2004年春季高考试题——数学理(安徽卷)(附解答)
- 格式:doc
- 大小:218.50 KB
- 文档页数:4
2004年安徽省普通高中理科实验班招生考试数学试题参考答案及评分标准一、选择题(每小题10分,共50分)1.C 2.B 3.C 4.D 5.B二、填空题(每小题8分,共40分)6.1684 7.7 8.-1<b a -<5 9.a >-1且a ≠010.35534+-=x y三、解答题(每小题15分,共60分)11.(本题满分15分)解 (1)如图1,最多有10个交点; ……………………(4分)图1 图2(2)可以有4个交点,有3种不同的情形,如图2. ……(10分)(3)如图3所示. …………………(15分)图312.(本题满分15分)解:设甲库原来存粮a 袋,乙库原来存粮b 袋,依题意可得90)90(2+=-b a . (1)再设乙库调c 袋到甲库,则甲库存粮是乙库的6倍,即)(6c b c a -=+. (2) ………………(5分) 由(1)式得2702-=a b . (3)将(3)代入(2),并整理得1620711=-c a . ………………(10分) 由于7)1(42327162011++-=-=a a a c . 又a 、c 是正整数,从而有7162011-a ≥1,即a ≥148; 并且7整除)1(4+a ,又因为4与7互质,所以7整除1+a .经检验,可知a 的最小值为152.答:甲库原来最少存粮153袋. …………………(15分)13.当点P 运动时,CD 的长保持不变. …………………(4分) 证法一:A 、B 是⊙O 1与⊙O 2的交点,弦AB 与点P 的位置无关.……(6分) 连结AD ,∠ADP 在⊙O 1中所对的弦为AB ,所以∠ADP 为定值. ……………(10分) ∠P 在⊙O 2中所对的弦为AB ,所以∠P 为定值. ……………(12分) 因为∠CAD =∠ADP +∠P ,所以∠CAD 为定值.在⊙O 1中∠CAD 所对弦是CD ,∴CD 的长与点P 的位置无关.………(15分) 证法二:在⊙O 2上任取一点Q ,使点Q 在⊙O 1外,设直线QA 、QB 分别交⊙O 1 于C '、D ',连结C 'D '.∵ ∠1=∠3,∠2=∠3,∠1=∠2,∴ ∠3=∠4. …………………(10分)∴ CC '=DD '∴ C 'mD '=CmD∴ CD =CD . …………………(15分)14.(本题满分15分)解法1(1)① 当t <0时,OQ =t -,PQ =221+-t . ∴ S =t t t t -=+--⋅241)221)((21; ② 当0<t <4时,OQ =t ,PQ =221+-t . ∴ S =t t t t +-=+-⋅241)221(21; ③ 当t >4时,OQ =t ,PQ =221)221(-=+--t t . ∴ S =t t t t -=-⋅241)221(21. ④ 当t =0或4时,S =0。
2004年安徽高考试卷一、选择题(每题3分,共30分)若函数f(x)=x−2+ln(3−x)的定义域为D,则D=A. [2,3)B. (2,3)C. [2,3]D. (2,3]已知向量a⟶=(1,2),b⟶=(2,−1),则a⟶⋅b⟶=A. 0B. 1C. 2D. 3已知数列{an}满足an+1=2an+1,且a1=1,则数列{an}的通项公式为an=A. 2n−1B. 2n−1C. 2n−1+1D. 2n+1二、填空题(每题4分,共16分)已知等差数列{an}的前n项和为Sn,若a1=1,a4=7,则S6= _______.函数y=sin(2x+6π)在区间[0,π]上的单调递减区间为_______.若直线l与圆x2+y2=4相切,且直线l在x轴和y轴上的截距相等,则直线l的方程为_______.已知函数f(x)={x2−2x,x≤0log2x,x>0,则不等式f(x)>1的解集为_______.三、解答题(共74分)(12分)已知等比数列{an}的前n项和为Sn,且S3=23,S6=815,求数列{an}的通项公式。
(12分)已知函数f(x)=sin(2x+φ),其中φ∈(0,π),若f(x)的图象关于点(12π,0)对称,且f(x)在区间(0,2π)上是单调函数,求φ的值,并求f(x)的单调递增区间。
(12分)已知椭圆C:a2x2+b2y2=1(a>b>0)的离心率为22,且过点(1,22)。
(1)求椭圆C的方程;(2)设直线l与椭圆C交于A,B两点,且以AB为直径的圆过椭圆的右顶点M,求直线l的方程。
(14分)已知函数f(x)={log2(x+1),x≤0f(x−1)+1,x>0(1)求f(2)的值;(2)求函数f(x)的解析式;(3)若n∈N∗,求nf(0)+f(1)+⋯+f(n−1)的值。
2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x ∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)C已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值. 19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x e x f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.4316.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα,所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小 值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去 当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f图2Cy图1在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512, 所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x ex x e x x e x f xx x ----=+-++-='由,0)(='x f 得.0sin 2=--x ex解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nqq q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq q q q n q q q q n q q q nq q q n q qq q n q q qn nnn n n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。
2004年普通高等学校春季招生考试(安徽卷)理科数学一、选择题1.5(4+ⅈ)2ⅈ(2+ⅈ)=(A)5(1−38ⅈ)(B) 5(1+38ⅈ)(C) 1+38ⅈ(D) 1−38ⅈ2. 不等式|2x 2−1|≤1的解集为(A){x |−1≤x ≤1}(B){x |−2≤x ≤2}(C){x |0≤x ≤2}(D){x |−2≤x ≤0}3. 已知F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点,M 为椭圆上一点,MF 1垂直于x 轴, 且∠F 1MF 2=600, 则椭圆的离心率为(A)12(B)√22(C)√33(D)√324.lⅈm n→∞(n−2)2(2+3n )3(1−n )5=(A)0(B)32(C)−27(D)275. 等边三角形ABC 的边长为4,M,N 分别为AB,AC 的中点, 沿MN 将ΔAMN 折起, 使得面AMN 与面MNCB 所处的二面角为300, 则四棱锥A −MNCB 的体积为(A)32 (B)√32(C)√3(D)26. 已知数列{a n }满足a 0=1,a n =a 0+a 1+⋯+a n−1(n ≥1), 则当n ≥1时,a n =(A)2n(B)n (n+1)2(C)2n−1(D)2n−17. 若二面角α−l−β为1200, 直线m⊥α, 则β所在平面内的直线与m所成角的取值范围是(A)(00,900](B)[300,600](C)[600,900](D)[300,900]8. 若f(sⅈn x)=2−cos2x, 则f(cos x)=(A)2−sⅈn2x(B)2+sⅈn2x(C)2−cos2x(D)2+cos2x9. 直角坐标xOy平面上, 平行直线x=n(n=0,1,2,...,5)与平行直线y=n(n=0,1,2, (5)组成的图形中, 矩形共有(A) 25 个(B) 36 个(C) 100 个(D) 225 个10. 已知直线l:x−y−1=0,l1:2x−y−2=0. 若直线l2与l1关于l对称, 则l2的方程是(A)x−2y+1=0(B)x−2y−1=0(C)x+y−1=0(D)x+2y−1=011. 已知向量集合M={a⃗|a⃗=(1,2)+λ(3,4),λ∈R},N={a⃗|a⃗=(−2,−2)+λ(4,5),λ∈R},则M∩N=(A){(1,1)}(B){(1,1),(−2,−2)}(C){(−2,−2)}(D)∅12. 函数y=sⅈn4x+cos4x的最小正周期为(A)π4(B)π2(C)π(D)2π二、填空题13. 抛物线y2=6x的准线方程为14. 在5 名学生(3 名男生, 2 名女生) 中安排2 名学生值日, 其中至少有1 名女生的概率是 .15. 函数y=√x−x(x≥0)的最大值为 .16. 若(x+1x −2)n的展开式中常数项为−20, 则自然数n= .三、解答题17. 解关于x的不等式:log a3 x<3log a x(a>0,a≠1).(b n+1)2, 求{b n}的通项公式.18. 已知正项数列{b n}的前n项和B n=1419.已知k>0,直线l1:y=kx,l2:y=−kx(1) 证明:到l1,l2的距离的平方和为定值a(a>0)的点的轨迹是圆或椭圆;(2) 求到l1,l2的距离之和为定值c(c>0)的点的轨迹.20. 已知三棱柱ABC−A1B1C1中, 底面边长和侧棱长均为a, 侧面A1ACC1⊥底面ABC,A1B=√6a.2(1) 求异面直线AC与BC1所成角的余弦值(2) 求证: A1B⊥面AB1C21. 已知盒中有10 个灯泡, 其中8 个正品, 2 个次品. 现需要从中取出2 个正品, 每次取出1 个, 取出后不放回, 直到取出2 个正品为止. 设ξ为取出的次数, 求ξ的分布列及Eξ., 过C上一点M, 且与M处的切线垂直的直线称为C在点M 22. 已知抛物线C:y=x2+4x+27的法线., 求点M的坐标(x0,y0);(1) 若C在点M的法线的斜率为−12(2)设P(−2,a)为C对称轴上的一点,在C上是否存在点,使得C在该点的法线通过点P,若有,求出这些点,以及C在这些点的法线方程,若没有,请说明理由。
2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x ex f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.43 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α 18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令 ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512,图2Cy所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--=BD PA 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x ex f x x x----=+-++-='由,0)(='x f 得.0sin 2=--x e x解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nq q q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn n n nn n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。
2004年全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k(1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合=⋂<--=<=N M x x x N x x M 则集合},032|{},4|{22 ( )A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x }2.=-+-+→542lim 22x x x x n x ( )A .21B .1C .52 D .41 3.设复数ωω++-=1,2321则i =( )A .ω-B .2ωC .ω1-D .21ω 4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6πC .12π-D .12π 6.函数x e y -=的图象( )A .与x e y =的图象关于y 轴对称B .与x e y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与x e y -=的图象关于坐标原点对称7.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则 球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 8.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 9.已知平面上直线l 的方向向量e =),53,54(-点O (0,0)和A (1,-2)在l 上的射影分别是O ′和A ′,则λ=''A O e ,其中λ= ( )A .511 B .511-C .2D .-2 10.函数x x x y sin cos -=在下面哪个区间内是增函数( )A .)23,2(ππB .)2,(ππC .)25,23(ππ D .)3,2(ππ 11.函数x x y 24cos sin +=的最小正周期为 ( )A .4π B .2π C .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有 ( ) A .56个 B .57个 C .58个 D .60个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A (Ⅰ)求证:B A tan 2tan =;(Ⅱ)设AB=3,求AB 边上的高. 18.(本小题满分12分) 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率. 19.(本小题满分12分)数列}{n a 的前n 项和记为S n ,已知).3,2,1(2,111 =+==+n S nn a a n n 证明: (Ⅰ)数列}{nS n是等比数列; (Ⅱ).41n n a S =+ 20.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B的两条对角线交点为D ,B 1C 1的中点为M.(Ⅰ)求证CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.21.(本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。
2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k(1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。
1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( IA)∪B=IB .( IA)∪( I B)=I C .A ∩( IB)=φD .( I A)∪( I B)=I B 7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项1, n=1,a n= ,n≥2.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是 .①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,Array(II)求面APB与面CPB所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.22.(本小题满分14分)已知数列1}{1 a a n 中,且 a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37.P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a aa x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4,a 5=a 4+32=13,所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nnn a。
2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函数的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD ,OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=BC PB GA 于是有所以.GA PB BC PB GABC ⊥⋅⊥u u u r u u u r u u u r u u u r u u u r u u u r、的夹角θ 等于所求二面角的平面角, 于是,772cos -==θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △GAE 中,AE=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23.21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与l 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以 双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+=Y Θ的取值范围为即离心率且且e e e a a a aa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得Θ 由于x 1,x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k , 所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k -1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。
2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共601.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=−=+−=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+−=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx −的展开式中常数项是( )A .14B .-14C .42D .-426.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π ,其中R 表示球的半径C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( )A .23B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π−=x y 的图象,可以将函数x y 2cos =的图象( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH的表面积为T ,则ST等于( )A .91B .94C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项 1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244−++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=−y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围:(II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题 17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222−−+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=−−=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.04所以E ξ=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分. 解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数.(II )当,02,02,02>−<>+>x ax ax x a 或解得由时 由.02,022<<−<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a 2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(−C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅−=−=−−=PB BC PB GA BC PB GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos −=⋅=BC GA BC GA θ 所以所求二面角的大小为772arccos−π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG .又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23.在Rt △PEG 中,EG=21AD=1. 于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=−.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>−+≠−a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =−=−∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=−−−−=−−=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k , 所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k-1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231−−++k ka 2k = a 2k -1+(-1)k =2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1.{a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121−⨯−+−+n n 当n 为偶数时,.121)1(2322−⨯−+=nn n a2005年高考理科数学全国卷Ⅰ试题及答案(河北河南安徽山西海南)源头学子小屋本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分1至2页第Ⅱ卷3到10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其它答案标号不能答在试题卷上3.本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的 参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P −−=)1()(一、选择题 (1)复数ii 2123−−=(A )i(B )i −(C )i −22(D )i +−22(2)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I(B )123I I S C S C S ⊆⋂()(C )123I I I C S C S C S ⋂⋂=Φ(D )123I I S C S C S ⊆⋃()(3)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(4)已知直线l 过点),(02−,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是(A )),(2222− (B )),(22−(C )),(4242−(D )),(8181− (5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33(C )34 (D )23(6)已知双曲线)0( 1222>=−a y ax 的一条准线与抛物线x y 62−=的准线重合,则该双曲线的离心率为(A )23(B )23(C )26 (D )332 (7)当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为(A )2(B )32(C )4(D )34(8)设0>b ,二次函数122−++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1−(C )251−− (D )251+− (9)设10<<a ,函数)22(log )(2−−=x x a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(−∞(B )),0(+∞(C ))3log ,(a −∞(D )),3(log +∞a(10)在坐标平面上,不等式组⎩⎨⎧+−≤−≥131x y x y 所表示的平面区域的面积为(A )2(B )23 (C )223 (D )2(11)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是 (A )①③ (B )②④ (C )①④ (D )②③ (12)过三棱柱任意两个顶点的直线共15条,其中异面直线有(A )18对 (B )24对 (C )30对(D )36对第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上 2.答卷前将密封线内的项目填写清楚 3.本卷共10小题,共90分二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上(13)若正整数m 满足m m 102105121<<−,则m = )3010.02≈(14)9)12(xx −的展开式中,常数项为 (用数字作答)(15)ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m =(16)在正方形''''D C B A ABCD −中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号)三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 (17)(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<−+=ϕπϕ图像的一条对称轴是直线8=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+−c y x 于函数)(x f y =的图像不相切(18)(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小(19)(本大题满分12分)设等比数列{}n a 的公比为q ,前n 项和,2,1( 0 =>n S n (Ⅰ)求q 的取值范围; (Ⅱ)设1223++−=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小(20)(本大题满分12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种; 若一个坑内的种子都没发芽,则这个坑需要补种坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望(精确到01.0)(21)(本大题满分14分) 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(−=a 共线(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值(22)(本大题满分12分)(Ⅰ)设函数)10( )1(log )1(log )(22<<−−+=x x x x x x f ,求)(x f 的最小值; (Ⅱ)设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明n p p p p p p p p n n −≥++++222323222121log log log log2005年高考理科数学全国卷Ⅰ试题及答案(河北河南安徽山西海南)参考答案一、选择题:1.A 2.C 3.B 4.C 5.A 6.D7.C 8.B 9.C 10.B 11.B 12.D二、填空题: 13.155 14.672 15.1 16.①③④ 三、解答题17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ−=<<− (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ−=−=x y 因此 由题意得.,2243222Z k k x k ∈+≤−≤−πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++−=πππππ的单调增区间为(Ⅲ)证明:∵ 33|||(sin(2))||2cos(2)|244y x x ππ''=−=−≤所以曲线)(x f y =的切线斜率的取值范围为[-2,2], 而直线025=+−c y x 的斜率为522>, 所以直线025=+−c y x 于函数3()sin(2)4y f x x π==−的图像不相切 18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力满分12分 方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD ,∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD. (Ⅱ)解:过点B 作BE//CA ,且BE=CA ,则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90°在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PB BE PBE .510arccos所成的角为与PB AC ∴ (Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角 ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM.在等腰三角形AMC 中,AN ·MC=AC AC CM ⋅−22)2(, 5625223=⨯=∴AN . ∴AB=2,322cos 222−=⨯⨯−+=∠∴BN AN AB BN AN ANB故所求的二面角为).32arccos(−方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21. (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故又由题设知AD ⊥DC ,且AP 与与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(−==PB AC.510||||,cos ,2,5||,2||=⋅>=<=⋅==PB AC PBAC PB AC PB AC PB AC 所以故由此得AC 与PB 所成的角为.510arccos(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==−=∴−=−−−=z y x MC z y x NC要使.54,0210,==−=⋅⊥λ解得即只需z x MC AN MC AN 0),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅−===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λ ANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.30304||,||,.555AN BN AN BN ==⋅=− 2cos(,).3||||AN BN AN BN AN BN ⋅∴==−⋅2arccos().3−故所求的二面角为19.(Ⅰ)).,0()0,1(+∞⋃−(Ⅱ)0,100,n S q q >−<<>又因为且或1,12,0,;2n n n n q q T S T S −<<−>−>>所以当或时即120,0,;2n n n n q q T S T S −<<≠−<<当且时即1,2,0,.2n n n n q q T S T S =−=−==当或时即ξ的数学期望为:75.3002.030041.020287.010670.00=⨯+⨯+⨯+⨯=ξE21.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y −=,代入12222=+b y a x ,化简得02)(22222222=−+−+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +−=+=+由OB OA a y y x x OB OA +−=++=+),1,3(),,(2121与a 共线,得,0)()(32121=+++x x y y 又c x y c x y −=−=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++−+∴ 即232222cba c a =+,所以36.32222a b a c b a =−=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ 22.本小题考查数学归纳法及导数应用知识,考查综合运用数学知识解决问题的能力 满分12分(Ⅰ)解:对函数()f x 求导数:22()(log )[(1)log (1)]f x x x x x '''=+−−2211log log (1)ln 2ln 2x x =−−+−22log log (1)x x =−− 于是1()02f '=,当12x <时,22()log log (1)0f x x x '=−−<,()f x 在区间1(0,)2是减函数, 当12x >时,22()log log (1)0f x x x '=−−>,()f x 在区间1(,1)2是增函数,所以21)(=x x f 在时取得最小值,1)21(−=f ,(II )用数学归纳法证明(ⅰ)当n=1时,由(Ⅰ)知命题成立 (ⅱ)假设当n=k 时命题成立即若正数1232,,,,k p p p p 满足12321k p p p p ++++=,则121222323222log log log log k k p p p p p p p p k ++++≥−当n=k+1时,若正数11232,,,,k p p p p +满足112321k p p p p +++++=,令1232k x p p p p =++++11p q x =,22p q x =,……,22k k p q x= 则1232,,,,k q q q q 为正数,且12321k q q q q ++++=,由归纳假定知121222323222log log log log k k q q q q q q q q k ++++≥−121222323222log log log log k kp p p p p p p p ++++1212223232222(log log log log log )k k x q q q q q q q q x =+++++2()log x k x ≥−+ ①同理,由1212221k k k p p p x ++++++=−,可得112222*********log log log k k k k k k p p p p p p +++++++++2(1)()(1)log (1)x k x x ≥−−+−− ②综合①、②两式11121222323222log log log log k k p p p p p p p p ++++++22()log (1)()(1)log (1)x k x x x k x x ≥−++−−+−− 22()log (1)log (1)k x x x x =−++−− 1(k k ≥−−=−+即当n=k+1时命题也成立根据(ⅰ)、(ⅱ)可知对一切正整数n 命题成立2006年普通高等学校招生全国统一考试(安徽卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
绝密 ★ 启用前2004年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页,第II 卷3至10页,考试结束后,将本试卷和答题卡一并交回。
第I 卷参考公式:如果事件:A 、B 互斥,那么 球的表面积公式P ( A :B ) P (A) :P(B) S = 4πR 2如果事件:A 、B 相互独立,那么 其中R 表示球的半径P(A ·B ) P(A)·P(B) 球的体积公式 如果事件A 在一次试验中发生的概率是P,那么 V =π34R 3 n 次独立重复试验中恰好发生上次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(.一、选择题√ (1) ( 1 – i ) 2 ·i =(A) 2 – 2i (B) 2 + 2i (C) -2 (D) 2 (2) 已知函数f ( x ) = 18xx+-11.若f ( a ) = b ,则f ( - a ) = (A) b (B) – b (C) b 1 (D) - b1(3) 已知a 、b 均为单位何量,它们的夹角为60°,那么| a + 3 b | =(A)7 (B) 10 (C) 13 (D) 4√ (4) 函数 y –1-x + 1 ( x ≥ 1 )的反函数是(A) y = x 2 – 2x + 2 ( x < 1 ) (B) y = x 2 – 2x + 2 ( x ≥ 1 )(C) y – x 2 – 2x ( x < 1 ) (D) y = x 2 – 2x ( x ≥ 1 ) (5) ( 2x 3 –x1 ) 2的展开式中常数项是(A) 14 (B)-14 (C) 42 (D) -42(6)设A、B、I均为非空集合,且满足I B A ⊆⊆,则下列各式中错误..的是 (A) ( A ) ∪ B = I (B) ( A ) ∪ ( B ) = I (C) A ∩( B ) = φ (D) ( A ) ∩ ( B) = B(7) 椭圆42x + y 2 = 1 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P,则|2PF |= (A)23(B)3 (C)27 (D)4(8)设抛物线y 2 = 8x 的准线与x 轴交于点Q,若过点Q的直互l 与抛物线有公共点,则直线l 的斜率的取值范围是(A)[-21,21] (B)[-2,2] (C)[-1,1] (D)[-4,4] (9)为了得到函数y =sin (2x -6π)的图像,可以将函数y =cos 2x 的图像 (A)向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D)向左平移3π个单位长度(10)已知正四面体ABCD 的表面积为S,其四个面的中心分别为E、F、G、H.设四面体EFGH 的表面积为T,则ST等于 (A)91 (B)94 (C)41 (D)31(11)从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为(A)12513 (B)12516 (C)12518 (D)12519 (12)已知a 2+b 2=1,b 2+c 2=2,c 2+a 2=2,则ab +bc +ca 的最小值为(A)213- (B)321- (C)-321- (D)321+第II 卷二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. (13)不等式| x + 2 | ≥ | x | 的解集是_________.(14)由动点P向圆x 2 + y 2 = 1 引两条切线PA 、PB ,切点分别为A、B,∠APB=60°,则动点P的轨迹方程为_______.(15)已知数列{a n }满足a 1=1,a n =a 1+2a 2+3a 3+…+(n – 1 ) a n – 1 ( n ≥ 2 ),则{a n }的通项 1, n =1, a n =_________, n ≥ 2 .(16) 已知a 、b 为不垂直的异面直线,a 是一个平面,则a 、b 在a 上的射影有可能是①两条平行直线②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在上面结论中,正确结论的编号是_____________(写出所有正确结论的编号). 三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)求函数f (x )=xxx x x 2sin 2cos sin cos sin 2244-++的最小正周期、最大值和最小值.(18)(本小题满分12分)一接待中心有A、B、C、D四部热线电话.已知某一时刻电话A、B占线的概率为0.5,电话C、D占线的概率为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ε部电话占线,试求随机变量ε的概率分布和它的期望.(19)(本小题满分12分)已知a ∈R,求面积f (x ) = x 2e ax 的单调区间.(20)(本小题满分12分)如图,已知四棱锥P – ABCD,PB ⊥AD,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I)求点P到平面ABCD 的距离;(II )求面APB 与面CPB 所成二面角的大小.(21)(本小题满分12分)设双曲线C :22ax -y =1 ( a > 0 )与直线l :x + y = 1相交于两个不同的点A、B.(I)求双曲线C的离心率e 的取值范围; (II )设直线l 与y 轴的交点为P,且-125.求a 的值.(22)(本小题满分14分)已知数列{a n }中a 1=1,且a 2k =a 2k -1+(-1)k , a 2k +1=a 2k +3k , 其中k =1,2,3,….(I)求a 3,a 5;(II)求{a n }的通项公式.2004年普通高等学校招生全国统一考试 理科数学试题(必修+选修II )答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分60分.(1)D (2)B (3)C (4)B (5)A (6)B (7)C (8)C (9)B (10)A (11)D (12)B二.填空题:本题考查基本知识和基本运算,每小题4分,满分16分. (13){x|x ≥-1} (14)x 2 + y 2 – 4 (15)2!n (16)①②④三.解答题(17)本小题主要考查三角函数基本公式和简单的变形,以及三角函数的有关性质,满分12分.解:f ( x ) = xx xx x x cos sin 22cos sin )cos (sin 22222--+=)cos sin 1(2cos sin 122x x xx --=21(1 + sinx cosx ) =41sin2x+21所以函数f ( x ) 的最小正周期是x ,最大值是43,最小值是41.(18)本小题主要考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力.满分12分.解:P(ε=0)=0.52×0.62-0.09.P(ε=1)=32C ×0.52×0.62+12C ×0.52×0.4×0.6 – 0.3.P(ε = 2 ) = 32C ×0.52×0.62 +1212C C ×0.52×0.4×0.6 +32C ×0.52×0.42-0.37.P(ε = 3 ) = 1232C C ×0.52×0.4×0.6+2212C C ×0.52×0.42×0.2.P(ε = 4 ) = 0.52×0.42 = 0.04. 于是得到随机变量ε的概率分布列为:所以E = 0 ×0.09 + 1 ×0.3 + 2 ×0.37 + 3 ×0.2 + 4 ×0.04 -1.8.(19)本小题主要考查导数的概念和计算,应用导数研究的数性质的方法,考查分类讨论的数学思想,满分12分. 解:函数f ( x ) 的导数;f ′( x ) = 2xe ax + ax 2e ax = ( 2x + ax 2 ) e ax .( i )当a = 0时,若x < 0.则f ′( x ) < 0.若x > 0,则f ′( x ) > 0.所以当a = 0时,函数f ( x ) 在区间(-∞,0)内为减函数,在区间(0, +∞)内为增函数. ( ii )当a > 0时,由2x + ax 2 > 0,解得x < -a2或x > 0, 由 2x + ax 2 < 0,解得 -a2< x < 0. 所以当a > 0时,函数f ( x ) 在区间(-∞,-a 2)内为增函数,在区间(-a2,0 )内为减函数,在区间( 0 , +∞ )内为增函数;( iii )当a < 0时,由2x + ax 2 > 0,解得0 < x < -a2. 由2x + ax 2 < 0,解得 x < 0或x > -a2. 所以当a < 0 时,函数f ( x ) 在区间(-∞,0 )内为减函数,在区间(0, -a2)内为增函数,在区间(-a2, +∞)内为减函数.(20)本小题主要考查棱锥、二面角和线面关系等基本知识、同时考查空间想象能力和推理、运算能力,满分12分.( I )解:如图,作PO ⊥平面ABCD,垂足为点O.连接OB 、OA 、OD 、OB 与AD 交于点E,连结PE. ∵AD ⊥PB, ∴AD ⊥OB, ∵PA = PD, ∴OA = OD,于是OB 平分AD,点E 为AD 的中点,所以PE ⊥AD. 由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角,∴∠PEB=120°, ∠PEO=60°. 由已知可求得PE =3. ∴PO = PE ·sin60°=3×23= 23.即点P 到平面ABCD 的距离为23. (II)解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA. P(0,0,23),B(0,233,0),PB 中点G 的坐标为(0,433,43),连接AG .又知A(1,23,0 ),C(-2, 233, 0).由此得到: = ( 1 , -43,-43).=(0 ,233, -23), =(-2, 0 , 0 , ) .于是有GA ·PB = 0 ·BC ·PB = 0 ,所以⊥.⊥. , 的夹角θ等于所求二面角的平面角, 于是 cos θ =,772-= 所以所求二面角的大小为π-arccos772. 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB , PG ∥BC ,PG =21BC. ∵AD ⊥PB,∴BC ⊥PB,PG ⊥PB, ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB, ∴AD ⊥EC.又∵PE=BE, ∴EG ⊥PB,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23, 在Rt △GAE 中,AE=21AD=1. 于是 tan ∠GAE=23=AE EG , 又 ∠AGF=π-∠GAE,所以所求二面角的大小为π-arctan23. (21)本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力,满分12分. 解:(I )由C 与l 相交于两个不同的点,故知方程组,1222=-y axx + y = 1 .有两个不同的实数解,消去y 并整理得(1 – a 2)x 2 + 2a 2x – 2a 2 = 0. ① 1 – a 2 ≠ 0 , 所以4a 4 + 8a 2 ( 1 – a 2 ) > 0 . 解得 0 < a < 2且a ≠ 1.双曲线的离心率 e =11122+=+aa a , ∵ 0 < a <2且a ≠ 1 ,∴ e >26且e ≠ 2,即离心率e 的取值范围为(26,2) ∪ ( 2,+∞) .(II)设 A( x 1·y 1 ),B( x 2·y 2),P( 0, 1 ) . ∵ 125=, ∴ (x 1·y 1 – 1 ) = 125(x 2·y 2 – 1 ) . 由此得 x 1 =125x 2 , 由于x 1,x 2都是方程①的根,且1 – a 2 ≠ 0 ,所以 222121217aa x --=,222212125aa x --=. 消消去,x 2,得-602891222=-aa , 由a > 0, 所以 a =1317. (22)本小题主要考查数列、等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力。
2004年普通高等学校春季招生考试数学(理工)(安徽卷)一. 选择题:本大题共10小题,每小题5分,共60在每小题给出的四个选
(1)2
5(4)(2)
i i i +=+
(A )5(1-38i ) (B )5(1+38i ) (C )1+38i (D )1-38i (2)不等式|2x 2-1|≤的解集为
(A ){|11}x x -≤≤ (B ){|22}x x -≤≤ (C ){|02}x x ≤≤ (D ){|20}x x -≤≤
(3)已知F 1、F 2为椭圆22
221x y a b
+=(0a b >>)的焦点;M 为椭圆上一点,MF 1
垂直于x 轴,且∠F 1MF 2=600,则椭圆的离心率为 (A )
2
1
(B )22 (C )33 (D )23
(4)23
5(2)(23)lim (1)
n n n n →∞-+=- (A )0 (B )32 (C )-27 (D )27
(5)等边三角形ABC 的边长为4,M 、N 分别为AB 、AC 的中点,沿MN 将△AMN 折起,使得面AMN 与面MNCB 所处的二面角为300,则四棱锥A -MNCB 的体积为 (A )
2
3
(B )23 (C )3 (D )3
(6)已知数列}{n a 满足01a =,011n n a a a a -=+++ (1n ≥),则当1n ≥时,n a =
(A )2n (B )
(1)
2
n n + (C )2n -1 (D )2n -1 (7)若二面角l αβ--为1200,直线m α⊥,则β所在平面内的直线与m 所成角的取值范围是
(A )00(0,90] (B )[300,600] (C )[600,900] (D )[300,900] (8)若(sin )2cos 2f x x =-,则(cos )f x =
(A )2-sin 2x (B )2+sin 2x (C )2-cos 2x (D )2+cos 2x (9)直角坐标xOy 平面上,平行直线x =n (n =0,1,2,……,5)与平行直
线y =n (n =0,1,2,……,5)组成的图形中,矩形共有 (A )25个 (B )36个 (C )100个 (D )225个
(10)已知直线l :x ―y ―1=0,l 1:2x ―y ―2=0.若直线l 2与l 1关于l 对称,则l 2的方程是
(A )x ―2y +1=0 (B )x ―2y ―1=0 (C )x +y ―1=0 (D )x +2y ―1=0
(11)已知向量集合{|(1,2)(3,4),}M a a R λλ==+∈
,
{|(2,2)(4,5),}N a a R λλ==--+∈
,则M N =
(A ){(1,1)} (B ){(1,1),(-2,-2)} (C ){(-2,-2)} (D )∅
(12)函数44()sin cos f x x x =+的最小正周期为 (A )
4π (B )2
π
(C )π (D )2π
二. 填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上
(13)抛物线26y x =的准线方程为 .
(14)在5名学生(3名男生,2名女生)中安排2名学生值日,其中至少有1名女生的概率是 .
(15)函数y x =(0x ≥)的最大值为 . (16)若1
(2)n x x
+
-的展开式中常数项为-20,则自然数n = .
三. 解答题:本大题共6小题,共84分解答应写出文字说明,证明过程或演算 (17)(本小题满分12分)
解关于x 的不等式:3log 3log a a x x <(0a >且1a ≠).
(18)(本小题满分12分)
已知正项数列{}n b 的前n 项和21
(1)4
n n B b =+,求{}n b 的通项公式.
(19)(本小题满分12分)
已知0k >,直线l 1:y =kx ,l 2:y =-kx .
(Ⅰ)证明:到l 1、l 2的距离的平方和为定值a (a >0)的点的轨迹是圆或椭圆 (Ⅱ)求到l 1、l 2的距离之和为定值c (c >0)的点的轨迹. (20)(本小题满分12分)
已知三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长均为a ,侧面A 1ACC 1⊥底面ABC ,
A 1
B =
2
6
a , (Ⅰ)求异面直线AC 与BC 1所成角的余弦值; (Ⅱ)求证:A 1B ⊥面AB 1C .
(21)(本小题满分12分)
已知盒中有10个灯泡,其中8个正品,2个次品.现需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次品,求ξ的分布列及E ξ.
(22)(本小题满分14分)
已知抛物线C :22
47
y x x =++,过C 上一点M ,且与M 处的切线垂直的直线
称为C 在点M 的法线.
(Ⅰ)若C 在点M 的法线的斜率为-2
1
,求点M 的坐标(x 0,y 0);
(Ⅱ)设P (-2,a )为C 对称轴上的一点,在C 上是否存在点,使得C 在该点的法线通过点P ?若有,求出这些点,以及C 在这些点的法线方程;若没有,请说明理由.
参考答案
一、选择题
二、填空题(13)x =-2; (14)0.7; (15)4
; (16)3. 三、解答题
(17)当01a <<时,不等式的解集为{|{|1}x x a x x ><< ;
当1a >时,不等式的解集为{|0{|1x x a x x <<<< .
(18)21n b n =-.
(19)(Ⅰ)k =1时为圆;k ≠1时为椭圆. (Ⅱ)动点的轨迹为矩形.
(20)(Ⅱ)略. (21)ξ的分布列为:
E ξ=229
.
(22)(Ⅰ)M (-1,
2
1);
(Ⅱ)当a >0时,在C 上有三个点(-2212a -),(-221
2
a -)及 (-2,-
2
1
),在这三点的法线过点P (-2,a ),其方程分别为:
x ++2-20,
x -+2+20, x =-2.
当a ≤0时,在C 上有一个点(-2,-2
1),在这点的法线过点P (-2,a ),其方程为:x =-2.。