江苏省启东中学2016-2017学年高二上学期第一次月考数学试题Word版缺答案
- 格式:doc
- 大小:272.70 KB
- 文档页数:5
江苏省启东中学2016~2017学年度创新班高一阶段考试 数学试卷 2016.9.20一、填空题:本题共14小题,每小题5分,共70分.请把答案填写在答题..纸.相应位置上...... 1.不等式223x x -<的解集为 .2.在ABC ∆中,已知3AB =,2BC =,60B ︒∠=,则AC = . 3.已知等比数列{}n a 的各项都是正数,且41016a a =,则8a = .4.ABC ∆的三边长分别为a ,b ,c ,若cos cos sin b C c B a A +=,则ABC ∆的形状为 . 5.方程3sin 1cos2x x =+在区间[]02π, 上的解集为 .6.在数列{}n a 中,12a =,*11(N )n n a a n +=-∈,n S 为数列的前n 项和,则2015201620172S S S -+的值为 .7.函数()=(3sin cos )(3cos sin )f x x x x x +-的最小正周期是 .8.若x ,y 满足错误!未找到引用源。
2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,,,则2x y +的最大值为 .9.已知正数a ,b 满足3ab a b =++,则a b +的最小值为 .10.已知数列{}n a 是以3为公差的等差数列,n S 是其前n 项和,若10S 是数列{}n S 中的唯一最小项,则数列{}n a 的首项1a 的取值范围是 .11.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若223a b bc -=,sin 23sin C B =,则角A = .12.各项均为正数的等比数列{}n a 中,若1a ≥1,2a ≤2,3a ≥3,则4a 的取值范围是 .13.已知函数27()1x ax a f x x +++=+,R a ∈,若对于任意的*N x ∈,()f x ≥4恒成立,则a 的取值范围是 . 14.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*N n ∈,{}23n S ∈, ,则k 的最大值为 .二、解答题:本大题共6小题,共计90分,请在答题..纸.指定区域....内作答.解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,2222a c b ac +=+.⑴求B ∠的大小;⑵求2cos cos A C +的最大值.16.(本小题满分14分) 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan )cos cos A BA B B A+=+.⑴证明:2a b c +=;⑵求cos C 的最小值.17.(本小题满分14分)对于实数π(0)2x ∈, ,2214()=9sin 9cos f x x x+. ⑴若()f x ≥t 恒成立,求t 的最大值M ;⑵在⑴的条件下,求不等式2|2|x x M +-+≥3的解集.18.(本小题满分16分)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.⑴求数列{}n b 的通项公式;⑵令1(1)(2)n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .19.(本小题满分16分)请用多种方法证明不等式:(用一种方法得8分,两种方法得14分,三种方法得16分.)已知a ,(0)b ∈+∞, ,证明:b a +≥a b +.20.(本小题满分16分)设A是由有限个正整数组成的集合,若存在两个集合B,C满足:①B C=∅I;②B C AU;③B的元素之和等于C的元素之和,则称集合A“可均分”.=⑴证明:集合{}A=, , , , , , ,“可均分”;12345678⑵证明:集合{}, , ,“可均分”;LA=+++2015120152201593⑶求出所有的正整数k,使得{}, , ,“可均分”.L=+++A k20151201522015。
一、填空题(本大题共14小题,每题5分,满分70分.) 1.已知{}20,1,x x ∈,则实数x 的值是 .【答案】1- 【解析】试题分析:因1,0≠≠x x ,故1-=x ,故应填答案1-. 考点:元素与集合的关系及运用.2.命题“20x x ∀∈≥R ,”的否定是 . 【答案】2,0x R x ∃∈< 【解析】试题分析:因该命题的形式的全称命题,故其否定形式是存在性命题,故应填答案2,0x R x ∃∈<.考点:含一个量词的命题的否定.3.已知向量(1,)(3,2)a m b =-,=,且()a b b ⊥+,则m = . 【答案】8=m考点:向量的坐标形式及数量积积公式的运用. 4.函数()f x =定义域是 .【答案】1(2,)(0,)2+∞ 【解析】试题分析:由题设可得⎩⎨⎧>>-001)(log 22x x ,解之得210<<x 或2>x ,故应填答案1(2,)(0,)2+∞. 考点:对数函数的单调性及运用.5.将函数sin(2)16y x π=--的图像向左平移4π个单位,再向上平移1个单位,所得图像的函数解析式为 . 【答案】sin(2)3y x π=+也可cos(2)6y x π=-.【解析】考点:正弦函数的图象和性质及运用.6.已知集合A={}5x x >,集合B={}x x a >,若命题“x A ∈ ”是命题“x B ∈ ”充分不必要条件,则实数a 的取值范围是 . 【答案】5a < 【解析】试题分析:因命题“x A ∈ ”是命题“x B ∈ ”充分不必要条件,故5<a ,故应填答案5a <. 考点:充分必要条件及运用.7.函数2()1f x x ax =+-,若对于[,1]x a a ∈+恒有()0f x <,则a 的取值范围 .【答案】0a << 【解析】试题分析:由题设可得0220232222032210)1(0)(22<<-⇒⎪⎪⎩⎪⎪⎨⎧<<-<<-⇒⎪⎩⎪⎨⎧<+<⇒⎩⎨⎧<+<a a a a a a a f a f .故应填答案0a <<. 考点:二次函数的图象和性质的运用.8.已知ABC ∆中,角A B C ,,的对边分别为a b c ,,,且22265tan acB a c b =+-,则sin B 的值是.【答案】35【解析】试题分析:因B ac b c a cos 2222=-+,故由22265tan acB a c b =+-可得BB cos 3tan 5=,即53sin =B .故应填答案35.考点:余弦定理及同角关系得的运用. 9.设α为锐角,若【答案】2425考点:三角变换公式及运用.10.如图,在直角梯形ABCD 中,AB ∥CD ,90ADC ∠=︒,AB = 3,AD = 2,E 为BC 中点,若→AB ·→AC = 3,则→AE ·→BC = .【答案】3- 【解析】试题分析: 以A 点为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系xOy ,设x CD =,则)2,(),0,3(x ==,由33==⋅x 可解得1=x .则)2,2(),22,2(-==,所以32224-=⨯+-=⋅,故应填答案3-.考点:向量的坐标形式及数量积的运用.【易错点晴】本题借助题设条件,巧妙建构平面直角坐标系xOy ,从而将问题合理转化为向量的坐标运算.求解时以A 点为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系xOy ,设x CD =,则)2,(),0,3(x AC AB ==,由33==⋅x AC AB 可解得1=x .所以)2,2(),22,2(-==,所以32224-=⨯+-=⋅,从而使得问题简捷巧妙地获解.11.已知函数)(x f 在定义域]3,2[a -上是偶函数,在]3,0[上单调递减, 并且,则m 的取值范围是 .【答案】221≤≤-m【解析】考点:函数的奇偶性与单调性的综合运用.【易错点晴】函数的单调性奇偶性是函数的基本性质,也是高中数学的重要内容和高考重点考查的知识和内容.本题再求解时,先借助偶函数的定义的内涵建立方程032=+-a 求出5=a ,再借助函数的单调性将不等式)22()1(22-+->--m m f m f 问题化为不等式组⎪⎩⎪⎨⎧-+-<--≤-+-≤-≤--≤-22102230132222m m m m m m ,最后通过解不等式组使得问题获解. 12.已知函数2()()2x f x kx k R x =-∈+有两个零点,则k 的取值范围 .【答案】0<k 或10<<k 【解析】考点:函数零点的概念及运用.【易错点晴】数形结合的数学思想是高中数学中四大数学思想之一,以形思数, 以数助形是数学解题的重要而有效的工具和思路.本题就是以含参数k 的函数)(x f 解析式为背景,考查的是函数零点的概念及运用数形结合思想分析问题解决问题的能力.求解时先将问题转化为方程21||+=x x k 有一个零点,进而转化为方程⎪⎩⎪⎨⎧<-->+=0,20,2122x x x x x x k 只有一个零点.然后结合图象建立不等式,通过解不等式使得问题获解. 13.若曲线ln y a x =与曲线212y x e =在它们的公共点(),P s t 处具有公共切线,则ts= .【答案】t s = 【解析】考点:导数的几何意义及运用.【易错点晴】导数是研究函数的单调性和极值最值问题的重要而有效的工具.本题就是以含参数a 的函数)(x f 解析式为背景,考查的是导数的几何意义的综合运用和分析问题解决问题的能力.本题求解时先依据题设建立方程a ss e=;再运用题设得到方程22lns ea s =,将问题化为解方程组的问题. 将2s ea =代入22lns ea s =得到1a =.所以12t =,s =,即t s =,从而使得问题获解.14.设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a的取值范围是 . 【答案】)1,23[e【解析】试题分析:设a ax y x e x g x-=-=),12()(,由题知存在唯一的整数0x ,使得)(0x g 在直线a ax y -=的下.因为)12()(/+=x e x g x ,所以当21-<x 时,0)(/<x g ,当21->x 时,0)(/>x g ,所以当21-=x 时,212)]([min --=e x g ,当0=x 时,03)1(,1)(>=-=e g x g ,直线a ax y -=恒过)0,1(,且斜率为a ,故1)0(-=>-g a ,且a a eg --≥-=--13)1(,解得123<≤a e ,故应填答案)1,23[e. 考点:导数在研究函数的单调性中的运用.【易错点晴】导数是研究函数的单调性和极值最值问题的重要而有效的工具.本题就是以含参数a 的函数)(x f 解析式为背景,考查的是导数知识在研究函数单调性和最值等方面的综合运用和分析问题解决问题的能力.本题求解时先将问题化为存在唯一的整数0x ,使得)(0x g 在直线a ax y -=的下方,求解运用导数的有关知识求函数)12()(-=x e x g x的最小值,然后运用分类整合的数学思想建立不等式,从而求出参数a 的取值范围.三、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)已知命题{}|11x x x ∃∈-<<,使等式20x x m --=成立是真命题. (1)求实数m 的取值集合M .(2)设不等式()(2)0x a x a -+-<的解集为N ,若x N ∈是x M ∈的必要条件,求a 的取值范围.【答案】(1)1|24M m m ⎧⎫=-≤<⎨⎬⎩⎭;(2)94a >或14a <-.【解析】考点:命题的真假及充分必要条件的等价性等有关知识的综合运用.16.(本小题满分14分)在ABC ∆中,三个内角分别为A,B,C ,已知sin(A )2cosA 6π+=.(1)求角A 的值;(2)若(0,)3B π∈,且4cos()5A B -=,求sinB .【答案】(1) A 3π=;(2)10334-.【解析】试题分析:(1)借助题设条件运用三角变换的公式求解;(2)借助题设运用正弦定理和三角变换公式探求. 试题解析:(1)因为sin(A )2cosA 6π+=,得1A cos A 2cos A 2+=,即s i n Aco s A ,因为()A 0,∈π,且cosA 0≠,所以tan A =A 3π=. …………4分(2)因为22sin C cos C 1+=,cosC =()C 0,∈π,所以sin C 由正弦定理知a csin A sinC =,即32a sin A c sinC ===,即230a c -=.…………7分 因为(0,)3B π∈,所以033A B B ,ππ⎛⎫-=-∈ ⎪⎝⎭,因为22sin ()cos ()1A B A B -+-=,所以3sin()5A B -=, …………10分 所以()()sin sin sin cos()cos sin()B A A B A A B A A B =--=---=.……14分 考点:正弦定理和三角变换的公式等有关知识的综合运用.17.(本小题满分14分) 已知函数12()2x x mf x n+-+=+(其中,m n 为参数).(1)当1m n ==时,证明:()f x 不是奇函数; (2)如果()f x 是奇函数,求实数,m n 的值;(3)已知0,0m n >>,在(2)的条件下,求不等式1(())()04f f x f +<的解集.【答案】(1)证明见解析;(2)12m n =-⎧⎨=-⎩或12m n =⎧⎨=⎩;(3)2(,log 3)-∞.【解析】(2)∵()f x 是奇函数时,()()f x f x -=-,即112222x x x x m mn n--++-+-+=++对定义域内任意实数x 成立,化简整理得关于x 的恒等式2(2)2(24)2(2)0xx m n mn m n -⋅+-⋅+-=,∴20240m n mn -=⎧⎨-=⎩,即12m n =-⎧⎨=-⎩或12m n =⎧⎨=⎩………………………………8分(注:少一解扣1分)考点:函数的奇偶性及单调性等有关知识的综合运用.18.(本小题满分16分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos C =310.(1)若CB →·CA →=92,求c 的最小值;(2)设向量x =(2sin B ,-3),y =⎝⎛⎭⎪⎫cos2B ,1-2sin 2B 2,且x∥y ,求sin(B -A)的值. 【答案】(1)21;(2)203391-.【解析】试题分析:(1)借助题设条件运用向量的数量积公式及余弦定理求解;(2)借助题设运用向量平行建立方程,再利用三角变换公式探求. 试题解析:(1) ∵ CB →·CA →=92,∴ abcosC=92,∴ ab=15…………………..3分∴ c 2=a 2+b 2-2abcosC≥2ab-2ab·310=21(当且仅当a =b 时取等号).∵ c>0分∴ c 分考点:三角变换的公式余弦定理向量的数量积公式等有关知识的综合运用.19.(本小题满分16分)如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD ,其中BMN 是半径为1百米的扇形,3π2=∠ABC .管理部门欲在该地从M 到D 修建小路:在弧MN 上选一点P (异于M 、N 两点),过点P 修建与BC 平行的小路PQ .问:点P 选择在何处时,才能使得修建的小路MP与PQ 及QD的总长最小?并说明理由.【答案】当BP BC ⊥时,总路径最短. 【解析】试题分析:借助题设条件建立函数关系,再运用三角变换的公式求解和探求. 试题解析:连接BP , 过P 作1PP BC ⊥垂足为1P , 过Q 作1QQ BC ⊥垂足为1Q,)320(sin 3cos 432)(πθθθθπθ<<--+-=f ……………………10分1)3sin(21cos 3sin )('--=--=πθθθθf ………………12分令()'0f θ=,π2θ=当π02θ<< 时,()'0f θ<当π2π23θ<< 时,()'0f θ> …………………………14分 所以当π2θ=时,总路径最短. 答:当BP BC ⊥时,总路径最短. ……16分 考点:解三角形及三角变换的公式等有关知识的综合运用.【易错点晴】应用题是高考必考的重要题型之一,也是检测数学知识在实际问题中的的运用的一种重要题型之一.求解这类问题的一般步骤是先仔细阅读题设中的文字信息.再将问题中的数量关系找出来,通过构造数量关系构建数学模型.最后运用数知识求解数学模型,依据题设写出答案.本题是以绿化过程中的一个实际问题为背景设置了一道最值问题,求解时,先1PBP θ∠=,然后建立以为变量的函数关系式,)320(sin 3cos 432)(πθθθθπθ<<--+-=f 从而将问题进行转化求函数的最值问题.最后通过求该函数的最值,从而使得问题简捷巧妙获解.20.(本小题满分16分)已知函数()212f x x =,()lng x a x =.(1)若曲线()()y f x g x =-在1x =处的切线的方程为6250x y --=,求实数a 的值; (2)设()()()h x f x gx =+,若对任意两个不等的正数12x x ,,都有()()12122h x h x x x ->-恒成立,求实数a 的 取值范围;(3)若在[]1,e 上存在一点0x ,使得()()()()00001f x g x g x f x ''+<-'成立,求实数a 的取值范围.【答案】(1)2a =-;(2)[)1,+∞;(3)()()2,2e 1,e 1-∞-++∞-. 【解析】(3)不等式()()()()00001f x g x g x f x ''+<-'等价于00001ln a x a x x x +<-,整理得0001ln 0a x a x x +-+<.设()1ln a m x x a x x+=-+,由题意知,在[]1,e 上存在一点0x ,使得()00m x <.………10分由()2222(1)(1)(1)11x ax a x a x a a m x x x x x --+--++'=--==. 因为0x >,所以10x +>,即令()0m x '=,得1x a =+. ① 当11a +≤,即0a ≤时,()m x 在[]1,e 上单调递增,只需()120m a =+<,解得2a <-. ………………………………………………12分考点:导数的有关知识和函数的性质等有关知识的综合运用.【易错点晴】导数是研究函数的单调性和极值最值问题的重要而有效的工具.本题就是以含参数a 的两个函数解析式()212f x x =,()lng x a x =为背景,考查的是导数知识在研究函数单调性和极值等方面的综合运用和分析问题解决问题的能力.本题的第一问非常简单,借助题设很容易求得2a =-;第二问求解时借助题设将问题等价转化为函数()21ln 22F x x a x x =+-在()0,+∞为增函数的问题,然后通过求导运用导数的知识求出实数a 的取值范围是[)1,+∞;第三问通过构设函数()1ln a m x x a x x +=-+将问题进行转化,最后借助导数并运用导数的有关知识求得实数a 的取值范围是()()2,2e 1,e 1-∞-++∞-,从而使得问题简捷巧妙获解.。
一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.命题:p x ∀∈R ,方程310x x ++=的否定是 ▲ .2.已知椭圆22110064y x +=上一点P 到一个焦点的距离为8,则点P 到另一焦点的距离 是 ▲ .3.命题“若α为锐角,则sin 0α>”的否命题是 ▲ .4.设双曲线的渐近线方程为3y x =±,它的一个焦点是,则双曲线的方程为 ▲ .5.以点(1,2)为圆心,且与直线43150x y +-=相切的圆方程是 ▲ .6.已知12,F F 是双曲线221y x -=的两个焦点,点P 是双曲线上一点,若1234PF PF =,则12PF F ∆的面积为 ▲ .7.若圆锥曲线22151y x k k +=--的焦距为k = ▲ . 8.与圆22(3)9x y ++=外切且与圆22(3)1x y -+=内切的动圆圆心的轨迹方程为 ▲ .9.已知椭圆C 的中心在原点,焦点12,F F 在y ,过1F 的直线交椭圆于,A B ,且2ABF ∆ 的周长为16,则椭圆C 的方程为 ▲ .10.将一个半径为R 的蓝球放在地面上,被阳光斜照留下的影子是椭圆.若阳光与地面成60角,则椭圆的离心率为 ▲ .11.若直线1ax by +=与圆221x y +=相切,则实数ab 的最大值与最小值之差为 ▲ .12.已知命题4:11p x --≤,命题22:q x x a a -<-,且q ⌝的一个充分不必要条件是p ⌝,则实数a 的取值范围是 ▲ .13.已知22:4O x y +=的两条弦,A B C D 互相垂直,且交于点M ,则A B C D +的最小值为▲ .14.已知直线3y kx =+与曲线222cos 2(1sin )(1)0x y x y αα+-++-=有且只有一个公共点,则实数k 的值为 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)已知命题:[0,1],e x p x a ∀∈≥;命题:q x ∃∈R ,使得240x x a ++=;若命题p q ∧是真命题,求实数a 的取值范围.16. (本小题满分14分)已知集合{}|22A x a x a =-+≤≤,{}2|41270B x x x =+-≤,若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.17. (本小题满分14分)已知实数,x y 满足22(2)(1)1x y -+-=. ⑴求1y k x+=的最大值; ⑵若0x y m ++≥恒成立,求实数m 的范围.18. (本小题满分16分)已知点(4,4)P ,圆22:()5(3)C x m y m -+=<与椭圆2222:1(0)y x E a b a b +=>>有一个公共点(3,1),1F 是椭圆的左焦点,直线1PF 与圆C 相切.⑴求实数m 的值;⑵求椭圆的方程.19. (本小题满分16分)已知圆22:24120C x y x y +---=和点(3,0)A ,直线l 过点A 与圆交于,P Q 两点. ⑴若以PQ 为直径的圆的面积最大,求直线l 的方程;⑵若以PQ 为直径的圆过原点,求直线l 的方程.20. (本小题满分16分)如图,已知椭圆1:E 22221(0)y x a b a b+=>>的左右顶点分别为,A A ',圆2222:E x y a +=,过椭圆的左顶点A 作斜率为1k 直线1l 与椭圆1E 和圆2E 分别相交于B 、C . ⑴证明:22BA BA b k k a'⋅=-; ⑵若11k =时,B 恰好为线段AC 的中点,且3a =,试求椭圆的方程; ⑶设D 为圆2E 上不同于A 的一点,直线AD 的斜率为2k ,当2221k a k b =时,试问直线BD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.。
江苏省启东中学2017-2018学年度第一学期期初考试高二数学试卷一、填空题:本大题共14小题,每小题5分,共70分.1.命题“若a 2+b 2=0,则a =0且b =0”的逆否命题是 ▲ .2.已知数列{a n }满足:a 2n +1=a 2n +3,且a 1=2,若a n >0,则a n = ▲ .3.等比数列x,3x +3, 6x +6,…的前四项和等于 ▲ . 4.已知O 是坐标原点,点A (-2,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧ x +y ≥2,x ≤1,y ≤2上的一个动点,则OA →·OM → 的取值范围是 ▲ . 5.已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的 距离为 ▲ .6.设直线l ,m ,平面α,β,下列条件能得出α∥β的是 ▲ .①l ⊂α,m ⊂α,且l ∥β,m ∥β; ②l ⊂α,m ⊂β且l ∥m ;③l ⊥α,m ⊥β,且l ∥m ; ④l ∥α,m ∥β,且l ∥m .7.在△ABC 中,角A ,B ,C 的对边分别是边a ,b ,c ,且满足b cos C =(4a -c )cos B .则sin B = ▲ .8.在△ABC 中,∠C =90°,且CA =CB =3,点M 满足BM →=3AM →,则CM →·CA →= ▲ .9.已知函数f (x )=3sin(x +θ)+cos(x +θ)⎝⎛⎭⎫θ∈⎣⎡⎦⎤-π2,π2是偶函数,则θ的值为▲ . 10.设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则g ⎣⎡⎦⎤g ⎝⎛⎭⎫12= ▲ . 11.下列命题:①x =2是x 2-4x +4=0的必要不充分条件;②圆心到直线的距离等于半径是这条直线为圆的切线的充分必要条件;③sin α=sin β是α=β的充要条件;④ab ≠0是a ≠0的充分不必要条件.其中为真命题的是 ▲ . (填序号).12.已知两点A (-2,0),B (0,1),点P 是圆(x -1)2+y 2=1上任意一点,则△PAB 面积的最大值是 ▲ .13.已知正实数,x y 满足31x y +≤,则yy x 11++的最小值为 ▲ . 14.设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q : (a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则p 是q 的 ▲ 条件.二、解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分) 设函数f(x)=cos(2+2cos2x,x∈R.(1)求函数f(x)的最小正周期和单调增区间;(2)将函数f(x)g(x)的图象,求函数g(x)上的值域.16.(本小题满14分)如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.(本小题满分14分) 设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m-2)x-3m+10=0无实根.求使p∨q为真,p∧q为假的实数m的取值范围.(1)求数列{a n}的通项公式;19.(本小题满分16分)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴,y轴上的截距相等,求此切线方程;(2)从圆C外一点P(x1,y1)向圆引一条切线,切点为M,O为原点,且有|PM|=2|PO|,求|PM|的最值.20.(本小题满分16分)已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=2x4x+1.(1)求函数f(x)在(-1,1)上的解析式;(2)判断f(x)在(0,1)上的单调性;(3)当λ取何值时,方程f(x)=λ在(-1,1)上有实数解?。
一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.命题,方程的否定是 ▲ .2.已知椭圆上一点到一个焦点的距离为8,则点到另一焦点的距离是 ▲ .3.命题“若为锐角,则”的否命题是 ▲ .4.设双曲线的渐近线方程为,它的一个焦点是,则双曲线的方程为 ▲ .5.以点为圆心,且与直线相切的圆方程是 ▲ .6.已知是双曲线的两个焦点,点是双曲线上一点,若,则的面积为 ▲ .7.若圆锥曲线的焦距为,则 ▲ .8.与圆外切且与圆内切的动圆圆心的轨迹方程为 ▲ .9.已知椭圆的中心在原点,焦点在轴上,离心率为,过的直线交椭圆于,且的周长为16,则椭圆的方程为 ▲ .10.将一个半径为的蓝球放在地面上,被阳光斜照留下的影子是椭圆.若阳光与地面成角,则椭圆的离心率为 ▲ .11.若直线与圆相切,则实数的最大值与最小值之差为 ▲ .12.已知命题,命题,且的一个充分不必要条件是,则实数的取值范围是 ▲ .13.已知的两条弦互相垂直,且交于点,则的最小值为 ▲ .14.已知直线3y kx =+与曲线222cos 2(1sin )(1)0x y x y αα+-++-=有且只有一个公共点,则实数的值为 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)已知命题;命题,使得;若命题是真命题,求实数的取值范围.16. (本小题满分14分)已知集合{}|22A x a x a =-+≤≤,{}2|41270B x x x =+-≤,若“”是“”的必要条件,求实数的取值范围.17. (本小题满分14分)已知实数满足.⑴求的最大值;⑵若恒成立,求实数的范围.18. (本小题满分16分)已知点(4,4)P ,圆22:()5(3)C x m y m -+=<与椭圆2222:1(0)y x E a b a b+=>>有一个公共点,是椭圆的左焦点,直线与圆相切.⑴求实数的值;⑵求椭圆的方程.19. (本小题满分16分)已知圆22:24120C x y x y +---=和点,直线过点与圆交于两点.⑴若以为直径的圆的面积最大,求直线的方程;⑵若以为直径的圆过原点,求直线的方程.20.(本小题满分16分)如图,已知椭圆的左右顶点分别为,圆,过椭圆的左顶点作斜率为直线与椭圆和圆分别相交于、.⑴证明:;⑵若时,恰好为线段的中点,且,试求椭圆的方程;⑶设为圆上不同于的一点,直线的斜率为,当时,试问直线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.。
江苏省南通市启东中学2017届高三上学期第一次月考数学(文科)试卷一、填空题:本大题共14小题,每小题5分,共70分。
请把答案直接填写在答题卡相应位置上。
1.已知2{0,}1,x x ∈,则实数x 的值是______。
2.将函数πsin 216y x ⎛⎫=-- ⎪⎝⎭的图像向左平移π4个单位,再向上平移1个单位,所得图像的函数解析式为______。
3.在等比数列{}n a 中,23a =,581a =,则n a =______。
4.已知集合{|5}A x x =>,集合{|}B x x a =>,若命题“x A ∈”是命题“x B ∈”的充分不必要条件,则实数a 的取值范围是______。
5.已知α为锐角,且an 3(πt 0)α-+=,则sin α的值是______。
6.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22265tan ac B a c b=+-,则sin B 的值是______。
7.在等差数列{}n a 中,13a =,58115a a =,则前n 项和n S 的最大值为______。
8.设α为锐角,若π3sin 65α⎛⎫+= ⎪⎝⎭,则πcos 26α⎛⎫-= ⎪⎝⎭______。
9.设0a >,若6(3)3,(7),(7)n n a n n a a n ---≤⎧=⎨>⎩,且数列{}n a 是递增数列,则实数a 的取值范围是______。
10.如图,在直角梯形ABCD 中,AB ∥CD ,90ADC ∠=︒,AB =3,AD =2,E 为BC 中点,若AB AC u u u r u u u r g =3,则AE BC u u u r u u u r g =______。
11.已知函数()f x 在定义域[23]a -,上是偶函数,在[0]3,上单调递减,并且22()(22)5af m f m m --+-->,则m 的取值范围是______。
江苏省启东2017—2018学年度第一学期第一次月考高二(2)数学试题一、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1.“x >1”是“1x<1”的__________条件. 2.命题“任意偶数是2的倍数”的否定是__________________.3.用反证法证明命题“若()+∞∈,0,,c b a ,则三个数c b a -+,b a c -+,a c b -+中至少有两个为正数”时,假设的内容是 .4.)1ln(2+=x x y 的导数是 .5.已知),3,2,1(=)3,1,2(-=,),5,0(λ=,若,,三向量共面,则λ= .6.已知命题p :[]1,0∈∀x ,x e a ≥,命题q :“∈∃x R ,042=++a x x ”,若命题“p ∧q ”是真命题,则实数a 的取值范围是 .7.在直角坐标系xOy 中,双曲线1322=-y x 的左准线为l ,则以l 为准线的抛物线的标准方程是______________.8.函数()2cos f x x x =+在()0,π上的单调减区间是 .9. 已知函数()xf x e =,()()ln 2g x x =+,则与()f x ,()g x 的图像均相切的直线方程是 .10.在平面直角坐标系xOy 中,以点()0,1为圆心且与直线210mx y m ---= ()m R ∈相切的所有圆中,半径最大的圆的标准方程为_________________.11.在直角坐标系xOy 中,已知()0,2-M ,()0,1N ,()1,0A ,()t B ,0,1>t ,若存在点P , 使2=PNPM ,且APB ∠为钝角,则实数t 的取值范围是____________. 12.已知扇形的圆心角为2α(定值),半径为R (定值),分别按图一、图二作扇形的内接矩形.若按图一作出的矩形面积的最大值为12R 2tan α,利用类比,则按图二作出的矩形面积的最大值为________.(第12题)13. 设,A F 分别是椭圆22221(0)x y a b a b+=>>的左顶点与右焦点,若在其右准线上存在点P ,使得线段PA 的垂直平分线恰好经过点F ,则椭圆的离心率的取值范围是__________.14. 已知函数()()221x x f x a x x e e =--+,若对任意的0x ≤,有()0f x ≥,则实数a 的取值范围是 .二、解答题:本大题共6小题,共90分。
江苏省启东中学2015~2016学年度第一学期第一次月考高二数学试题(2015.10)(本试卷共160分,考试用时120分钟)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知命题p:,1sin ,R ≤∈∀x x 则p ⌝为 ▲ .2.抛物线y =4x 2的焦点坐标是 ▲ .3.若命题p 的否命题为r ,命题r 的逆命题为s ,则s 是p 的逆命题t 的 ▲ 命题.4.椭圆1222=+y x 的离心率为 ▲ . 5.双曲线1222=-y x 的渐近线为 ▲ . 6.抛物线y 2=8x 的焦点到准线的距离是 ▲ .7. 过椭圆1222=+y x 的右焦点的直线交椭圆于B A ,两点,则弦AB 的最小值为 ▲ . 8. 设l ,m 表示直线,m 是平面α内的任意一条直线,则“l ⊥m ”是“l ⊥α”成立的 ▲ 条件.(在“充分不必要”“必要不充分”“充要”“既不充分又不必要”中选填一个)9. 过点M (1,1)且与椭圆x 216+y 24=1交于B A ,两点,则被点M 平分的弦所在的直线方程为▲ .10. 椭圆x 29+y 24+k =1的离心率为45,则k 的值为 ▲ .11. 若双曲线的渐近线方程为y =±3x ,它的一个焦点是(10,0),则双曲线的方程为 ▲ .12. 已知动圆C 的圆心C 在抛物线x y 42=上,且与直线1-=x 相切,则动圆C 恒过定点 ▲ .13. 设F 是椭圆x 27+y 26=1的右焦点,点1(,1)2A ,M 7MF +取最小值时,M 点坐标为 ▲ .14.在抛物线24y x =上有两动点,A B ,满足3AB =,则线段AB 中点M 的横坐标的最小值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题14分) 已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0 (m >0),且⌝p 是⌝q 的必要而不充分条 件,求实数m 的取值范围.16. (本小题14分)设a 为实数,给出命题p :关于x 的不等式a x ≥-|1|)21(的解集为φ,命题q :函数 ]89)2(lg[)(2+-+=x a ax x f 的定义域为R ,若命题“q p ∨”为真,“q p ∧”为假, 求实数a 的取值范围.17. (本小题15分)已知过抛物线22(0)y px p =>的焦点,斜率为11(,)A x y ,22(,)B x y 两点,且9AB = (1)求抛物线方程.(2)O 为坐标原点,C 为抛物线上一点,若满足OC OA OB λ=+,求λ的值.18. (本小题15分)已知数列{a n }满足a n +a n +1=2n +1 (n ∈N *),求证:数列{a n }为等差数列的充要条件是a 1=1.19. (本小题16分)已知中心在原点、焦点在坐标轴上的椭圆经过点M (1,432),N (-322,2).(1)求椭圆的离心率;(2)椭圆上是否存在点P (x ,y )到定点A (a,0)(其中0<a <3)的距离的最小值为1?若存在,求a 的值及点P 的坐标;若不存在,请说明理由.20. (本小题16分)在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的右顶点与上顶点分别为,A B,且过点. (1)求椭圆的标准方程;(2)如图,若直线l 与该椭圆交于,P Q 两点,直线,BQ AP 的斜率互为相反数.①求证:直线l 的斜率为定值;②若点P 在第一象限,设ABP ∆与ABQ ∆的面积分别为12,S S ,求12SS 的最大值.。
江苏省启东2017~2018学年度第一学期第一次月考高二创新班数学试卷 2017.9.25一、填空题:本题共14小题,每小题5分,共70分.请把答案填写在答题..纸.相应位置上...... 1.命题“x ∀∈R ,2x x -≤0”的否定是 .2.已知实数{0a ∈,1,2,3},且{0a ∉,1,2},则a 的值为 .3.函数()f x =的定义域为 .4.已知函数()f x 是二次函数且(0)2f =,(1)()1f x f x x +-=-,则函数()f x = .5.已知集合{|3}A x x =>,{|}B x x a =>,若“x A ∈”是“x B ∈的”必要不充分条件,则实数a的取值范围为 .6.从1,2,3,4,5这五个数中一次随机地抽取两个数,则其中一个数是另一个数的两倍的概率是 .7.设命题p :实数x 满足2430x x -+<;命题q :实数x 满足2260280x x x x ⎧--<⎪⎨+->⎪⎩ 若p q ∧为真,则实数x 的取值范围是 .8.矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ADE △内部的概率为 .9.随机变量X 的取值为0,1,2,若1(0)5P X ==,()1E X =,则()V X = . 10.若有一批产品共100件,其中有5件不合格品,随机取出10件产品,则不合格品数ξ的数学期望()E ξ= .11.设函数2222()x x f x x ⎧++⎪=⎨-⎪⎩ 若(())2f f a =,则a = . 12.已知集合{I =1,2,3,4,5,6,7},集合P m =,}k I ∈,则P 的元素个数为 . 13.若函数2()(2)e e 1x x f x a x x =--+在区间(-∞,0]恒为非负,则实数a 的取值范围为 .14.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[M -,]M .例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈.现有如下命题:, , ,x ≤0, ,0x >.①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b ∀∈R ,a D ∃∈,()f a b =”; ②若函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数2()ln(2)1x f x a x x =+++(2x >-,a ∈R )有最大值,则()f x B ∈. 其中的真命题的序号为 .二、解答题:本大题共6小题,共计90分,请在答题..纸.指定区域....内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同 .随机有放回地抽取3次,每次抽取1张,将抽取的卡片上数字依次记为a ,b ,c . ⑴求“抽取的卡片上的数字满足a b c +=”的概率;⑵求“抽取的卡片上的数字不完全相同”的概率.16.(小题满分14分)设ABC △的内角A ,B ,C 所对的边分别为a ,b ,c .命题p :若333a b c +=,则π2C <. ⑴写出命题p 的逆否命题,并判断其真假;⑵若命题p 为真,请证明;若为假,请说明理由.17.(本小题满分14分)已知关于x 的一元二次方程229640x ax b +-+=,a 、b ∈R .⑴若1a =,b 是从区间[0,2]内任取的一个数,求方程没有实数根.......的概率; ⑵若a 是从区间[0,3]内任取的一个数,b 是从区间[0,2]内任取的一个数,求方程..有实数根....的 概率.18.(本小题满分16分)为拉动经济增长,某市决定新建一批重点工程,其中基础设施工程有6个项目,民生工程有4个项目,产业建设工程有2个项目.现在3名工人独立地从中任选一个项目参与建设,设每个工人选择任意一个项目的概率相同.⑴求他们选择的项目所属类别互不相同的概率;⑵记X 为3人中选择的项目属于基础设施工程或产业建设工程的人数,求X 的概率分布以及它的数学期望()E X 与标准差σ.19.(本小题满分16分)有人玩掷硬币走跳棋的游戏,已知棋盘上标有0站,1站,2站,…,99站,100站.一枚棋子开始时在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,则棋子前进1站;若掷出反面,则棋子前进2站,知道跳到99站(胜利)或100站(失败),游戏结束.设棋子跳到第n站的概率为n P .⑴求0P ,1P ,2P 的值;⑵求n P 与1n P -的关系式;(其中2≤n ≤99)⑶求99P 和100P .20.(本小题满分16分)对于定义域为I 的函数()y f x =,如果存在区间[m ,]n I ⊆,同时满足①()f x 在[m ,]n 内是单调函数;②当定义域为[m ,]n 时,()f x 的值域也是[m ,]n .则称[m ,]n 是函数()y f x =的“好区间”.已知函数3()f x x ax =-,其中a ∈R . ⑴若0a =,判断函数()f x 是否存在“好区间”,请说明理由;⑵若3a =,判断函数()f x 是否存在“好区间”,请说明理由; ⑶若函数()f x 存在“好区间”,试求实数a 的取值范围.。
江苏省启东中学2016—2017学年度第一学期高二数学理科周考卷一 命题人:陈高峰一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 直线x sin α+y +2=0的倾斜角的取值范围是 ▲ .2. 已知两直线l 1:x +m 2y +6=0,l 2:(m -2)x +3my +2m =0,若l 1∥l 2,则实数m 的值为 ▲ .3. 过P (2,-1)点且与原点距离最大的直线l 的方程是 ▲ .4. 若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是 ▲ .5. 已知直线l :x -y -1=0,l 1:2x -y -2=0。
若直线l 2与l 1关于l对称,则l 2的方程是 ▲ .6. 圆x 2+y 2—2x-2y+1=0的圆心到直线x-y —2=0的距离为 ▲ .7. 若直线3x+y+a=0过圆x 2+y 2+2x —4y=0的圆心,则a 的值为 ▲ .8.在平面直角坐标系xOy 中,已知过原点O 的动直线l 与圆C :22650x y x +-+=相交于不同的两点A ,B,若点A 恰为线段OB 的中点,则圆心C 到直线l 的距离为 ▲ . 9. 过点)4,3(P 与圆1)1()2(22=-+-y x 相切的直线方程为 ▲ 。
10.过点)4,3(P 作圆06222=-++y x x 的切线,则切线长是▲ . 11.在平面直角坐标系xOy 中,点)0,4(),0,1(B A .若直线0=+-m y x 上存在点P ,使得PB PA 21=,则实数m 的取值范围是 ▲ .12.若动点P 在直线l 1:x -y -2=0上,动点Q 在直线l 2:x -y -6=0上,设线段PQ 的中点为M (x 0,y 0),且(x 0-2)2+(y 0+2)2≤8,则x 错误!+y 错误!的取值范围是 ▲ .13.已知圆22:(2)4C x y -+=,线段EF 在直线:1l y x =+上运动,点P 为线段EF 上任意一点,若圆C 上存在两点A 、B ,使得0PA PB ⋅≤,则线段EF 长度的最大值是 ▲ .14.在平面直角坐标系xOy 中,若动点P (a ,b )到两直线l 1:y =x 和l 2:y =-x +2的距离之和为22,则a 2+b 2的最大值为 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段的中点为P (-1,2),求直线l 的方程.16.(本小题满分14分)在平面直角坐标系xOy 中,知圆M 经过点A (1,0),B (3,0),C (0,1).(1)求圆M 的方程;(2)若直线l:mx-2y-(2m+1)=0与圆M交于点P,Q,且错误!·错误!=0,求实数m的值.17.(本小题满分15分)已知实数x,y满足方程x2+y2-6x-4y-12=0。
江苏省启东中学2016~2017学年度第一学期第一次月考
高二数学试题(2016.10)
(本试卷共160分,考试用时120分钟)
一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上........
. 1.已知命题∈∀x p :R ,1sin <x ,则p ⌝为 ▲ .
2.椭圆12
322=+x y 的焦点坐标为 ▲ .
3.圆:1C 122=+y x 与圆4)1()1(:222=++-y x C 有 ▲ 条公切线.
4.“q p ∧为假”是“q p ∨为假”的 ▲ 条件. (在“充分不必要”“必要不充分”“充要”“既不充分又不必要”中选填一个)
5.若命题p 的否命题为r ,命题r 的逆命题为s ,则s 是p 的逆命题t 的 ▲ 命题. 6.若直线0=++m y x 与圆m y x =+22相离,则m 的取值范围为 ▲ .
7.已知圆C :x 2+y 2=1,点A (-2,0)和点B (2,a ),从点A 观察点B ,要使视线不被圆C 挡住,则实数a 的取值范围是 ▲ .
8.椭圆1
42
2=+k
y x 的离心率为21,则k 的值为 ▲ . 9.过点M (1,1)作直线与椭圆x 216+y 2
4=1交于B A ,两点,则被点M 平分的弦所在的直线方程
为 ▲ .
10.已知点P 是椭圆)0(12222>>=+b a b
y
a x 上的动点,21,F F 为椭圆的左右焦点,焦距为c 2,
O 为坐标原点,若M 是21PF F ∠的角平分线上的一点,且MP MF ⊥1,则OM 的取值范
围为 ▲ .
11.若直线b x y +=与曲线2
1y x -=恰有一个公共点,则b 的取值范围为 ▲ .
12.设F 是椭圆18
92
2=+y x 的右焦点,点)2,1(A ,M 是椭圆上一动点,则MF MA +取值
范围为 ▲ .
13.椭圆)0(122
22>>=+b a b y a x 的离心率是2
2,过椭圆上一点P 作直线PB PA ,交椭圆于
B A ,两点,且斜率分别为21,k k ,若B A ,两点关于原点对称,则21k k ⋅的值为 ▲ .
14.已知椭圆)0(122
22>>=+b a b
y a x 上一点A 关于原点的对称点为B ,F 是椭圆的右焦
点,BF AF ⊥,]4
,12[
π
π∈∠ABF ,则椭圆离心率的取值范围为 ▲ .
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题14分)
已知命题:p 实数m 满足)0(012722><+-a a ma m ,命题:q 满足方程
1212
2=-+-m
y m x 表示焦点在y 轴上的椭圆,若⌝p 是⌝q 的必要而不充分条件,求实数a 的取值范围.
16.(本小题14分)
设a 为实数,给出命题p :关于x 的不等式a x ≥-|1|)2
1(的解集为φ,命题q :函数
]8
9
)2(lg[)(2+-+=x a ax x f 的定义域为R ,若命题“q p ∨”为真,
“q p ∧”为假, 求实数a 的取值范围.
17.(本小题15分)
已知圆25)2()1(:22=-+-y x C ,直线∈=--+++m m y m x m l (047)1()12(:R ) (1) 证明:无论m 取什么实数,直线l 与圆恒有两个公共点; (2) 求直线l 被圆C 截得的弦长最小时的方程.
18.(本小题15分)
如图,在平面直角坐标系xOy 中,已知曲线C 由圆弧1C 和圆弧2C 相接而成,两相接点
N M ,均在直线3=x 上,圆弧1C 的圆心是坐标原点O ,半径为5,圆弧2C 过点)0,1(-A .
(1) 求圆弧2C 的方程;
(2) 曲线C 上是否存在点P ,满足PO PA 2
2
=
?若存在,指出有几个这样的点,若不存在,请说明理由.
19.(本小题16分)
已知椭圆中心在原点、焦点在坐标轴上,且经过点M (1,432),N (-32
2,2).
(1)求椭圆的离心率;
(2)椭圆上是否存在点P (x ,y )到定点A (a,0)(其中0<a <3)的距离的最小值为1?若存
在,求a 的值及点P 的坐标;若不存在,请说明理由.
20.(本小题16分)
在平面直角坐标系xOy 中,已知椭圆22
221(0)x y a b a b
+=>>的右顶点与上顶点分别为
,A
B
. (1)求椭圆的标准方程;
(2)如图,若直线l 与该椭圆交于,P Q 两点,直线,BQ AP 的斜率互为相反数.
①求证:直线l 的斜率为定值;
②若点P 在第一象限,设ABP ∆与ABQ ∆的面积分别为12,S S ,求
1
2
S S 的最大值.。