七年级数学练习题
- 格式:docx
- 大小:74.49 KB
- 文档页数:4
人教版七年级数学《整式加减》计算题专项练习(含答案)1.计算:$2(5a^2-3b)-3(a^2-2b)$。
2.计算:$3a^2+2a-4a^2-7a$。
3.计算:$2(a-2b)-3(2a-b)$。
4.计算:$5x^2-[2x-3(x+2)+4x^2]$。
5.计算:$3x^2-3(x^2-2x+1)+4$。
6.化简:$2(2a^2+9b)+(-5a^2-4b)$。
7.化简:$-2a+(3a-1)-(a-5)$。
8.计算:$a+2b+3a-2b$。
9.计算:$2(x^2y-3xy^2)-3(x^2y-4xy^2)$。
10.先化简,再求值:$(2a^2-5a)-(2a^2-4a+2)$,其中$a=$。
11.化简:$3(2x^2y-3xy^2)-(xy^2-3x^2y)$。
12.化简:$2(3a-2b)-3(a-3b)$。
13.化简:$(3m+2)-3(m^2-m+1)+(3-6m)$。
14.化简:$-2(x^2-3xy)+6(x^2-xy)$。
15.化简:$2(2x^2-4x+1)-(3x^2-2x+5)$。
16.计算:$2x^2+(3y^2-xy)-(x^2-3xy)$。
17.化简:$(5x^2-2x-3)-(x-4+3x^2)$。
18.先化简,再求代数式的值:$2(a^2-ab)-3(a^2-ab-)$,其中$a=2$,$b=$。
19.化简求值:$2(3x^2-2x+1)-(5-2x^2-7x)$,其中$x=-1$。
20.先化简,再求值。
21.已知$A=2x^2-9x-11$,$B=-6x+3x^2+4$,且$B+C=A$,(1)求多项式$C$;(2)求$A+2B$的值。
22.先化简,再求值:$(4a^2-2a-8)-(a-1)$,其中$a=1$。
23.先化简,再求值:$(-x^2+5+4x)+(5x-4+2x^2)$,其中$x=-2$。
24.化简后再求值:$x+2(3y^2-2x)-4(2x-y^2)$,其中$x=2$,$y=-1$。
七年级数学同步练习题一、有理数及其运算1. 计算下列各题:(1) (3) + 7(2) 5 (2)(3) 4 × 25(4) 18 ÷ 3(5) (5 3) × 22. 化简下列各题:(1) 3 + 5 7(2) 4 (3) + 9(3) 2 × (5) ÷ 10(4) 16 ÷ (2) × (4)二、整式及其运算1. 计算下列各题:(1) 2x 3x(2) 5ab + 4ab(3) 7a^2 3a^2(4) 4xy 2xy + 6xy2. 化简下列各题:(1) 3x + 2y 4x + 5y(2) 5a^2b 3a^2b + 4a^2b(3) 2m^2n 4mn^2 + 3m^2n 2mn^2三、一元一次方程1. 解下列方程:(1) 3x 7 = 11(2) 5 2x = 3x + 1(3) 4(x 3) = 2(x + 5)2. 解决实际问题:(1) 某数的3倍减去5等于这个数的2倍加上7,求这个数。
(2) 甲、乙两人年龄之和为45岁,甲的年龄是乙的2倍,求甲、乙的年龄。
四、图形认识与测量1. 下列图形中,哪些是平行四边形?哪些是矩形?哪些是菱形?(画出图形)2. 计算下列图形的面积:(1) 一个长方形,长为8cm,宽为5cm。
(2) 一个正方形,边长为6cm。
(3) 一个三角形,底为10cm,高为6cm。
五、数据初步认识1. 下列数据中,哪个是众数?哪个是中位数?(给出数据)2. 计算下列数据的平均数:(1) 2, 3, 5, 7, 11(2) 8, 12, 15, 18, 20, 253. 下列数据中,哪个数据与其它数据偏差最大?(给出数据)六、几何图形的性质1. 判断下列命题的真假:(1) 对顶角相等。
(2) 两条平行线的任意一对同旁内角互补。
(3) 两条对角线互相平分的四边形是平行四边形。
2. 填空题:(1) 如果一个三角形的两边分别是8cm和15cm,那么第三边的长度可能是____cm。
初中数学七年级上册练习题(有理数)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式值必为正数的是( )A .||||a b +B .22a b +C .21a +D .2(1)a + 2.下列运算正确的是( )A .(6)(13)7++-=+B .(6)(13)19++-=-C .()()9.059.0518.1++-=D .735( 3.75)2936⎛⎫-+=- ⎪⎝⎭3.下列数对相加和最小的是( ) A .5和15- B .2与2- C .1-与1- D .0.01与104.一个数是8,另一个数比8的相反数小2,则这两个数的和为( ) A .2- B .2 C .6- D .65.下列运算不正确的个数是( )①(2)(2)0-+-=;①(6)(4)10-++=-;①0(3)3+-=+;①512663⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭;①337744⎛⎫⎛⎫--+-=- ⎪ ⎪⎝⎭⎝⎭;①111236⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭;①(5)(6)(1)0++-++=. A .0 B .1 C .2 D .36.据全球新冠疫情统计,截至2021年12月7日,全球累计确诊新冠肺炎病例逾2.6亿例.2.6亿用科学记数法表示为( )A .26×710B .2.6×810C .0.26×910?D .2.6×9107.在-3,36,+25,-0.01,0,34-中,负数的个数为( ) A .2个 B .3个 C .3个 D .4个 8.当我们把其中一种意义的量规定为正,用正数表示,则与它具有相反意义的量直接可以用负数表示.例:中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A .支出20元B .收入20元C .支出80元D .收入80元 9.港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.数“720亿”用科学记数法可表示为( )A .27.210⨯B .37.210⨯C .107.210⨯D .117.210⨯ 10.在有理数-4,0,-1,3中,最小的数是( )A .-4B .0C .-1D .3 二、填空题11.数2-的符号是_______,绝对值是_______;数0.5的符号是_______,绝对值是_______,这两个数属_______号(填:“同”或“异”),绝对值较大的数的符号是_______.这两个数的绝对值之和是_______;较大的绝对值减较小的绝对值的差是_______. ()()20.5-++=____(|__|____|__|)=_______.零加上a 得_______.12.符号相同的几个数相加,取_______的符号,并把它们的_______相_______;符号不同两个数相加,取______________的符号,并用较大的绝对值_______较小的绝对值.互为相反数的和是_______.13.按法则要求步骤填空(1)(3)(9)++-=_______( )=_______.(2)( 5.7)(4,3)-+-=_______( )=_______.(3)106⎛⎫+-= ⎪⎝⎭_______. (4)2134⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭_______( )=_______. (5)10.254⎛⎫-+= ⎪⎝⎭_______. 14.若a 是绝对值最小的数,b 是最大的负整数,则()a b +-=_______.15.若3,7m n =-=-,则||m n +=_______;||m n +=_______;m n +=_______;||||m n +=_______.16.若||5,||3x y ==,则x y +=______________.17.x 是有理数,它在数轴上的对应点的位置如图所示.则77x x -++=________.18.央视天下财经2021年11月25日晚报道电影《长津湖》票房突破57亿,截至11月25日,电影《长津湖》已打破此前由影片《战狼2》保持的国产票房最高纪录,以破56.95亿元的成绩成为中国影史票房冠军.将56.95亿用科学记数法表示为___________.19.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前256年,可记作_________.20.截止北京时间2021年12月20日全球累计确诊新冠肺炎病例约为274950000例,将这个数精确到十万位为__例.21.在横线上填上适当的符号使式子成立:( )6+(﹣18)=﹣12.22.钓鱼岛是中国领土的一部分,岛屿周围的海域面积约174000平方千米,数据174000用科学记数法可以表示为________.23.计算:22139⎛⎫-+=⎪⎝⎭______.24.把数字3120000用科学记数法表示为______.三、解答题25.计算:(1)(51.76)(32.8)++-(2)( 3.75)( 3.75)-++(3)116332⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭(4)25( 2.7)3⎛⎫-+-⎪⎝⎭26.计算:1(2)3(4)99(100)+-++-+⋅⋅⋅++-27.公路养护小组乘车沿南北公路巡视维护,某天早晨从A地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下(单位:千米):+18.5,﹣9.3,+7,﹣14.7,+15.5,﹣6.8,﹣8.2,请通过计算回答:(1)B地在A地何方,相距多少千米?(2)若汽车行驶每100千米耗油8升,出发时汽车油箱有油20升,晚上到达B地时油箱还剩油多少升?28.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O 最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻? 29.某大米包装袋上印有(50±2)kg ,请问:(1)±2kg 是什么意思?(2)若随机抽查了其中5袋大米,质量分别为47.5kg ,51.3kg ,49.8kg ,50.3kg ,51.8kg ,请判断一下,这5袋大米的质量哪些是合格的?30.将下列数按照整数与分数进行分类:3,2.6,-26,3.1415926,0,45-. 31.讨论:观察下面两个式子有什么不同?(1)(-4)2与-42; (2)23()5与23532.411(2)()|2|3⎡⎤-+-÷---⎣⎦. 33.计算:10+(﹣5)×2﹣(﹣9)参考答案:1.C【解析】【分析】根据题意可知选项中的值必须为正数,所以无论a、b取何值时都得满足其值为正数这一条件,据此依次判断即可.【详解】解:A、当a=0,b=0时,此式不符合条件,故本选项错误;B、当a=0,b=0时,此式不符合条件,故本选项错误;C、无论a取何值,a2+1的值都为正数,故本选项正确;D、当a=-1时,此式不符合条件,故本选项错误;故选:C.【点睛】本题考查有理数的乘方和绝对值以及非负数与正数的关系,注意掌握非负数包括0,而正数不包括0.2.D【解析】【分析】根据有理数的加法计算法则进行求解即可.【详解】解:A、(6)(13)613=7++-=--,此选项不符合题意;B、(6)(13)613=7++-=--,此选项不符合题意;C、(9.05)(9.05)9.059.05=0++-=-,此选项不符合题意;D、73735( 3.75)3=294936⎛⎫-+=-+-⎪⎝⎭,此选项符合题意;故选D.【点睛】本题主要考查了有理数的加法,解题的关键在于能够熟练掌握有理数的加法计算法则.3.C【解析】【分析】根据有理数的加法分别算出四个选项的和,然后比较大小即可【详解】解:145=455⎛⎫+- ⎪⎝⎭,()22=0+-,()11=-2-+-,0.0110=10.01+,①410.014025>>>-,故选C.【点睛】本题主要考查了有理数的加法运算和有理数的比较大小,解题的关键在于能够熟练掌握相关知识进行求解4.A【解析】【分析】根据相反数的定义和有理数的减法确定另一个数,再利用有理数的加法法则计算即可.【详解】依题意另一个数为:-8-2=-10,①8+(-10)=-2.故选:A.【点睛】本题考查了相反数,有理数的加减法,熟练掌握有理数加减法法则是解题的关键.5.D【解析】【分析】根据有理数的加法法则,逐项计算分析可得.【详解】①(2)(2)4-+-=-,故①不正确;①(6)(4)2-++=-,故①不正确;①0(3)3+-=-,故①不正确;①512663⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭,故①正确;①337744⎛⎫⎛⎫--+-=-⎪ ⎪⎝⎭⎝⎭,故①正确;①111236⎛⎫⎛⎫-++=- ⎪ ⎪⎝⎭⎝⎭,故①不正确; ①(5)(6)(1)0++-++=,故①正确;综上,正确的有①①①,共计3个.故选D .【点睛】本题考查了有理数的加法,掌握有理数的加法法则是解题的关键.6.B【解析】【分析】科学记数法的定义即可得.【详解】解:2.6亿=82.610⨯,故选B .【点睛】本题考查了精确度和科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 7.B【解析】【分析】负数是小于零的数,由此可得出答案.【详解】解:由负数的概念可以得到-3,-0.01,34-,这三个数是负数, 故选:B【点睛】本题考查了正数和负数,掌握正数和负数的定义是解题的关键.8.C【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.9.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:720亿=72000000000=7.2×1010.故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.A【解析】【分析】根据有理数大小比较的法则:①正数都大于0;①负数都小于0;①正数大于一切负数;①两个负数,绝对值大的其值反而小可得答案.【详解】解:①44,11,而41,①41,在有理数-4,0,-1,3中,4103,①最小的数是-4,故选:A.【点睛】本题主要考查了有理数的比较大小,关键是掌握有理数的比较大小的方法.11.-2+0.5异- 2.5 1.5-2--0.5 1.5-a 【解析】【分析】根据有理数的性质及加法运算法则即可依次填空.【详解】数2-的符号是-,绝对值是2;数0.5的符号是+,绝对值是0.5,这两个数属异号(填:“同”或“异”),绝对值较大的数的符号是-.这两个数的绝对值之和是2.5;较大的绝对值减较小的绝对值的差是1.5.()()20.5-++=-(|2|-|0.5|)= 1.5-.零加上a得a.故答案为:-;;2;+;0.5;异;-;2.5;1.5;-;2-;-;0.5; 1.5-;a.【点睛】此题主要考查有理数的性质与运算,解题的关键是熟知绝对值的运用.12.相同绝对值加绝对值较大加数减去零【解析】【分析】根据有理数加法的计算法则进行求解即可.【详解】解:符号相同的几个数相加,取相同的符号,并把它们的绝对值相加;符号不同两个数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的和是零.故答案为:相同,绝对值,加,绝对值较大加数,减去,零.【点睛】本题主要考查了有理数加法的计算法则,解题的关键在于能够熟练掌握有理数的加法计算法则.13.-93-6-- 5.7 4.3+10-16--2134-512-0【解析】【分析】根据有理数加法运算法则计算即可.【详解】解:(1)原式=(93)--=6-;(2)原式=(5.7 4.3)-+=10-;(3)原式=16-; (4)原式=215()3412--=-; (5)原式=0; 故答案为:-;93-;6-;-;5.7 4.3+;10-;16-;-;2134-;512-;0. 【点睛】本题考查了有理数加法运算法则,同号两数相加,取相同符号,在把绝对值相加;异号两数相加;取绝对值大的符号,再把绝对值相减;任何数加上零还等于原数.14.1【解析】【分析】根据绝对值最小的数为0,最大的负整数为1-,求解即可.【详解】解:①a 是绝对值最小的数,b 是最大的负整数,①0,1a b ==-,①()[]0(1)1a b +-=+--=,故答案为:1.【点睛】本题考查了有理数的加法,熟知运算法则以及得出a 、b 的值是解本题的关键. 15. 4- 4 10- 10【解析】【分析】根据有理数的加法运算法则以及绝对值的意义求解即可.【详解】解:①3,7m n =-=-,①||3(7)4m n +=+-=-,||374m n +=-+=,m n +=3(7)10-+-=-;||||3710m n +=+=;故答案为:4-;4;10-;10.【点睛】本题考查了有理数的加法运算法则以及绝对值的意义,熟知运算法则是解本题的关键. 16.8±或2±【解析】【分析】根据绝对值的代数意义分别求出x 与y 的值,再代入所求的式子中计算即可.【详解】解:①|x |=5,|y |=3,①x =±5,y =±3,①x +y =5+3=8或x +y =5−3=2或x +y =−5+3=−2或x +y =−3−5=−8.故答案为:±2或±8.【点睛】本题考查了绝对值的意义以及有理数的加法,根据题意求出x 与y 的值是解题的关键. 17.14【解析】【分析】由数轴可知-6< x < 0,则x - 7< 0,x +7 > 0,再去掉绝对值,可解.【详解】由数轴可知-6<x <0,则x -7<0,x +7> 0,①|x - 7|+|x +7|=7-x +x +7=14故答案为14.【点睛】此题综合考查了数轴、绝对值的有关内容,在去掉绝对值的时候,要特别细心.18.9⨯5.69510【解析】【分析】根据科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,确定a、n的值即可.【详解】解:由题意知:56.95亿=5695000000=5.695×109,故答案为:5.695×109.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解题的关键.19.256-【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:李白出生于公元701 年,我们记作+701,那么秦始皇出生于公元前256年,可记作﹣256.故答案为:﹣256.【点睛】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.20.82.75010⨯【解析】【分析】根据精确度和科学记数法的定义即可得.【详解】解:274950000精确到十万位为275000000,8=⨯,275000000 2.75010故答案为:8⨯.2.75010【点睛】本题考查了精确度和科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 21.+【解析】【分析】根据有理数的加法法则即可得出答案.【详解】解:6+(﹣18)=﹣12,故答案为:+.【点睛】本题考查了有理数的加法,掌握绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值是解题的关键.22.51.7410⨯【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中11|0|a ≤<,n 为整数. 【详解】解:51.7174000401=⨯.故答案为:51.7410⨯.【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.23.13- 【解析】【分析】根据有理数的乘方、有理数的加法可以求解即可.【详解】 解:221()39-+ 4199=-+ 13=- 故答案为:13-. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题关键.24.63.1210⨯【解析】【分析】根据科学记数法的定义即可得.【详解】解:63.31212000001=⨯,故答案为:63.1210⨯.【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.25.(1)18.96;(2)0;(3)526;(4)11830- 【解析】【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的加减运算法则即可求解;(3)根据有理数的加减运算法则即可求解;(4)根据有理数的加减运算法则即可求解.【详解】(1)(51.76)(32.8)++-=51.7632.8-=18.96;(2)( 3.75)( 3.75)-++=0;(3)116332⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭=()116332⎛⎫-+- ⎪⎝⎭=136⎛⎫+- ⎪⎝⎭=526 (4)25( 2.7)3⎛⎫-+- ⎪⎝⎭=()2752310⎛⎫--+-- ⎪⎝⎭=117130--=11830-. 【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.26.50-【解析】【分析】根据1(2)=12=1+---,3(4)=34=1+---,()56=56=1+---从而可得()()()1(2)3(4)99(100)=111+-++-+⋅⋅⋅++--+-+⋅⋅⋅+-(一共50个负1相加),由此求解即可.【详解】解:①1(2)=12=1+---,3(4)=34=1+---,()56=56=1+---,①()()()1(2)3(4)99(100)=111+-++-+⋅⋅⋅++--+-+⋅⋅⋅+-(一共50个负1相加) ①1(2)3(4)99(100)=-50+-++-+⋅⋅⋅++-.【点睛】本题主要考查了有理数的加法运算,解题的关键在于能够发现()()()1(2)3(4)99(100)=111+-++-+⋅⋅⋅++--+-+⋅⋅⋅+-(一共50个负1相加). 27.(1)北方,2千米(2)13.6升【解析】【分析】(1)根据有理数的加法,有理数的大小比较,可得答案;(2)根据单位耗油量乘以行驶路程,可得总耗油量,根据原有油量减去耗油量,可得答案.(1)解: +18.5﹣9.3+7﹣14.7+15.5﹣6.8﹣8.2=2(千米),2>0,在北方,答:B地在A地北方,相距2千米;(2)路程=18.5+|﹣9.3|+7+|﹣14.7|+15.5+|﹣6.8|+|﹣8.2|=80(千米),每千米的耗油量8÷100=0.08升,耗油量80×0.08=6.4(升),20﹣6.4=13.6(升),答:晚上到达B地时油箱还剩油13.6升.【点睛】本题考查了正数和负数,有理数的加减法运算是解题关键.28.(1)能回到原点O(2)12厘米(3)54粒【解析】【分析】(1)将爬过的路程相加即可求出答案.(2)计算出每次爬行否离开原点的距离即可判断.(3)求出每次路程的绝对值之和即可求出答案.(1)由题意可知:+5-3+10-8-6+12-10=0,故小虫回到原点O;(2)第一次爬行,此时离开原点5厘米,第二次爬行,此时离开原点5-3=2厘米,第三次爬行,此时离开原点5-3+10=12厘米,第四次爬行,此时离开原点5-3+10-8=4厘米,第五次爬行,此时离开原点5-3+10-8-6=-2厘米,第六次爬行,此时离开原点5-3+10-8-6+12=10厘米,第7次爬行,此时离开原点5-3+10-8-6+12-10=0厘米,故小虫离开出发点最远是12厘米;(3)小虫共爬行的路程为:5+|-3|+10+|-8|+|-6|+12+|10|=5+3+10+8+6+12+10=54厘米,①每爬行1厘米奖励一粒芝麻,①小虫共可得到54粒芝麻.【点睛】本题考查正数与负数的意义,解题的关键是熟练运用正数与负数的意义.29.(1)表示质量比50kg最多多2kg或最多少2kg(2)51.3kg,49.8kg,50.3kg,51.8kg这四袋大米质量是合格的【解析】【分析】(1)(50±2)kg,50kg是标准质量,+2k g是上偏差,表示比标准质量最多多2kg,-2kg是下偏差,表示比标准质量最多少2kg;(2)在(50-2)kg和(50+2)kg之间的为合格,在这个范围之外的为不合格.(1)解:+2kg是表示比50kg最多多2kg,-2kg是表示50kg最多少2kg;①±2kg是表示比50kg最多多2kg或最多少2kg;(2)解:50+2=52(kg),50-2=48(kg),在48~52kg之间为合格,则51.3kg,49.8kg,50.3kg,51.8kg为合格,47.5kg为不合格,①51.3kg,49.8kg,50.3kg,51.8kg这四袋大米质量是合格的.【点睛】本题考查正负数的意义,理解正负数的相对性,能用正负数表示同意一对具有相反意义的量是解题的关键.30.整数:3,-26,0;分数:2.6,3.1415926,4 5【解析】【分析】直接根据整数和分数的概念进行判断即可得到答案.解:整数:3,-26,0;分数:2.6,3.1415926,45-. 【点睛】此题主要考查了有理数的分类,解题的关键是掌握有理数的分类.31.(1)见解析(2)见解析【解析】【分析】(1)根据乘方的定义,即可求解;(2)根据乘方的定义,即可求解;(1)解:①(-4)2表示-4的平方,-42表示4的平方的相反数,①(-4)2与-42互为相反数;(2) 解:235⎛⎫ ⎪⎝⎭表示35的平方,235表示23除以5. 【点睛】本题主要考查了乘方的定义,熟练掌握n 个相同因数的积的运算,叫做乘方,记作n a ,其中a 叫做底数,n 叫做指数;注意()n a -的意义是-a 的n 次方”, n a -的意义是“a 的n 次方的相反数”是解题的关键.32.7【解析】【分析】根据有理数的混合运算顺序进行计算即可求解.【详解】解:原式=()()1232--⨯-- 92=-7=本题考查了有理数的混合运算,正确的计算是解题的关键.33.9【解析】【详解】解:10+(﹣5)×2﹣(﹣9)=-+101099=【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.。
七年级上册数学练习题(有答案)一、单选题1.在一条东西向的跑道上,小亮向东走了8米,记作“+8米”;那么向西走了10米,可记作()A .+2米B .﹣2米C .+10米D .﹣10米2.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a-b+c-d的值为()A .1B .-1C .2或-1D .1或33.下列说法中,正确的是()A . -a一定是负数B .若a是正数,则 -a一定是复苏C .a的倒数是-1a4.A .4B .-4C . 4或-4D .2 或-25、-7的倒数是()A . 7B . - 17C . 17D .-76、把(﹣3)﹣(﹣7)+4﹣(+5)写成省略加号的和的形式是()A .﹣3﹣7+4﹣5B .﹣3+7+4﹣5C .3+7﹣4+5D .﹣3﹣7﹣4﹣57.下列各图中,可以是一个正方体的平面展开图的是()8、有理数a,b在数轴上的对应点如图所示,则下列式子错误的是()A .b<0B .a+b<0C .a<0D .b﹣a<0二、填空题9.若关于x的方程2(x-1)+a=0的解是x=3,则a的值为.三、计算题10、计算:(1)﹣5+7﹣(﹣8)(2)(﹣3)2﹣+|﹣2|.11.计算12.计算13.计算:10-(-16)+(-5)×7四、解答题五、综合题15、用正数或负数填空:(1)小商店平均每天可盈利250元,一个月(按30天计算)的利润是元;(2)小商店每天亏损20元,一周的利润是元;(3)小商店一周的利涧是1400元,平均每天的利润是元;(4)小商店一周共亏损840元,平均每天的利润是元.16、有8筐白菜,以每筐25千克为标准,超过记正数,不足记负数,称后的记录为:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5,回答下列问题:(1)这8筐白菜中最接近标准重量的白菜重多少千克?(2)这8筐白菜一共重多少千克?17、某登山队5名队员以大本营为基地,向海拔距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下(单位:米)+120,-30,-45,+205,-30,+25,-20,-5,+30,+105,-25,+90.(1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在进行中全程均使用了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?。
七年级数学课程有理数乘⽅练习题(含答案)⼀.选择题1、118表⽰()A、11个8连乘B、11乘以8C、8个11连乘D、8个别1相加2、-32的值是()A、-9B、9C、-6D、63、下列各对数中,数值相等的是()A、-32与-23B、-23与 (-2)3C、-32与(-3)2D、(-3×2)2与-3×224、下列说法中正确的是()A、23表⽰2×3的积B、任何⼀个有理数的偶次幂是正数4,这个C、-32 与 (-3)2互为相反数D、⼀个数的平⽅是92数⼀定是35、下列各式运算结果为正数的是()A、-24×5B、(1-2)×5C、(1-24)×5D、1-(3×5)6B、2C、4D、2或-27、⼀个数的⽴⽅是它本⾝,那么这个数是()A、 0B、0或1C、-1或1D、0或1或-18、如果⼀个有理数的正偶次幂是⾮负数,那么这个数是() A 、正数 B 、负数 C 、⾮负数 D 、任何有理数 9、-24×(-22)×(-2) 3=()A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值() A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系11、⼀个有理数的平⽅是正数,则这个数的⽴⽅是() A 、正数 B 、负数 C 、正数或负数D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于()A 、0B 、 1C 、-1D 、2 ⼆、填空题1、(-2)6中指数为,底数为;4的底数是,指数是;523?-的底数是,指数是,结果是;2、根据幂的意义,(-3)4表⽰,-43表⽰;3、平⽅等于641的数是,⽴⽅等于641的数是;4、⼀个数的15次幂是负数,那么这个数的2003次幂是;5、平⽅等于它本⾝的数是,⽴⽅等于它本⾝的数是;6、=??? ??-343 ,=??-343 ,=-433 ;7、()372?-,()472?-,()572?-的⼤⼩关系⽤“<”号连接可表⽰为;8、如果44a a -=,那么a 是;9、()()()()=----20022001433221 ;10、如果⼀个数的平⽅是它的相反数,那么这个数是;如果⼀个数的平⽅是它的倒数,那么这个数是;11、若032>b a -,则b 0 计算题1、()42-- 2、3211?3、()20031-4、()33131-?--5、()2332-+-6、()2233-÷-4255414-÷-??-÷9、()??-÷----721322246 10、()()()33220132-?+-÷---解答题1、按提⽰填写:2、有⼀张厚度是0.2毫⽶的纸,如果将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半⼩时分裂⼀次(由⼀个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?4、你吃过“⼿拉⾯”吗?如果把⼀个⾯团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根⾯条?探究创新乐园1、你能求出1021018.0?的结果吗?1252、若a是最⼤的负整数,求200320022000a2001+的值。
七年级数学数轴专项练习题【例1】在数轴上有三个点A、B、C,如图所示.(1)将点B向左平移4个单位,此时该点表示的数是;(2)将点C向左平移3个单位得到数m,再向右平移2个单位得到数n,则m,n分别是多少?(3)怎样移动A、B、C中的两点,使三个点表示的数相同?你有几种方法?【变式1-1】在数轴上,点A,B在原点O的两侧,分别表示数a,1,将点A向右平移2个单位长度,得到点C(点C不与点B重合),若CO=BO,则a的值为()A.1B.﹣1C.﹣2D.﹣3【变式1-2】已知点A,B在数轴上表示的数分别是﹣2,3,解决下列问题:个单位长度后记为A1,A1表示的数是,将点B在(1)将点A在数轴上向左平移13数轴上向右平移1个单位长度后记为B1,B1表示的数是;(2)在(1)的条件下,将点B1向移动个单位长度后记为B2,则B2表示的数与A1表示的数互为相反数;(3)在(2)的条件下,将原点在数轴上移动5个单位长度,则点B2表示的数是多少?【变式1-3】【理解概念】对数轴上的点P按照如下方式进行操作:先把点P表示的数乘以2,再把表示得到的这个数的点沿数轴向右平移3个单位长度,得到点P′.这样的操作称为点P的“倍移”,数轴上的点A、B、C、D、E、F经过“倍移”后,得到的点分别为A′、B′、C′、D′、E′、F′.【巩固新知】(1)若点A表示的数为﹣1,则点A′表示的数为.(2)若点B′表示的数为9,则点B表示的数为.【应用拓展】(3)若点C表示的数为5,且CD′=3CD,求点D表示的数;(4)已知点E在点F的左侧,将点E′、F′再次进行“倍移”后,得到的点分别为E″、F″,若E″F″=2020,求EF的长.【例2】如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合(提示:圆的周长C =2πr,本题中π的取值为3.14)(1)把圆片沿数轴向右滚动1周,点Q到达数轴上点A的位置,点A表示的数是;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,﹣5,+4,+3,﹣2①第几次滚动后,Q点距离原点最近?第几次滚动后,Q点距离原点最远?②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?【变式2-1东方红中学位于东西方向的一条路上,一天我们学校的李老师出校门去家访,他先向西走100米到聪聪家,再向东走150米到青青家,再向西走200米到刚刚家,请问:(1)如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出聪聪家与青青家的大概位置(数轴上一格表示50米).(2)聪聪家与刚刚家相距多远?(3)聪聪家向西20米所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离?【变式2-2】直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O'点,点O'对应的数是()A.3B.3.1C.πD.3.2【变式2-3如图,数轴上点D对应的数为d,则数轴上与数﹣3d对应的点可能是()A.点A B.点B C.点D D.点E【例3】有理数a、b、c在数轴上所对应的点的位置如图所示,有下列四个结论:①(a+b);③|a|<1﹣bc;④|a﹣b|﹣|c﹣a|+|b﹣c|﹣|a|=a.其中正(b+c)(c+a)>0;②b<b2<1b确的结论有()个.A.4B.3C.2D.1【变式3-1】已知小红、小刚,小明、小颖四人自南向北依次站在同一直线上,如果把直线看作数轴,四人所在的位置如图所示,则下列描述错误的是()A.数轴是以小明所在的位置为原点B.数轴采用向北为正方向C.小刚所在的位置对应的数有可能是−53D.小刚在小颖的南边【变式3-2】如图,数轴上点A,M,B分别表示数a,a+b,b,那么原点的位置可能是()A.线段AM上,且靠近点A B.线段AB上,且靠近点BC.线段BM上,且靠近点B D.线段BM上,且靠近点M【变式3-3】如图,数轴上的点M,N表示的数分别是m,n,点M在表示0,1的两点(不包括这两点)之间移动,点N在表示﹣1,﹣2的两点(不包括这两点)之间移动,则下列判断正确的是()A.m2﹣2n的值一定小于0B.|3m+n|的值一定小于2C.1m−n的值可能比2000大D.1m +1n的值不可能比2000大【例4】已知数轴上两点A、B,其中A表示的数为﹣2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”,例如图1所示,若点C 表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为﹣3,则n=.(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为;(3)若点E在数轴上(不与A、B重合),满足B、E之间的距离是A、E之间距离的一半,且此时点E为点A、B的“n节点”,求出n的值.【变式4-1】在数轴上,点A代表的数是﹣12,点B代表的数是2,AB代表点A与点B之间的距离.(1)①AB=;②若点P为数轴上点A与B之间的一个点,且AP=6,则BP=;③若点P为数轴上一点,且BP=2,则AP=.(2)若C点为数轴上一点,且点C到点A点的距离与点C到点B的距离的和是35,求C点表示的数.(3)若P从点A出发,Q从原点出发,M从点B出发,且P、Q、M同时向数轴负方向运动,P点的运动速度是每秒6个单位长度,Q点的运动速度是每秒8个单位长度,M点的运动速度是每秒2个单位长度,当P、Q、M同时向数轴负方向运动过程中,当其中一个点与另外两个点的距离相等时,求这时三个点表示的数各是多少?【变式4-2】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B 的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数所表示的点是{M,N}的奇点;数所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?【变式4-3】已知数轴上两点A.B对应的数分别为﹣2和7,点M为数轴上一动点.(1)请画出数轴,并在数轴上标出点A、点B;(2)若点M到A的距离是点M到B的距离的两倍,我们就称点M是【A,B】的好点.①若点M运动到原点O时,此时点M【A,B】的好点(填是或者不是)②若点M以每秒1个单位的速度从原点O开始运动,当M是【B,A】的好点时,求点M的运动方向和运动时间(3)试探究线段BM和AM的差即BM﹣AM的值是否一定发生变化?若变化,请说明理由:若不变,请求其值.【例5】如图,三点A、B、P在数轴上,点A、B在数轴上表示的数分别是﹣4,12(AB两点间的距离用AB表示)(1)C在AB之间且AC=BC,C对应的数为;(2)C在数轴上,且AC+BC=20,求C对应的数;(3)P从A点出发以1个单位/秒的速度在数轴向右运动,Q从B点同时出发,以2个单位/秒在数轴上向左运动.求:①P、Q相遇时求P对应的数②P、Q运动的同时M以3个单位长度/秒的速度从O点向左运动.当遇到P时,点M立即以同样的速度(3个单位/秒)向右运动,并不停地往返于点P与点Q之间,求当点P 与点Q相遇时,点M所经过的总路程是多少?【变式5-1】如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?【变式5-2】甲、乙两个昆虫分别在数轴原点和+8的A处,分别以1单位长度/s,1.5单位长度/s速度同时相向而行.(1)第一次相遇在数轴上何处;(2)若同时沿数轴的负方向而行,乙昆虫在数轴上何处追上甲昆虫?(3)在(1)的条件下,两个昆虫分别到达点A和O处后迅速返回第二次相遇于数轴何处?【变式5-3】一次数学课上,小明同学给小刚同学出了一道数形结合的综合题,他是这样出的:如图,数轴上两个动点M,N开始时所表示的数分别为﹣10,5,M,N两点各自以一定的速度在数轴上运动,且M点的运动速度为2个单位长度/s.(1)M,N两点同时出发相向而行,在原点处相遇,求N点的运动速度.(2)M,N两点按上面的各自速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?(3)M,N两点按上面的各自速度同时出发,向数轴负方向运动,与此同时,C点从原点出发沿同方向运动,且在运动过程中,始终有CN:CM=1:2.若干秒后,C点在﹣12处,求此时N点在数轴上的位置.【例6】在数轴上有若干个点,每相邻两个点之间的距离是1个单位长度,有理数a,b,c,d表示的点是这些点中的4个,且在数轴上的位置如图所示.已知3a=4b﹣3,则代数式c﹣5d的值是()A.﹣20B.﹣16C.﹣12D.﹣8【变式6-1】(2022秋•余姚市期末)数轴上有6个点.每相邻两个点之间的距离是1个单位长,有理数a,b,c,d所对应的点是这些点中的4个,位置如图所示:(1)完成填空:c﹣a=,d﹣c=,d﹣a=;(2)比较a+d和b+c的大小;(3)如果4c=a+2b,求a+b﹣c+d的值.【变式6-2】如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别是a、b、c、d,且b﹣2a=9,请在图中标出原点O,并求出3c+d﹣2a的值.【变式6-3】如图所示,数轴(不完整)上标有若干个点,每相邻两点相距一个单位长度,点A,B,C,D对应的数分别是a,b,c,d,且有一个点表示的是原点.若d+2a+5=0,则表示原点的应是点.【例7】已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.【变式7-1】阅读下面的材料:如图1,在数轴上A点所示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b﹣a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A.B.C三点的位置:(2)点C到点A的距离CA=cm;若数轴上有一点D,且AD=4,则点D表示的数为;(3)若将点A向右移动xcm,则移动后的点表示的数为;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.【变式7-2】数轴上A,B,C三点对应的数a,b,c满足(a+40)2+|b+10|=0,B为线段AC 的中点.(1)直接写出A,B,C对应的数a,b,c的值.(2)如图1,点D表示的数为10,点P,Q分别从A,D同时出发匀速相向运动,点P的速度为6个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回到A又折返向C点运动;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q两点相遇点在数轴上对应的数.(3)如图2,M,N为A,C之间两点(点M在N左边,且它们不与A,C重合),E,F分别为AN,CM的中点,求AC−MN的值.EF【变式7-3】数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm,4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM﹣BM=OM,求AB的值.OM【例8】平移和翻折是初中数学两种重要的图形变化(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是A.(+3)+(+2)=+5 B.(+3)+(﹣2)=+1 C.(﹣3)﹣(+2)=﹣5 D.(﹣3)+(+2)=﹣1②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2017的点与表示的点重合;②若数轴上A、B两点之间的距离为2018(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示B点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)【变式8-1】一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣16、9,现以点C为折点,将数轴向右对折,若点A对应的点A′落在点B的右边,并且A′B=3,则C点表示的数是.【变式8-2】(2022秋•丰城市期中)操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),操作一:(1)折叠纸面,使1表示的点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣2表示的点与6表示的点重合,请你回答以下问题:①﹣5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少③已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值.【变式8-3】已知在纸面上有一数轴,折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数表示的点重合(2)若﹣2表示的点与4表示的点重合,回答以下问题:①数7对应的点与数对应的点重合;②若数轴上A、B两点之间的距离为2019(点A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?(3)点C在数轴上,将它向右移动4个单位,再向左2个单位后,若新位置与原位置到原点的距离相等,则C原来表示的数是多少?请列式计算,说明理由.【例9】已知数轴上有A,B,C三点,它们分别表示数a,b,c,且|a+6|+(b+3)2=0,又b,c互为相反数.(1)求a,b,c的值.(2)若有两只电子蚂蚁甲、乙分别从A,C两点同时出发相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒,当两只蚂蚁在数轴上点m处相遇时,求点m表示的数.(3)若电子蚂蚁从B点开始连续移动,第1次向右移动1个单位长度;第2次向右移动2个单位长度;第3次向左移动3个单位长度;第4次向左移动4个单位长度;第5次向右移动5个单位长度;第6次向右移动6个单位长度;第7次向左移动7个单位长度;第8次向左移动8个单位长度…依次操作第2019次移动后到达点P,求P点表示的数.【变式9-1】在数轴上,点P表示的数是a,点P′表示的数是1,我们称点P′是点P的1−a“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,,则点A2016在数这样依次得到点A1、A2、A3、A4,…,A n.若点A1在数轴表示的数是12轴上表示的数是.【变式9-2】(2022秋•翁牛特旗期中)已知A、B在数轴上对应的数分别用+2、﹣6表示,P是数轴上的一个动点.(1)数轴上A、B两点的距离为8.(2)当P点满足PB=2P A时,求P点表示的数.(3)将一枚棋子放在数轴上k0点,第一步从k点向右跳2个单位到k1,第二步从k1点向左跳4个单位到k2,第三步从k2点向右跳6个单位到k3,第四步从k3点向左跳8个单位到k4.①如此跳6步,棋子落在数轴的k6点,若k6表示的数是12,则k o的值是多少?②若如此跳了1002步,棋子落在数轴上的点k1002,如果k1002所表示的数是1998,那么k0所表示的数是__(请直接写答案).【变式9-3】如图,数轴上有三个点A、B、C,表示的数分别是﹣4、﹣2、3,请回答:(1)若将点B向左移动3个单位后,三个点所表示的数中,最小的数是;(2)若使点B所表示的数最大,则需将点C至少向移动个单位;(3)若使C、B两点的距离与A、B两点的距离相等,则需将点C向左移动个单位;(4)若移动A、B、C三点中的两个点,使三个点表示的数相同,移动方法有种,其中移动所走的距离和最少的是个单位;(5)若在原点处有一只小青蛙,一步跳1个单位长.小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步,…,按此规律继续跳下去,那么跳第101次时,应跳________-步,落脚点表示的数是;跳了第n次(n是正整数)时,落脚点表示的数是.。
七年级数学上册月考试题(时间120分钟,总分120分)一、选择题(每题3分,共30分)1.2008年9月27日16时41分至17时许,宇航员翟志刚在太空进行了19分35秒的舱外活动中,飞行了9 165 000 米,成为中国“飞得最高、走得最快”的人.将9 165 000 米保留两位有效数字用科学记数法记为() A.92×105 米 B.9.2×106 米. C.9.17×106 米. D.9.2×103 米.2.在一次智力竞赛中,主持人问了这样的一道题目:“a是最小的正整数,b是最大的负整数的相反数,c是绝对值最小的有理数,请问:a、b、c三数之和为多少?”你能回答主持人的问题吗?其和应为() A. -1 B. 0 C. 1 D. 24.当x=-1时,多项式ax5+bx3+cx-1的值是5,则当x=1时,它的值是().A.-7 B.-3 C.-17 D7.一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试卷,得了70分,他一共做对了().(A)17道(B)18道(C)19道(D)20道8.某商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件赢利25%,另一件亏本25%,在这次买卖中,该商贩().(A)不赔不赚(B)赚9元(C)赔18元(D)赚18元9. (2005,深圳)一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是(A)106元(B)105元(C)118元(D)108元10.(2005,常德)右边给出的是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()(A)69 (B)54(C)27 (D)40.76.在下面所给的2008年12月份的日历表中,任意圈出一竖列上相邻的三个数的和不可能是() A.69. B.54. C.27. D.40.7.一家三口人(父亲、母亲、女儿)准备参加旅游团外出旅游,甲旅行社告知“父母全票,女儿半价优惠”,乙旅行社告知家庭可按团体票计价,即每人均按全价8折收费。
初中七年级数学练习题初中七年级数学练习题导读:七年级也就是刚刚升入初中的阶段,关于数学的学习方法是不是应该要转变一下呢?下面是应届毕业生店铺为大家搜集整理出来的有关于初中七年级数学练习题,想了解更多相关资讯请继续关注考试网!一、填空题(每题2分,共20分)1、某食品加工厂的冷库能使冷藏的食品每小时降温5℃,如果刚进库的牛肉温度是10℃,进库8小时后温度可达__℃。
2、开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为__________。
3、计算:-5×(-2)3+(-39)=_____。
4、近似数1.460×105精确到____位,有效数字是______。
5、今年母亲30岁,儿子2岁,______年后,母亲年龄是儿子年龄的5倍。
6、按如下方式摆放餐桌和椅子:桌子张数1234……n可坐人数6810……7、计算72°35′÷2+18°33′×4=_______。
8、已知点B在线段AC上,AB=8cm,AC=18cm,P、Q分别是AB、AC中点,则PQ=_______。
9、如图,A、O、B是同一直线上的三点,OC、OD、OE是从O 点引出的三条射线,且∠1∶∠2∶∠3∶∠4=1∶2∶3∶4则∠5=_________。
(9题图)(10题图)10、如图,某轮船上午8时在A处,测得灯塔S在北偏东60°的方向上,向东行驶至中午12时,该轮船在B处,测得灯塔S在北偏西30°的方向上(自己完成图形),已知轮船行驶速度为每小时20千米,则∠ASB=______,AB长为_____。
二、选择题(每题3分,共24分)11、若a<0,b>0,则b、b+a、b-a中最大的一个数是()A、aB、b+aC、b-aD、不能确定12、(-2)100比(-2)99大()A、2B、-2C、299D、3×29913、已知,+=0,则2m-n=()()A、13B、11C、9D、1514、某种出租车收费标准是:起步价7元(即行驶距离不超过3千米需付7元车费),超过了3千米以后,每增加1千米加收2.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费19元,设此人从甲地到乙地经过的路程为x千米,则x的最大值是()A、11B、8C、7D、515、如图,是一个正方体纸盒的展开图,若在其中三个正方形A、B、C中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A、B、C、中的三个数依次是()A、1、-3、0B、0、-3、1C、-3、0、1D、-3、1、016、已知线段AB,在AB的延长线上取一点C,使AC=2BC,在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB 的()倍。
人教版初一数学七年级数学上册练习题【附答案】人教版七年级数学上册精品练题(附答案)——有理数一、填空题(每空2分,共38分)1、-1的倒数是-1;1/2的相反数是-1/2.2、比-3小9的数是-12;最小的正整数是1.3、在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是-1或6.4、两个有理数的和为5,其中一个加数是-7,那么另一个加数是12.5、某旅游景点11月5日的最低气温为-2℃,最高气温为8℃,那么该景点这天的温差是10℃。
6、计算:(-1)100+(-1)101=-2.7、平方得21的数是√2;立方得-64的数是-4.8、+2与-2是一对相反数,表示两个方向的移动。
9、绝对值大于1而小于4的整数有2、3,其和为5.10、若a、b互为相反数,c、d互为倒数,则3(a+b)-3cd=0.11、若(a-1)2+|b+2|=1,则a+b=-2.12、数轴上表示数-5和表示-14的两点之间的距离是9.13、在数-5、1、-3、5、-2中任取三个数相乘,其中最大的积是75,最小的积是-75.14、若m,n互为相反数,则|m-1+n|=1.二、选择题(每小题3分,共21分)15、有理数a、b在数轴上的对应的位置如图所示,则a+b<0.16、下列各式中正确的是|a2|=|-a2|。
17、如果a+b>0,且ab<0,那么a、b异号。
18、下列代数式中,值一定是正数的是(-x)+2.19、算式(-3/3)×4可以化为-3×4/3.20、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分。
求小明第四次测验的成绩。
答案:C、91分。
21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再以8折(80%)的价格大拍卖。
求该商品三月份的价格比进货价高还是低?答案:低12.8%。
三、计算(每小题5分,共15分)22、(–– +)|–|(22)、4912÷36;答案:22为正数,所以(–– +)|–|(22) = (–– +)|22| = 22;4912÷36 = 136.23、9÷3–5)–3×(–4)2÷3答案:9÷3 = 3,3–5 = –2,(–2)–3×(–4)2÷3 = –2–3×16÷3 = –2–16 = –18.24、–12–1+(–12)÷6×(–)34÷7答案:(–12)÷6 = –2,(–)34÷7 = –4,–12–1+(–2)×(–4)= –12–1+8 = –5.四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b的值。
⼈教版初⼀数学练习题⼈教版初⼀数学七年级数学上练习题四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b 的值。
(7分) 26、若x>0,y<0,求32---+-x y y x 的值。
(7分)27、已知a 、b 互为相反数,m 、n 互为倒数,x 绝对值为2,求x nm cb mn --++-2的值(7分) 28、现规定⼀种运算“*”,对于a 、b 两数有:ab a b a b 2*-=, 试计算2*)3(-的值。
(7分)整式⼀.判断题(1)31+x 是关于x 的⼀次两项式. ( )(2)-3不是单项式.( )(3)单项式xy 的系数是0.( ) (4)x 3+y 3是6次多项式.( ) (5)多项式是整式.( ) ⼆、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有()A .2个B .3个C .4个 D5个 2.多项式-23m 2-n 2是()A .⼆次⼆项式B .三次⼆项式C .四次⼆项式D 五次⼆项式 3.下列说法正确的是() A .3 x 2―2x+5的项是3x 2,2x ,5B .3x-3y 与2 x 2―2xy -5都是多项式C .多项式-2x 2+4xy 的次数是3D .⼀个多项式的次数是6,则这个多项式中只有⼀项的次数是6 4.下列说法正确的是() A .整式abc 没有系数 B .2x +3y +4z不是整式 C .-2不是整式 D .整式2x+1是⼀次⼆项式 5.下列代数式中,不是整式的是()A 、23x -B 、745b a -C 、xa 523+ D 、-20056.下列多项式中,是⼆次多项式的是()A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平⽅的差,⽤代数式表⽰正确的是() A 、2)(y x - B 、22y x -C 、y x -2D 、2y x -8.某同学爬⼀楼梯,从楼下爬到楼顶后⽴刻返回楼下。
七年级数学练习题 Prepared on 22 November 2020
七年级数学练习题(2)
一.选择题
1.|﹣2010|倒数的相反数是()
A.2010 B.﹣2010 C.D.
2.下列计算结果为负数的是()
A.﹣1+3 B.5﹣2 C.﹣1×(﹣2)D.﹣4÷2
3.点A 在数轴上距离原点3 个单位长度,且位于原点左侧.若一个点从点A 处向右移动
4 个单位长度,再向左移动1 个单位长度,此时中点所表示的数是()
A.0 B.6 C.﹣2 D.﹣8
4.下列结论中,正确的是
A.单项式的系数是3,次数是2 B.单项式m的次数是l,没有系数
C.单项式-xy2z的系数是-1,次数是4 D.多项式2x2+xy+3是三次三项式
5.已知a=(﹣1)2016,b=﹣(﹣),c=﹣32,则a,b,c的大小关系是( )
A.a>b>c B.a>c>b C.c>a>b D.b>a>c
6.下列各组单项式中,是同类项的是()
A.5x2y与﹣3xy2B.8xy2与﹣2x2z C.10abc与﹣8ab D.5ab与﹣5ba
7.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()
①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④
8.方程1﹣=的解为( )
A.x=﹣B.x=C.x=D.x=1
9.用四舍五入法对 2取近似值,精确到百分位,正确的是()
A. B. C. D.
10.已知一个多项式与2x2﹣3x﹣1的和等于x2﹣2x﹣3,则这个多项式是( )
A.﹣x2+2x+2 B.﹣x2+x+2 C.x2﹣x+2 D.﹣x2+x﹣2
11.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题共得70分,他做对了()道题.
A.17 B.18 C.19 D.20
12.若2
1
(2)0
2
x y
-++=,则2015
()
xy的值为()
B.1
- C.2015
- D.2015
13.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为()
A.44×105 B.×105 C.×106 D.×105
14.下列各题正确的是( )
A .由7x=4x ﹣3移项得7x ﹣4x=3
B .由
=1+
去分母得2(2x ﹣1)=1+3(x ﹣3)
C .由2(2x ﹣1)﹣3(x ﹣3)=1去括号得4x ﹣2﹣3x ﹣9=1
D .由2(x+1)=x+7去括号、移项、合并同类项得x=5
15.要使关于x ,y 多项式4x+7y+3﹣2ky+2k 不含y 的项,则k 的值是( ) A .0 B . C . D .﹣ 二.填空题
16.太阳的直径约为6
10392.1⨯千米,这个近似数精确到 位。
17.定义a*b=ab+a+b ,若3*x=27,则x 的值是:__________.
18.任意写一个含有字母a 、b 的五次三项式,其中最高次项的系数为2,常数项为﹣9: .
19.已知代数式x+2y 的值是3,则代数式2x+4y+1的值是 . 20.单项式﹣6πx 2y 3的系数是 ,次数是 .
21.一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则该彩电的标价为 元.
22.若代数式13+-x 与54-x 互为相反数,则x = 。
23.甲队有27人,乙队有19人,现在另调20人去支援,使甲队人数是乙队的2倍,应调往甲队 人,乙队 人.
三.解答题
23.计算①72÷(﹣2)3+(﹣)2×32﹣(﹣3)×4.
②﹣14
﹣(1﹣)÷3×[2﹣(﹣3)2
].
24.先化简,再求值:3x 2
y ﹣[2xy ﹣2(xy ﹣x 2
y )+xy ],其中x=3,y=﹣.
25.解方程:①=+x .②2x+=3﹣.
26.已知方程=4与关于x的方程4x﹣=﹣2(x﹣1)的解相同,求a的值.
27.某同学在对方程去分母时,方程右边的﹣2没有乘3,这时方程的解为x=2,试求a的值,并求出原方程正确的解.28.在手工制作课上,老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身50个或剪筒底120个.
(1)七年级(2)班有男生、女生各多少人
(2)要求一个筒身配两个筒底,为了使每小时剪出的筒身与筒底刚好配套,应该分配多少名学生剪筒身,多少名学生剪筒底
29.某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.
(1)问该中学库存多少套桌凳
(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱为什么。