算应力σ=40Mpa许用应力[σ]=40Mpa因为σ≤[σ],所以满足螺杆强度要求。
4.螺纹牙强度校核公式:τ=Fmax/(π*dt*b*z)≤[τ]σ=3*Fmax*h/(π*dt*b^2*z)≤[σ]式中:螺纹牙底宽度b=11.84mm螺母和螺杆材料不同,取dt=d+2*Y=143.769mm 螺杆大径d=140mm螺纹顶隙Y=1.88432mm计算剪切强度τ=7Mpa许用剪切强度[τ]=35Mpa计算弯曲强度σ=20Mpa许用弯曲强度[σ]=45Mpa因为τ≤[τ]且σ≤[σ],所以满足螺纹牙强度要求。
5.螺杆稳定性校核公式:Scr=20600*π^3*d1^4/(64*Fmax*(μ*l)^2)〉Sc 式中:螺杆长度系数μ=0.7螺杆工作长度l=300mm稳定性计算安全系数Scr=102.59稳定性安全系数Sc=3.8因为Scr〉Sc,所以满足稳定性要求。
联接螺栓的强度计算方法一.连接螺栓的选用及预紧力:1、已知条件:螺栓的s=730MPa 螺栓的拧紧力矩T=49N.m2、拧紧力矩:为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。
其拧紧扳手力矩T用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩擦力矩T2。
装配时可用力矩扳手法控制力矩。
公式:T=T1+T2=K*F* d拧紧扳手力矩T=49N.m其中K为拧紧力矩系数,F为预紧力N d为螺纹公称直径mm其中K为拧紧力矩系数,F为预紧力N d为螺纹公称直径mm摩擦表面状态K值有润滑无润滑精加工表面0.10.12一般工表面0.13-0.150.18-0.21表面氧化0.20.24镀锌0.180.22粗加工表面-0.26-0.3取K=0.28,则预紧力F=T/0.28*10*10-3=17500N3、承受预紧力螺栓的强度计算:螺栓公称应力截面面积As(mm)=58mm2外螺纹小径d1=8.38mm外螺纹中径d2=9.03mm计算直径d3=8.16mm 螺纹原始三角形高度h=1.29mm 螺纹原始三角形根部厚度b=1.12mm紧螺栓连接装配时,螺母需要拧紧,在拧紧力矩的作用下,螺栓除受预紧力F0的拉伸而产生拉伸应力外,还受螺纹摩擦力矩T1的扭转而产生扭切应力,使螺栓处于拉伸和扭转的复合应力状态下。
螺栓的最大拉伸应力σ1(MPa)。
1sF A σ==17500N/58*10-6m 2=302MPa 剪切应力:=0.51σ=151 MPa根据第四强度理论,螺栓在预紧状态下的计算应力: =1.3*302=392.6 MPa强度条件:=392.6≤730*0.8=584预紧力的确定原则:拧紧后螺纹连接件的预紧应力不得超过其材料的屈服极限s σ的80%。
4、 倾覆力矩倾覆力矩 M 作用在连接接合面的一个对称面内,底板在承受倾覆力矩之前,螺栓()2031tan 216v Td F T W dϕρτπ+== 1.31ca σσ≈[]0211.34F ca d σσπ=≤已拧紧并承受预紧力F 0。
同时受预紧力和轴向载荷的紧螺栓联接:如右图(1)a.一、受力分析1、压力容器中压强P对每个螺栓产生的轴向工作载荷为:(Z为联接螺栓个数)2、未拧紧未受工作载荷时螺栓情况:如右图(2)a3、拧紧后未受工作载荷时螺栓受预紧力F'作用:如右图(2)b4、拧紧后受工作载荷时螺栓受到总拉力F0作用:如右图(2)cF0 = F + F''此时,由于螺栓受工作载荷F的作用,伸长量又增加了△σ,被联接件间随螺栓伸长而被放松了△σ,故其压紧力由F'减小到F'',被联接件作用与螺栓的反作用力也应为F'', F''称为剩余预紧力。
载荷F无变化时,F'' =(0.2-0.6)F;载荷F有变化时,F'' =(0.6-1.0)F;有紧密性要求的联接:F'' =(1.5-1.8)F。
二、强度条件:由于螺栓杆上受的是总拉力F0,故联接的失效形式仍是螺栓杆断裂。
若计入扭转切应力的影响,则有:设计式为:四、螺纹牙强度校核:由于螺母材料强度一般低于螺杆,所以螺纹牙弯曲强度计算仅对螺母进行。
如左图a所示。
将一圈螺母螺纹沿根部大径D处展开,并视为宽度为πD的悬臂梁,载荷F/Z作用在中径圆周上,则螺纹牙(根部aa处)的剪切强度条件与弯曲强度条件分别为:式中b-螺纹牙根部宽度(mm),对梯形螺纹b=0.65P,对锯齿形螺纹b=0.74P;D-螺母螺纹大径(mm);[τ]-螺母材料许用剪切应力(MPa),对铸铁螺母取[τ]=40MPa,对青铜螺母取[τ]=30--40MPa;[σb]-螺母材料的许用弯曲应力(MPa),对铸铁螺母取[σb]=45-55MPa,对青铜螺母取[σb]=40--60MPa。
一、矩形螺纹(牙型角α=0)螺纹副中,螺母所受到的轴向载荷Q 是沿螺纹各圈分布的,为便于分析,用集中载荷Q 代替,并设Q 作用于中径d 2圆周的一点上。
这样,当螺母相对于螺杆等速旋转时,可看作为一滑块(螺母)沿着以螺纹中径d 2展开,斜度为螺纹升角l 的斜面上等速滑动。
匀速拧紧螺母时,相当于以水平力推力F 推动滑块沿斜面等速向上滑动。
设法向反力为N ,则摩擦力为f N ,f 为摩擦系数,ρ 为摩擦角,ρ = arctan f 。
由于滑块沿斜面上升时,摩擦力向下,故总反力R 与Q 的的夹角为λ+ρ 。
由力的平衡条件可知,R 、F 和Q 三力组成力封闭三角形,由图可得:Qψd F使滑块等速运动所需要的水平力等速上升: Ft=Qtan(ф+ρ)等速上升所需力矩:T= Ftd 2/2= Qtan(ф+ρ)d 2/2等速下降: Ft=Qtan(ф—ρ)等速下降所需力矩:T= Ftd 2/2= Qtan(ф—ρ)d 2/2二、非矩形螺纹 螺纹的牙型角α≠0时的螺纹为非矩形螺纹。
非矩形螺纹的螺杆和螺母相对转动时,可看成楔形滑块沿楔形斜面移动;平面时法向反力N=Q; 平面时摩擦力F f =fN =fQ;楔形面时法向反力N /=Q/cosβ;楔形面摩擦力F f ! =f N/ =fQ/ cosβ;令f/ =f/ cosβ称当量摩擦系数。
F f ! =f /Q;楔形面和矩形螺纹的摩擦力相比,与当量摩擦系数对应的摩擦角称为当量摩擦角,用ρV 表示。
拧紧螺母时所需的水平推力及转矩:由于矩形螺纹与非矩形螺纹的运动关系相同,将ρV 代替ρ后可得:使滑块等速运动所需要的水平力等速上升: Ft=Qtan(ф+ρV )等速上升所需力矩: T= Ftd 2/2= Qtan(ф+ρV )d 2/2等速下降: Ft=Qtan(ф—ρV )等速上升所需力矩: T= Ftd 2/2= Qtan(ф—ρV )d 2/2三、螺纹联接的预紧螺纹联接 松联接——在装配时不拧紧,只存受外载时才受到力的作用——轻少用紧联接——在装配时需拧紧,即在承载时,已预先受力,预紧力Q P预紧目的:保持正常工作。
一、一般机械用螺栓连接的许用应力表2 尺寸系数二、松连接螺栓的强度计算一般机械用松连接螺栓,其螺纹部分的强度条件为:需要的计算直径为:式中: Q —螺栓的总拉力,此情况下是其工作拉力,N ;A c —螺栓螺纹部分的计算面积,(mm 2); d c —螺纹部分的计算直径(mm);d c =(d 2 + d 1 – H/6)/2≈d -0.94P ;其中: d 2和d 1 为螺纹的小径和大径,(mm ),H 为螺纹牙理论高度,(mm ), P 为螺纹螺距,(mm )。
[σ]—松连接螺栓的许用拉应力,MPa 。
三、紧连接螺栓的强度计算1、只受预紧力的螺栓一般结构形式的螺栓螺母连接,螺栓除受预紧力外还受拧紧力矩的作用,综合考虑拉应力σ和扭转剪应力τ=0.5σ,根据第四强度理论,可得螺纹部[]σπ≤=24c c d QA F[]σπQd c 4≥分的强度条件为:()[]στσσσσ2222330513+≈+≈≤..换算后得:[]4132⨯≤Q d cPπσ 螺栓需要的计算直径:[]d Q c P≥⨯413.πσ式中: Q P —螺栓的预紧力,N ;[σ]—静载紧连接螺栓的许用拉应力(按表1),MPa 。
当螺栓材料为低塑性材料时,如30CrMnSi 等,宜采用根据莫尔理论的强度条件:()()[]121121422-+++≤νσνστσ 式中:ν=σSL /σSY ,对于一般塑性材料,ν=1。
σSL 和σSY 分别是材料的拉伸、压缩屈服极限,MPa 。
2、受预紧力和静工作拉力的螺栓为保证连接的可靠性和充分发挥螺栓连接的潜力,螺栓的预紧应力σp 应在小于0.8σs 的条件下取较高值,对一般机械,σp =(0.5~0.7)σs 螺栓需要的预紧力:F C C C Q Q mb mP P ++'=螺栓总拉力:Q= Q p ’+F或表示为:Q Q C C C F P bb m=++ 式中: Q p —螺栓需要的预紧力,N ;Q p ’—被连接件中剩余预紧力( 承受工作拉力后,被连接 件中剩余预紧力 Q p ’的推荐值见表5),N ; F —螺栓的工作拉力,N ;C b 、C m ─分别为螺栓和被连接件的拉、压刚度,均为定值。
螺纹的强度计算 机械工学便览篇螺纹的许用拧紧力矩T=(Q/2)*(d2*μ/cosβ+d2*tanα+μn*d n)Q=σq*Aμ: 螺纹表面摩擦系数β:螺纹牙型半角、因为是公制螺纹所以是30ºd2: 螺纹有效直径的标准尺寸d3: 外螺纹内径的标准尺寸 d3=d-1.226869*Sα:螺纹升角 tanα=S/(π*d2) (rad)S: 螺纹的牙距μn: 螺母座面的摩擦系数d n: 螺母座面的平均直径 例1:当螺母座面是以B为直径的圆的情况 d n=(2/3)*(B3-d n3)/(B2-d h2) d h:螺栓孔径 例2: 当螺母座面是以B为对边宽度的六边形的情况 dn=(0.608*B3-0.524*d h3)/(0.866*B2-0.785*d h2)A: 螺纹的有效截面积 A=(π/4)*d32σq: 螺纹的许用拉伸应力ρ=螺纹接触面的摩擦角=tan-1(μ) (rad)内螺纹螺牙的剪切应力Q=√2*π*Z*(d-AB*sinΨ)*AB*τn*cosβ*cosρΨ=0.7854+ρ-β…螺纹剪切面的角度 (rad) Yn:内螺纹螺栓外径位置的螺牙根部宽度Yn=0.875*SAB:内螺纹剪切长度AB=Yn*cosβ/cos(β-Ψ)Z=(螺母高度/S)-1 …同时接触的牙数、 取理论值-1。
外螺纹螺牙的剪切应力Q=√2*π*Z*(d - 2*h + CD*sinψ)*CD*τs*cosβ*cosρΨ=0.7854+ρ-β…螺纹剪切面的角度 (rad)Ys:外螺纹螺牙根部宽度Ys=(0.125+0.625*ε)*Sε: 螺纹结合比,通常取1。
CD: 外螺纹剪切长度CD=Ys*cosβ/cos(β-Ψ)h: 外螺纹螺牙高度,通常 h=H1=0.541226*SS: 螺纹牙距。
第三章 螺纹联接(含螺旋传动)3-1 基础知识 一、螺纹的主要参数现以圆柱普通螺纹的外螺纹为例说明螺纹的主要几何参数,见图3-1,主要有:1)大径d ——螺纹的最大直径,即与螺纹牙顶重合的假想圆柱面的直径,在标准中定为公称直径。
2)小径1d ——螺纹的最小直径,即与螺纹牙底相重合的假想圆柱面的直径,在强度计算中常作为螺杆危险截面的计算直径。
3)中径2d ——通过螺纹轴向界面内牙型上的沟槽和突起宽度相等处的假想圆柱面的直径,近似等于螺纹的平均直径,2d ≈11()2d d +。
中径是确定螺纹几何参数和配合性质的直径。
4)线数n ——螺纹的螺旋线数目。
常用的联接螺纹要求自锁性,故多用单线螺纹;传动螺纹要求传动效率高,故多用双线或三线螺纹。
为了便于制造,一般用线数n ≤4。
5)螺距P ——螺纹相邻两个牙型上对应点间的轴向距离。
6)导程S ——螺纹上任一点沿同一条螺旋线转一周所移动的轴向距离。
单线螺纹S =P ,多线螺纹S =nP 。
7)螺纹升角λ——螺旋线的切线与垂直于螺纹轴线的平面间的夹角。
在螺纹的不同直径处,螺纹升角各不相同。
通常按螺纹中径2d 处计算,即22arctanarctan S nPd d λππ== (3-1) 图3-18)牙型角α——螺纹轴向截面内,螺纹牙型两侧边的夹角。
螺纹牙型的侧边与螺纹轴线的垂直平面的夹角称为牙侧角,对称牙型的牙侧角β=α/2。
9)螺纹接触高度h——内外螺纹旋合后的接触面的径向高度。
二、螺纹联接的类型螺纹联接的主要类型有:1、螺栓联接常见的普通螺栓联接如图3-2a所示。
这种联接的结构特点是被联接件上的通孔和螺栓杆间留有间隙。
图3-2b是铰制孔用螺栓联接。
这种联接能精确固定被联接件的相对位置,并能承受横向载荷,但孔的加工精度要求较高。
图3-22、双头螺柱联接如图3-3a所示,这种联接适用于结构上不能采用螺栓联接的场合,例如被联接件之一太厚不宜制成通孔,且需要经常拆装时,往往采用双头螺柱联接。
M6~M24螺钉或螺母的拧紧力矩(操作者参考)
螺纹规格牙距螺纹底孔直径
M2 标准细牙
标准细牙
标准细牙
M3 标准细牙
标准细牙
M4 标准细牙
M5 标准细牙
M6 标准细牙
M8 标准细牙细牙
M10 标准细牙细牙细牙
M12 标准细牙细牙细牙
M14 标准细牙细牙
M16 标准细牙细牙
M18 标准细牙1 细牙2 细牙
一般切削丝锥底孔尺寸为:D=d1-P 以为例,底孔尺寸D==
而挤压对底孔要求较为苛刻,一般来说,提供一个十分合适的底孔是很困难的,需要不断的试切。
不过,总的来说可按以下公式来计算大致底孔尺寸:D= 仍以为例,底孔尺寸D=*=。
螺母螺纹牙的强度计算
作者:日期:
螺母螺纹牙的强度计算
螺纹牙多发生剪切和挤压破坏,一般螺母的材料强度低于螺杆,故只需校核螺 母螺纹牙的强度。
如图5-4 7所示,如果将一圈螺纹沿螺母的螺纹大径 D 处展开,则可看作宽度为 n D 的悬臂梁。
假设螺母每圈螺纹所承受的平均压力为 Q/U ,并作用在以螺纹中 径D2为直径的圆周上,则螺纹牙危险截面a-a 的剪切强度条件为
1^15-4?握母9!统S 的堂山
式中: b ――螺纹牙根部的厚度,mm 对于矩形螺纹,b= 0 .5P 对于梯形螺纹,b 一 0. 6 5 P,对于3 0 0
锯齿形螺纹,b = 0. 75P, P 为螺纹螺距;
I ――弯曲力臂;mm 参看图,l=(D-D 2)/2 ; [T ]――螺母材料的许用切应力, M P a ,见表; [C ]b ――螺母材料的许用弯曲应力,M P a,见表。
"赢-k]
【
5 -50】
螺纹牙危险截面 a-a 的弯曲强度条件为
【5 — 51】
当螺杆和螺母的材料相同时,由于螺杆的小径d i小于螺母螺纹的大径D,故应校
核杆螺纹牙的强度。
此时,上式中的D应改为d i 0 螺母外径与凸缘的强度计算。
在螺旋起重器螺母的设计计算中,除了进行耐磨性计算与螺纹牙的强度计算外,还要进行螺母下段与螺母凸缘的强度计算。
如下图所示的螺母结构形式, 工作时,在螺母凸缘与底座的接触面上产生挤压应力,凸缘根部受到弯曲及剪切作用。
螺母下段悬置,承受拉力和螺纹牙上的摩擦力矩作用。
设悬置部分承受全部外载荷Q, 并将Q增加2 0 -30%来代替螺纹牙上摩擦力矩的作用。
则螺母悬置部分危险截面b-b内的最大拉伸应力为
(宀1.3)兀9]
式中[C ]为螺母材料的许用拉伸应力,[(7: = 0.83[ ,[ C ]b为螺母材料的许
用弯曲应力,见表5 -15。
螺母凸缘的强度计算包括: 凸缘与底座接触表面的挤压强度计算
bp = -~~二----------------------- <[舟
尹-功
式中[7 ]p为螺母材料的许用挤压应力,可取[7 ]p= ( 1. 5 1. 7 )[ 7 ] b 凸缘根部的弯曲强度计算
_M _。
打2)_ 1.50(2-马)b占——- —
W
式中各尺寸符号的意义见下图。
塩旄起®
S 的s 毎结^5
凸缘根部被剪断的情况极少发生,故强度计算从略。
螺杆的稳定性计算
对于长径比大的受压螺杆,当轴向压力 Q 大于某一临界值时,螺杆就会突然发生 侧向弯曲而丧失其稳定性。
因此,在正常情况下,螺杆承受的轴向力 Q 必须小于 临界载荷Q 。
则螺杆的稳定性条件为
S ;c=Q /Q A Ss
式中:S s c ——螺杆稳定性的计算安全系数;
S s ――螺杆稳定性安全系数,对于传力螺旋(如起重螺杆等),S s
=3.5〜5. 0对于传导
螺旋,S s = 2.5〜4.0 ;对于精密螺杆或水平螺杆,S s
> 4。
Q ――螺杆的临界载荷,N ,根据螺杆的柔度入S 值的大小选用不同的 公式计算。
入s =u l/i,此处,卩为螺杆的长度系数,
见表;1为螺杆的工作长度, m m ,若螺杆两端支承时,取两支点间的距离作为工作长度1;若螺杆一端以螺母 支承时,则以螺母中部到另一端支点的距离,作为工作长度1; i 为螺杆危险截 面的惯性半径,mm 若螺杆危险截面面积
b
D
当入S>1 00时,临界载荷Qc可按欧拉公式计算,即
式中:E――螺杆材料的拉压弹性模量,E=2.06X 1 05MPa
I――螺杆危险截面的惯性矩,
64
当入s V 10 0时,对于强度极限c B>380MP a的普通碳素钢,如Q235 Q
275等,取
C C=( 304- 1.1 2 入S)n/4 d i1 2
对于强度极限c B>480Mpa勺优质碳素钢,女口35~50号钢等,取
0=(4 6 1 — 2.57 入s)n/4d 12
当入S <40时,可以不必进行稳定性核核。
若上述计算结果不满足稳定性条件时,应适当增加螺杆的小径d1。
表:螺杆的长度系数卩
注:判断螺杆端部交承情况的方法:
1 )若采用滑动支承时则以轴承长度1 0与直径d o的比值来确定。
l o/d0v1.5时,为铰支;
1。
/do^ 1. 5 3. 0时,为不完全固定;I。
/d。
〉3.0时,为固定支承。
2)若以整体螺母作为支承时,仍按上述方法确定。
此时取I 0=H(H为螺母高度)。
3)若以剖分螺母作为支承时,叫作为不完全固定支承。
4)若采用滚动支承已有径向约束时,可作为铰支;有径向和轴向约束时,可作为固定支承。