数学必修3:第一章 统计 单元同步测试(含解析)
- 格式:doc
- 大小:181.00 KB
- 文档页数:11
一、选择题1.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差2.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.53.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号的同学的成绩依次为1A ,216,,A A ⋯,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是( )A .10B .6C .7D .164.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A .48B .60C .64D .725.通过实验,得到一组数据如下:2,5,8,9,x ,已知这组数据的平均数为6,则这组数据的方差为( ) A .3.2B .4C .6D .6.56.①45化为二进制数为(2)101101;②一个总体含有1000个个体(编号为0000,0001,…,0999),采用系统抽样从中抽取一个容量为50的样本,若第一个抽取的编号为0008,则第六个编号为0128; ③已知a ,b ,c 为ABC ∆三个内角A ,B ,C 的对边,其中3a =,4c =,6A π=,则这样的三角形有两个解.以上说法正确的个数是( ) A .0B .1C .2D .37.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为( ).7806 6572 0802 6314 2947 1821 98003204 9234 4935 3623 4869 6938 7481A .02B .14C .18D .298.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755 的人数为( ) A .10B .11C .12D .139.某校高一年级有学生1800人,高二年级有学生1500人,高三年级有1200人,为了调查学生的视力状况,采用分层抽样的方法抽取学生,若在抽取的样本中,高一年级的学生有60人,则该样本中高三年级的学生人数为( )A.60 B.50 C.40 D.3010.设有一个直线回归方程为2 1.5y x=-,则变量x增加一个单位时()A.y平均增加1.5个单位B.y平均增加2个单位C.y平均减少1.5个单位D.y平均减少2个单位11.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为A.12 B.14 C.16 D.1812.从存放号码分别为1,2,⋯,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是()A.0.53 B.0.5 C.0.47 D.0.37二、填空题13.福利彩票“双色球”中红色球由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表(下表是随机数表的第一行和第二行)选取6个红色球,选取方法是从随机数表中第1行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第3个红色球的编号为______.49 54 43 54 82 17 37 93 23 28 87 35 20 56 43 84 26 34 91 6457 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7614.某住宅小区有居民2万户,从中随机抽取200户,调查是否安装宽带,调查结果如下表所示:宽带租户业主已安装6042未安装3662则该小区已安装宽带的居民估计有______户.15.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..16.为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为____.17.一个车间为了规定工作原理,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下: 零件数x (个) 15 20 30 40 50 加工时间y (分钟)6570758090由表中数据,求得线性回归方程0.66y x a =+,则估计加工70个零件时间为__________分钟(精确到0.1).18.下表为生产A 产品过程中产量x (吨)与相应的生产耗能y (吨)的几组相对应数据:x34 5 6y 23.55 5.5根据上表提供的数据,得到y 关于x 的线性回归方程为0.7y x a =+,则a =__________. 19.某班60名学生参加普法知识竞赛,成绩都在区间[40100],上,其频率分布直方图如图所示,则成绩不低于60分的人数为___.20.总体由编号为01,02,⋅⋅⋅,29,30的30个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第2行的第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为__________.三、解答题21.我国为全面建设社会主义现代化国家,制定了从2021年到2025年的“十四五”规划.某企业为响应国家号召,汇聚科研力量,加强科技创新,准备增加研发资金.现该企业为了了解年研发资金投入额x (单位:亿元)对年盈利额y (单位:亿元)的影响,研究了“十二五”和“十三五”规划发展期间近10年年研发资金投入额i x 和年盈利额i y 的数据.通过对比分析,建立了两个函数模型:①2y x αβ=+,②x ty e λ+=,其中α,β,λ,t 均为常数,e 为自然对数的底数.令2i i u x >,()ln 1,2,,10ii v y i ==⋅⋅⋅,经计算得如下数据:xy()1021i i x x =-∑()1021i i y y =-∑ uv2621565 26805.36()1021ii uu =-∑()()101iii u u y y =--∑()1021ii v v =-∑()()101iii x x v v =--∑11250 130 2.6 12(2)(ⅰ)根据(1)的选择及表中数据,建立y 关于x 的回归方程;(系数精确到0.01) (ⅱ)若希望2021年盈利额y 为250亿元,请预测2021年的研发资金投入额x 为多少亿元?(结果精确到0.01)附:①相关系数12211()()()()niii nn iii i x x y y r x x y y ===--=--∑∑∑,回归直线ˆˆˆya bx =+中:121()()ˆ()niii nii x x yy bx x ==--=-∑∑,ˆˆay bx =- ②参考数据:ln 20.693≈,ln5 1.609≈.22.某地政府拟在该地一水库上建造一座水电站,用泄流水量发电.下图是根据该水库历年的日泄流量的水文资料画成的日泄流量X (单位:万立方米)的频率分布直方图(不完整),已知[)0,120X ∈,历年中日泄流量在区间[30,60) 的年平均天数为156,一年按364天计.(Ⅰ)请把频率分布直方图补充完整;(Ⅱ)该水电站希望安装的发电机尽可能运行,但每30万立方米的日泄流量才够运行一台发电机,如6090X ≤<时才够运行两台发电机,若运行一台发电机,每天可获利润为4000元,若不运行,则该台发电机每天亏损500元,以各段的频率作为相应段的概率,以水电站日利润的期望值为决策依据,问:为使水电站日利润的期望值最大,该水电站应安装多少台发电机?23.某养殖基地为满足市场需要,逐年加大对养殖基地的资金投入,技术分析员对4年来的年资金投入量x (单位:万元)与相应的年市场销售额y (单位:万元)作了初步的调研统计,得到数据如表:x (万元)2 3 4 5 y (万元) 26394954(1)求根据年资金投入量预报年市场销售额的的回归方程; (2)预报年资金投入量为7.5万元时年市场销售额;(3)若年市场销售额不低于100万,那么年资金投入量至少要多少?(保留两位小数)其中,()()()121nii i nii xx y yb xx==--=-∑∑,a bx y =-+.24.某学校因为今年寒假延期开学,根据教育部的停课不停学指示,该学校组织学生线上教学,高一年级在线上教学一个月后,为了了解线上教学的效果,在线上组织了学生数学学科考试,随机抽取50名学生的成绩并制成频率分布直方图如图.(1)求m 的值并估计这50名学生的平均成绩;(2)估计高一年级所有学生数学成绩在[90,100)分与[)70,100分的学生所占的百分比. 25.随着各国经贸关系的进一步加深,许多国外的热带水果进入国内市场,牛油果作为一种热带水果,越来越多的中国消费者对这种水果有了一种全新的认识,它富含多种维生素、丰富的脂肪和蛋白质,钠、钾、镁、钙等含量也高,除作生果食用外也可作菜肴和罐头.牛油果原产于墨西哥和中美洲,后在加利福尼亚州被普遍种植.因此加利福尼亚州成为世界上最大的牛油果生产地,在全世界热带和亚热带地区均有种植,但以美国南部、危地马拉、墨西哥及古巴栽培最多,并形成了墨西哥系、危地马拉系、西印度系三大种群,我国的广东、海南、福建、广西、台湾、云南及四川等地都有少量栽培.市场上的牛油果大部分都是进口的.为了调查市场上牛油果的等级代码数值x 与销售单价y 之间的关系,经统计得到如下数据: 等级代码数值x 38 48 58 68 78 88 销售单价y (元/kg )16.818.820.822.82425.8(1)已知销售单价y 与等级代码数值x 之间存在线性相关关系,利用前5组数据求出y 关于x 的线性回归方程;(2)若由(1)中线性回归方程得到的估计值与最后一组数据的实际值之间的误差不超过1,则认为所求回归方程是有效可靠的,请判断所求回归直线方程是否有效可靠? (3)若一果园估计可以收获等级代码数值为85的牛油果980kg ,求该果园估计收入为多少元.参考公式:对一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y bx a =+的斜率和截距的最小二乘估计分别为:1221ni ii nii x y nx yb xnx==-=-∑∑,b y bx =-.参考数据:516169.6i ii x y==∑,52117820i i x ==∑.26.某企业广告费支出与销售额(单位:百万元)数据如表所示:(1)求销售额y 关于广告费x 的线性回归方程;(2)预测当销售额为76百万元时,广告费支出为多少百万元. 回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】选项A 求出海水稻根系深度的中位数是444745.52+=,判断选项A 正确;选项B 写出普通水稻根系深度的众数是32,判断选项B 正确;选项C 先求出海水稻根系深度的平均数,再求出普通水稻根系深度的平均数,判断选项C 正确;选项D 先求出普通水稻根系深度的方差,再求出海水稻根系深度的方差,判断选项D 错误. 【详解】解:选项A :海水稻根系深度的中位数是444745.52+=,故选项A 正确; 选项B :普通水稻根系深度的众数是32,故选项B 正确;选项C :海水稻根系深度的平均数393938434447495050514510+++++++++=,普通水稻根系深度的平均数252732323436384041453510+++++++++=,故选项C 正确;选项D :普通水稻根系深度的方差2222222211[(3845)(3945)(3945)(4345)(4445)(4745)(4945)(5045)10S =-+-+-+-+-+-+-+-+, 海水稻根系深度的方差2222222221[(2535)(2735)(3235)(3235)(3435)(3635)(3835)(4035)(10S =-+-+-+-+-+-+-+-+,故选项D 错误 故选:D. 【点睛】本题考查根据茎叶图求中位数、众数、平均数、方差,是基础题. 2.A解析:A 【分析】计算得到 4.5x =,114t y +=,代入回归方程计算得到答案. 【详解】3456 4.54x +++==, 2.54 4.51144t t y ++++==,中心点(),x y 过ˆ0.70.35yx =+, 即114.50.70.354t +=⨯+,解得3t =. 故选:A . 【点睛】本题考查了回归方程的相关问题,意在考查学生的计算能力.3.A解析:A 【分析】先弄清楚程序框图中是统计成绩不低于90分的学生人数,然后从茎叶图中将不低于90分的个数数出来,即为输出的结果. 【详解】176A =,1i =,16i ≤成立,190A ≥不成立,112i =+=; 279A =,2i =,16i ≤成立,290A ≥不成立,112i =+=;792A =,7i =,16i ≤成立,790A ≥成立,011n =+=,718i =+=;依此类推,上述程序框图是统计成绩不低于90分的学生人数,从茎叶图中可知,不低于90分的学生数为10,故选A . 【点睛】本题考查茎叶图与程序框图的综合应用,理解程序框图的意义,是解本题的关键,考查理解能力,属于中等题.4.B解析:B【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.5.C解析:C 【解析】分析:利用平均数的公式,求得6x =,得到数据2,5,8,9,6,再利用方差的计算公式,即求解数据的方差.详解:由题意,一组数据2,5,8,9,x 的平均数为6,即258924655x xx +++++===,解得6x =,所以数据2,5,8,9,6的方差为2222221[(26)(56)(86)(96)(66)]65s =-+-+-+-+-=,故选C.点睛:本题主要考查了数据的数字特的计算,其中熟记数据的平均数的公式和数据的方差的计算公式是解答的关键,着重考查了推理与运算能力,属于基础题.6.C解析:C 【解析】分析:①根据进位制的互化可得结果;②根据系统抽样的性质可得结论;③由正弦定理可得结论.详解:①45222...1÷=,22211...0÷=,112 5...1÷=,52 2...1÷=,22 1...0÷=,120...1÷=,故()()10245101101=,①正确;②因为1000个个题抽取50个样本,∴每个样本编号间隔为20,第六个编号为8205108+⨯=,即编号为0108,故②错误;③由正弦定理可得342,1sin 32sinC C ==,,c a C >∴∠可能是锐角,也可能是钝角,三角形有两个解,③正确,故选C.点睛:本题主要考查进位制、正弦定理的应用,分层抽样的应用,意在考查综合运用所学知识解决问题的能力,属于中档题.7.D解析:D【解析】分析:根据随机数表法则取数:取两个数,不小于30的舍去,前面已取的舍去.详解:从表第1行5列,6列数字开始由左到右依次选取两个数字中小于30的编号为:08,02,14,29.∴第四个个体为29.选D.点睛:本题考查随机数表,考查对概念基本运用能力.8.C解析:C【分析】由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n=30n﹣19,由401≤30n﹣21≤755,求得正整数n的个数,即可得出结论.【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列,又某组抽到的号码为41,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,∴等差数列的通项公式为a n=11+(n﹣1)30=30n﹣19,由401≤30n﹣19≤755,n为正整数可得14≤n≤25,∴做问卷C的人数为25﹣14+1=12,故选C.【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.9.C解析:C【分析】设该样本中高三年级的学生人数为x,则1800601200x=,解之即可【详解】设该样本中高三年级的学生人数为x,则1800601200x=,解得40x=,故选C.【点睛】本题考查了分层抽样方法的应用问题,属基础题.10.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C. 【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.11.C解析:C 【解析】 【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在高三年级中抽取的人数. 【详解】根据题意得,用分层抽样在各层中的抽样比为421105020=, 则在高三年级抽取的人数是14001625⨯=人, 故选C. 【点睛】该题所考查的是有关分层抽样的问题,在解题的过程中,需要明确无论采用哪种抽样方法,都必须保证每个个体被抽到的概率是相等的,所以注意成比例的问题.12.A解析:A 【解析】分析:由题意结合统计表确定频数,然后确定频率即可.详解:由题意可知,取到卡片为奇数的频数为:1356181153++++=, 取卡片的次数为100次,则取到号码为奇数的频率是530.53100=. 本题选择A 选项.点睛:本题主要考查频率的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.05【分析】根据给定的随机数表的读取规则从第一行第67列开始两个数字一组从左向右读取重复的或超出编号范围的跳过即可【详解】根据随机数表排除超过33及重复的编号第一个编号为21第二个编号为32第三个编解析:05【分析】根据给定的随机数表的读取规则,从第一行第6、7列开始,两个数字一组,从左向右读取,重复的或超出编号范围的跳过,即可.【详解】根据随机数表,排除超过33及重复的编号,第一个编号为21,第二个编号为32,第三个编号05,故选出来的第3个红色球的编号为05.【点睛】本题主要考查了简单随机抽样中的随机数表法,属于容易题.14.【分析】计算出抽样中已安装宽带的用户比例乘以总人数求得小区已安装宽带的居民数【详解】抽样中已安装宽带的用户比例为故小区已安装宽带的居民有户【点睛】本小题主要考查用样本估计总体考查频率的计算属于基础题解析:10200【分析】计算出抽样中已安装宽带的用户比例,乘以总人数,求得小区已安装宽带的居民数.【详解】抽样中已安装宽带的用户比例为604251200100+=,故小区已安装宽带的居民有512000010200100⨯=户.【点睛】本小题主要考查用样本估计总体,考查频率的计算,属于基础题.15.5000【分析】由题意其他年级抽取200人其他年级共有学生2000人根据题意列出等式即可求出该校学生总人数【详解】由题意其他年级抽取200人其他年级共有学生2000人则该校学生总人数为人故答案是:5解析:5000【分析】由题意,其他年级抽取200人,其他年级共有学生2000人,根据题意列出等式,即可求出该校学生总人数.【详解】由题意,其他年级抽取200人,其他年级共有学生2000人,则该校学生总人数为20005005000200⨯=人,故答案是:5000.【点睛】该题考查的是有关分层抽样的问题,涉及到的知识点有分层抽样要求每个个体被抽到的概率是相等的,属于简单题目.16.【分析】利用频率分布直方图中频率和为1求a 值根据7080)的频率求出在此区间的人数即可【详解】由1﹣005﹣035﹣02﹣01=03故a =003故阅读的时间在7080)(单位:分钟)内的学生人数为: 解析:900【分析】利用频率分布直方图中频率和为1求a 值,根据[70,80)的频率求出在此区间的人数即可. 【详解】由1﹣0.05﹣0.35﹣0.2﹣0.1=0.3, 故a =0.03,故阅读的时间在[70,80)(单位:分钟)内的学生人数为:0.3×3000=900, 故答案为900. 【点睛】本题考查频率分布直方图中的有关性质的应用,考查直方图中频率和频数的求法.17.7【解析】【分析】结合题意先求出线性回归方程然后再计算出结果【详解】由题意可得则线性回归方程为当时【点睛】本题考查了求线性回归方程然后求出估计结果需要掌握解题方法较为基础解析:7 【解析】 【分析】结合题意先求出线性回归方程,然后再计算出结果 【详解】 由题意可得1520304050315x ++++==6570758090765y ++++==,760.6631a ∴=⨯+, 55.54a =,则线性回归方程为0.66 5.4ˆ55y x =+ 当70x =时,ˆ101.7y≈ 【点睛】本题考查了求线性回归方程,然后求出估计结果,需要掌握解题方法,较为基础18.【解析】分析:首先求得样本中心点然后利用回归方程的性质求得实数a 的值即可详解:由题意可得:线性回归方程过样本中心点则:解得:点睛:本题主要考查线性回归方程的性质及其应用等知识意在考查学生的转化能力和解析:0.85【解析】分析:首先求得样本中心点,然后利用回归方程的性质求得实数a 的值即可. 详解:由题意可得:34569==42x +++,2 3.55 5.544y +++==, 线性回归方程过样本中心点9,42⎛⎫⎪⎝⎭,则:940.72a =⨯+,解得:0.85a =.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.19.30【解析】由题意可得:则成绩不低于分的人数为人解析:30 【解析】 由题意可得:()400.0150.0300.0250.0051030⨯+++⨯=则成绩不低于60分的人数为30人20.【解析】依次选取两个数字为237593211504……所以选出来的第个个体的编号为15 解析:15【解析】依次选取两个数字为23,75,93,21,15,04,…… 所以选出来的第3个个体的编号为15.三、解答题21.(1)模型x t y e λ+=的拟合程度更好;(2)(ⅰ)0.180.56ˆx ye +=;(ⅱ)27.56. 【分析】(1)通过换元,模型①写成y u βα=+,模型②两边取对数,写成x t νλ=+,根据参考数列,求两个方程的相关系数,再比较大小;(2)(ⅰ)由(1)可知选择x ty e λ+=,化为x t νλ=+,后根据公式求ˆλ和ˆt ,再换回,x y 求回归方程;(ⅱ)根据回归方程,令250y =,求x 的值. 【详解】(1)设{}i u 和{}i y 的相关系数为1r ,{}i x 和{}i v 的相关系数为2r ,由题意,()()101130.8715iiu u y y r --===≈∑,()()102120.9213iix x v v r --===≈∑,则12r r <,因此从相关系数的角度,模型x t y e λ+=的拟合程度更好. (2)(ⅰ)先建立v 关于x 的线性回归方程, 由x ty eλ+=,得ln y t x λ=+,即v t x λ=+,()()()101102112ˆ65iii i i x x v v x x λ==--==-∑∑, 12ˆˆ 5.36260.5665tv x λ=-=-⨯=, 所以v 关于x 的线性回归方程为ˆ0.180.56v x =+, 所以ˆln 0.180.56yx =+,则0.180.56ˆx y e +=.(ⅱ)2021年盈利额250y =(亿元), 所以0.180.56250x e +=,则0.180.56ln 250x +=, 因为ln 2503ln5ln 23 1.6090.693 5.52=+≈⨯+=, 所以 5.520.5627.560.18x -≈≈.所以2021年的研发资金投入量约为27.56亿元. 【点睛】思路点睛:本题考查非线性回归方程,一般可根据换元,两边取对数的方法,变形为线性回归直线方程,再根据参考公式求系数.22.(Ⅰ)见解析;(Ⅱ)要使水电站日利润的期望值最大,该水电站应安装3台发电机. 【详解】试题分析:(Ⅰ)可利用频率分布直方图的性质,补全图像;(Ⅱ)分别计算安装1台,2台,3台的日利润的期望值,然后进行比较. (Ⅰ)在区间[30,60)的频率为15633647= 31==73070⨯频率组距, 设在区间[0,30)上,a 频率组距=, 则11130170105210a ⎛⎫+++⨯= ⎪⎝⎭,解得1210a=,补充频率分布直方图如图;(Ⅱ)记水电站日利润为Y元.由(Ⅰ)知:不能运行发电机的概率为17,恰好运行一台发电机的概率为37,恰好运行二台发电机的概率为27,恰好运行三台发电机的概率为17,①若安装1台发电机,则Y的值为-500,4000,其分布列为Y-5004000P 1767E(Y)=5004000777-⨯+⨯=;②若安装2台发电机,则Y的值为-1000,3500,8000,其分布列为Y-100035008000P 173737E(Y)=1000350080007777-⨯+⨯+⨯=;③若安装3台发电机,则Y的值为-1500,3000,7500,12000,其分布列为Y-15003000750012000P 17372717E(Y)=1500300075001200077777 -⨯+⨯+⨯+⨯=;∵345003350023500777>>∴要使水电站日利润的期望值最大,该水电站应安装3台发电机.23.(1)9.49.1y x=+;(2)79.6万元;(3)9.67万元.【分析】(1)根据表中数据分别求得ˆ,,x y b,写出回归直线方程. (2)将x =7.5代入(1)的回归直线方程求解. (3)解不等式9.49.1100x +≥即可. 【详解】(1)由表中数据得,23453.54x +++==,26394954424y +++==, ∴()()()41421ˆ9.4iii ii x x y y bx x ==--==-∑∑,429.4 3.59.1a y b x =-⋅=-⨯=,∴回归方程为9.49.1y x =+.(2)年资金投入量为7.5万元时,9.47.59.179.6y =⨯+=(万元); (3)由题意得:9.49.1100x +≥, 解得90.99.4x ≥. ∵90.99.679.4≈, ∴若年市场销售额超过100万,那么年资金投入量至少要9.67万元. 【点睛】本题主要考查回归方程的求法及应用,还考查了运算求解的能力,属于中档题. 24.(1)0.016m =;76.2;(2)16%;70%. 【分析】(1)由频率分布直方图的性质,求得m ,再利用频率分布直方图的平均数计算公式求得50名学生的平均成绩.(2)由频率分布直方图计算[90,100)这一组的频率即可;[70,100)计算三组的频率和即可. 【详解】(1)由频率分布直方图性质可得,(0.0040.0060.0200.0240.030)101m +++++⨯=,得0.016m =,设平均成绩为x ,0.04450.06550.2650.3750.24850.169576.2x =⨯+⨯+⨯+⨯+⨯+⨯=∴.(2)由频率分布直方图可估计在[90,100)分的学生所占总体百分比为0.016100.16⨯=即为16%,[70,100)分的学生所占的百分比(0.0300.0240.016)100.7++⨯=,即为70%.【点睛】本题主要考查频率分布直方图的性质.25.(1)0.1849.968y x =+;(2)所求回归直线方程是有效可靠的;(3)该果园预计收入25095.84元. 【分析】(1)求出x 的平均值x ,y 的平均值y ,再根据公式求出b 和a ,即可得出回归方程; (2)将88x =代入(1)中的回归方程,求出y ,然后用25.8y 和1比较即可判断;(3)将85x =代入回归方程估计出单价,即可计算出收入. 【详解】(1)由题意,得3848586878585x ++++==,16.818.820.822.82420.645y ++++==,则515222156169.655820.641840.1841782055810005i ii ii x y x yb xx ==-⋅-⨯⨯====-⨯-∑∑,20.640.184589.968a y bx =-=-⨯=,故所求回归方程为0.1849.968y x =+;(2)当88x =时,0.184889.96826.16y =⨯+=,所以26.1625.80.361-=<,所以所求回归直线方程是有效可靠的; (3)当85x =,0.184859.96825.608y =⨯+=, 所以25.60898025095.84⨯=(元), 所以该果园预计收入25095.84元. 【点睛】本题考查回归方程的求法以及利用回归方程估计值,属于基础题. 26.(1)17.5 6.5y x =+;(2)9百万元. 【分析】(1)由已知求得ˆb与ˆa 的值,可得销售额y 关于广告费x 的线性回归方程; (2)在(1)中求得的线性回归方程中,取76y =求得x 值即可. 【详解】 (1)6482555x ++++==,5040703060505y ++++==.61621()()10(1)(10)320(3)(20)010130ˆ 6.51199020()iii ii x x yy bx x ==--⨯+-⨯-+⨯+-⨯-+⨯====++++-∑∑,50 6.5517.5ˆˆay bx =-=-⨯=. ∴销售额y 关于广告费x 的线性回归方程为ˆ17.5 6.5yx =+;(2)当ˆ76y=时,代入回归方程ˆ17.5 6.5y x =+,求得9x =. 故预测当销售额为76百万元时,广告费支出为9百万元. 【点睛】本题考查线性回归方程的求法,考查回归方程的应用,考查了计算能力,是中档题.。
一、选择题1.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A.中位数为83 B.众数为85 C.平均数为85 D.方差为192.如图1为某省2019年1~4月快递业务量统计图,图2是该省2019年1~4月快递业务收入统计图,下列对统计图理解错误的是( )A.2019年1~4月的业务量,3月最高,2月最低,差值接近2000万件B.2019年1~4月的业务量同比增长率超过50%,在3月最高C.从两图来看2019年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D.从1~4月来看,该省在2019年快递业务收入同比增长率逐月增长3.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为 ( ) A.45,75,15 B.45,45,45 C.45,60,30 D.30,90,154.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()A .成绩B .视力C .智商D .阅读量5.已知x ,y 取值如下表:x0 1 4 5 6 8 y 1.31.85.66.17.49.3从所得的散点图分析可知:y 与x 线性相关,且 1.03y x a =+,则a =( ) A .1.53B .1.33C .1.23D .1.136.如果在一次试验中,测得(x ,y )的四组数值分别是A (1,3),B (2,3.8),C (3,5.2),D (4,6),则y 与x 之间的回归直线方程是 ( ) A .y =x +1.9 B .y =1.04x +1.9C .y =1.9x +1.04D .y =1.05x -0.97.某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如下图所示,则这30只宠物狗体重(单位:千克)的平均值大约为( )8.已知x ,y 的取值如表: x2 6 7 8y若x ,y 之间是线性相关,且线性回归直线方程为,则实数a 的值是A .B .C .D .9.某校高一年级有学生1800人,高二年级有学生1500人,高三年级有1200人,为了调查学生的视力状况,采用分层抽样的方法抽取学生,若在抽取的样本中,高一年级的学生有60人,则该样本中高三年级的学生人数为( ) A .60B .50C .40D .3010.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表: 时间周一 周二 周三 周四 周五 车流量x (万辆) 100 102 108 114 116 浓度y (微克)7880848890根据上表数据,用最小二乘法求出y 与x 的线性回归方程是( )参考公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y b x =-⋅;参考数据:108x =,84y =;A .0.6274ˆ.2yx =+ B .0.7264ˆ.2y x =+ C .0.7164ˆ.1y x =+ D .0.6264ˆ.2y x =+ 11.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位12.在学校组织的考试中,45名学生的数学成绩的茎叶图如图所示,若将学生按成绩由低到高编为1-45号,再用系统抽样方法从中抽取9人,则其中成绩在区间[120,135]上的学生人数是( )二、填空题13.通过市场调查,得到某种产品的资金投入x (单位:万元)与获得的利润y (单位:万元)的数据,如表所示:根据表格提供的数据,用最小二乘法求线性回归直线方程为0.36ˆˆybx =-,现投入资金15万元,求获得利润的估计值(单位:万元)为_____________. 14.已知数据1x ,2x ,…,10x 的方差为1,且()()()222123222x x x -+-+-()2102170x ++-=,则数据1x ,2x ,…,10x 的平均数是________.15.下表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是0.7y x a =-+,则a 等于___16.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份A 的含量x (单位:g )与药物功效y (单位:药物单位)之间具有关系:(20)y x x =-.检测这种药品一个批次的5个样本,得到成份A 的平均值为8g ,标准差为2g ,估计这批中成药的药物功效的平均值为__________药物单位.17.为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为____.18.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生. 19.已知下列命题:①在线性回归模型中,相关指数2R 越接近于1,表示回归效果越好; ②两个变量相关性越强,则相关系数r 就越接近于1;③在回归直线方程0.52y x ∧=-+中,当解释变量x 每增加一个单位时,预报变量y ∧平均减少0.5个单位;④两个模型中残差平方和越小的模型拟合的效果越好.⑤回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;⑥若2K 的观测值满足2K ≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________.20.能够说明“若甲班人数为m ,平均分为a ;乙班人数为n n m ≠(),平均分为b ,则甲乙两班的数学平均分为2a b+”是假命题的一组正整数a ,b 的值依次为_____. 三、解答题21.我国北方广大农村地区、一些城镇以及部分大中城市的周边区域,还在大量采用分散燃煤和散烧煤取暖,既影响了居民基本生活的改善,也加重了北方地区冬季的雾霾天气.推进北方地区冬季清洁取暖,是重大民生工程、民心工程,关系北方地区广大群众温暖过冬,关系雾霾天能不能减少,是能源生产和消费革命、农村生活方式革命的重要内容.2017年9月国家发改委制定了煤改气、煤改电价格扶植新政策,从而使得煤改气、煤改电用户大幅度增加,下面条形图反映了某省2018年1~7月份煤改气、煤改电的用户数量.(1)在给定坐标系中作出煤改气、煤改电用户数量y 随月份t 变化的散点图,并用散点图和相关系数说明y 与t 之间具有线性相关性;(2)建立y 关于t 的回归方程(系数精确到0.01),预测11月份该省煤改气、煤改电的用户数量. 参考数据:7772111y9.24,t 7 2.646iiii i i i y=====⋅≈≈∑∑∑(y -y ).参考公式:相关系数()()()()()()11112211niinn ni i i i i i nni i i i i i i t t y y r t ty y t y t y t ty y ======⋅--=⋅--=-⋅-⋅-∑∑∑∑∑∑.回归方程ˆy a bt=+中斜率和截距的最小二乘估计公式分别为:()()()121ˆˆˆ,nii i ni i tty y bay bt t t==⋅--==-⋅-∑∑. 22.峰谷电是目前在城市居民当中开展的一种电价类别.它是将一天24小时划分成两个时间段,把8:00—22:00共14小时称为峰段,执行峰电价,即电价上调;22:00—次日8:00共10个小时称为谷段,执行谷电价,即电价下调.为了进一步了解民众对峰谷电价的使用情况,从某市一小区随机抽取了50 户住户进行夏季用电情况调查,各户月平均用电量以[100,300),[300500),,[500700),,[700900),,[9001100),,[]11001300,(单位:度)分组的频率分布直方图如下图:若将小区月平均用电量不低于700度的住户称为“大用户”,月平均用电量低于700度的住户称为“一般用户”.其中,使用峰谷电价的户数如下表: 月平均用电量(度) [)100,300 [)300,500 [)500,700 [)700,900 [)900,1100 []11001300, 使用峰谷电价的户数3913721值作代表);(2)(i )将“一般用户”和“大用户”的户数填入下面22⨯的列联表:一般用户 大用户使用峰谷电价的用户 不使用峰谷电价的用户“使用峰谷电价”有关?()2P K k ≥0.025 0.010 0.001 k 5.0246.63510.828附:()22()()()()n ad bc K a b c d a c b d -=++++,23.为了了解高中新生的体能情况,某学校抽取部分高一学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从 左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12﹒(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.24.为培养学生在高中阶段的数学能力,某校将举行数学建模竞赛.已知该竞赛共有60名学生参加,他们成绩的频率分布直方图如图所示.(1)估计这60名参赛学生成绩的中位数;(2)为了对数据进行分析,将60分以下的成绩定为不合格.60分以上(含60分)的成绩定为合格,某评估专家决定利用分层抽样的方法从这60名学生中选取10人,然后从这10人中抽取4人参加座谈会,记ξ为抽取的4人中,成绩不合格的人数,求ξ的分布列与数学期望;(3)已知这60名学生的数学建模竞赛成绩Z 服从正态分布()2,Nμσ,其中μ可用样本平均数近似代替,2σ可用样本方差近似代替(同一组数据用该区间的中点值作代表),若成绩在46分以上的学生均能得到奖励,本次数学建模竞赛满分为100分,估计此次竞赛受到奖励的人数(结果根据四舍五人保留整数).参考数据:()0.6827P Z μσμσ-<≤+≈,()220.9545P Z μσμσ-<≤+≈,()330.9973P Z μσμσ-<≤+≈.25.脐橙营养丰富,含有人体所必需的各类营养成份,若规定单个脐橙重量(单位:千克)在[0.1,0.3)的脐橙是“普通果”,重量在[0.3,0.5)的磨橙是“精品果”,重量在[0.5,0.7]的脐橙是“特级果”,有一果农今年种植脐橙,大获丰收为了了解脐橙的品质,随机摘取100个脐橙进行检测,其重量分别在[0.1,0.2),[0.2,0.3),[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7]中,经统计得到如图所示频率分布直方图(1)将频率视为概率,用样本估计总体.现有一名消费者从脐橙果园中,随机摘取5个脐橙,求恰有3个是“精品果”的概率.(2)现从摘取的100个脐橙中,采用分层抽样的方式从重量为[0.4,0.5),[0.5,0.6)的脐橙中随机抽取10个,再从这10个抽取3个,记随机变量X 表示重量在[0.5,0.6)内的脐橙个数,求X 的分布列及数学期望.26.为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数: 温度(单位:C ︒)21 23 24 27 29 32死亡数y (单位:株)6 11 20 27 57 77经计算:611266i i x x ===∑,611336i i y y ===∑,()()61557i i i x x y y =--=∑,()62184i i x x =-=∑,()6213930i i y y =-=∑,()621ˆ236.64i i y y=-=∑,8.0653167e ≈,其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6i =.(1)若用线性回归模型,求y 关于x 的回归方程ˆˆˆybx a =+(结果精确到0.1); (2)若用非线性回归模型求得y 关于x 的回归方程0.2303ˆ0.06x ye =,且相关指数为20.9522R =.(i )试与(1)中的回归模型相比,用2R 说明哪种模型的拟合效果更好; (ii )用拟合效果好的模型预测温度为35C ︒时该紫甘薯死亡株数(结果取整数). 附:对于一组数据()11,u v ,()22,u v ,,(),n n u v ,其回归直线ˆˆˆvu αβ=+的斜率和截距的最小二乘估计分别为:()()()121ˆnii i ni i uu v v u u β==--=-∑∑,ˆˆav u β=-;相关指数为:()()22121ˆ1ni i i niii v vR v v ==-=--∑∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:A 选项,中位数是84;B 选项,众数是出现最多的数,故是83;C 选项,平均数是85,正确;D 选项,方差是,错误.考点:•茎叶图的识别 相关量的定义2.D解析:D 【分析】由题意结合所给的统计图确定选项中的说法是否正确即可. 【详解】对于选项A : 2018年1~4月的业务量,3月最高,2月最低, 差值为439724111986-=,接近2000万件,所以A 是正确的;对于选项B : 2018年1~4月的业务量同比增长率分别为55%,53%,62%,58%,均超过50%,在3月最高,所以B 是正确的;对于选项C :2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C 是正确的;对于选项D ,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D 错误. 本题选择D 选项. 【点睛】本题主要考查统计图及其应用,新知识的应用等知识,意在考查学生的转化能力和计算求解能力.3.C解析:C 【解析】因为共有学生2700,抽取135,所以抽样比为1352700,故各年级分别应抽取135900452700⨯=,1351200602700⨯=,135600302700⨯=,故选C. 4.D解析:D 【解析】试题分析:由表中数据可得 表1:()25262210140.00916362032K ⨯⨯-⨯=≈⨯⨯⨯;表2: ()2524201216 1.76916362032K ⨯⨯-⨯=≈⨯⨯⨯;表3: ()252824128 1.316362032K ⨯⨯-⨯=≈⨯⨯⨯;表4: ()25214302623.4816362032K ⨯⨯-⨯=≈⨯⨯⨯.其中23.48最大,所以阅读量与性别有关联的可能性最大.故D 正确.考点:独立性检验.5.D解析:D 【解析】分析:首先根据题中所给的表中的数据,计算得出样本中心点的坐标,利用回归直线必过样本中心点,代入求得结果. 详解:依题意得,1(014568)46x =⨯+++++=,1(1.3 1.8 5.6 6.17.49.3) 5.256y =+++++=,因为回归直线必过样本中心点(,)x y ,即点(4,5.25),所以有5.25 1.034ˆa=⨯+,解得ˆ 1.13a =,故选D. 点睛:该题考查的是有关回归直线的有关问题,涉及到的知识点有回归直线一定过样本中心点,计算得出相应坐标的平均值,求得样本中心点的坐标,代入求得结果.6.B解析:B 【解析】分析:根据所给的这组数据,取出这组数据的样本中心点,把样本中心点代入所给的四个选项中验证,若能够成立的只有一个,这一个就是回归直线方程. 详解:123+4=2.54x ++=, 3 3.8 5.264.5,4y +++==∴这组数据的样本中心点是(2.5,4.5)把样本中心点代入四个选项中,只有y =1.04x +1.9成立, 故选B.点睛:这是一道关于考查回归直线方程的题目,关键掌握回归直线必过样本中心点的特点,首先分析题目,由四组数据可得,x y ,进而得到样本中心点的坐标,接下来根据回归直线必过样本中心点,即可解答此题.7.B解析:B 【分析】由频率分布直方图分别计算出各组得频率、频数,然后再计算出体重的平均值 【详解】由频率分布直方图可以计算出各组频率分别为:0.10.20.250.250.15,,,,,0.05 频数为:367.57.54.51.5,,,,, 则平均值为:113136157.5177.519 4.521 1.515.630⨯+⨯+⨯+⨯+⨯+⨯=故选B【点睛】本题主要考查了由频率分布直方图计算平均数,需要注意计算不要出错8.B解析:B【解析】【分析】根据所给的两组数据,做出横标和纵标的平均数,写出这组数据的样本中心点,根据线性回归方程一定过样本中心点,得到线性回归直线一定过的点的坐标.【详解】根据题意可得,,由线性回归方程一定过样本中心点,.故选:B.【点睛】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.9.C解析:C【分析】设该样本中高三年级的学生人数为x,则1800601200x=,解之即可【详解】设该样本中高三年级的学生人数为x,则1800601200x=,解得40x=,故选C.【点睛】本题考查了分层抽样方法的应用问题,属基础题.10.B解析:B【解析】【分析】利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果.【详解】由题意,b=22222210078102801088411488116905108841001021081141165108⨯+⨯+⨯+⨯+⨯-⨯⨯++++-⨯=0.72,a=84﹣0.72×108=6.24,∴y =0.72x+6.24, 故选:B . 【点睛】本题主要考查线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算211,,,nni i i i i x y x x y ==∑∑的值;③计算回归系数ˆˆ,ab ;④写出回归直线方程为ˆˆˆy bx a =+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.11.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C. 【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.12.B解析:B 【解析】分析:首先写出所有学生的乘积,然后结合系统抽样的方法整理计算即可求得最终结果. 详解:由题意可知,学生的成绩如下:111,111,112,113,113; 116,117,117,118,118; 120,120,121,122,122; 123,124,124,126127; 128,128,129,129,129; 131,131,131,132,132; 132,133,134,134,135; 137,138,138,138,139; 140,142,142,143,144.用系统抽样方法从中抽取9人,则每5人中抽取一人,即上述分组中每组抽取一人, 则所抽取的学生的成绩在区间[]120,135上的学生人数为5. 本题选择B 选项.点睛:本题主要考查系统抽样的概念及其应用,茎叶图的识别等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.【分析】根据线性回归方程过样本数据中心点可求出b 代入即可求解【详解】由表中数据可得所以过点代入可得所以当时即获得利润大约为万元故答案为:【点睛】本题主要考查了线性回归方程样本数据中心点线性回归方程的 解析:4.74【分析】根据线性回归方程过样本数据中心点,可求出b ,代入15x =即可求解. 【详解】由表中数据可得4,1x y ==,所以0.36ˆˆybx =-过点(4,1), 代入可得0.34b =,所以ˆˆ0.340.36yx =-, 当15x =时,0.34150.34ˆ6 4.7y=⨯-=, 即获得利润大约为4.74万元. 故答案为:4.74 【点睛】本题主要考查了线性回归方程,样本数据中心点,线性回归方程的应用,属于中档题.14.或6【分析】由数据…的方差为1且把所给的式子进行整理两式相减得到关于数据的平均数的一元二次方程解方程即可【详解】数据…的方差为1①②将②-①得解得或故答案为:或6【点睛】本题主要考查一组数据的平均数解析:2-或6. 【分析】由数据1x ,2x ,…,10x 的方差为1,且()()()()2222123102222170x x x x -+-+-++-=,把所给的式子进行整理,两式相减,得到关于数据的平均数的一元二次方程,解方程即可. 【详解】数据1x ,2x ,…,10x 的方差为1,()()()()22221231010x x x x x x x x∴-+-+-++-=,()()22221210121010210x x x x x x x x ∴++++-+++=,()222212101010x x x x ∴+++-=,①()()()()2222123102222170x x x x -+-+-++-=,()()22212101210440170x x x x x x ∴+++-++++=,()22212104040170x x x x ∴+++-+=,②将②-①得24120x x --=,解得2x =-,或6x =, 故答案为:2-或6. 【点睛】本题主要考查一组数据的平均数的求法,解题时要熟练掌握方差的计算公式的灵活运用,属于中档题.15.【分析】首先求出xy 的平均数根据样本中心点满足线性回归方程把样本中心点代入得到关于a 的一元一次方程解方程即可【详解】:(1+2+3+4)=25(45+4+3+25)=35将(2535)代入线性回归直 解析:214【分析】首先求出x ,y 的平均数,根据样本中心点满足线性回归方程,把样本中心点代入,得到关于a 的一元一次方程,解方程即可. 【详解】:14x =(1+2+3+4)=2.5,14y =(4.5+4+3+2.5)=3.5, 将(2.5,3.5)代入线性回归直线方程是ˆy=-0.7x +a ,可得3.5=﹣1.75+a , 故a =214. 故答案为214【点睛】本题考查回归分析,考查样本中心点满足回归直线的方程,考查求一组数据的平均数,是基础题16.92【解析】【分析】由题可得进而可得再计算出从而得出答案【详解】5个样本成份的平均值为标准差为所以即解得因为所以所以这批中成药的药物功效的平均值药物单位【点睛】本题考查求几个数的平均数解题的关键是求解析:92 【解析】 【分析】由题可得1234540x x x x x ++++=,()()()22212520x x x x x x -+-++-=进而可得222125340x x x +++=,再计算出125y y y +++,从而得出答案.【详解】5个样本12345,,,,x x x x x 成份A 的平均值为8g ,标准差为2g ,所以1234540x x x x x ++++=,()()()22212520x x x x x x -+-++-=,即()22221251252520x x x x x x x x +++-++++=,解得222125340x x x +++=因为2(20)20y x x x x =-=-, 所以()()22212512512520460y y y x x x x x x +++=+++-+++=所以这批中成药的药物功效的平均值460925y ==药物单位 【点睛】本题考查求几个数的平均数,解题的关键是求出222125x x x +++,属于一般题.17.【分析】利用频率分布直方图中频率和为1求a 值根据7080)的频率求出在此区间的人数即可【详解】由1﹣005﹣035﹣02﹣01=03故a =003故阅读的时间在7080)(单位:分钟)内的学生人数为: 解析:900【分析】利用频率分布直方图中频率和为1求a 值,根据[70,80)的频率求出在此区间的人数即可. 【详解】由1﹣0.05﹣0.35﹣0.2﹣0.1=0.3, 故a =0.03,故阅读的时间在[70,80)(单位:分钟)内的学生人数为:0.3×3000=900, 故答案为900. 【点睛】本题考查频率分布直方图中的有关性质的应用,考查直方图中频率和频数的求法.18.60【分析】采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查的【详解】∵该校一年级二年级三年级四年级的本科生人数之比为4:5:5:6∴应从一年级本科生中抽取学生人数为:故解析:60 【分析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的. 【详解】∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6, ∴应从一年级本科生中抽取学生人数为:4300604556⨯=+++.故答案为60.19.①③④⑦【分析】根据线性回归分析的概念进行分析即可【详解】在线性回归模型中相关指数越接近于1表示回归效果越好①正确;两个变量相关性越强则相关系数r 的绝对值就越接近于1②错误;③正确;两个模型中残差平解析:①③④⑦ 【分析】根据线性回归分析的概念进行分析即可. 【详解】在线性回归模型中,相关指数2R 越接近于1,表示回归效果越好,①正确;两个变量相关性越强,则相关系数r 的绝对值就越接近于1,②错误;③正确;两个模型中残差平方和越小的模型拟合的效果越好,④正确;回归直线ˆˆˆybx a =+恒过样本点的中心(),x y ,不一定过样本点,⑤错误;若2K 的观测值满足2K ≥6.635,我们有99%的把握认为吸烟与患肺病有关系,并不能说在100个吸烟的人中必有99人患有肺病,⑥错误;从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误,⑦正确.故答案为①③④⑦. 【点睛】本题考查线性回归分析的有关概念,掌握相关概念是解题基础,属于基础题.20.是不相等的正整数即可【解析】∵甲班人数为平均分为乙班人数为平均分为∴甲乙两班的数学平均分为∵∴当时∴该命题是假命题时应满足是不相等的正整数故答案为:是不相等的正整数解析:,a b 是不相等的正整数即可 【解析】∵甲班人数为m ,平均分为a ,乙班人数为()n n m ≠,平均分为b ∴甲、乙两班的数学平均分为ma nbm n++ ∵m n ≠∴当a b =时,2ma nb a bm n ++=+ ∴该命题是假命题时,应满足,a b 是不相等的正整数故答案为:,a b 是不相等的正整数三、解答题21.(1)散点图见解析,y 与t 的线性相关性相当高,理由见解析;(2)0.920.1011 2.02y =+⨯=,2.02万户.【分析】(1)根据表格中对应的t 与y 的关系,描绘散点图,并根据参考数据求r ,说明相关性;(2)根据参考数据求ˆb和ˆa ,求回归直线方程,并令11t =,求y 的预测值.【详解】(1)作出散点图如图所示:由条形图数据和参考数据得()()7722114,0.53i i i i t t ty y ===⋅-=⋅-≈∑∑,()()77711139.7549.24 2.79ii i i i i i i tty y t y t y ===⋅--=-=-⨯=∑∑∑,2.790.990.532 2.646r ≈≈⨯⨯.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关性相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由9.24 1.327y ==及(1)得()()()717212.79ˆ0.1028iii ii t t y y b tt==⋅--==≈⋅-∑∑, ˆˆ 1.320.1040.92ay bt =-≈-⨯=,所以,y 关于t 的回归方程为:0.920.10y t =+. 将11t=代入回归方程得:0.920.1011 2.02y =+⨯=,所以预测11月份该省煤改气、煤改电的用户数量达到2.02万户. 【点睛】关键点点睛:本题考查回归直线方程,此类问题的关键是根据参考数据和公式相结合,求ˆb和ˆa ,一般计算量较大,需计算严谨,准确. 22.(1)众数600度,平均数640度(2)(i )见解析;(ii )不能有99%的把握认为 “用电量的高低”与“使用峰谷电价”有关. 【分析】(1)由频率分布直方图计算出众数与平均数 (2)完善列表联并计算出是否有关 【详解】(1)根据频率分布直方图的得到100度到300度的频率为:10.0012000.00152000.00122000.00062000.00022000.1 -⨯-⨯-⨯-⨯-⨯=,估计所抽取的50户的月均用电量的众数为:500+700=6002(度);估计所抽取的50户的月均用电量的平均数为:(2000.00054000.0016000.00158000.001210000.000612000.0002)200640 =⨯+⨯+⨯+⨯+⨯+⨯⨯=x(度)(2)依题意,22⨯列联表如下一般用户大用户使用峰谷电价的用户2510不使用峰谷电价的用户5102K的观测值50(2510510)4006.349 6.6353515302063k⨯⨯-⨯==≈<⨯⨯⨯所以不能有99%的把握认为“用电量的高低”与“使用峰谷电价”有关.【点睛】本题考查了频率分布直方图,并完善列表联计算线性相关性,较为基础,需要掌握解题方法23.(1)0.08,150;(2)88%;(3)第四小组,理由见解析【解析】试题分析:(1)由频率分布直方图中各小矩形面积之和为1结合面积之比得到第二小组的频率,从而求得样本容量;(2)由频率分布直方图中各小矩形的面积和为1与面积之比可求出达标的频率即达标率;(3)求出前四组的频数即可得到中位数所在的区间.试题(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:又因为频率=所以(2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.考点:频率分布直方图24.(1)中位数为65;(2)分布列见解析;期望为5635;(3)50.【分析】(1)由图中的数据可判断中位数在60分到80分之间,若设中位数为x,则()0.005200.01520600.020.5x⨯+⨯+-⨯=,从而可求得中位数;(2)结合频率分布直方图和分层抽样的方法可知,抽取的10人中合格的人数为6人,不合格的人数为4人,则ξ的可能取值为0,1,2,3,4,求出各自的概率,从而可得ξ的分布列与数学期望;(3)由已知求出=64=18μσ,,从而可得()()6418641846820.6827P Z P Z -<≤+=<≤≈,再利用正态分布的对称性可求得结果【详解】(1)设中位数为x ,则()0.005200.01520600.020.5x ⨯+⨯+-⨯=,解得65x =,所以这60名参赛学生成绩的中位数为65.(2)结合频率分布直方图和分层抽样的方法可知,抽取的10人中合格的人数为()0.010.0220106+⨯⨯=,不合格的人数为1064-=.由题意可知ξ的可能取值为0,1,2,3,4.则()464101014C P C ξ===,()134********C C P C ξ===,()2246410327C C P C ξ===,()31464103435C C C P ξ===,()4441014210C P C ξ===. 所以ξ的分布列为所以ξ的数学期望01234142173521035E ξ=⨯+⨯+⨯+⨯+⨯=. (3)由题意可得,()300.005500.015700.02900.012064μ=⨯+⨯+⨯+⨯⨯=,()()()222230640.150640.370640.4σ=-⨯+-⨯+-⨯()290640.2324+-⨯=,则18σ=,由Z 服从正态分布()2,N μσ,得()()6418641846820.6827P Z P Z -<≤+=<≤≈,则()()18210.68270.158652P Z >≈-=,()460.68270.158650.84135P Z >≈+=,所以此次竞赛受到奖励的人数为600.8413550⨯≈.【点睛】此题考查频率分布直方图、分层抽样、离散型随机变量的分布列、正态分布等知识,考查分析问题的能力和计算能力,属于中档题。
一、选择题1.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为192.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差3.从两个班级各随机抽取5名学生测量身高(单位:cm ),甲班的数据为169,162,150,160,159,乙班的数据为180,160,150,150,165.据此估计甲、乙两班学生的平均身高x 甲,x 乙及方差2s 甲,2s 乙的关系为( )A .x 甲>x 乙,2s 甲>2s 乙B .x 甲>x 乙,2s 甲<2s 乙C .x 甲<x 乙,2s 甲<2s 乙D .x 甲<x 乙,2s 甲>2s 乙4.小明同学在做市场调查时得到如下样本数据x1 3 6 10 y 8a42他由此得到回归直线的方程为ˆ 2.115.5yx =-+,则下列说法正确的是( ) ①变量x 与y 线性负相关 ②当2x =时可以估计11.3y = ③6a = ④变量x 与y 之间是函数关系 A .①B .①②C .①②③D .①②③④5.有200人参加了一次会议,为了了解这200人参加会议的体会,将这200人随机号为001,002,003,…,200,用系统抽样的方法(等距离)抽出20人,若编号为006,036,041,176, 196的5个人中有1个没有抽到,则这个编号是( ) A .006B .041C .176D .1966.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和677.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③B .①③④C .①②④D .②③④8.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元9.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为310.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是( ).A .s 1>s 2B .s 1=s 2C .s 1<s 2D .不确定11.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .1112.下列说法:①设有一个回归方程35y x =-,变量x 增加一个单位时,y 平均增加5个单位;②线性回归直线ˆybx a =+必过必过点(),x y ;③在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0B .1C .2D .3二、填空题13.如图是某地区2018年12个月的空气质量指数以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述正确的是______.①2月相比去年同期变化幅度最小,3月的空气质量指数最高;②第一季度的空气质量指数的平均值最大,第三季度的空气质量指数的平均值最小; ③第三季度空气质量指数相比去年同期变化幅度的方差最小;④空气质量指数涨幅从高到低居于前三位的月份为6、8、4月.14.已知一组数据6,7,8,x ,y 的平均数是8,且90xy =,则该组数据的方差为_______. 15.下图是华师一附中数学讲故事大赛7位评委给某位学生的表演打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是____________.16.某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差2s =___________________. 17.给出下列命题:①若函数()y f x =满足(1)(1)f x f x -=+,则函数()f x 的图象关于直线1x =对称;②点(2,1)关于直线10x y -+=的对称点为(0,3);③通过回归方程y bx a =+可以估计和观测变量的取值和变化趋势;④正弦函数是奇函数,2()sin(1)f x x =+是正弦函数,所以2()sin(1)f x x =+是奇函数,上述推理错误的原因是大前提不正确. 其中真命题的序号是__________. 18.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________.19.某次测试共有100名考生参加,测试成绩的频率分布直方图如下图所示,则成绩在80分以上的人数为__________.20.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________.三、解答题21.2020年1月末,新冠疫情爆发,经过全国人民的努力,2月中旬,疫情得到了初步的控制,湖北省以外地区的每日新增确诊人数开始减少,某同学针对这个问题,选取他在统计学中学到的一元线性回归模型,作了数学探究:他于2月17日统计了2月7日至16日这十天湖北省以外地区的每日新增确诊人数,表格如下: 日期 2.7 2.8 2.9 2.10 2.11 2.12 2.132.14 2.15 2.16 代号x 123 45 678910新增确诊人数y558 509444381 377 312 267221166 115y x y x 计算出: 5.5,335x y ==,()()1013955iii x x y y =--=-∑,()210182.5ii x x =-=∑(1)请你帮这位同学计算出y 与x 的线性回归方程(精确到0.1),然后根据这个方程估计湖北省以外地区新增确诊人数为零时的大概日期;附:回归方程y bx a =+中斜率和截距的最小二乘法估计公式分别为:()()()1012101iii ii x x y y b x x ==--=-∑∑,a y bx =-(2)实际上2月17日至2月22日的新增确诊人数如下: 日期 2.17 2.18 2.19 2.20 2.21 2.22新增确诊人数7933 45 2583418出评价.22.已知某校6个学生的数学和物理成绩如下表:(1)若在本次考试中,规定数学在80分以上(包括80分)且物理在75分以上(包括75分)的学生为理科小能手.从这6个学生中抽出2个学生,设X 表示理科小能手的人数,求X 的分布列和数学期望;(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系,在上述表格是正确的前提下,用x 表示数学成绩,用y 表示物理成绩,求y 与x 的回归方程.参考数据和公式:ˆˆˆybx a =+,其中1122211()()ˆ()nniii ii i nniii i x x y yx y nx yb x x xnx====---⋅==--∑∑∑∑,ˆˆay bx =-. 23.经销商小王对其所经营的某一型号二手汽车的使用年数(010)x x <≤与销售价格y (单位:万元/辆)进行整理,得到如下的对应数据: (1)试求y 关于x 的回归直线方程;(2)已知每辆该型号汽车的收购价格为20.05 1.7517.2=-+w x x 万元,根据(1)中所求的回归方程,预测x 为何值时,小王销售一辆该型号汽车所获得的利润z 最大.附:回归方程ˆybx a =+中,1221ˆˆˆˆ,ni ii nii x ynx y b ay bx xnx -=-==--∑∑ 24.为了解某小卖部冷饮销量与气温之间的关系,随机统计并制作了6天卖出的冷饮的数量与当天最高气温的对照表:(1)画出散点图,并求出y 关于x 的线性回归方程;(2)根据天气预报,某天最高气温为36.6℃,请你根据这些数据预测这天小卖部卖出的冷饮数量.附:一组数据11(,)x y ,22(,)x y ,,(,)n n x y 的回归直线y a bx =+的斜率和截距的最小二乘估计为()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆa y bx=- 25.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82 84 85 89 79 80 91 89 79 74 乙班:90 76 86 81 84 87 86 82 85 83 (1)求两个样本的平均数; (2)求两个样本的方差和标准差; (3)试分析比较两个班的学习情况.26.在社会实践活动中,“求知”小组为了研究某种商品的价格x (元)和需求量y (件)之间的关系,随机统计了11月1日至11月5日该商品价格和需求量的情况,得到如下资料: 日期 11月1日 11月2日 11月3日 11月4日 11月5日 x (元) 14 16 18 20 22 y (件)1210743该小组所确定的研究方案是:先从这五天中选取2天数据,用剩下的3天数据求线性回归方程,再对被选取的2天数据进行检验.(1)若选取的是11月1日与11月5日两天数据,请根据11月2日至11月4日的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2件,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?参考公式:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:A 选项,中位数是84;B 选项,众数是出现最多的数,故是83;C 选项,平均数是85,正确;D 选项,方差是,错误.考点:•茎叶图的识别 相关量的定义2.D解析:D 【分析】选项A 求出海水稻根系深度的中位数是444745.52+=,判断选项A 正确;选项B 写出普通水稻根系深度的众数是32,判断选项B 正确;选项C 先求出海水稻根系深度的平均数,再求出普通水稻根系深度的平均数,判断选项C 正确;选项D 先求出普通水稻根系深度的方差,再求出海水稻根系深度的方差,判断选项D 错误. 【详解】解:选项A :海水稻根系深度的中位数是444745.52+=,故选项A 正确; 选项B :普通水稻根系深度的众数是32,故选项B 正确;选项C :海水稻根系深度的平均数393938434447495050514510+++++++++=,普通水稻根系深度的平均数252732323436384041453510+++++++++=,故选项C 正确;选项D :普通水稻根系深度的方差2222222211[(3845)(3945)(3945)(4345)(4445)(4745)(4945)(5045)10S =-+-+-+-+-+-+-+-+, 海水稻根系深度的方差2222222221[(2535)(2735)(3235)(3235)(3435)(3635)(3835)(4035)(10S =-+-+-+-+-+-+-+-+,故选项D 错误 故选:D. 【点睛】本题考查根据茎叶图求中位数、众数、平均数、方差,是基础题. 3.C解析:C 【解析】 【分析】利用公式求得x 甲和x 乙,从而得到x 甲和x 乙的大小,观察两组数据的波动程度,可以得到2s 甲与2s 乙的大小,从而求得结果.【详解】 甲班平均身高1691621501601591605x ++++==甲,乙班平均身高1801601501501651615x ++++==乙,所以x x <甲乙,方差表示数据的波动,当波动越大时,方差越大,甲班的身高都差不多,波动比较小,而乙班身高差距则比加大,波动比较大,所以22s s >乙甲,故选C. 【点睛】该题考查的是有关所给数据的平均数与方差的比较大小的问题,涉及到的知识点有平均数的公式,观察数据波动程度来衡量方差的大小,属于简单题目.4.C解析:C 【解析】 【分析】根据数据和回归方程对每一个选项逐一判断得到答案. 【详解】① 2.1b =-⇒变量x 与y 线性负相关,正确 ②将2x =代入回归方程,得到11.3y =,正确 ③将(,)x y 代入回归方程,解得6a =,正确 ④变量x 与y 之间是相关关系,不是函数关系,错误 答案为C 【点睛】本题考查了回归方程的相关知识,其中中心点(,)x y 一定在回归方程上是同学容易遗忘的知识点.5.B解析:B 【解析】 【分析】求得抽样的间隔为10,得出若在第1组中抽取的数字为6,则抽取的号码满足104n -,即可出判定,得到答案. 【详解】由题意,从200人中用系统抽样的方法抽取20人,所以抽样的间隔为2001020=, 若在第1组中抽取的数字为006,则抽取的号码满足6(1)10104n n +-⨯=-,其中n N +∈,其中当4n =时,抽取的号码为36;当18n =时,抽取的号码为176;当20n =时,抽取的号码为196,所以041这个编号不在抽取的号码中,故选B. 【点睛】本题主要考查了系统抽样的应用,其中解答中熟记系统抽样的抽取方法是解答的关键,着重考查了运算与求解能力,属于基础题.6.B解析:B 【解析】 【分析】根据平均数、方差的概念表示出更正前的平均数、方差和更正后的平均数、方差,比较其异同,然后整体代入即可求解. 【详解】设更正前甲,乙,…的成绩依次为a 1,a 2,…,a 50, 则a 1+a 2+…+a 50=50×70,即60+90+a 3+…+a 50=50×70, (a 1﹣70)2+(a 2﹣70)2+…+(a 50﹣70)2=50×75, 即102+202+(a 3﹣70)2+…+(a 50﹣70)2=50×75. 更正后平均分为x =150×(80+70+a 3+…+a 50)=70; 方差为s 2=150×[(80﹣70)2+(70﹣70)2+(a 3﹣70)2+…+(a 50﹣70)2] =150×[100+(a 3﹣70)2+…+(a 50﹣70)2] =150×[100+50×75﹣102﹣202]=67. 故选B .本题考查平均数与方差的概念与应用问题,是基础题.7.C解析:C【分析】利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可.【详解】①设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的线性回归方程为y∧=0.85x﹣85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg,正确;②关于x的方程x2﹣mx+1=0(m>2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确;③设定圆C的方程为(x﹣a)2+(x﹣b)2=r2,其上定点A(x0,y0),设B(a+r cosθ,b+r sinθ),P(x,y),由12OP =(OA OB+)得22x a rcosxy b rsinyθθ++⎧=⎪⎪⎨++⎪=⎪⎩,消掉参数θ,得:(2x﹣x0﹣a)2+(2y﹣y0﹣b)2=r2,即动点P的轨迹为圆,∴故③不正确;④由22143x y+=,得a2=4,b2=3,∴1c==.则F(﹣1,0),如图:过F作垂直于x轴的直线,交椭圆于A(x轴上方),则x A=﹣1,代入椭圆方程可得32Ay=.当P为椭圆上顶点时,P(0FPk=32OAk=-,∴当直线FP时,直线OP的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,.当P为椭圆下顶点时,P(0,∴当直线FP时,直线OP,32),综上,直线OP(O为原点)的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,∪(8,32).故选C【点睛】本题以命题真假的判断为载体,着重考查了相关系数、离心率、椭圆简单的几何性质等知识点,属于中档题.8.B【详解】试题分析:4235492639543.5,4244x y ++++++====, ∵数据的样本中心点在线性回归直线上,回归方程ˆˆˆybx a =+中的ˆb 为9.4, ∴42=9.4×3.5+a , ∴ˆa =9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5 考点:线性回归方程9.D解析:D 【详解】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差10.C解析:C 【分析】先求均值,再根据标准差公式求标准差,最后比较大小. 【详解】乙选手分数的平均数分别为7885848192767780949384,84,55++++++++==22222(7884)(8584)(8484)(8184)(9284)22,5-+-+-+-+-=22222(7684)(7784)(8084)(9484)(9384)62,5-+-+-+-+-=因此s 1<s 2,选C. 【点睛】本题考查标准差,考查基本求解能力.11.D解析:D 【解析】分析:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;;依此规律求详解::∵一组数据12,,,n x x x 的平均数为3, ∴另一组数据1232,32,,32n x x x +++的平均数121211323232[32]33211n n x x x x x x n n n =++++⋯++=++⋯++=⨯+=()(), 故选D.点睛:本题考查了平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.12.C解析:C 【解析】分析:利用回归方程和独立性检验对每一个命题逐一判断.详解:对于①,一个回归方程35y x =-,变量x 增加一个单位时,y 应平均减少5个单位,所以该命题是错误的;对于②,线性回归直线ˆybx a =+必过必过点(),x y ,是正确的;对于③,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,并不能说明他有99%的可能患肺病,所以该命题是错误的. 故答案为:C.点睛:本题主要考查回归方程和独立性检验,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.①②③【分析】根据折线的变化率得到相比去年同期变化幅度、升降趋势逐一验证即可【详解】根据折现统计图可得2月相比去年同期变化幅度最小3月的空气质量指数最高故①正确;第一季度的空气质量指数的平均值最大第解析:①②③ 【分析】根据折线的变化率,得到相比去年同期变化幅度、升降趋势,逐一验证即可. 【详解】根据折现统计图可得,2月相比去年同期变化幅度最小,3月的空气质量指数最高,故①正确;第一季度的空气质量指数的平均值最大,第三季度的空气质量指数的平均值最小,故②正确;第三季度空气质量指数相比去年同期变化幅度的方差最小,故③正确; 空气质量指数涨幅从高到低居于前三位的月份为6、8、9月,故④错误, 故答案为:①②③. 【点睛】本题考查条形统计图和折线图的应用,重点考查数据分析,从表中准确获取信息是关键,属于中档题型.14.2【分析】根据题意列出关于的等量关系式结合求得的值利用方差公式求得结果【详解】一组数据的平均数是8且所以化简得又所以的值分别为或所以该组数据的方差为:故答案是:2【点睛】该题考查的是有关求一组数据的解析:2 【分析】根据题意,列出关于,x y 的等量关系式,结合90xy =,求得,x y 的值,利用方差公式求得结果. 【详解】一组数据6,7,8,,x y 的平均数是8,且90xy =, 所以6788540x y ++++=⨯=, 化简得19x y +=,又90xy =, 所以,x y 的值分别为10,9或9,10, 所以该组数据的方差为:222222110[(68)(78)(88)(98)(108)]255s =-+-+-+-+-==,故答案是:2. 【点睛】该题考查的是有关求一组数据的方差的问题,涉及到的知识点有方差公式,属于简单题目.15.1【分析】因为题目中要去掉一个最高分所以对进行分类讨论然后结合平均数的计算公式求出结果【详解】若去掉一个最高分和一个最低分86分后平均分为不符合题意故最高分为94分去掉一个最高分94分去掉一个最低分解析:1 【分析】因为题目中要去掉一个最高分,所以对x 进行分类讨论,然后结合平均数的计算公式求出结果 【详解】若4x >,去掉一个最高分()90x +和一个最低分86分后,平均分为()1899291949291.65++++=,不符合题意,故4x ≤,最高分为94分,去掉一个最高分94分,去掉一个最低分86分后,平均分()18992909192915x +++++=,解得1x =,故数字x 为1 【点睛】本题考查了由茎叶图求平均值,理解题目意思运用平均数计算公式即可求出结果,注意分类讨论16.【解析】试题分析:由平均数及方差的定义可得;考点:样本数据的数字特征:平均值与方差 解析:165【解析】试题分析:由平均数及方差的定义可得10685675x ++++==;222222116[(107)(67)(87)(57)(67)] 3.255s =-+-+-+-+-==.考点:样本数据的数字特征:平均值与方差.17.②③【解析】分析:根据函数的周期性可判断①;根据垂直平分线的几何特征可判断②;根据回归直线的实际意义可判断③;根据演绎推理及正弦函数的定义可判断④详解:①若函数满足则函数是周期为2的周期函数但不一定解析:②③ 【解析】分析:根据函数的周期性,可判断① ;根据垂直平分线的几何特征,可判断②;根据回归直线的实际意义,可判断③;根据演绎推理及正弦函数的定义,可判断④.详解:①若函数()y f x =满足()()11f x f x -=+,则函数()f x 是周期为2的周期函数,但不一定具有对称性,①错误;②点()()2,1?0,3确定直线的斜率为1-,与直线 10x y -+=垂直,且中点()1,2在直线10x y -+=上,故点()()2,1?0,3关于直线10x y -+=的对称,②正确; ③通过回归方程ˆˆˆy bx a =+可以估计和观测变量的取值和变化趋势,③正确;④正弦函数是奇函数,()()2sin 1f x x =+是正弦函数,所以()()2sin 1f x x =+是奇函数,上述推理错误的原因是小前提不正确,④错误,故答案为②③.点睛:本题主要通过对多个命题真假的判断,主要综合考查函数的周期性、点关于直线对称、以及回归分析与“三段论”,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.18.②④⑤【解析】分析:根据方程性质回归方程性质及其含义卡方含义确定命题真假详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时则平均减少5个单位;曲线上的点与该点的坐解析:②④⑤ 【解析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假. 详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程ˆ35yx =-中若变量x 增加一个单位时,则y 平均减少5个单位; 曲线上的点与该点的坐标之间不一定具有相关关系;在一个22⨯列联表中,由计算得213.079K =,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.19.25【解析】分析:先求成绩在80分以上的概率再根据频数等于总数与对应概率乘积求结果详解:因为成绩在80分以下的概率为所以成绩在80分以上的概率为因此成绩在80分以上的人数为点睛:频率分布直方图中小长解析:25 【解析】分析:先求成绩在80分以上的概率,再根据频数等于总数与对应概率乘积求结果.详解:因为成绩在80分以下的概率为(0.0050.03+0.0410=0.75+⨯),所以成绩在80分以上的概率为10.750.25-=,因此成绩在80分以上的人数为0.25100=25.⨯点睛:频率分布直方图中小长方形面积等于对应区间的概率,所有小长方形面积之和为1; 频率分布直方图中组中值与对应区间概率乘积的和为平均数; 频率分布直方图中小长方形面积之比等于对应概率之比,也等于对应频数之比.20.12【解析】分析:由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率即可求出第三组中有疗效的人数得到答案详解:由直方图可得分布在区间第一组和第二组共有20人分布唉区间第一组与第二组的频率解析:12 【解析】 分析:由频率=频数样本容量,以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案.详解:由直方图可得分布在区间第一组和第二组共有20人,分布唉区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人第三组的频率为0.36,所以第三组的人数为18人,第三组中没有疗效的有6人,第三组由疗效的有12人.点睛:1、用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法,分布表在数量表示上比较准确,直方图比较直观.2、频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.三、解答题21.(1)47.9598.7y x =-+,2月19日时新增确诊人数为零;(2)该数学探究估计的数据与实际的数据不吻合. 【分析】(1)根据数据套公式求出b a 、,写出回归方程,并估计新增确诊人数为零时的大概日期; (2)在(1)中求出的回归方程为线性的,再分析2月17日至2月22日的新增确诊人数不是线性的,所以选择模型不够理想. 【详解】解:()1设回归方程为y bx a =+, ∵ 5.5,335x y ==,()()1013955i ii x x y y =--=-∑,()210182.5ii x x =-=∑则()()()1012101395547.93982.5iii ii x x y y b x x ==---==≈--∑∑ 所以598.7a y bx =-≈所以回归方程为47.9598.7y x =-+估计在13x =即2月19日时新增确诊人数为零.()2该数学探究估计的数据与实际的数据不吻合.该同学首先通过线性相关系数进行线性相关判断,得到y 与x 有99%的把握线性相关,这只是说明选取的数据是线性的,但从整体看,不是线性的;出现这个结果的原因可能是传染病初发时的突发因素过多、湖北省外的人口众多、以及传染病机制复杂等因素决定的,说明对于传染病病例的变化趋势,选择线性模型可能不够理想. 【点睛】(1)求线性回归方程的步骤:①求出,x y ;②套公式求出b a 、;③写出回归方程y bx a =+;④利用回归方程y bx a =+进行预报;(2)可以建立多个函数模型时,要对每个模型进行分析比较,选择最优化模型. 22.(1)见解析;(2)129155y x =+ 【分析】(1)由题意得1号学生、2号学生为理科小能手,从而得到X 的可能取值为0,1,2,分别求出相应的概率,由此能求出X 的分布列和数学期望;(2)利用最小二乘法分别求出ˆb,ˆa ,由此能求出y 与x 的回归直线方程. 【详解】(1)由题意得1号学生、2号学生为理科小能手.X 的可能取值为:0,1,2。
一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.某校举行演讲比赛,9位评委给选手A 打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若统计员计算无误,则数字x 应该是( )A .5B .4C .3D .23.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s <>4.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+5.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .18556.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③B .①③④C .①②④D .②③④7.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,88.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为A .y = x-1B .y = x+1C .y =88+12x D .y = 1769.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64B .96C .144D .16010.某校高一年级有学生1800人,高二年级有学生1500人,高三年级有1200人,为了调查学生的视力状况,采用分层抽样的方法抽取学生,若在抽取的样本中,高一年级的学生有60人,则该样本中高三年级的学生人数为( ) A .60B .50C .40D .3011.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变12.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .18二、填空题13.东汉·王充《论衡·宜汉篇》:“且孔子所谓一世,三十年也.”,清代·段玉裁《说文解字注》:“三十年为一世.按父子相继曰世”.“一世”又叫“一代”,到了唐朝,为了避李世民的讳,“一世”方改为“一代”,当代中国学者测算“一代”平均为25年.另据美国麦肯锡公司的研究报告显示,全球家庭企业的平均寿命其实只有24年,其中只有约30%的家族企业可以传到第二代,能够传到第三代的家族企业数量为总量的13%,只有5%的家族企业在第三代后还能够继续为股东创造价值.根据上述材料,可以推断美国学者认为“一代”应为__________年.14.下列说法正确的是__________(填序号)(1)已知相关变量(),x y 满足回归方程ˆ24yx =-,若变量x 增加一个单位,则y 平均增加4个单位(2)若,p q 为两个命题,则“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件(3)若命题0:p x R ∃∈,20010x x -+<,则:p x R ⌝∀∉,210x x -+≥(4)已知随机变量()22X N σ~,,若()0.32P X a <=,则()40.68P X a >-=15.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份A 的含量x (单位:g )与药物功效y (单位:药物单位)之间具有关系:(20)y x x =-.检测这种药品一个批次的5个样本,得到成份A 的平均值为8g ,标准差为2g ,估计这批中成药的药物功效的平均值为__________药物单位.16.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..17.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.18.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.19.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。
一、选择题1.如图1为某省2019年1~4月快递业务量统计图,图2是该省2019年1~4月快递业务收入统计图,下列对统计图理解错误的是( )A.2019年1~4月的业务量,3月最高,2月最低,差值接近2000万件B.2019年1~4月的业务量同比增长率超过50%,在3月最高C.从两图来看2019年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D.从1~4月来看,该省在2019年快递业务收入同比增长率逐月增长2.为了解一片经济树林的生长情况,随机测量了其中100株树木的底部周长(单位:cm),根据所得数据画出样本的频率分布直方图如图所示.那么在这100株树木中,底部周长小于110cm的株数n是()A.30 B.60C.70 D.803.在一个容量为5的样本中,数据均为整数,已测出其平均数为8,但墨水污损了后面两个数据,其中一个数据的十位数字1未污损,即5,7,8,,那么这组数据的方差2s 可能的最大值是()A.185B.18 C.36 D.64.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为()A .48B .60C .64D .725.在一段时间内,某种商品的价格x (元)和销售量y (件)之间的一组数据如下表:价格x (元) 4 6 8 10 12 销售量y (件)358910若y 与x 呈线性相关关系,且解得回归直线ˆˆˆybx a =+的斜率0.9b ∧=,则a ∧的值为( ) A .0.2B .-0.7C .-0.2D .0.76. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日7.通过实验,得到一组数据如下:2,5,8,9,x ,已知这组数据的平均数为6,则这组数据的方差为( ) A .3.2B .4C .6D .6.58.如图是两组各7名同学体重(单位:kg )数据的茎叶图,设1、2两组数据的平均数依次为1x 和2x ,标准差依次为12s s 、,那么( )(注:标准差222121[()()...()]n s x x x x x x n=-+-++-A .1212,x x s s >>B .1212,x x s s ><C .1212,x x s s <<D .1212,x x s s9.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为 A .y = x-1B .y = x+1C .y =88+12x D .y = 17610.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是( ) A .31号B .32号C .33号D .34号11.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .1812.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表: 温度℃ -5 0 4 7 12 15 19 23 27 31 36 热饮杯数15615013212813011610489937654根据上表数据确定的线性回归方程应该是( )A .ˆ 2.352147.767yx =-+ B .ˆ 2.352127.765yx =-+ C .ˆ 2.35275.501yx =+D .ˆ 2.35263.674yx =+二、填空题13.数列{}n a 是公差不为零的等差数列,其前n 项和为n S ,若记数据1a ,2a ,3a ,⋅⋅⋅,2019a 的标准差为1σ,数据11S ,22S ,33S ,⋅⋅⋅,20192019S 的标准差为2σ,则12σσ=________ 14.某住宅小区有居民2万户,从中随机抽取200户,调查是否安装宽带,调查结果如下表所示: 宽带 租户业主已安装 6042未安装36 62则该小区已安装宽带的居民估计有______户.15.已知一组数据6,7,8,x ,y 的平均数是8,且90xy =,则该组数据的方差为_______.16.已知数据(1,2,3,4,5)i x i =的平均值为a ,数列2{()}i x a -为等差数列,且3||0.1x a -=,则该组数据的方差为________.17.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。
一、选择题1.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ︒171382月销售量y (件)24334055由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件2.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号的同学的成绩依次为1A ,216,,A A ⋯,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是( )A .10B .6C .7D .163.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A .48B .60C .64D .724.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生5.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是( )A .①②B .①③C .②③D .②④6.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3 D .丁地:总体均值为2,总体方差为37.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .918.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位9.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .1810.已知某企业上半年前5个月产品广告投入与利润额统计如下:由此所得回归方程为7.5ˆyx a =+,若6月份广告投入10(万元)估计所获利润为( ) A .97万元B .96.5万元C .95.25万元D .97.25万元11.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .1112.从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为( ) A .112种B .100种C .90种D .80种二、填空题13.用系统抽样方法从400名学生中抽取容量为20的样本,将400名学生随机地编号为1~400,按编号顺序平均分为20个组.若第1组中用抽签的方法确定抽出的号码为11,则第17组抽取的号码为________.14.对具有线性相关关系的变量x ,y 有一组观测数据()(),1,2,3,,8i i x y i =,其回归直线方程是12y x a =+,且8116i i x ==∑,8148i i y ==∑,则实数a =__________.15.通过市场调查,得到某种产品的资金投入x (单位:万元)与获得的利润y (单位:万元)的数据,如表所示:根据表格提供的数据,用最小二乘法求线性回归直线方程为0.36ˆˆybx =-,现投入资金15万元,求获得利润的估计值(单位:万元)为_____________.16.已知某市A 社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.17.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.18.总体由编号为01,02,⋅⋅⋅,29,30的30个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第2行的第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为__________.19.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.20.已知一组数据x ,8,7,9,7,若这组数据的平均数为8,则它们的方差为______.三、解答题21.2020年1月末,新冠疫情爆发,经过全国人民的努力,2月中旬,疫情得到了初步的控制,湖北省以外地区的每日新增确诊人数开始减少,某同学针对这个问题,选取他在统计学中学到的一元线性回归模型,作了数学探究:他于2月17日统计了2月7日至16日这十天湖北省以外地区的每日新增确诊人数,表格如下: 日期 2.7 2.8 2.9 2.10 2.11 2.12 2.132.14 2.15 2.16代号x 123 45 6 78910新增确诊人数y558 509444381 377 312 267221166 115y x y x 计算出: 5.5,335x y ==,()()1013955iii x x y y =--=-∑,()210182.5ii x x =-=∑(1)请你帮这位同学计算出y 与x 的线性回归方程(精确到0.1),然后根据这个方程估计湖北省以外地区新增确诊人数为零时的大概日期;附:回归方程y bx a =+中斜率和截距的最小二乘法估计公式分别为:()()()1012101iii ii x x y y b x x ==--=-∑∑,a y bx =-(2)实际上2月17日至2月22日的新增确诊人数如下:出评价.22.据统计某品牌服装专卖店一周内每天获取得纯利润y (百元)与每天销售这种服装件数x (百件)之间有如下一组数据.该专卖店计划在国庆节举行大型促销活动以提高该品牌服装的知名度,为了检验服装的质量,现从厂家购进的500件服装中抽取60件进行检验,(服装进货编号为001-500). (1)利用随机数表抽样本时,如果从随机数表第8行第2列的数开始按三位数连贯向右读取,试写出最先检测的5件服装的编号;(2)求该专卖店每天的纯利y 与每天销售件数x 之间的回归直线方程.(精确到0.01) (3)估计每天销售1200件这种服装时获多少纯利润? 附表:(随机数表第7行至第9行)84421 75331 57245 50688 77047 44767 21763 35025 83921 20676 63016 47859 16955 56719 98105 07185 12867 35807 44395 23879 33211 23429 78645 60782 52420 74438 15510 01342 99660 27954 参考数据:721280i i x==∑,72145309i i y ==∑,713487i i i x y ==∑.参考公式:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-23.某市为了解疫情过后制造业企业的复工复产情况,随机调查了100家企业,得到这些企业4月份较3月份产值增长率x 的频率分布表如下:企业数13 40 35 8 4(1)估计制造业企业中产值增长率不低于60%的企业比例及产值负增长的企业比例; (2)求制造业企业产值增长率的平均数与方差的估计值(同一组中的数据用该组区间的中点值为代表).24.为了解某小卖部冷饮销量与气温之间的关系,随机统计并制作了6天卖出的冷饮的数量与当天最高气温的对照表: 气温()x ℃ 27 29 30 32 33 35 数量y121520272836(1)画出散点图,并求出y 关于x 的线性回归方程;(2)根据天气预报,某天最高气温为36.6℃,请你根据这些数据预测这天小卖部卖出的冷饮数量.附:一组数据11(,)x y ,22(,)x y ,,(,)n n x y 的回归直线y a bx =+的斜率和截距的最小二乘估计为()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆa y bx=- 25.某学校高一100名学生参加数学竞赛,成绩均在40分到100分之间.学生成绩的频率分布直方图如图:(1)估计这100名学生分数的中位数与平均数;(精确到0.1)(2)某老师抽取了10名学生的分数:12310,,,...,x x x x ,已知这10个分数的平均数90x =,标准差6s =,若剔除其中的100和80两个分数,求剩余8个分数的平均数与标准差.(参考公式:221nii xnx s n=-=∑(3)该学校有3座构造相同教学楼,各教学楼高均为20米,东西长均为60米,南北宽均为20米.其中1号教学楼在2号教学楼的正南且楼距为40米,3号教学楼在2号教学楼的正东且楼距为72米.现有3种型号的考试屏蔽仪,它们的信号覆盖半径依次为35,55,105米,每个售价相应依次为1500,2000,4000元.若屏蔽仪可在地下及地上任意位置安装且每个安装费用均为100元,求让各教学楼均被屏蔽仪信号完全覆盖的最小花费.(参考数据:22221044100,19236864,11012100===)26.在社会实践活动中,“求知”小组为了研究某种商品的价格x (元)和需求量y (件)之间的关系,随机统计了11月1日至11月5日该商品价格和需求量的情况,得到如下资料: 日期 11月1日 11月2日 11月3日 11月4日 11月5日 x (元) 14 16 18 20 22 y (件)1210743该小组所确定的研究方案是:先从这五天中选取2天数据,用剩下的3天数据求线性回归方程,再对被选取的2天数据进行检验.(1)若选取的是11月1日与11月5日两天数据,请根据11月2日至11月4日的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2件,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?参考公式:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.2.A解析:A 【分析】先弄清楚程序框图中是统计成绩不低于90分的学生人数,然后从茎叶图中将不低于90分的个数数出来,即为输出的结果. 【详解】176A =,1i =,16i ≤成立,190A ≥不成立,112i =+=; 279A =,2i =,16i ≤成立,290A ≥不成立,112i =+=;792A =,7i =,16i ≤成立,790A ≥成立,011n =+=,718i =+=;依此类推,上述程序框图是统计成绩不低于90分的学生人数,从茎叶图中可知,不低于90分的学生数为10,故选A . 【点睛】本题考查茎叶图与程序框图的综合应用,理解程序框图的意义,是解本题的关键,考查理解能力,属于中等题.3.B解析:B 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.4.C解析:C 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.5.B解析:B 【分析】根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解. 【详解】由题意,根据频率分布直方图的性质得10(0.0200.0160.0160.0110.006)1m +++++=,解得0.031m =.故①正确;因为不低于140分的频率为0.011100.11⨯=,所以11010000.11n ==,故②错误; 由100分以下的频率为0.00610=0.06⨯,所以100分以下的人数为10000.06=60⨯,故③正确;分数在区间[120,140)的人数占0.031100.016100.47⨯+⨯=,占小半.故④错误. 所以说法正确的是①③. 故选B. 【点睛】本题主要考查了频率分布直方图的应用,其中解答熟记频率分布直方图的性质,以及在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1,着重考查了分析问题和解答问题的能力,属于基础题.6.D解析:D 【详解】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差7.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.8.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C.【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.9.C解析:C【解析】【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在高三年级中抽取的人数.【详解】 根据题意得,用分层抽样在各层中的抽样比为421105020=, 则在高三年级抽取的人数是14001625⨯=人, 故选C.【点睛】该题所考查的是有关分层抽样的问题,在解题的过程中,需要明确无论采用哪种抽样方法,都必须保证每个个体被抽到的概率是相等的,所以注意成比例的问题. 10.C解析:C【解析】【分析】首先求出x y ,的平均数,将样本中心点代入回归方程中求出a 的值,然后写出回归方程,然后将10x =代入求解即可【详解】()19.59.39.18.99.79.35x =⨯++++= ()19289898793905y =⨯++++= 代入到回归方程为7.5ˆyx a =+,解得20.25a = 7.25ˆ50.2yx ∴=+ 将10x =代入7.50.5ˆ22yx =+,解得ˆ95.25y = 故选C【点睛】本题是一道关于线性回归方程的题目,解答本题的关键是求出线性回归方程,属于基础题。
一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为193.为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如下图),已知从左到右各长方形高的比为2:3:5:6:3:1,则该班学生数学成绩在(80,100)之间的学生人数是( )A .32B .27C .24D .334.工人月工资y (元)与劳动生产率x (千元)变化的回归直线方程为=50+80x ,下列判断不正确的是( )A .劳动生产率为1000元时,工资约为130元B .工人月工资与劳动者生产率具有正相关关系C .劳动生产率提高1000元时,则工资约提高130元D .当月工资为210元时,劳动生产率约为2000元5.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,86.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号的同学的成绩依次为1A ,216,,A A ⋯,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是( )A .10B .6C .7D .167.小明同学在做市场调查时得到如下样本数据x1 3 6 10 y 8a42他由此得到回归直线的方程为ˆ 2.115.5yx =-+,则下列说法正确的是( ) ①变量x 与y 线性负相关 ②当2x =时可以估计11.3y = ③6a = ④变量x 与y 之间是函数关系 A .①B .①②C .①②③D .①②③④8. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日9.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸10.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 2 3 4 5 销售额y (万元)25374454根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .61.5万元B .62.5万元C .63.5万元D .65.0万元11.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755 的人数为( ) A .10B .11C .12D .1312.某校高一年级有学生1800人,高二年级有学生1500人,高三年级有1200人,为了调查学生的视力状况,采用分层抽样的方法抽取学生,若在抽取的样本中,高一年级的学生有60人,则该样本中高三年级的学生人数为( ) A .60B .50C .40D .30二、填空题13.给出下列命题:①函数()π4cos 23f x x ⎛⎫=+ ⎪⎝⎭的一个对称中心为5π,012⎛⎫- ⎪⎝⎭;②若,αβ为第一象限角,且αβ>,则tan tan αβ>;③设一组样本数据12,,,n x x x ⋅⋅⋅的平均数是2,则数据1221,21,,21n x x x --⋅⋅⋅-的平均数为3;④函数sin 2y x =的图象向左平移π4个单位长度,得到πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是_____________(把你认为正确的序号都填上).14.已知数据1x ,2x ,…,10x 的方差为1,且()()()222123222x x x -+-+-()2102170x ++-=,则数据1x ,2x ,…,10x 的平均数是________.15.对两个变量y 和x 进行回归分析,得到一组样本数据()11,x y ,()22,x y ,…,(),n n x y ,则下列说法中正确的序号是______.①由样本数据得到的回归直线方程y bx a =+必过样本点的中心 ②残差平方和越小的模型,拟合的效果越好③用相关指数2R 来刻画回归效果,2R 越小说明拟合效果越好④若变量y 和x 之间的相关系数为0.946r =-,则变量y 和x 之间线性相关性强 16.某校共有学生1600人,其中高一年级400人.为了解各年级学生的兴趣爱好情况,用分层抽样的方法从中抽取容量为80的样本,则应抽取高一学生____人.17.已知样本数据为40,42,40,a ,43,44,且这个样本的平均数为43,则该样本的标准差为_________.18.某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差2s =___________________.19.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________.20.已知某产品连续4个月的广告费i x (千元)与销售额i y (万元)(1,2,3,4i =),经过对这些数据的处理,得到如下数据信息:①441118,14ii i i xy ====∑∑;②广告费用x 和销售额y 之间具有较强的线性相关关系;③回归直线方程y bx a =+中的0.8b =. 那么广告费用为6千元时,则可预测销售额约为__________万元.三、解答题21.某科研课题组通过一款手机APP 软件,调查了某市1000名跑步爱好者平均每周的跑步量(简称“周跑量”),得到如下的频数分布表: 周跑量 [)10,15 [)15,20 [)20,25 [)25,30 [)30,35 [)35,40 [)40,45 [)45,50 []50,55人数100120130180220150603010周跑量 小于20公 20公里到 不小于40 类别 休闲跑者 核心跑者 精英跑者 装备价格250040004500);(3)根据跑步爱好者的周跑量,将跑步爱好者分成以下三类,不同类别的跑者购买的装备的价格不一样(如表),根据以上数据,估计该市每位跑步爱好者购买装备,平均需要花费多少元?22.为了了解某工厂生产的产品情况,从该工厂生产的产品随机抽取了一个容量为200的样本,测量它们的尺寸(单位:mm ),数据分为[)92,94,[)94,96,[)96,98,[)98,100,[)100,102,[)102,104,[]104,106七组,其频率分布直方图如图所示.(1)根据频率分布直方图,求200件样本中尺寸在[)96,98内的样本数;(2)记产品尺寸在[)98,102内为A 等品,每件可获利6元;产品尺寸在[)92,94内为不合格品,每件亏损3元;其余的为合格品,每件可获利4元.若该机器一个月共生产2000件产品.以样本的频率代替总体在各组的频率,若单月利润未能达到9000元,则需要对该工厂设备实施升级改造.试判断是否需要对该工厂设备实施升级改造.23.某公司开发了一件新产品,为了研究销售量与单价的关系,进行了市场调查,并获得了销售量y 与单价x 的样本,且进行了数据处理(如表),作出散点图.xyw1021()ii x x =-∑1021()ii w w =-∑101()()iii x x y y =--∑ 101()()iii w w yy =--∑1.47 20.6 0.782.35 0.81 19.3- 16.2表中2i i w x =,110i i w w ==∑.(1)根据散点图判断,y bx a =+与2dy c x=+哪一个更适宜作为y 关于x 的回归方程类型?(不必说明理由)(2)根据(1)的结论和表中数据,在最小二乘法原理下,建立y 关于x 的回归方程; (3)利用第(2)问求得的回归方程,试估计单价x 范围为多少时,该商品的销售额不小于25?(销售额=销量⨯单价)附:对于一组数据1(u ,1)ν,2(u ,2)ν,3(u ,3)ν,(n u ⋯,)n ν,其回归直线ˆˆˆu ναβ=+的斜率和截距的最小二乘法估计值分别为121()()()ˆnii i nii v u u u u νβ==--=-∑∑,ˆˆv u αβ=-. 24.为培养学生在高中阶段的数学能力,某校将举行数学建模竞赛.已知该竞赛共有60名学生参加,他们成绩的频率分布直方图如图所示.(1)估计这60名参赛学生成绩的中位数;(2)为了对数据进行分析,将60分以下的成绩定为不合格.60分以上(含60分)的成绩定为合格,某评估专家决定利用分层抽样的方法从这60名学生中选取10人,然后从这10人中抽取4人参加座谈会,记ξ为抽取的4人中,成绩不合格的人数,求ξ的分布列与数学期望;(3)已知这60名学生的数学建模竞赛成绩Z 服从正态分布()2,Nμσ,其中μ可用样本平均数近似代替,2σ可用样本方差近似代替(同一组数据用该区间的中点值作代表),若成绩在46分以上的学生均能得到奖励,本次数学建模竞赛满分为100分,估计此次竞赛受到奖励的人数(结果根据四舍五人保留整数).参考数据:()0.6827P Z μσμσ-<≤+≈,()220.9545P Z μσμσ-<≤+≈,()330.9973P Z μσμσ-<≤+≈.25.某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料: 日期 4月1日 4月7日 4月15日 4月21日 4月30日 温差x C ︒ 10 11 13 12 8 发芽数y 颗2325302616(1)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠? 附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.26.某大学为了了解数学专业研究生招生的情况,对近五年的报考人数进行了统计,得到如下统计数据:(1)经分析,y 与x 存在显著的线性相关性,求y 关于x 的线性回归方程ˆˆˆybx a =+并预测2020年(按6x =计算)的报考人数;(2)每年报考该专业研究生的考试成绩大致符合正态分布()2,Nμσ,根据往年统计数据385μ=,2225σ=,录取方案:总分在400分以上的直接录取,总分在[]385,400之间的进入面试环节,录取其中的80%,低于385分的不予录取,请预测2020年该专业录取的大约人数(最后结果四舍五入,保留整数).参考公式和数据:()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-,()()51360iii x x y y =--=∑.若随机变量()2~,X Nμσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,()330.9974P X μσμσ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由已知求得 x , y ,进一步求得 a ,得到线性回归方程,取16x =求得y 值即可. 【详解】8.38.69.911.1512.1 10x +++=+=, 5.97.88.18.49.858y ++++==.又 0.78b =,∴ 80.78100.2a y bx --⨯===. ∴ 0.780.2y x =+.取16x =,得 0.78160.212.68y ⨯+==万元,故选A .【点睛】本题主要考查线性回归方程的求法,考查了学生的计算能力,属于中档题.2.C解析:C 【解析】试题分析:A 选项,中位数是84;B 选项,众数是出现最多的数,故是83;C 选项,平均数是85,正确;D 选项,方差是,错误.考点:•茎叶图的识别 相关量的定义3.D解析:D 【详解】高的比就是频率的比,所以各区间上的频率可依次设为2x,3x,5x,6x,3x,x,,同它们的和为1235631,20x x x x x x x +++++=∴=,所以该班学生数学成绩在[80,100)之间的学生人数是1(56)6011603320x +⨯⨯=⨯⨯=,故选D 4.C解析:C 【解析】试题分析:根据线性回归方程=50+80x 的意义,对选项中的命题进行分析、判断即可. 解:根据线性回归方程为=50+80x ,得;劳动生产率为1000元时,工资约为50+80×1=130元,A 正确; ∵=80>0,∴工人月工资与劳动者生产率具有正相关关系,B 正确;劳动生产率提高1000元时,工资约提高=80元,C 错误;当月工资为210元时,210=50+80x ,解得x=2, 此时劳动生产率约为2000元,D 正确. 故选C .考点:线性回归方程.5.D解析:D 【分析】根据平均数的性质,方差的性质直接运算可得结果. 【详解】令23(1,2,,5)i i y x i =-=1234555x x x x x x ++++==, 1234523232323232310375x x x x x y x -+-+-+-+-∴==-=-=, (也可()(23)2()32537E y E x E x =-=-=⨯-=) ()()()2y 232428D D x D x =-==⨯=故选:D【点睛】本题主要考查方差及平均值的性质的简单应用,属于中档题.6.A解析:A【分析】先弄清楚程序框图中是统计成绩不低于90分的学生人数,然后从茎叶图中将不低于90分的个数数出来,即为输出的结果.【详解】176A =,1i =,16i ≤成立,190A ≥不成立,112i =+=;279A =,2i =,16i ≤成立,290A ≥不成立,112i =+=;792A =,7i =,16i ≤成立,790A ≥成立,011n =+=,718i =+=;依此类推,上述程序框图是统计成绩不低于90分的学生人数,从茎叶图中可知,不低于90分的学生数为10,故选A .【点睛】本题考查茎叶图与程序框图的综合应用,理解程序框图的意义,是解本题的关键,考查理解能力,属于中等题.7.C解析:C【解析】【分析】根据数据和回归方程对每一个选项逐一判断得到答案.【详解】① 2.1b =-⇒变量x 与y 线性负相关,正确②将2x =代入回归方程,得到11.3y =,正确③将(,)x y 代入回归方程,解得6a =,正确④变量x 与y 之间是相关关系,不是函数关系,错误答案为C【点睛】本题考查了回归方程的相关知识,其中中心点(,)x y 一定在回归方程上是同学容易遗忘的知识点.8.C解析:C【分析】认真观察题中所给的折线图,对照选项逐一分析,求得结果.【详解】这10天中第一天,第三天和第四天共3天空气质量为一级,所以A 正确;从图可知从6日到9日 2.5PM 日均值逐渐降低,所以B 正确;从图可知,这10天中 2.5PM 日均值最高的是12月6日,所以D 正确;由图可知,这10天中 2.5PM 日均值的中位数是4145432+=,所以C 不正确; 故选C.【点睛】该题考查的是有关利用题中所给的折线图,描述对应变量所满足的特征,在解题的过程中,需要逐一对选项进行分析,正确理解题意是解题的关键. 9.A解析:A【分析】根据频率分布直方图得到各个时间段的人数,进而得到结果.【详解】根据频率分布直方图可列下表:故选A.【点睛】这个题目考查了频率分布直方图的实际应用,以及样本体现整体的特征的应用,属于基础题.10.C解析:C【分析】先求出所给数据的平均数,得到样本中心点,根据回归直线经过样本中心点,求出ˆa,得到线性回归方程,把6x =代入即可求出答案.【详解】由题意知4235 3.54x +++==,44253754404y +++==, 则40ˆˆ9.4 3.57.1ay bx =-=-⨯=, 所以回归方程为9.4.1ˆ7yx =+, 则广告费用为6万元时销售额为9.467.163.5⨯+=,故答案为C.【点睛】本题考查了线性回归方程的求法与应用,属于基础题.11.C解析:C【分析】由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n =30n ﹣19,由401≤30n ﹣21≤755,求得正整数n 的个数,即可得出结论.【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列, 又某组抽到的号码为41,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,∴等差数列的通项公式为a n =11+(n ﹣1)30=30n ﹣19,由401≤30n ﹣19≤755,n 为正整数可得14≤n ≤25,∴做问卷C 的人数为25﹣14+1=12,故选C .【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.12.C解析:C【分析】设该样本中高三年级的学生人数为x ,则1800601200x=,解之即可 【详解】设该样本中高三年级的学生人数为x , 则1800601200x=,解得40x =, 故选C .【点睛】 本题考查了分层抽样方法的应用问题,属基础题.二、填空题13.①③【分析】求解的值判断①;举例说明②错误;求解平均数判断③;利用函数图象的平移变换判断④【详解】解:对于①函数的一个对称中心为故①正确;对于②取为第一象限角且但故②错误;对于③一组样本数据的平均数解析:①③【分析】 求解5()12f π-的值判断①;举例说明②错误;求解平均数判断③;利用函数图象的平移变换判断④.【详解】解:对于①,55()4cos()4cos()012632f ππππ-=-+=-=, ∴函数()4cos(2)3f x x π=+的一个对称中心为5(,0)12π-,故①正确;对于②,取94πα,3πβ=,α,β为第一象限角,且αβ>,但tan tan αβ<,故②错误;对于③,一组样本数据1x ,2x ,⋯,n x 的平均数是2,则数据121x -,221x -,⋯,21n x -的平均数为22132⨯-=,故③正确; 对于④,函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()sin(2)cos242y x x x ππ=+=+=的图象,故④错误. ∴正确命题的序号是①③.故答案为:①③.【点睛】本题考查命题的真假判断与应用,考查三角函数的图象与性质,训练了平均数的求法,属于中档题.14.或6【分析】由数据…的方差为1且把所给的式子进行整理两式相减得到关于数据的平均数的一元二次方程解方程即可【详解】数据…的方差为1①②将②-①得解得或故答案为:或6【点睛】本题主要考查一组数据的平均数 解析:2-或6.【分析】由数据1x ,2x ,…,10x 的方差为1,且()()()()2222123102222170x x x x -+-+-++-=,把所给的式子进行整理,两式相减,得到关于数据的平均数的一元二次方程,解方程即可.【详解】数据1x ,2x ,…,10x 的方差为1,()()()()22221231010x x x x x x x x ∴-+-+-++-=, ()()22221210121010210x x x x x x x x ∴++++-+++=, ()222212101010x x x x ∴+++-=,① ()()()()2222123102222170x x x x -+-+-++-=, ()()22212101210440170x x x x x x ∴+++-++++=, ()22212104040170x x x x ∴+++-+=,② 将②-①得24120x x --=,解得2x =-,或6x =,故答案为:2-或6.【点睛】本题主要考查一组数据的平均数的求法,解题时要熟练掌握方差的计算公式的灵活运用,属于中档题.15.①②④【分析】根据两个变量线性相关的概念及性质逐项判定即可求解【详解】由题意根据回归直线方程的特征可得线性回归直线方程一定过样本中心所以①正确;根据残差的概念可得残差平方和越小的模型拟合效果越好所以 解析:①②④【分析】根据两个变量线性相关的概念及性质,逐项判定,即可求解.【详解】由题意,根据回归直线方程的特征,可得线性回归直线方程一定过样本中心,所以①正确;根据残差的概念,可得残差平方和越小的模型,拟合效果越好,所以②正确; 根据相关指数的概念,可得2R 越大说明拟合效果越好,所以③不正确;若变量y 和x 之间的相关系数为0.946r =-,则变量y 和x 之间负相关,且线性相关性强,所以④正确;故答案为:①②④.【点睛】本题主要考查了两个变量的线性相关性的概念与判定,其中解答中熟记线性相关的基本概念和结论是解答的关键,属于基础题.16.20【解析】【分析】利用分层抽样方法直接求解【详解】由题意应抽取高一学生(人)故答案是20【点睛】该题考查的是有关分层抽样中某层所抽个体数的问题涉及到的知识点有分层抽样要求每个个体被抽到的概率是相等 解析:20【解析】【分析】利用分层抽样方法直接求解.【详解】 由题意,应抽取高一学生40080201600⨯=(人), 故答案是20.【点睛】该题考查的是有关分层抽样中某层所抽个体数的问题,涉及到的知识点有分层抽样要求每个个体被抽到的概率是相等的,列式求得结果,属于简单题目. 17.【分析】由平均数的公式求得再利用方差的计算公式求得即可求解【详解】由平均数的公式可得解得所以方差为所以样本的标准差为【点睛】本题主要考查了样本的平均数与方差标准差的计算着重考查了运算与求解能力属于基【分析】由平均数的公式,求得49a =,再利用方差的计算公式,求得2283s =,即可求解. 【详解】 由平均数的公式,可得1(4042404344)436a +++++=,解得49a =, 所以方差为2222222128[(4043)(4243)(4043)(4943)(4343)(4443)]63s =-+-+-+-+-+-=,所以样本的标准差为3s =. 【点睛】本题主要考查了样本的平均数与方差、标准差的计算,着重考查了运算与求解能力,属于基础题. 18.【解析】试题分析:由平均数及方差的定义可得;考点:样本数据的数字特征:平均值与方差 解析:165【解析】 试题分析:由平均数及方差的定义可得10685675x ++++==; 222222116[(107)(67)(87)(57)(67)] 3.255s =-+-+-+-+-==. 考点:样本数据的数字特征:平均值与方差.19.②④⑤【解析】分析:根据方程性质回归方程性质及其含义卡方含义确定命题真假详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时则平均减少5个单位;曲线上的点与该点的坐解析:②④⑤【解析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假.详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程ˆ35yx =-中若变量x 增加一个单位时,则y 平均减少5个单位; 曲线上的点与该点的坐标之间不一定具有相关关系;在一个22⨯列联表中,由计算得213.079K =,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.20.【解析】因此解析:4.7【解析】18914779,0.80.1424222ˆx y a ====∴=-⨯=- 因此0.860.1 4.7y =⨯-= 三、解答题21.(1)见解析;(2)中位数29.2,众数32.5;(3)平均花费3720元.【分析】(1)由频数分布表能补全该市1000名跑步爱好者周跑量的频率分布直方图. (2)由频率分布直方图能求出样本的中位数.(3)分别求出休闲跑者、核心跑者、精英跑者的人数,由此能估计该市每位跑步爱好者购买装备平均需要花费多少钱.【详解】(1)补全该市1000名跑步爱好者周跑量的频率分布直方图,如下:(2)中位数的估计值:由50.0250.02450.0260.350.5⨯+⨯+⨯=<,0.3550.0360.530.5+⨯=>, 所以中位数位于区间[)25,30中,设中位数为x ,则()0.35250.0360.5x +-⨯=,解得29.2x ≈.即样本中位数是29.2.因为样本中频率最高的一组为[30,35),所以样本的众数为32.5.(3)依题意可知,休闲跑者共有()50.0250.024*******⨯+⨯⨯=人,核心跑者()50.02650.03650.04450.0301000680⨯+⨯+⨯+⨯⨯=人,精英跑者1000220680100--=人, 所以该市每位跑步爱好者购买装备,平均需要22025006804000100450037201000⨯+⨯+⨯=元. 即该市每位跑步爱好者购买装备,平均需要3720元.【点睛】本题考查频率分布直方图的作法,考查样本的中位数、平均数的求法,考查运算求解能力,是基础题.22.(1)48件;(2)需要对该工厂设备实施升级改造.【分析】(1)根据评论分布直方图面积之和为1列等式计算得0.12x =,用200乘以[)96,98内的频率即可得出答案;(2)根据题意计算A 等品760件,不合格品有80件,进而得合格品有1160件,根据题意计算其利润与9000比较判定需要对该工厂设备实施升级改造.【详解】解:(1)因为(0.020.040.060.070.090.10)21x ++++++⨯=,解得0.12x =,所以200件样本中尺寸在[)96,98内的样本数为2000.12248⨯⨯=(件).(2)由题意可得,这批产品中优等品有2000(0.090.10)2760⨯+⨯=件,这批产品中不合格品有20000.02280⨯⨯=件,这批产品中合格品有2000760801160--=件,7606116048038960⨯+⨯-⨯=元.所以该工厂生产的产品一个月所获得的利润为8960元,因为89609000<,所以需要对该工厂设备实施升级改造.【点睛】频率分布直方图中的常见结论(1)众数的估计值为最高矩形的中点对应的横坐标;(2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和;(3)中位数的估计值的左边和右边的小矩形的面积和是相等的.23.(1)2d y c x =+更适宜;(2)2205y x =+;(3)01x <或4x . 【分析】(1)根据散点图,即可判断出;(2)先建立中间量21w x=,建立y 关于w 的线性回归方程,根据最小二乘法求出系数c ,d ,问题得以解决;(3)根据预报值求出z ,再根据题意列不等式即可得求出答案.【详解】解:(1)2d y c x =+更适宜作销量y 关于单价x 的回归方程类型; (2)设21w x=,则y c dw =+, 由最小二乘法求系数公式可得:1011021()()16.2200.81()ˆi ii ii w w y y d w w ==--===-∑∑, ·20.ˆˆ6200.785c y d w =-=-⨯=, 所以所求回归方程为2205y x =+;(3)设销售额为z , 则205,(0)z xy x x x==+>, 20525z xy x x==+,即2540x x -+, 解得01x <或4x ,当单价x 范围为01x <或4x 时,该商品的销售额不小于25.【点睛】本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题. 24.(1)中位数为65;(2)分布列见解析;期望为5635;(3)50. 【分析】(1)由图中的数据可判断中位数在60分到80分之间,若设中位数为x ,则()0.005200.01520600.020.5x ⨯+⨯+-⨯=,从而可求得中位数;(2)结合频率分布直方图和分层抽样的方法可知,抽取的10人中合格的人数为6人,不合格的人数为4人,则ξ的可能取值为0,1,2,3,4,求出各自的概率,从而可得ξ的分布列与数学期望;(3)由已知求出=64=18μσ,,从而可得()()6418641846820.6827P Z P Z -<≤+=<≤≈,再利用正态分布的对称性可求得结果【详解】(1)设中位数为x ,则()0.005200.01520600.020.5x ⨯+⨯+-⨯=,解得65x =,所以这60名参赛学生成绩的中位数为65.(2)结合频率分布直方图和分层抽样的方法可知,抽取的10人中合格的人数为()0.010.0220106+⨯⨯=,不合格的人数为1064-=.由题意可知ξ的可能取值为0,1,2,3,4.则()464101014C P C ξ===,()134********C C P C ξ===,()2246410327C C P C ξ===,()31464103435C C C P ξ===,()4441014210C P C ξ===. 所以ξ的分布列为所以ξ的数学期望183415601234142173521035E ξ=⨯+⨯+⨯+⨯+⨯=. (3)由题意可得,()300.005500.015700.02900.012064μ=⨯+⨯+⨯+⨯⨯=,()()()222230640.150640.370640.4σ=-⨯+-⨯+-⨯()290640.2324+-⨯=,则18σ=,由Z 服从正态分布()2,N μσ,得()()6418641846820.6827P Z P Z -<≤+=<≤≈,则()()18210.68270.158652P Z >≈-=,()460.68270.158650.84135P Z >≈+=,所以此次竞赛受到奖励的人数为600.8413550⨯≈.【点睛】此题考查频率分布直方图、分层抽样、离散型随机变量的分布列、正态分布等知识,考查分析问题的能力和计算能力,属于中档题25.(1)532y x =-;(2)线性回归方程是可靠的. 【分析】(1)根据最小二乘法公式,分别将数据代入计算,即可得答案;(2)选取的是4月1日与4月30日的两组数据,即10x =和8x =代入判断即可;【详解】解:(1)由数据得12x =,27y =,3972x y =,23432x =;又31977i i i x y ==∑,321434i i x ==∑;97797254344322b -==-,5271232a =-⨯=-; 所以y 关于x 的线性回归方程为:532y x =-. (2)当10x =时,5103222y =⨯-=,22232-<; 当8x =时,583222y =⨯-=,17162-<, 所得到的线性回归方程是可靠的.【点睛】本题考查最小二乘法求回归直线方程及利用回归方程进行判断拟合效果,考查数据处理能力,求解时注意回归直线必过样本点中心的应用.26.(1)ˆ368yx =-;208人;(2)90. 【分析】(1)由已知表格中的数据求得ˆb与ˆa 的值,则线性回归方程可求,取6x =求得y 值即可;(2)研究生的考试成绩大致符合正态分布(385N ,215),求出(400)P X >,乘以208可得直接录取人数,再求出[385,400]之间的录取人数,则答案可求.【详解】解:(1)()11234535x =++++= ()130601001401701005y =++++= 可求:()25110i i x x =-=∑, 由()()()121360ˆ3610niii n i i x x y y b x x ==--===-∑∑, ˆˆ1003638ay bx =-=-⨯=- ∴y 关于x 的线性回归方程是ˆ368yx =-. 当2020年即6x =时,ˆ3668208y=⨯-=人 即2020年的报考人数大约为208人(2)研究生的考试成绩大致符合正态分布()2385,15N , 则400=385+15,()10.68264000.15872P x ->==, 直接录取人数为2800.158733.0133⨯=≈人[]385,400之间的录取人数为0.68262800.856.8572⨯⨯=≈ 所以2020年该专业录取的大约为33+57=90人【点睛】本题考查线性回归方程的求法,考查正态分布曲线的特点及所表示的意义,考查运算求解能力,属于中档题.。
一、选择题1.工人月工资y (元)与劳动生产率x (千元)变化的回归直线方程为=50+80x ,下列判断不正确的是( )A .劳动生产率为1000元时,工资约为130元B .工人月工资与劳动者生产率具有正相关关系C .劳动生产率提高1000元时,则工资约提高130元D .当月工资为210元时,劳动生产率约为2000元2.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,83.已知变量x ,y 的关系可以用模型kx y ce =拟合,设ln z y =,其变换后得到一组数据下:x 16 17 18 19 z50344131由上表可得线性回归方程4z x a =-+,则( ) A .4-B .4e -C .109D .109e4.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是( )A .华为的全年销量最大B .苹果第二季度的销量大于第三季度的销量C .华为销量最大的是第四季度D .三星销量最小的是第四季度5.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A .48B .60C .64D .726.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .637.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .08158.如图是两组各7名同学体重(单位:kg )数据的茎叶图,设1、2两组数据的平均数依次为1x 和2x ,标准差依次为12s s 、,那么( )(注:标准差222121[()()...()]n s x x x x x x n=-+-++-A .1212,x x s s >>B .1212,x x s s ><C .1212,x x s s <<D .1212,x x s s9.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,810.某校为了提高学生身体素质,决定组建学校足球队,学校为了解报名学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如右图),已知图中从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,则该校报名学生总人数( )A .40B .45C .48D .5011.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位 D .y 平均减少2个单位12.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .11二、填空题13.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高[)120130,,[)130140,,[]140,150三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在[]140,150内的学生中抽取的人数应为________.14.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.15.某市有A 、B 、C 三所学校,各校有高三文科学生分别为650人,500人,350人,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B 校学生中抽取______人. 16.给出下列命题:①若函数()y f x =满足(1)(1)f x f x -=+,则函数()f x 的图象关于直线1x =对称; ②点(2,1)关于直线10x y -+=的对称点为(0,3);③通过回归方程y bx a =+可以估计和观测变量的取值和变化趋势;④正弦函数是奇函数,2()sin(1)f x x =+是正弦函数,所以2()sin(1)f x x =+是奇函数,上述推理错误的原因是大前提不正确. 其中真命题的序号是__________. 17.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________.18.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________.19.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________.20.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.三、解答题21.某大学生利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x 和销售量y 之间的一组数据如表所示:月份i 7 8 9 10 11 12 销售单价i x (元) 9 9.5 10 10.5 11 8.5 销售量i y (元)111086514y x (2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过2件,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多元才能获得最大利润?(注:利润=销售收入-成本). 参考数据:51392i ii x y==∑,521502.5i i x ==∑.参考公式:回归直线方程ˆˆˆybx a =+,其中1221ˆni ii nii x y nx yb xnx ==-=-∑∑,ˆˆay bx =-. 22.我国北方广大农村地区、一些城镇以及部分大中城市的周边区域,还在大量采用分散燃煤和散烧煤取暖,既影响了居民基本生活的改善,也加重了北方地区冬季的雾霾天气.推进北方地区冬季清洁取暖,是重大民生工程、民心工程,关系北方地区广大群众温暖过冬,关系雾霾天能不能减少,是能源生产和消费革命、农村生活方式革命的重要内容.2017年9月国家发改委制定了煤改气、煤改电价格扶植新政策,从而使得煤改气、煤改电用户大幅度增加,下面条形图反映了某省2018年1~7月份煤改气、煤改电的用户数量.(1)在给定坐标系中作出煤改气、煤改电用户数量y 随月份t 变化的散点图,并用散点图和相关系数说明y 与t 之间具有线性相关性;(2)建立y 关于t 的回归方程(系数精确到0.01),预测11月份该省煤改气、煤改电的用户数量.参考数据:7772111y9.24,t39.75,0.53,7 2.646i i ii i iiy=====⋅≈≈∑∑∑(y-y).参考公式:相关系数()()()()()()11112211,ni i n n nii i i i in ni i ii ii it t y yr t t y y t y t yt t y y======⋅--=⋅--=-⋅-⋅-∑∑∑∑∑∑.回归方程ˆy a bt=+中斜率和截距的最小二乘估计公式分别为:()()()121ˆˆˆ,ni iiniit t y yb a y btt t==⋅--==-⋅-∑∑.23.某城市100户居民的月平均用水量(单位:吨),以[0,2)[2,4)[4,6)[6,8)[8,10)[10,12)[12,14)分组的频率分布直方图如图.(1)求直方图中x的值;并估计出月平均用水量的众数.(2)求月平均用水量的中位数及平均数;(3)在月平均用水量为[6,8),[8,10),[10,12),[12,14)的四组用户中,用分层抽样的方法抽取22户居民,则应在[10,12)这一组的用户中抽取多少户?(4)在第(3)问抽取的样本中,从[10,12)[12,14)这两组中再随机抽取2户,深入调查,则所抽取的两户不是来自同一个组的概率是多少?24.学生甲在一次试验中用显微镜观察某种环境下细菌的个数,发现时间x(分钟)时刻的细菌个数为y个,统计结果如下:x12345y23445(Ⅰ)在给出的坐标系中画出x,y的散点图,说明细菌个数和时间是正相关还是负相关.(Ⅱ)根据表格中的5组数据,求y关于x的回归直线方程ˆˆˆy bx a=+,并根据回归直线方程估计从实验开始,什么时刻细菌个数为12.参考公式:(1221ˆˆˆ,ni iiniix y nx yx naxb y bx====---∑∑)25.为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:温度(单位:C︒)212324272932死亡数y(单位:株)61120275777经计算:611266iix x===∑,611336iiy y===∑,()()61557i iix x y y=--=∑,()62184iix x=-=∑,()6213930iiy y=-=∑,()621ˆ236.64iiy y=-=∑,8.0653167e≈,其中ix,iy分别为试验数据中的温度和死亡株数,1,2,3,4,5,6i=.(1)若用线性回归模型,求y关于x的回归方程ˆˆˆy bx a=+(结果精确到0.1);(2)若用非线性回归模型求得y关于x的回归方程0.2303ˆ0.06xy e=,且相关指数为20.9522R =.(i )试与(1)中的回归模型相比,用2R 说明哪种模型的拟合效果更好; (ii )用拟合效果好的模型预测温度为35C ︒时该紫甘薯死亡株数(结果取整数). 附:对于一组数据()11,u v ,()22,u v ,,(),n n u v ,其回归直线ˆˆˆvu αβ=+的斜率和截距的最小二乘估计分别为:()()()121ˆnii i nii uu v v uu β==--=-∑∑,ˆˆav u β=-;相关指数为:()()22121ˆ1ni i i niii v vR v v ==-=--∑∑.26.某学校高一100名学生参加数学竞赛,成绩均在40分到100分之间.学生成绩的频率分布直方图如图:(1)估计这100名学生分数的中位数与平均数;(精确到0.1)(2)某老师抽取了10名学生的分数:12310,,,...,x x x x ,已知这10个分数的平均数90x =,标准差6s =,若剔除其中的100和80两个分数,求剩余8个分数的平均数与标准差.(参考公式:221nii xnx s n=-=∑(3)该学校有3座构造相同教学楼,各教学楼高均为20米,东西长均为60米,南北宽均为20米.其中1号教学楼在2号教学楼的正南且楼距为40米,3号教学楼在2号教学楼的正东且楼距为72米.现有3种型号的考试屏蔽仪,它们的信号覆盖半径依次为35,55,105米,每个售价相应依次为1500,2000,4000元.若屏蔽仪可在地下及地上任意位置安装且每个安装费用均为100元,求让各教学楼均被屏蔽仪信号完全覆盖的最小花费.(参考数据:22221044100,19236864,11012100===)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:根据线性回归方程=50+80x 的意义,对选项中的命题进行分析、判断即可. 解:根据线性回归方程为=50+80x ,得;劳动生产率为1000元时,工资约为50+80×1=130元,A 正确; ∵=80>0,∴工人月工资与劳动者生产率具有正相关关系,B 正确;劳动生产率提高1000元时,工资约提高=80元,C 错误;当月工资为210元时,210=50+80x ,解得x=2, 此时劳动生产率约为2000元,D 正确. 故选C .考点:线性回归方程.2.D解析:D 【分析】根据平均数的性质,方差的性质直接运算可得结果. 【详解】令23(1,2,,5)i i y x i =-=1234555x x x x x x ++++==,1234523232323232310375x x x x x y x -+-+-+-+-∴==-=-=,(也可()(23)2()32537E y E x E x =-=-=⨯-=) ()()()2y 232428D D x D x =-==⨯=故选:D 【点睛】本题主要考查方差及平均值的性质的简单应用,属于中档题.3.D解析:D由已知求得x 与z 的值,代入线性回归方程求得a ,再由kxy ce =,得()kx kx lny ln ce lnc lne lnc kx ==+=+,结合z lny =,得z lnc kx =+,则109lnc =,由此求得c 值.【详解】 解:1617181917.54x +++==,50344131394z +++==. 代入4z x a =-+,得39417.5a =-⨯+,则109a =.∴4109z x =-+,由kx y ce =,得()kx kx lny ln ce lnc lne lnc kx ==+=+, 令z lny =,则z lnc kx =+,109lnc ∴=,则109c e =. 故选:D . 【点睛】本题考查回归方程的求法,考查数学转化思想方法,考查计算能力,属于中档题.4.A解析:A 【分析】根据图象即可看出,华为在每个季度的销量都最大,从而得出华为的全年销量最大,从而得出A 正确;由于不知每个季度的销量多少,从而苹果、华为和三星在哪个季度的销量大或小是没法判断的,从而得出选项B ,C ,D 都错误. 【详解】根据图象可看出,华为在每个季度的销量都最大,所以华为的全年销量最大;每个季度的销量不知道,根据每个季度的百分比是不能比较苹果在第二季度和第三季度销量多少的,同样不能判断华为在哪个季度销量最大,三星在哪个季度销量最小;B ∴,C ,D 都错误,故选A .【点睛】本题主要考查对销量百分比堆积图的理解.5.B解析:B 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=,【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.6.A解析:A 【解析】 【分析】由茎叶图确定所给的所有数据,然后确定中位数即可. 【详解】各数据为:12 20 31 32 34 45 45 45 47 47 48 50 50 61 63, 最中间的数为:45,所以,中位数为45. 本题选择A 选项. 【点睛】本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.7.A解析:A 【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为10002050= 所以抽取的第40个数为1520(401)795+⨯-=选A.点睛:本题考查系统抽样概念,考查基本求解能力.8.C解析:C 【分析】由茎叶图分别计算出两组数的平均数和标准差,然后比较大小 【详解】读取茎叶图得到两组数据分别为: (1)53565758617072,,,,,, (2)54565860617273,,,,,,()()11503678112022617x kg =+⨯++++++=,()()215046810112223627x kg =+⨯++++++=,1s ==,2s == 则1212,x x s s << 故选C 【点睛】本题给出茎叶图,需要求出数据的平均数和方差,着重考查了茎叶图的认识,样本特征数的计算等知识,属于基础题.9.C解析:C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图10.C解析:C 【分析】根据频数关系,求出前三段每段的频数,由直方图求出四五组的频率,进而求出前三组的频率和,从而可求该校报名学生的总人数. 【详解】从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,∴从左到右3个小组的频数分别为6,12,18,共有36人,第4,5小组的频率之和为()0.03750.012550.25+⨯=, 则前3小组的频率之和为10.250.75-=, 则该校报名学生的总人数为360.7548÷=,故选C. 【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积相等处横坐标表示中位数.11.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C. 【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.12.D解析:D 【解析】分析:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;;依此规律求解即可.详解::∵一组数据12,,,n x x x 的平均数为3, ∴另一组数据1232,32,,32n x x x +++的平均数121211323232[32]33211n n x x x x x x n n n=++++⋯++=++⋯++=⨯+=()(), 故选D.点睛:本题考查了平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.二、填空题13.3【分析】先由频率之和等于1得出的值计算身高在的频率之比根据比例得出身高在内的学生中抽取的人数【详解】身高在的频率之比为所以从身高在内的学生中抽取的人数应为故答案为:【点睛】本题主要考查了根据频率分解析:3 【分析】先由频率之和等于1得出a 的值,计算身高在[)120,130,[)130,140,[]140,150的频率之比,根据比例得出身高在[]140,150内的学生中抽取的人数. 【详解】(0.0050.010.020.035)101a ++++⨯=0.03a ∴=身高在[)120,130,[)130,140,[]140,150的频率之比为0.03:0.02:0.013:2:1= 所以从身高在[]140,150内的学生中抽取的人数应为11836⨯= 故答案为:3 【点睛】本题主要考查了根据频率分布直方图求参数的值以及分层抽样计算各层总数,属于中档题.14.3【分析】根据频率分布直方图求得不小于40岁的人的频率及人数再利用分层抽样的方法即可求解得到答案【详解】根据频率分布直方图得样本中不小于40岁的人的频率是0015×10+0005×10=02所以不小解析:3 【分析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案. 【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2, 所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人, 在[50,60)年龄段抽取的人数为0.0051010012320⨯⨯⨯=.【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.15.40【分析】设应从B 校抽取n 人利用分层抽样的性质列出方程组能求出结果【详解】设应从B 校抽取n 人某市有ABC 三所学校各校有高三文科学生分别为650人500人350人在三月进行全市联考后准备用分层抽样的解析:40 【分析】设应从B 校抽取n 人,利用分层抽样的性质列出方程组,能求出结果. 【详解】设应从B 校抽取n 人,某市有A 、B 、C 三所学校,各校有高三文科学生分别为650人,500人,350人, 在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,120n650500350500∴=++,解得n 40=.故答案为40. 【点睛】本题考查应从B 校学生中抽取人数的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题.16.②③【解析】分析:根据函数的周期性可判断①;根据垂直平分线的几何特征可判断②;根据回归直线的实际意义可判断③;根据演绎推理及正弦函数的定义可判断④详解:①若函数满足则函数是周期为2的周期函数但不一定解析:②③ 【解析】分析:根据函数的周期性,可判断① ;根据垂直平分线的几何特征,可判断②;根据回归直线的实际意义,可判断③;根据演绎推理及正弦函数的定义,可判断④.详解:①若函数()y f x =满足()()11f x f x -=+,则函数()f x 是周期为2的周期函数,但不一定具有对称性,①错误;②点()()2,1?0,3确定直线的斜率为1-,与直线 10x y -+=垂直,且中点()1,2在直线10x y -+=上,故点()()2,1?0,3关于直线10x y -+=的对称,②正确; ③通过回归方程ˆˆˆy bx a =+可以估计和观测变量的取值和变化趋势,③正确;④正弦函数是奇函数,()()2sin 1f x x =+是正弦函数,所以()()2sin 1f x x =+是奇函数,上述推理错误的原因是小前提不正确,④错误,故答案为②③.点睛:本题主要通过对多个命题真假的判断,主要综合考查函数的周期性、点关于直线对称、以及回归分析与“三段论”,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.17.②④⑤【解析】分析:根据方程性质回归方程性质及其含义卡方含义确定命题真假详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时则平均减少5个单位;曲线上的点与该点的坐解析:②④⑤ 【解析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假. 详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程ˆ35yx =-中若变量x 增加一个单位时,则y 平均减少5个单位; 曲线上的点与该点的坐标之间不一定具有相关关系;在一个22⨯列联表中,由计算得213.079K =,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.18.1【解析】分析:根据平均数与对应概率乘积的和得总平均数计算结果详解:点睛:本题考查平均数考查基本求解能力解析:1 【解析】分析:根据平均数与对应概率乘积的和得总平均数,计算结果.详解:7245%74(145%)72.1⨯+⨯-=. 点睛:本题考查平均数,考查基本求解能力.19.12【解析】分析:由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率即可求出第三组中有疗效的人数得到答案详解:由直方图可得分布在区间第一组和第二组共有20人分布唉区间第一组与第二组的频率解析:12 【解析】 分析:由频率=频数样本容量,以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案.详解:由直方图可得分布在区间第一组和第二组共有20人,分布唉区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人第三组的频率为0.36,所以第三组的人数为18人,第三组中没有疗效的有6人,第三组由疗效的有12人.点睛:1、用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法,分布表在数量表示上比较准确,直方图比较直观.2、频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.20.35【解析】79+78+80+80+x+85+92+967=85解得x=5根据中位数为83可知y=3故yx=35 解析:【解析】,解得,根据中位数为,可知,故.三、解答题21.(1) 3.240ˆyx =-+;(2)可以认为所得的回归直线方程是理想的;(3)该产品的销售单价为7.5元/件时,获得的利润最大. 【分析】(1)计算x 、y ,求出回归系数,写出回归直线方程;(2)根据回归直线方程,计算对应的数值,判断回归直线方程是否理想; (3)求销售利润函数W ,根据二次函数的图象与性质求最大值即可. 【详解】 (1)因为1(99.51010.511)105x =++++=,1(1110865)85y =++++=,所以23925108ˆ 3.2502.5510b -⨯⨯==--⨯,则8( 3.2)00ˆ14a =--⨯=, ∴y 关于x 的回归直线方程为 3.240ˆyx =-+ (2)剩余数据为12月份,此时8.5x =,14y =,现进行检测,当8.5x =时,ˆ 3.28.54012.8y=-⨯+=,则ˆ||12.814 1.22y y -=-=<,所以可以认为所得的回归直线方程是理想的. (3)令销售利润为W ,则22( 2.5)( 3.240) 3.248100 3.2(7.5)80W x x x x x =--+=-+-=--+.∴当7.5x =时,W 取最大值.所以该产品的销售单价为7.5元/件时,获得的利润最大. 【点睛】函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系,如果线性相关,则直接根据用公式求,a b ,写出回归方程,回归直线方程恒过点(,)x y .22.(1)散点图见解析,y 与t 的线性相关性相当高,理由见解析;(2)0.920.1011 2.02y =+⨯=,2.02万户.【分析】(1)根据表格中对应的t 与y 的关系,描绘散点图,并根据参考数据求r ,说明相关性;(2)根据参考数据求ˆb和ˆa ,求回归直线方程,并令11t =,求y 的预测值.【详解】(1)作出散点图如图所示:由条形图数据和参考数据得()()7722114,0.53iii i t t t y y ===⋅-=⋅-≈∑∑,()()77711139.7549.24 2.79ii i i i i i i tty y t y t y ===⋅--=-=-⨯=∑∑∑,2.790.990.532 2.646r ≈≈⨯⨯.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关性相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由9.24 1.327y ==及(1)得()()()717212.79ˆ0.1028iii i i t t y y b t t==⋅--==≈⋅-∑∑, ˆˆ 1.320.1040.92ay bt =-≈-⨯=,所以,y 关于t 的回归方程为:0.920.10y t =+. 将11t=代入回归方程得:0.920.1011 2.02y =+⨯=,所以预测11月份该省煤改气、煤改电的用户数量达到2.02万户. 【点睛】关键点点睛:本题考查回归直线方程,此类问题的关键是根据参考数据和公式相结合,求ˆb和ˆa ,一般计算量较大,需计算严谨,准确. 23.(1) x =0.075,7;(2) 6.4,5.36;(3) 2;(4)23. 【分析】(1)根据频率和为1,列方程求出x 的值;(2)根据频率分布直方图中,每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值,由最高矩形的数据组中点为众数;中位数两边的频率相等,由此求出中位数;(3)求出抽取比例数,计算应抽取的户数; (4)利用列举法,由古典概型概率公式可得结果. 【详解】(1)根据频率和为1,得2×(0.02+0.095+0.11+0.125+x +0.05+0.025)=1, 解得x =0.075;由图可知,最高矩形的数据组为[6,8),所以众数为()16872+=; (2) [2,6)内的频率之和为 (0.02+0.095+0.11)×2=0.45;设中位数为y ,则0.45+(y −6)×0.125=0.5, 解得y =6.4,∴中位数为6.4;平均数为()210.0230.09550.1170.12590.075110.025 5.36⨯+⨯+⨯+⨯+⨯+⨯= (3)月平均用电量为[10,12)的用户在四组用户中所占的比例为0.0520.1250.0750.050.02511=+++,∴月平均用电量在[10,12)的用户中应抽取11×211=2(户). (4)月平均用电量在[12,14)的用户中应抽取11×111=1(户), 月平均用电量在[10,12)的用户设为A 、B , 月平均用电量在[12,14)的用户设为C ,从[10,12),[12,14)这两组中随机抽取2户共有 ,,AB AC BC ,3种情况, 其中,抽取的两户不是来自同一个组的有,,AC BC ,2种情况, 所以,抽取的两户不是来自同一个组的概率为23. 【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(4)直方图左右两边面积相等处横坐标表示中位数.24.(Ⅰ)图象见解析,正相关;(Ⅱ)ˆ0.7 1.5yx =+,当15x =时细菌个数为12个. 【分析】(Ⅰ)根据数据描点即得散点图,看图即判断结果; (Ⅱ)利用公式代入数据计算即可. 【详解】解:(Ⅰ)图形如下,观察图像可知细菌个数和时间是正相关.(Ⅱ)由数据计算得,()11234535x =⨯++++=,()123445 3.65y =⨯++++=,1122334445561ni ii x y==⨯+⨯+⨯+⨯+⨯=∑,22222211234555n i i x ==++++=∑。
一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆy bx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是( )A .成绩B .视力C .智商D .阅读量3.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,84.将某选手的7个得分去掉1个最高分,去掉1个最低分,5个剩余分数的平均分为21,现场作的7个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则5个剩余分数的方差为( )A .1167B .365C .36D .675.有线性相关关系的变量有观测数据,已知它们之间的线性回归方程是,若,则( ) A .B .C .D .6.一组数据中的每一个数据都乘2,再减去80,得到一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是 A .81.2,4.4 B .40.6,1.1 C .48.8,4.4D .78.8,1.17.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为 A .y = x-1B .y = x+1C .y =88+12x D .y = 1768.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 2 3 4 5 销售额y (万元)25374454根据上表可得回归方程ˆˆˆy bx a =+中的ˆb为9.4,据此模型预报广告费用为6万元时销售额为( ) A .61.5万元 B .62.5万元C .63.5万元D .65.0万元9.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .9110.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表: 时间周一 周二 周三周四 周五 车流量x (万辆) 100 102 108 114 116 浓度y (微克)7880848890根据上表数据,用最小二乘法求出y 与x 的线性回归方程是( )参考公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y b x =-⋅;参考数据:108x =,84y =;A .0.6274ˆ.2yx =+ B .0.7264ˆ.2y x =+ C .0.7164ˆ.1y x =+ D .0.6264ˆ.2y x =+ 11.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位 D .y 平均减少2个单位12.从存放号码分别为1,2,⋯,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是( ) A .0.53B .0.5C .0.47D .0.37二、填空题13.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位: cm ),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有_______株树木的底部周长大于110cm .14.已知一组数1,2,m ,6,7的平均数为4,则这组数的方差为______.15.数列{}n a 是公差不为零的等差数列,其前n 项和为n S ,若记数据1a ,2a ,3a ,⋅⋅⋅,2019a 的标准差为1σ,数据11S ,22S ,33S ,⋅⋅⋅,20192019S 的标准差为2σ,则12σσ=________ 16.一个车间为了规定工作原理,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下: 零件数x (个) 15 20 30 40 50 加工时间y (分钟)6570758090由表中数据,求得线性回归方程0.66y x a =+,则估计加工70个零件时间为__________分钟(精确到0.1). 17.已知x ,y 的取值如下表: x 2 3 4 5 y2.23.85.56.5从散点图分析,y 与x 线性相关,且回归方程为y =1.46x +a ,则实数a 的值为________.18.数据1x ,2x ,…,n x 的平均数是3,方差是1,则数据15x -,25x -,…,5n x -的平均数和方差之和是__________.19.某超市统计了一个月内每天光顾的顾客人数,得到如图所示的频率分布直方图,根据该图估计该组数据的中位数为__________.20.已知某市A 社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.三、解答题21.某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:(1)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠? 附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()1122211nniii i i i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.22.假设关于某设备的使用年限x 和所支出的维修费用y (万元),有如下的统计资料:若由资料可知y 对x 呈线性相关关系,试求: (1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?(参考:1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-)23.经销商小王对其所经营的某一型号二手汽车的使用年数(010)x x <≤与销售价格y (单位:万元/辆)进行整理,得到如下的对应数据:售价 1613 9.5 7 4.5(1)试求y 关于x 的回归直线方程;(2)已知每辆该型号汽车的收购价格为20.05 1.7517.2=-+w x x 万元,根据(1)中所求的回归方程,预测x 为何值时,小王销售一辆该型号汽车所获得的利润z 最大.附:回归方程ˆybx a =+中,1221ˆˆˆˆ,ni ii nii x ynx y b ay bx xnx -=-==--∑∑ 24.学生甲在一次试验中用显微镜观察某种环境下细菌的个数,发现时间x (分钟)时刻的细菌个数为y 个,统计结果如下:x 1 2 3 4 5 y23445(Ⅰ)在给出的坐标系中画出x ,y 的散点图,说明细菌个数和时间是正相关还是负相关.(Ⅱ)根据表格中的5组数据,求y 关于x 的回归直线方程ˆˆˆy bx a =+,并根据回归直线方程估计从实验开始,什么时刻细菌个数为12.参考公式:(1221ˆˆˆ,ni ii ni i x y nx yx n axby bx ====---∑∑) 25.某市举办了一次“诗词大赛”,分预赛和复赛两个环节,已知共有20000名学生参加了预赛,现从参加预赛的全体学生中随机地抽取100人的预赛成绩作为样本,得到如下的统计数据. 得分(百分[0,20)[20,40)[40,60)[60,80)[80,100]地抽取2人,求恰有1人预赛成绩优良的概率;(2)由样本数据分析可知,该市全体参加预赛学生的预赛成绩Z 服从正态分布()2,N μσ,其中μ可近似为样本中的100名学生预赛成绩的平均值(同一组数据用该组数据的中间值代替),且2361σ=.利用该正态分布,估计全市参加预赛的全体学生中预赛成绩不低于72分的人数;(3)预赛成绩不低于91分的学生将参加复赛,复赛规则如下: ①参加复赛的学生的初始分都设置为100分;②参加复赛的学生可在答题前自己决定答题数量n ,每一题都需要“花”掉一定分数来获取答题资格(即用分数来买答题资格),规定答第k 题时“花”掉的分数为()0.21,2,k k n =; ③每答对一题得2分,答错得0分;④答完n 题后参加复赛学生的最终分数即为复赛成绩.已知学生甲答对每道题的概率均为0.75,且每题答对与否都相互独立,则当他的答题数量n 为多少时,他的复赛成绩的期望值最大?参考数据:若()2~,Z N μσ,则() 6.827P Z μσμσ-<<+≈,()220.9545P Z μσμσ-<<+≈,()330.9973P Z μσμσ-<<+≈26.某校的一个社会实践调查小组,在对该校学生的良好“用眼习惯”的调查中,随机发放了120分问卷.对收回的100份有效问卷进行统计,得到如22⨯下列联表:(1)现按女生是否能做到科学用眼进行分层,从45份女生问卷中抽取了6份问卷,从这6份问卷中再随机抽取3份,并记其中能做到科学用眼的问卷的份数X ,试求随机变量X 的分布列和数学期望;(2)若在犯错误的概率不超过P 的前提下认为良好“用眼习惯”与性别有关,那么根据临界值表,最精确的P 的值应为多少?请说明理由.附:独立性检验统计量22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.独立性检验临界值表:【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由已知求得 x , y ,进一步求得 a ,得到线性回归方程,取16x =求得y 值即可. 【详解】8.38.69.911.1512.1 10x +++=+=, 5.97.88.18.49.858y ++++==.又 0.78b =,∴ 80.78100.2a y bx --⨯===. ∴ 0.780.2y x =+.取16x =,得 0.78160.212.68y ⨯+==万元,故选A . 【点睛】本题主要考查线性回归方程的求法,考查了学生的计算能力,属于中档题.2.D解析:D 【解析】试题分析:由表中数据可得 表1:()25262210140.00916362032K ⨯⨯-⨯=≈⨯⨯⨯;表2: ()2524201216 1.76916362032K ⨯⨯-⨯=≈⨯⨯⨯;表3: ()252824128 1.316362032K ⨯⨯-⨯=≈⨯⨯⨯;表4: ()25214302623.4816362032K ⨯⨯-⨯=≈⨯⨯⨯.其中23.48最大,所以阅读量与性别有关联的可能性最大.故D 正确. 考点:独立性检验.3.D解析:D 【分析】根据平均数的性质,方差的性质直接运算可得结果. 【详解】令23(1,2,,5)i i y x i =-=1234555x x x x x x ++++==,1234523232323232310375x x x x x y x -+-+-+-+-∴==-=-=,(也可()(23)2()32537E y E x E x =-=-=⨯-=)()()()2y 232428D D x D x =-==⨯=故选:D 【点睛】本题主要考查方差及平均值的性质的简单应用,属于中档题.4.B解析:B 【分析】由剩余5个分数的平均数为21,据茎叶图列方程求出x =4,由此能求出5个剩余分数的方差. 【详解】∵将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为21, ∴由茎叶图得:1724202020215x+++++=得x =4,∴5个分数的方差为: S 2=()()()()()222221361721242120212021242155⎡⎤-+-+-+-+-=⎣⎦ 故选B 【点睛】本题考查方差的求法,考查平均数、方差、茎叶图基础知识,考查运算求解能力,考查数形结合思想,是基础题.5.D解析:D 【解析】 【分析】 先计算,代入回归直线方程,可得,从而可求得结果.【详解】 因为,所以,代入回归直线方程可求得,所以,故选D. 【点睛】该题考查的是有关回归直线的问题,涉及到的知识点有回归直线一定会过样本中心点,利用相关公式求得结果,属于简单题目.6.B解析:B 【分析】先设出原来的数据,然后设出现在的数据,找到两组数据的联系,即可. 【详解】设原来的数据为12,,....,n x x x ,每一个数据都乘以2,再减去80,得到新数据为 12280,280,...,280n x x x --- 已知()122...80 1.2n x x x nn+++-=,则81.240.62X == 方差为:224 4.4, 1.1σσ==,故选B . 【点睛】本道题目考查的是平均数和方差之间的关系,列出等式,探寻两组数据的联系,即可.7.C解析:C 【详解】试题分析:由已知可得176,176x y ==∴中心点为()176,176, 代入回归方程验证可知,只有方程y =88+12x 成立,故选C 8.C解析:C 【分析】先求出所给数据的平均数,得到样本中心点,根据回归直线经过样本中心点,求出ˆa,得到线性回归方程,把6x =代入即可求出答案. 【详解】 由题意知4235 3.54x +++==,44253754404y +++==, 则40ˆˆ9.4 3.57.1a y bx=-=-⨯=, 所以回归方程为9.4.1ˆ7yx =+, 则广告费用为6万元时销售额为9.467.163.5⨯+=, 故答案为C. 【点睛】本题考查了线性回归方程的求法与应用,属于基础题.9.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.10.B解析:B 【解析】 【分析】利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果. 【详解】 由题意,b=22222210078102801088411488116905108841001021081141165108⨯+⨯+⨯+⨯+⨯-⨯⨯++++-⨯=0.72,a=84﹣0.72×108=6.24, ∴y =0.72x+6.24, 故选:B . 【点睛】本题主要考查线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算211,,,nnii i i i x y x x y ==∑∑的值;③计算回归系数ˆˆ,ab ;④写出回归直线方程为ˆˆˆy bx a =+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.11.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位,即减少1.5个单位,故选C.【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目. 12.A解析:A【解析】分析:由题意结合统计表确定频数,然后确定频率即可.详解:由题意可知,取到卡片为奇数的频数为:1356181153++++=,取卡片的次数为100次,则取到号码为奇数的频率是530.53 100=.本题选择A选项.点睛:本题主要考查频率的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.18【分析】根据频率小矩形的面积小矩形的高组距底部求出周长大于110的频率再根据频数样本容量频率求出对应的频数【详解】由频率分布直方图知:底部周长大于110的频率为所以底部周长大于110的频数为(株解析:18【分析】根据频率=小矩形的面积=小矩形的高⨯组距底部,求出周长大于110cm的频率,再根据频数=样本容量⨯频率求出对应的频数.【详解】由频率分布直方图知:底部周长大于110cm的频率为(0.0200.010)100.3+⨯=,所以底部周长大于110cm的频数为600.318⨯=(株),故答案是:18.【点睛】该题考查的是有关频率分布直方图的应用,在解题的过程中,注意小矩形的面积表示的是对应范围内的频率,属于简单题目.14.【分析】先根据平均数计算出的值再根据方差的计算公式计算出这组数的方差【详解】依题意所以方差为故答案为【点睛】本小题主要考查平均数和方差的有关计算考查运算求解能力属于基础题解析:26 5【分析】先根据平均数计算出m的值,再根据方差的计算公式计算出这组数的方差.【详解】依题意12674,45m m ++++==.所以方差为()()()()()22222114244464745⎡⎤-+-+-+-+-⎣⎦[]126944955=+++=. 故答案为265. 【点睛】本小题主要考查平均数和方差的有关计算,考查运算求解能力,属于基础题.15.2【分析】根据等差数列性质分析两组数据之间关系再根据数据变化规律确定对应标准差变化规律即得结果【详解】因为数列是公差不为零的等差数列其前项和为所以因此即故答案为:2【点睛】本题考查等差数列和项性质以解析:2 【分析】根据等差数列性质分析两组数据之间关系,再根据数据变化规律确定对应标准差变化规律,即得结果. 【详解】因为数列{}n a 是公差不为零的等差数列,其前n 项和为n S ,所以111=+222n n n a a a a n S +=, 因此2112σσ=,即122σσ=故答案为:2 【点睛】本题考查等差数列和项性质以及数据变化对标准差的影响规律,考查综合分析求解能力,属中档题.16.7【解析】【分析】结合题意先求出线性回归方程然后再计算出结果【详解】由题意可得则线性回归方程为当时【点睛】本题考查了求线性回归方程然后求出估计结果需要掌握解题方法较为基础解析:7 【解析】 【分析】结合题意先求出线性回归方程,然后再计算出结果 【详解】 由题意可得1520304050315x ++++==6570758090765y ++++==,760.6631a ∴=⨯+,55.54a =,则线性回归方程为0.66 5.4ˆ55y x =+ 当70x =时,ˆ101.7y≈ 【点睛】本题考查了求线性回归方程,然后求出估计结果,需要掌握解题方法,较为基础17.—061【分析】根据所给条件求出把样本中心点代入回归直线方程可以得到关于的方程解出即可得到答案【详解】根据题意可得则这组数据的样本中心点是代入到回归直线方程故答案为【点睛】本题考查了线性回归方程解题解析:—0.61 【分析】根据所给条件求出x ,y ,把样本中心点()x y ,代入回归直线方程 1.4ˆ6ˆyx a +=,可以得到关于ˆa的方程,解出即可得到答案 【详解】 根据题意可得23453.54x +++== 2.2 3.8 5.5 6.54.54y +++==则这组数据的样本中心点是()3.54.5,代入到回归直线方程 1.4ˆ6ˆyx a += 4.5 1.46 3.ˆ5a∴⨯+= ˆ0.61a=- 故答案为0.61- 【点睛】本题考查了线性回归方程,解题的关键是线性回归方程一定过样本中心点,这是求解线性回归方程的步骤之一,是线性回归方程考查的常见题型,体现了回归直线方程与样本中心点的关联.18.3【解析】分析:由题意结合平均数方差的性质整理计算即可求得最终结果详解:由题意结合平均数和方差的性质可知:数据…的平均数为:方差为:则平均数和方差之和是点睛:本题主要考查均值的性质方差的性质等知识意解析:3 【解析】分析:由题意结合平均数、方差的性质整理计算即可求得最终结果. 详解:由题意结合平均数和方差的性质可知:数据15x -,25x -,…,5n x -的平均数为:532-=,方差为:()2111-⨯=, 则平均数和方差之和是213+=.点睛:本题主要考查均值的性质、方差的性质等知识,意在考查学生的转化能力和计算求解能力.19.75【解析】分析:由频率分布直方图算出各频率然后计算中位数详解:由图可知的频率为的频率为的频率为的频率为的频率为前两组频率前三组频率中位数在第三组设中位数为则解得故该组数据的中位数为点睛:本题考查了解析:75. 【解析】分析:由频率分布直方图算出各频率,然后计算中位数 详解:由图可知,10~20的频率为0.1420~30的频率为0.2430~40的频率为0.32 40~50的频率为0.2 50~60的频率为0.1前两组频率0.140.240.380.5=+=< 前三组频率0.140.240.320.70.5=++=>∴中位数在第三组设中位数为x ,则()300.380.320.510x -+⨯=解得33.75x =故该组数据的中位数为33.75点睛:本题考查了在频率分布直方图中求中位数,此类题目需要先确定中位数所在的组,然后根据公式计算求得结果,较为基础.20.【解析】根据题意可得抽样比为则这次抽样调查抽取的人数是即答案为140 解析:140【解析】根据题意可得抽样比为501,75015= 则这次抽样调查抽取的人数是()114507509002100140,1515++=⨯= 即答案为140.三、解答题21.(1)532y x =-;(2)线性回归方程是可靠的. 【分析】(1)根据最小二乘法公式,分别将数据代入计算,即可得答案;(2)选取的是4月1日与4月30日的两组数据,即10x =和8x =代入判断即可; 【详解】解:(1)由数据得12x =,27y =,3972xy =,23432x =; 又31977i i i x y ==∑,321434i i x ==∑;97797254344322b -==-,5271232a =-⨯=-;所以y 关于x 的线性回归方程为:532y x =-. (2)当10x =时,5103222y =⨯-=,22232-<; 当8x =时,583222y =⨯-=,17162-<, 所得到的线性回归方程是可靠的. 【点睛】本题考查最小二乘法求回归直线方程及利用回归方程进行判断拟合效果,考查数据处理能力,求解时注意回归直线必过样本点中心的应用.22.(1) 1.2308ˆ.0yx =+;(2)12.38万元.. 【分析】(1)由已知表格中的数据,易计算出变量x ,y 的平均数,及2i x ,i i x y 的累加值,代入回归直线系数公式1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-,即可求出回归直线的系数,进而求出回归直线方程.(2)把使用年限10代入回归直线方程,即可估算出维修费用的值. 【详解】 (1)4x =,5y=,52190i i x==∑,51112.3i i i x y ==∑,12215 1.235ni ii nii x yxyb xx ==-==-∑∑,0.08a y bx =-=, 所以回归直线方程为 1.2308ˆ.0yx =+; (2) 1.23100.0812.3ˆ8y=⨯+=, 即估计用10年时维修费约为12.38万元. 【点评】本题考查回归直线的方程求解,关键是要求出回归直线方程的系数,由已知的变量x ,y 的值,我们计算出变量x ,y 的平均数,及2i x ,i i x y 的累加值,代入回归直线系数公式1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-,即可求出回归直线的系数,进而求出回归直线方程.属于中等题.23.(1) 1.4518.7y x =-+;(2)3 【分析】(1)由表中数据计算x 、y ,求出ˆb、ˆa ,即可写出回归直线方程; (2)写出利润函数z y w =-,利用二次函数的图象与性质求出3x =时z 取得最大值. 【详解】解:(1)由表中数据得,1(246810)65x =⨯++++=,1(16139.57 4.5)105y =⨯++++=, 由最小二乘法求得:22222221641369.58710 4.5561058ˆ 1.452468105640b⨯+⨯+⨯+⨯+⨯-⨯⨯-===-++++-⨯, ˆ10( 1.45)618.7a=--⨯=, 所以y 关于x 的回归直线方程为 1.4518.7y x =-+; (2)根据题意,利润函数为:22(1.4518.7)(0.05 1.7517.2)0.050.3 1.5z y w x x x x x =-=-+--+=-++,所以,当0.332(0.05)x =-=⨯-时,二次函数z 取得最大值为1.95;即预测3x =时,小王销售一辆该型号汽车所获得的利润z 最大. 【点睛】本题考查了回归直线方程的求法,以及二次函数的图象与性质的应用,考查计算能力.24.(Ⅰ)图象见解析,正相关;(Ⅱ)ˆ0.7 1.5yx =+,当15x =时细菌个数为12个. 【分析】(Ⅰ)根据数据描点即得散点图,看图即判断结果; (Ⅱ)利用公式代入数据计算即可. 【详解】解:(Ⅰ)图形如下,观察图像可知细菌个数和时间是正相关.(Ⅱ)由数据计算得,()11234535x =⨯++++=,()123445 3.65y =⨯++++=,1122334445561ni ii x y==⨯+⨯+⨯+⨯+⨯=∑,22222211234555n i i x ==++++=∑122216153 3.67ˆ0.7555310ni ii ni i x y nx yxbx n ==-⨯⨯====-⨯--∑∑,ˆˆ 3.60.73 1.5a y bx =-=-⨯=, 所以ˆ0.7 1.5yx =+, 当0.7 1.512x +=时,解得15x =. 所以当15x =时细菌个数为12个. 【点睛】本题考查了散点图、线性回归方程及其应用,属于基础题. 25.(1)2552;(2)3173;(3)当他的答题数量7n =时,他的复赛成绩的期望值最大. 【分析】(1)由表可知,样本中成绩不低于60分的学生共有40人,其中成绩优良的人数为15人,再结合排列组合与古典概型即可得解;(2)先求出样本中的100名学生预赛成绩的平均值,即为μ,从而推出~(53Z N ,219),再根据正态分布的性质即可得解;(3)以随机变量ξ表示甲答对的题数,则~B ξ(,0.75)n ,记甲答完n 题所得的分数为随机变量X ,则2X ξ=,为了获取答n 道题的资格,甲需要“花”掉的分数为20.1()n n +,设甲答完n 题后的复赛成绩的期望值为()f n ,则2()1000.1()()f n n n E X =-++,最后利用配方法即可得解. 【详解】解:(1)由题意得样本中成绩不低于60分的学生共有40分,其中成绩优良的人数为15人,记“从样本中预赛成绩不低于60分的学生中随机地抽取2人,恰有1人预赛成绩优良”为事件A ,则()1125152402552C C P A C == 答:“从样本中预赛成绩不低于60分的学生中随机地抽取2人,恰有1人预赛成绩优良”的概率为2552(2)由题意知样本中的100名学生预赛成绩的平均值为:100.1300.2500.3700.25900.1533x =⨯+⨯+⨯+⨯+⨯=,则53μ=,由2361σ=得19σ=, 所以()()()()17210.158652P Z P Z P Z μσμσμσ≥=≥+=--<≤+≈, 所以,估计全市参加参赛的全体学生中,成绩不低于72分的人数为20000×0.15865=3173,即全市参赛学生中预赛成绩不低于72分的人数为3173.(3)以随机变量ξ表示甲答对的题数,则()~,0.75B n ξ,且()0.75E n ξ=, 记甲答完n 题所加的分数为随机变量X ,则2X ξ=,∴()()2 1.5E X E n ξ==, 依题意为了获取答n 道题的资格,甲需要“花”掉的分数为:()()20.2123...0.1n n n ⨯++++=+,设甲答完n 题后的复赛成绩的期望值为()f n ,则()()()221000.1 1.50.17104.9f n n n n n =-++=--+,由于*n N ∈,所以当7n =时,()f n 取最大值104.9. 即当他的答题数量7n =时,他的复赛成绩的期望值最大. 【点睛】本题考查古典概型、正态分布的性质、二项分布的性质及数学期望的实际应用,考查学生对数据的分析与处理能力,属于中档题.26.(1)分布列见解析,1;(2)0.10=P ,理由见解析. 【分析】(1)按照分层抽样计算“科学用眼”和“不科学用眼”的抽取人数,随机变量X 的取值可能为0,1,2,然后计算概率得出分布列及其数学期望; (2)按照公式计算2K 的值,然后由临界值表得出结果即可. 【详解】(1)“科学用眼”抽156245⨯=人,“不科学用眼”抽306445⨯=人,则随机变量X0=,1,2,∴343641 (0)205====CP XC,122436123(1)205C CP XC====,21243641(2)205C CP XC====,分布列为:0120121555EX=⨯+⨯+⨯=;(2)22100(45153010)3.03075255545⨯-⨯=≈⨯⨯⨯K,由表可知2.706 3.030 3.840<<,∴0.10=P.【点睛】本题考查随机变量的分布列和数学期望,考查独立性检验,考查逻辑思维能力和计算能力,考查学生分析解决问题的能力,属于常考题.。
一、选择题1.某商场为了了解毛衣的月销售量y(件)与月平均气温x(C︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:︒171382月平均气温x C月销售量y(件)24334055由表中数据算出线性回归方程y bx a=+中的2b=-,气象部门预测下个月的平均气温为6C︒,据此估计该商场下个月毛衣销售量约为()A.58件B.40件C.38件D.46件2.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A.中位数为83 B.众数为85 C.平均数为85 D.方差为193.某校举行演讲比赛,9位评委给选手A打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若统计员计算无误,则数字x应该是()A.5 B.4 C.3 D.24.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为()A .48B .60C .64D .725.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .816.在一次53.5公里的自行车个人赛中,25名参赛选手的成绩(单位:分钟)的茎叶图如图所示,现将参赛选手按成绩由好到差编为125-号,再用系统抽样方法从中选取5人,已知选手甲的成绩为85分钟,若甲被选取,则被选取的其余4名选手的成绩的平均数为()A .95B .96C .97D .987.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .08158.①45化为二进制数为(2)101101;②一个总体含有1000个个体(编号为0000,0001,…,0999),采用系统抽样从中抽取一个容量为50的样本,若第一个抽取的编号为0008,则第六个编号为0128; ③已知a ,b ,c 为ABC ∆三个内角A ,B ,C 的对边,其中3a =,4c =,6A π=,则这样的三角形有两个解.以上说法正确的个数是( ) A .0B .1C .2D .39.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为310.某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 2 3 4 5 销售额y (万元)25374454根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .61.5万元B .62.5万元C .63.5万元D .65.0万元11.在学校组织的考试中,45名学生的数学成绩的茎叶图如图所示,若将学生按成绩由低到高编为1-45号,再用系统抽样方法从中抽取9人,则其中成绩在区间[120,135]上的学生人数是( )A .4B .5C .6D .712.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响.对近8年的年宣传费i x 和年销售量()1,2,...8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值.有下列5个曲线类型:①ˆˆy bxa =+;②y x d =+;③ln y p q x =+;④21k xy k e =+;⑤212y c x c =+,则较适宜作为年销售量y 关于年宣传费x 的回归方程的是( ) A .①②B .②③C .②④D .③⑤二、填空题13.一组数据由小到大依次为2,4,5,7,,,12,13,14,15a b ,且平均数为9,则49a b+的最小值为________.14.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.15.某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差2s=___________________.16.对具有线性相关关系的变量x,y,有一组观察数据(,)(1,2,9)i ix y i=⋅⋅⋅,其回归直线方程是:2y x a=+,且919 iix ==∑,9118 iiy ==∑,则实数a的值是__________.17.已知一组数据:5.7,5.8,6.1,6.4,6.5,则该数据的方差是__________.18.已知某市A社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.19.目前北方空气污染越来越严重,某大学组织学生参加环保知识竞赛,从参加学生中抽取40名,将其成绩(均为整数)整理后画出的频率分布直方图如图,若从成绩是80分以上(包括80分)的学生中选两人,则他们在同一分数段的概率为_______.20.某种产品的广告费支出x与销售额y之间有如下对应数据(单位:百万元),根据下表求出y关于x的线性回归方程为 6.517.5y x=+,x24568y304057a69则表中a的值为__________.三、解答题21.某市政府针对全市10所由市财政投资建设的企业进行了满意度测评,得到数据如下表:企业a b c d e f g h i j满意度x(%)21332420252124232512投资额y(万元)79868978767265625944(1)求投资额y 关于满意度x 的相关系数(精确到0.01);(2)约定:投资额y 关于满意度x 的相关系数r 的绝对值在0.7以上(含0.7)是线性相关性较强,否则,线性相关性较弱.如果没有达到较强线性相关,则根据满意度“末位淘汰”规定,关闭满意度最低的那一所企业,求关闭此企业后投资额y 关于满意度x 的线性回归方程(精确到0.1).参考数据:22.8x =,71y =,1022110248i i x x =-≈∑,643.7,10110406i i i x y x y =-=∑,222851984=,2287116188⨯=.附:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线ˆˆˆybx a =+的斜率和截距的最小二乘估计公式分别为:1221ˆni ii nii x ynx y bxnx==-=-∑∑,ˆˆay bx =-.线性相关系数ni ix y nx yr -=∑.22.随着人民生活水平的日益提高,某小区拥有私家车的数量与日俱增,物业公司统计了近六年小区私家车的数量,数据如下:(1)若该小区私家车的数量y 与年份编号x 的关系可用线性回归模型来拟合,请求出y 关于x 的线性回归方程,并用相关指数2R 分析其拟合效果(2R 精确到0.01);(2)由于该小区没有配套停车位,车辆无序停放易造成交通拥堵,因此物业公司预在小区内划定一定数量的停车位,若要求在2022年小区停车位数量仍可满足需要,则至少需要规划多少个停车位.参考数据:61936i i y ==∑,614081i i i x y ==∑,62191ii x ==∑,()62137586i i y y=-=∑.附:回归方程中斜率和截距的最小二乘估计公式分别为:1221ni ii nii x y nx yb xnx==-⋅=-∑∑,a y bx =-,相关指数()()221211nii i n ii yy R yy==-=--∑∑,残差e y y =-.23.探索浩瀚宇宙是全人类的共同梦想,我国广大科技工作者、航天工作者为推动世界航天事业发展付出了艰辛的努力,为人类和平利用太空、推动构建人类命运共同体贡献了中国智慧、中国方案、中国力量.(1)某公司试生产一种航空零件,在生产过程中,当每小时次品数超过90件时,产品的次品率会大幅度增加,为检测公司的试生产能力,同时尽可能控制不合格品总量,抽取几组一小时生产的产品数据进行次品情况检查分析,已知在x (单位:百件)件产品中,得到次品数量y (单位:件)的情况汇总如下表所示,且y (单位:件)与x (单位:百件)线性相关:根据公司规定,在一小时内不允许次品数超过90件,请通过计算分析,按照公司的现有生产技术设备情况,判断可否安排一小时试生产10000件的任务?(2)“战神”太空空间站工作人员需走出太空站外完成某项试验任务,每次只派一个人出去,且每个人只派出一次,工作时间不超过10分钟,如果有人10分钟内不能完成任务则撤回,再派下一个人.现在一共有n 个人可派,工作人员123,,,,n a a a a 各自在10分钟内能完成任务的概率分别依次为123,,,,n p p p p ,且1230.5n p p p p =====,*N n ∈,各人能否完成任务相互独立,派出工作人员顺序随机,记派出工作人员的人数为X ,X 的数学期望为()E X ,证明:()2E X <.(参考公式:用最小二乘法求线性回归方程ˆˆybx a =+的系数公式 1122211()()=ˆ()n ni iiii i nnii i i x y nx y x x y y bxnx x x ====-⋅--=--∑∑∑∑;ˆa y bx=-.) (参考数据:515220143524403550404530i ii x y==⨯+⨯+⨯+⨯+⨯=∑,522222215203540505750ii x==++++=∑.)24.脐橙营养丰富,含有人体所必需的各类营养成份,若规定单个脐橙重量(单位:千克)在[0.1,0.3)的脐橙是“普通果”,重量在[0.3,0.5)的磨橙是“精品果”,重量在[0.5,0.7]的脐橙是“特级果”,有一果农今年种植脐橙,大获丰收为了了解脐橙的品质,随机摘取100个脐橙进行检测,其重量分别在[0.1,0.2),[0.2,0.3),[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7]中,经统计得到如图所示频率分布直方图(1)将频率视为概率,用样本估计总体.现有一名消费者从脐橙果园中,随机摘取5个脐橙,求恰有3个是“精品果”的概率.(2)现从摘取的100个脐橙中,采用分层抽样的方式从重量为[0.4,0.5),[0.5,0.6)的脐橙中随机抽取10个,再从这10个抽取3个,记随机变量X表示重量在[0.5,0.6)内的脐橙个数,求X的分布列及数学期望.25.2018年,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.某读书APP抽样调查了非一线城市M和一线城市N各100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为“活跃用户”.(1)请填写以下22⨯列联表,并判断是否有99.5%的把握认为用户活跃与否与所在城市有关?活跃用户 不活跃用户 合计城市M 城市N 合计(2)以频率估计概率,从城市M 中任选2名用户,从城市N 中任选1名用户,设这3名用户中活跃用户的人数为ξ,求ξ的分布列和数学期望.(3)该读书APP 还统计了2018年4个季度的用户使用时长y (单位:百万小时),发现y 与季度(x )线性相关,得到回归直线为ˆ4ˆyx a =+,已知这4个季度的用户平均使用时长为12.3百万小时,试以此回归方程估计2019年第一季度(5x =)该读书APP 用户使用时长约为多少百万小时. 附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥ 0.025 0.010 0.005 0.001 0k5.0246.6357.87910.82826.学生甲在一次试验中用显微镜观察某种环境下细菌的个数,发现时间x (分钟)时刻的细菌个数为y 个,统计结果如下:x 1 2 3 4 5 y23445(Ⅰ)在给出的坐标系中画出x ,y 的散点图,说明细菌个数和时间是正相关还是负相关.(Ⅱ)根据表格中的5组数据,求y 关于x 的回归直线方程ˆˆˆybx a =+,并根据回归直线方程估计从实验开始,什么时刻细菌个数为12.参考公式:(1221ˆˆˆ,ni ii ni i x y nx yx n axby bx ====---∑∑)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58yx =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.2.C解析:C 【解析】试题分析:A 选项,中位数是84;B 选项,众数是出现最多的数,故是83;C 选项,平均数是85,正确;D 选项,方差是,错误.考点:•茎叶图的识别 相关量的定义3.D解析:D 【解析】记分员在去掉一个最高分94和一个最低分87后,余下的7个数字的平均数是91,()89889290939291791x +++++++÷=,635=917=6372x x ,∴+⨯∴=,故选D.4.B解析:B 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.5.A解析:A 【解析】 【分析】利用茎叶图、平均数的性质直接求解. 【详解】由一组数据的茎叶图得: 该组数据的平均数为:1(7581858995)855++++=. 故选:A . 【点睛】本题考查平均数的求法,考查茎叶图、平均数的性质等基础知识,考查运算求解能力,是基础题.6.C解析:C 【分析】结合系统抽样法的方法,得出其他四名选手的成绩,然后计算平均数,即可. 【详解】结合系统抽样法,可知间隔5个人抽取一次,甲为85,则其他人分别是88,94,99,107,故平均数为88+94+99+107=974,故选C.【点睛】考查了系统抽样法,关键该抽取方法每间隔相同人数中抽取一人,计算平均数,即可,难度中等.7.A解析:A 【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为10002050= 所以抽取的第40个数为1520(401)795+⨯-=选A.点睛:本题考查系统抽样概念,考查基本求解能力.8.C解析:C 【解析】分析:①根据进位制的互化可得结果;②根据系统抽样的性质可得结论;③由正弦定理可得结论.详解:①45222...1÷=,22211...0÷=,112 5...1÷=,52 2...1÷=,22 1...0÷=,120...1÷=,故()()10245101101=,①正确;②因为1000个个题抽取50个样本,∴每个样本编号间隔为20,第六个编号为8205108+⨯=,即编号为0108,故②错误;③由正弦定理可得342,1sin 32sinC C ==,,c a C >∴∠可能是锐角,也可能是钝角,三角形有两个解,③正确,故选C.点睛:本题主要考查进位制、正弦定理的应用,分层抽样的应用,意在考查综合运用所学知识解决问题的能力,属于中档题.9.D解析:D 【详解】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差10.C解析:C 【分析】先求出所给数据的平均数,得到样本中心点,根据回归直线经过样本中心点,求出ˆa,得到线性回归方程,把6x =代入即可求出答案. 【详解】 由题意知4235 3.54x +++==,44253754404y +++==, 则40ˆˆ9.4 3.57.1ay bx =-=-⨯=, 所以回归方程为9.4.1ˆ7yx =+, 则广告费用为6万元时销售额为9.467.163.5⨯+=, 故答案为C. 【点睛】本题考查了线性回归方程的求法与应用,属于基础题.11.B解析:B 【解析】分析:首先写出所有学生的乘积,然后结合系统抽样的方法整理计算即可求得最终结果. 详解:由题意可知,学生的成绩如下:111,111,112,113,113; 116,117,117,118,118; 120,120,121,122,122; 123,124,124,126127; 128,128,129,129,129; 131,131,131,132,132;132,133,134,134,135; 137,138,138,138,139; 140,142,142,143,144.用系统抽样方法从中抽取9人,则每5人中抽取一人,即上述分组中每组抽取一人, 则所抽取的学生的成绩在区间[]120,135上的学生人数为5. 本题选择B 选项.点睛:本题主要考查系统抽样的概念及其应用,茎叶图的识别等知识,意在考查学生的转化能力和计算求解能力.12.B解析:B 【解析】分析:先根据散点图确定函数趋势,再结合五个选择项函数图像,进行判断选择. 详解:从散点图知,样本点分布在开口向右的抛物线(上支)附近或对数曲线(上部分)的附近,所以y =d 或y =p +q ln x 较适宜,故选B .点睛:本题考查散点图以及函数图像,考查识别能力.二、填空题13.【分析】由已知可得利用基本不等式即可求出的最小值【详解】一组数据由小到大依次为且平均数为9故当且仅当时等号成立的最小值为故答案为:【点睛】本题考查基本不等式在最值中的应用关键要对1做代换属于中档题 解析:2518【分析】由已知可得18,712a b a b +=≤≤≤,利用基本不等式,即可求出49a b+的最小值. 【详解】一组数据由小到大依次为2,4,5,7,,,12,13,14,15a b , 且平均数为9,故18,712,118a ba b a b ++=≤≤≤=, 49149()()18a b a b a b +=++ 149125(13)(13181818b a a b =++≥+= 当且仅当3654,55a b ==时,等号成立, 49a b+的最小值为2518.故答案为:2518【点睛】本题考查基本不等式在最值中的应用,关键要对“1”做代换,属于中档题.14.2【解析】【分析】根据系统抽样的概念结合可得最后结果为2【详解】学生总数不能被容量整除根据系统抽样的方法应从总体中随机剔除个体保证整除∵故应从总体中随机剔除个体的数目是2故答案为2【点睛】本题主要考解析:2 【解析】 【分析】根据系统抽样的概念结合2544262=⨯+,可得最后结果为2. 【详解】学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除. ∵2544262=⨯+,故应从总体中随机剔除个体的数目是2,故答案为2. 【点睛】本题主要考查系统抽样,属于基础题;从容量为N 的总体中抽取容量为n 的样本,系统抽样的前面两个步骤是:(1)将总体中的N 个个体进行编号;(2)当Nn为整数时,抽样距即为N n ;当N n 不是整数时,从总体中剔除一些个体,使剩下的总体中的个体的个数N '能被n 整除.15.【解析】试题分析:由平均数及方差的定义可得;考点:样本数据的数字特征:平均值与方差 解析:165【解析】试题分析:由平均数及方差的定义可得10685675x ++++==;222222116[(107)(67)(87)(57)(67)] 3.255s =-+-+-+-+-==.考点:样本数据的数字特征:平均值与方差.16.0【解析】分析:根据回归直线方程过样本中心点计算平均数代入方程求出的值详解:根据回归直线方程过样本中心点即答案为0点睛:本题考查了线性回归方程过样本中心点的应用问题是基础题解析:0 【解析】分析:根据回归直线方程过样本中心点x y (,), 计算平均数代入方程求出a 的值. 详解:根据回归直线方程ˆ2y x a =+过样本中心点x y (,),191191,99i i x x ==∑=⨯=191118299i i y y ==∑=⨯=,22210a y x ∴=-=-⨯=;即答案为0.点睛:本题考查了线性回归方程过样本中心点的应用问题,是基础题.17.1【解析】分析:先利用平均数公式求出平均数再利用方差公式即可得结果详解:的平均数为的方差为故答案为点睛:本题考查主要考查平均数公式与方差公式属于基础题样本数据的算术平均数公式;样本方差公式标准差解析:1 【解析】分析:先利用平均数公式求出平均数,再利用方差公式即可得结果. 详解:5.7,5.8,6.1,6.4,6.5的平均数为5.7+5.8+6.1+6.4+6.56.15=,5.7,5.8,6.1,6.4,6.5∴的方差为()()()()()222225.76.1+5.8 6.1+6.1 6.1+6.4 6.1+6.5 6.10.15-----=,故答案为0.1.点睛:本题考查主要考查平均数公式与方差公式,属于基础题. 样本数据的算术平均数公式12n 1(x +x +...+x )x n =;样本方差公式2222121[()()...()]n s x x x x x x n=-+-++-,标准差s =18.【解析】根据题意可得抽样比为则这次抽样调查抽取的人数是即答案为140 解析:140【解析】根据题意可得抽样比为501,75015= 则这次抽样调查抽取的人数是()114507509002100140,1515++=⨯= 即答案为140.19.【解析】设第二组及第五组数据对应矩形的高为a 则10×(a+0015+0025+0035+a+0005)=1解得a=0010故各组的频率依次为:010015025035010005∵前三组的累积频率为解析:715【解析】设第二组及第五组数据对应矩形的高为a , 则10×(a+0.015+0.025+0.035+a+0.005)=1, 解得a=0.010,故各组的频率依次为:0.10,0.15,0.25,0.35,0.10,0.05, ∵前三组的累积频率为:0.10+0.15+0.25=0.50, 故这次环保知识竞赛成绩的中位数为70; 成绩在[80,90)段的人数有10×0.010×40=4人, 成绩在[90,100]段的人数有10×0.005×40=2人,从成绩是80分以上(包括80分)的学生中任选两人共有15种不同的基本事件, 其中他们在同一分数段的基本事件有:7, 故他们在同一分数段的概率为7.15故答案为:7 15.20.54【解析】代入回归方程可得所以故答案为解析:54 【解析】2456855x ++++== ,代入回归方程 6.5175ˆ.yx =+可得50y = ,所以()53040576954a y =⨯-+++=,故答案为54. 三、解答题21.(1)0.63;(2)ˆ0.757.4yx =+. 【分析】(1)代入公式即可得出结果.(2)由(1)可知,因为0.630.7<,所以投资额y 关于满意度x 没有达到较强线性相关,所以要关闭j 企业.重新计算,代入公式即可求出结果. 【详解】(1)由题意,根据相关系数的公式,可得10104060.63643.7i ix yx yr -=≈≈∑ (2)由(1)可知,因为0.630.7<,所以投资额y 关于满意度x 没有达到较强线性相关,所以要关闭j 企业. 重新计算得22.810122162499x ⨯-'===,7110446667499y ⨯-'===, 922222192481022.812924118.4i i xx ='-≈+⨯--⨯=∑, 9194061022.87112449247482iii x yx y =''-≈+⨯⨯-⨯-⨯⨯=∑.所以919221982ˆ0.690.7118.49i ii ii x yx y bxx ==''-=≈≈≈'-∑∑, ˆˆ740.692457.4457.4ay bx ''=-≈-⨯=≈. 所以所求线性回归方程为ˆ0.757.4yx =+. 22.(1)ˆ465yx =-;拟合效果较好;(2)至少需要规划409个停车位 【分析】(1)由已知数据求得ˆb与ˆa 的值,则线性回归方程可求,再求出残差平方和,代入相关指数公式求得2R ,根据与1的接近程度分析拟合效果;(2)在(1)中求得的线性回归方程中,取9x =求得y 值即可. 【详解】 解:(1)1(123456) 3.56x =+++++=,19361566y =⨯=.6162221640816 3.5156ˆ46916356i ii ii x yxy bxx ==--⨯⨯===-⨯-∑∑, ˆˆ15646 3.55ay bx =-=-⨯=-. y ∴关于x 的线性回归方程为ˆ465y x =-.1x =时,ˆ41y=,2x =时,ˆ87y =,3x =时,ˆ133y =, 4x =时,ˆ179y=,5x =时,ˆ225y =,6x =时,ˆ271y =. 621()556ii i yy =-=∑.6221621()556110.9737586()ii i ii yy R yy ==-=-=-≈-∑∑, 相关指数2R 近似为0.97,接近1,说明拟合效果较好; (2)在(1)中求得的线性回归方程中,取9x =, 可得ˆ4695409y=⨯-=. 故若要求在2022年小区停车位数量仍可满足需要,则至少需要规划409个停车位. 【点睛】本题考查线性回归方程与相关指数的求法,考查运算求解能力,属于中档题. 23.(1)可以安排一小时试生产10000件的任务;(2)证明见解析. 【分析】(1)根据表中数据,分别求得:,x y ,利用公式求得ˆˆ,ab ,写出回归直线方程,然后将 100x =代入求值与90比较即可.(2)根据题意,随机变量的可能取值为1,2,3,,X n =,且1111()(1)222k k P X k -==-⨯=,1,2,3,,1k n =-;1111()(1)22n n P X n --==-=,由期望公式得到2321123221() (22222)n n n n E X ----=+++++,然后利用数列的错位相减法求解即可. 【详解】(1)由已知可得:520354050305x ++++==;214243540235y ++++==;又因为522222215203540505750ii x==++++=∑;515220143524403550404530i ii x y==⨯+⨯+⨯+⨯+⨯=∑;由回归直线的系数公式知:51522222222154530530231080ˆ0.864(520354050)53012505i ii ii x y x ybxx ==-⋅-⨯⨯====++++-⨯-∑∑ˆ230.86430 2.92a y bx=-=-⨯=- 所以ˆˆ0.864 2.92ybx a x =+=- 当100x =(百件)时,864100 2.92083.4890.y ⨯-=<=,符合有关要求 所以按照公司的现有生产技术设备情况,可以安排一小时试生产10000件的任务. (2)由题意知:1,2,3,,X n =,1111()(1)222k k P X k -==-⨯=,1,2,3,,1k n =-;1111()(1)22n n P X n --==-=所以2321123221() (22222)n n n n E X ----=+++++ 2341()123221 (222222)n n E X n n ---=+++++ 两式相减得:2321()1111121 (2222222)n n n E X n n --+-=+++++- 211111...2222n n -=++++ 112n =- 故11()222n E X -=-<【点睛】本题主要考查回归直线方程的求法,离散型随机变量的期望的求法以及独立重复实验的应用数列的错位相减法求和的方法,还考查了运算求解的能力,属于中档题. 24.(1)516(2)见解析 【分析】(1)根据题意,先得到随机摘取一个脐橙,是“精品果”的概率为0.5,并且随机摘取5个脐橙,其中“精品果”的个数符合二项分布,再根据二项分布的概率公式,列出式子,得到答案.(2)先判断出X 可取的值为0,1,2,3,分别计算出其概率,然后列出概率分布列,再根据随机变量的数学期望公式,计算出其数学期望. 【详解】(1)从从脐橙果园中,随机摘取5个脐橙,其中“精品果”的个数记为Y , 由图可知,随机摘取一个脐橙,是“精品果”的概率为:0.2+0.3=0.5, ∴Y ~B (5,12), ∴随机摘取5个脐橙,恰有3个是“精品果”的概率为: P (Y =3)3325115()()2216C ==. (2)依题意,抽取10个脐橙,重量为[0.3,0.4),[0.4,0.5)的个数分别为6和4, X 的可能取值为0,1,2,3,P (X =0)3631016C C ==,P (X =1)216431012C C C ==, P (X =2)1264310310C C C ==,P (X =3)34310130C C ==, ∴X 的分布列为:E (X )01236210305=⨯+⨯+⨯+⨯=. 【点睛】本题考查满足二项分布的概率问题,以及随机变量的概率分布列和数学期望,属于中档题. 25.(1)见解析;(2)见解析;(3) 22.3百万小时 【分析】(1)根据频率分布直方图求数据填入对应表格,再根据卡方公式求2K ,最后对照数据作判断,(2)先确定随机变量取法,再判断从M 城市中任选的2名用户中活跃用户数服从二项分布,从N 城市中任选的1名用户中活跃用户数服从两点分布,进而求得对应概率,列表得分布列,最后根据数学期望公式得期望,(3)先求均值,解得ˆa,再估计5x =对应函数值. 【详解】(1)由已知可得以下22⨯列联表:计算()2220060208040200K 9.5247.8791001001406021⨯⨯-⨯==≈>⨯⨯⨯ , 所以有99.5%的把握认为用户是否活跃与所在城市有关. (2)由统计数据可知,城市M 中活跃用户占35,城市N 中活跃用户占45, 设从M 城市中任选的2名用户中活跃用户数为X ,则3~2,5X B ⎛⎫ ⎪⎝⎭设从N 城市中任选的1名用户中活跃用户数为Y ,则Y 服从两点分布,其中()415P Y ==. 故0,1,2,3ξ=,()()()20221400055125P P X P Y C ξ⎛⎫===⋅==⋅= ⎪⎝⎭; ()()()()()2012224321281011055555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅+⋅⋅⋅= ⎪⎝⎭;()()()()()2122223431572112055555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅⋅+⋅⋅= ⎪⎝⎭;()()()222343632155125P P X P Y C ξ⎛⎫===⋅==⋅=⎪⎝⎭.故所求ξ的分布列为()428573601232125125125125E ξ=⨯+⨯+⨯+⨯=. (3)由已知可得 2.5x =,又12.3y =,可得12.34ˆ2.5a=⨯+,所以ˆ 2.3a =,所以4 2.3ˆy x =+. 以5x =代入可得ˆ22.3y=(百万小时), 即2019年第一季度该读书APP 用户使用时长约为22.3百万小时.【点睛】本题考查频率分布直方图、回归直线方程以及分布列和数学期望,考查基本分析求解能力,属中档题.26.(Ⅰ)图象见解析,正相关;(Ⅱ)ˆ0.7 1.5yx =+,当15x =时细菌个数为12个. 【分析】(Ⅰ)根据数据描点即得散点图,看图即判断结果;(Ⅱ)利用公式代入数据计算即可.【详解】解:(Ⅰ)图形如下,观察图像可知细菌个数和时间是正相关.(Ⅱ)由数据计算得,()11234535x =⨯++++=,()123445 3.65y =⨯++++=, 1122334445561n i i i x y ==⨯+⨯+⨯+⨯+⨯=∑,22222211234555ni i x ==++++=∑122216153 3.67ˆ0.7555310n i i i n i i x y nx y xb x n ==-⨯⨯====-⨯--∑∑,ˆˆ 3.60.73 1.5a y bx =-=-⨯=, 所以ˆ0.7 1.5yx =+, 当0.7 1.512x +=时,解得15x =.所以当15x =时细菌个数为12个.【点睛】本题考查了散点图、线性回归方程及其应用,属于基础题.。
第一章测试(时间:120分钟 满分:150分)一、选择题(本大题共有10个小题,每小题5分,共50分.在下列四个选项中,只有一项是符合题意的)1.某学校有男、女学生各500名,为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法解析 由于男生和女生存在性别差异,所以宜采用的抽样方法是分层抽样法.答案 D2.为了调查全国人口的寿命,抽查了11个省(市)的2500名城镇居民,这2500名城镇居民的寿命的全体是( )A .总体B .个体C .样本D .样本容量答案 C3.某校有初中学生900人,高中学生1200人,教师120人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本进行调查,如果从高中生中抽取了80人,那么n 的值是( )A .120B .148C .140D .136 解析 由n 900+1200+120=801200,得n =148.答案 B4.为了了解1200名2010年上海世博会志愿者的工作准备情况,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为( )A .40B .30C .20D .12解析 120030=40. 答案 A5.某同学进入高三后,4次月考的数学成绩的茎叶图如图,则该同学数学成绩的方差是( )111213⎪⎪⎪46 82A .125B .5 5C .45D .3 5解析 4次成绩的平均值为125,方差为(114-125)2+(126-125)2+(128-125)2+(132-125)24=45. 答案 C6.某样本数据的茎叶图如图所示,若该组数据的中位数为85,平均数为85.5,则x +y =( )789⎪⎪⎪3 94 4 4 x 7 83 yA .12B .13C .14D .15解析 由中位数为85知4+x =2×5,得x =6,又平均数为85.5, ∴73+79+3×84+86+87+88+93+90+y =855, 得y =7,∴x +y =13. 答案 B7.对于一组数据z i (i =1,2,3,…,n ),如果将它们改变为z i -c (i =1,2,3,…,n )(其中c ≠0),下列结论正确的是( )A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化解析 平均数为z 1+z 2+…+z n -nc n=z --c , 方差s 2=(z 1-c -z -+c )2+…+(z n -c -z -+c )2n=(z 1-z -)2+…+(z n -z -)2n . 答案 B8.在抽查某产品尺寸的过程中,将其尺寸分成若干组,[12.025,12.045]是其中一组,抽查出的个数在该组上的频率为m ,则该组上的直方图的高h 为( )A .0.02mB .mC .50mD .12.035m解析 m =(12.045-12.025)h ,得h =50m . 答案 C9.设有一个回归方程y =3-5x ,变量x 增加一个单位时( ) A .y 大约增加3个单位B .y 大约减少5个单位C .y 大约增加5个单位D .y 大约减少3个单位 解析 3-5(x +1)-3+5x =-5. 答案 B10.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .60解析 第一、第二小组的频率分别是0.1、0.2,所以低于60分的频率是0.3,设班级人数为m ,则15m =0.3,m =50.答案 B二、填空题(本大题共5小题,每小题5分,共25分)11.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是________.解析 由2400160=x160-150,得x =150.答案 15012.为了了解商场某日旅游鞋的销售情况,抽取了部分顾客购鞋的尺寸,将所得的数据整理后,画出频率分布直方图(如图).已知从左至右前3个小组的频率之比为1 2 3,第4小组与第5小组的频率分别为0.175和0.075,第二小组的频数为10,则抽取的顾客人数是________.解析 前三组频率和为1-0.075-0.175=0.75.又前三组频率之比为1 2 3,所以第二组频率为26×0.75=0.25.又知第二组频数为10,则100.25=40(人),即为所抽顾客人数.答案 4013.在某次考试中,要对甲、乙两同学的学习成绩进行抽样,甲同学的平均分x -甲=76,s 2 甲=4,乙同学的平均分x -乙=77,s 2乙=10,则________同学的平均成绩好,________同学各科发展均衡.解析 x -甲<x -乙,s 2甲<s 2乙.答案 乙 甲14.某校共有学生2000名,各年级男、女学生人数如下表,已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19,现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为________.解析由题意得x2000=0.19,得x=380,由表可知:一年级有学生750,二年级有学生750,故三年级有学生2000-750-750=500,则642000=m500,得m=16.答案1615.从某项综合能力测试中,抽取100人的成绩统计如下表,则这100人成绩的标准差为________.解析x-=100=3,s=20×(5-3)2+10×(4-3)2+30×(2-3)2+10×(1-3)2100=210 5.答案210 5三、解答题(本大题共6小题,共75分)16.(12分)将容量为n的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前3组数据的频数之和为27.(1)求n 的值;(2)若从这n 个人中任取一个,落在第三组的频率为多少? 解 (1)设第一组至第六组的样本数据的频数分别为2x,3x,4x,6x,4x ,x ,则2x +3x +4x =27,得x =3,故n =20x =60.(2)由(1)知第三组的人数为4x =12, 所以落在第三组的频率为1260=15.17.(12分)奇瑞公司生产的“奇瑞”轿车是我国民族汽车品牌.该公司2010年生产的“旗云”、“风云”、“QQ ”三类经济型轿车中,每类轿车均有舒适型和标准型两种型号.某月产量如下表:辆进行检测,则应抽取“旗云”轿车20辆,“风云”轿车30辆,求x ,y 的值.解 由分层抽样的特点可知: 100200+600+300+y +x +1200=20200+600=30300+y得⎩⎪⎨⎪⎧ 300+y =1200,4000=2300+x +y ,得⎩⎪⎨⎪⎧y =900,x =800,所以x 的值为800,y 的值为900.18.(12分)如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)79.5~89.5这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格). 解 (1)由频率分布直方图,可知79.5~89.5这一组的频率为0.025×(89.5-79.5)=0.25.频数为n =60×0.25=15.(2)由频率分布直方图,可知这次环保知识,竞赛中及格率为(0.015+0.03+0.025+0.005)×10=0.75.19.(13分)对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得他们的最大速度(m /s )的数据如下:解 他们的平均速度为x 甲=16(27+38+30+37+35+31)=33; x 乙=16(33+29+38+34+28+36)=33.s 2甲=16[(-6)2+52+(-3)2+42+22+(-2)2]=473;s 2乙=16[(-4)2+52+12+(-5)2+32]=383.∵x 甲=x 乙,s 2甲>s 2乙,∴应选乙参加比赛更合适.20.(13分)某车站在春运期间为了改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t(以下简称购票用时,单位为min ),下表和下图是这次调查统计分析所得到的频率分布表和频率分布直方图,解答下列问题:(2)在表中填写出缺失的数据,并补全频率分布直方图; (3)旅客购票用的平均时间可能落在哪一组?解(1)样本容量为100.(2)由100-10-10-30=50,1-0.10-0.50-0.30=0.10,可知表中第三列缺失的数据为50,第四列缺失的数据为0.10,频率分布直方图如图所示.(3)设旅客平均购票时间为t分,则有0×0+5×10+10×10+15×50+20×30100≤t<5×0+10×10+15×10+20×50+25×30100,得15≤t<20.故旅客购票用时的平均数可能落在第4小组.21.(13分)现对x,y有如下观测数据:(1)(2)试求y对x的线性回归方程;(3)试估计当x=10时,y的取值.北师大版·数学·必修3 高中同步学习方略解(1)图略.(2)可求得x-=37,y-=7,x21+x22+…+x28=11920,x1y1+x2y2+…+x8y8=2257.设线性回归方程为y=a+bx,则b=x1y1+x2y2+…+x8y8-8x-y-x21+x22+…+x28-8x-2=2257-8×37×711920-8×372=185968≈0.1911,a=y--b x-=7-0.1911×37≈-0.071.∴线性回归方程为y=0.1911x-0.071.(3)当x=10时,y=0.1911×10-0.071=1.84.11。