相似三角形的判定及有关性质(理)
- 格式:doc
- 大小:314.50 KB
- 文档页数:5
①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EFDF===②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
○4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论○4的基本图形有三种情况,如图其符号语言:∵DE ∥BC ,∴△ABC ∽△ADE ;知识点二、相似三角形的判定判定定理1:两角对应相等,两三角形相似.符号语言:拓展延伸: (1)有一组锐角对应相等的两个直角三角形相似。
(2)顶角或底角对应相等的两个等腰三角形相似。
例题1.如图,直线DE 分别与△ABC 的边AB 、AC 的反向延长线相交于D 、E ,由ED ∥BC 可以推出AD AEBD CE=吗?请说明理由。
(用两种方法说明)例题2.(射影定理)已知:如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D.求证:(1)2AB BD BC =⋅;(2)2AD BD CD =⋅;(3)CB CD AC ⋅=2例题3.如图,AD 是Rt ΔABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC 于E 、F.则BDBEAD AF =例题精讲AEDBCABCD吗?说说你的理由.例题4.如图,在平行四边形ABCD 中,已知过点B 作BE ⊥CD 于E,连接AE ,F 为AE 上一点,且∠BFE=∠C(1) 求证:△ABF ∽△EAD ;(2)若AB=4,∠BAE=30°,求AE 的长;3分之8倍根号3 (3)在(1)(2)条件下,若AD=3,求BF 的长。
2分之3倍根号3 随练: 一、选择题1.如图,△ABC 经平移得到△DEF ,AC 、DE 交于点G ,则图中共有相似三角形( )D A . 3对 B . 4对 C . 5对 D . 6对2.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )CADCBEF G F E DCBA。
相似三角形的性质与判定讲义)-CAL-FENGHAI.-(YICAI)-Company One1相似三角形的性质与判定讲义【知识点拨】一、相似三角形性质(1)相似三角形对应角相等,对应边成比例.(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (3)相似三角形周长的比等于相似比.(4)相似三角形面积的比等于相似比的平方.(5)相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等二、 相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∽ABC ∆.(2)对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.(3)传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则ABC ∆∽C B A ''''''∆. 三、三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
选修4-1几何证明选讲第1讲相似三角形的判定及有关性质对应学生203考点梳理1.平行线等分线段定理及其推论(1)定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.(2)推论:①经过三角形一边的中点与另一边平行的直线必平分第三边.②经过梯形一腰的中点,且与底边平行的直线平分另一腰.2.平行线分线段成比例定理及推论(1)定理:三条平行线截两条直线,所得的对应线段成比例.(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.3.相似三角形的判定(1)定义:如果在两个三角形中,对应角相等、对应边成比例,则这两个三角形叫做相似三角形.(2)判定定理1:两角对应相等的两个三角形相似.(3)判定定理2:两边对应成比例,并且夹角相等的两个三角形相似.(4)判定定理3:三边对应成比例的两个三角形相似.4.相似三角形的性质(1)性质定理1:相似三角形对应边上的高、中线和它们周长的比都等于相似比.(2)性质定理2:相似三角形的面积比等于相似比的平方.5.直角三角形的射影定理直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项. 如图,在Rt △ABC 中,CD 是斜边上的高, 则有CD 2=AD ·BD , AC 2=AD ·AB ,BC 2=BD ·AB .考点自测1.如图,已知a ∥b ∥c ,直线m ,n 分别与a ,b ,c 交于点A ,B ,C 和A ′,B ′,C ′,如果AB =BC =1,A ′B ′=32,则B ′C ′=________.解析 由平行线等分线段定理可直接得到答案. 答案 322.如图,BD ,CE 是△ABC 的高,BD ,CE 交于F ,写出图中所有与△ACE 相似的三角形________.解析 由Rt △ACE 与Rt △FCD 和Rt △ABD 各共一个锐角,因而它们均相似,又易知∠BFE =∠A ,故Rt △ACE ∽Rt △FBE . 答案 △FCD 、△FBE 、△ABD3. (2013·西安模拟)如图,在△ABC 中,M ,N 分别是AB ,BC 的中点,AN ,CM 交于点O ,那么△MON 与△AOC 面积的比是________. 解析 ∵M ,N 分别是AB 、BC 中点,故MN 綉12AC , ∴△MON ∽△COA ,∴S △MON S △AOC =⎝ ⎛⎭⎪⎫MN AC 2=14. 答案 1∶44. (2011·陕西)如图,∠B =∠D ,AE ⊥BC ,∠ACD =90°,且AB =6,AC =4,AD =12,则AE =________.解析 由于∠ACD =∠AEB =90°,∠B =∠D ,∴△ABE ∽△ADC ,∴AB AD =AE AC . 又AC =4,AD =12,AB =6,∴AE =AB ·AC AD =6×412=2. 答案 25. (2010·广东)如图,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD =a ,CD =a2,点E ,F 分别为线段AB ,AD 的中点,则EF =________.解析 连接DE 和BD ,依题知,EB ∥DC ,EB =DC =a2,∴EBCD 为矩形,∴DE ⊥AB ,又E 是AB 的中点,所以△ABD 为等腰三角形.故AD =DB =a ,∵E ,F 分别是AD ,AB 的中点,∴EF =12DB =12a . 答案 a 2对应学生204考向一 平行线等分线段成比例定理的应用【例1】►如图,F 为▱ABCD 边AB 上一点,连DF 交AC 于G ,延长DF 交CB 的延长线于E . 求证:DG ·DE =DF ·EG .证明 ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥DC ,AD =BC , ∵AD ∥BC ,∴DG EG =AD EC ,又∵AB ∥DC ,∴DF DE =BC EC =AD EC ,∴DG EG =DFDE , 即DG ·DE =DF ·EG .利用平行截割定理解决问题,特别注意被平行线所截的直线,找准成比例的线段,得到相应的比例式,有时需要进行适当的变形,从而得到最终的结果.【训练1】如图,在△ABC 中,DE ∥BC ,EF ∥CD ,若BC =3,DE =2,DF =1,则AB 的长为________.解析由⎩⎨⎧DE ∥BC ,EF ∥CD ,BC =3,DE =2⇒AE AC =AF AD =DE BC =23,又DF =1,故可解得AF =2,∴AD =3,又AD AB =23,∴AB =92. 答案 92考向二 相似三角形的判定【例2】►如图,在△ABC 中,D 、E 分别是BC 、AB 上任意点,△EFM ∽△CDM ,求证:△AEF ∽△ABD .证明 ∵△EFM ∽△CDM ,∴∠1=∠2,∴EF ∥BC ,∴△AEF ∽△ABD .判定三角形相似的思路大致有以下几条:(1)已知条件,判定思路;(2)一对等角,再找一对等角或找夹边成比例; (3)两边成比例,找夹角相等;(4)含有等腰三角形,找顶角相等或找一对底角相等或找腰对应成比例. 【训练2】 如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F .(1)求证:△ACB ∽△DCE ; (2)求证:EF ⊥AB .证明 (1)因为DC AC =CE BC =DE AB =23,所以△ACB ∽△DCE . (2)由△ACB ∽△DCE ,知∠B =∠E . 又∠BDF =∠CDE ,在Rt △CDE 中,∠E +∠CDE =90°,所以∠BDF+∠B=90°,所以∠EFB=90°,即EF⊥AB.考向三相似三角形的性质【例3】►如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,E为AC的中点,ED、CB延长线交于一点F.求证:FD2=FB·FC.证明∵E是Rt△ACD斜边中点,∴ED=EA,∴∠A=∠1,∵∠1=∠2,∴∠2=∠A,∵∠FDC=∠CDB+∠2=90°+∠2,∠FBD=∠ACB+∠A=90°+∠A,∴∠FBD=∠FDC,∵∠F是公共角,∴△FBD∽△FDC,∴FBFD=FDFC,∴FD2=FB·FC.运用相似三角形的性质解决问题,主要考虑相似三角形的对应边、对应角、周长、面积之间的关系,多用于求某条线段的长度、求证比例式的存在、求证等积式的成立等,在做题时应注意认真观察图形特点,确定好对应边、对应角等.【训练3】如图,△ABC中,AB=AC,AD是边BC的中线,P为AD上一点,CF∥AB,BP的延长线分别交AC,CF于点E,F,求证:BP2=PE·PF.证明连接CP,∵△ABC为等腰三角形,AD为中线,∴BP=CP,∠ABP=∠ACP,∵AB∥CF,∴∠ABP=∠F,∴∠F=∠ACP.∵∠EPC为公共角,∴△PCE∽△PFC,∴PCPF=PEPC,∴PC2=PF·PE.又∵BP=PC,∴BP2=PF·PE.考向四直角三角形射影定理的应用【例4】►已知圆的直径AB=13,C为圆上一点,过C作CD⊥AB于D(AD>BD),若CD=6,则AD=________.解析如图,连接AC,CB,∵AB是⊙O的直径,∴∠ACB=90°.设AD=x,∵CD⊥AB于D,∴由射影定理得CD2=AD·DB,即62=x(13-x),∴x2-13x+36=0,解得x1=4,x2=9.∵AD>BD,∴AD=9.答案9利用直角三角形的射影定理解决问题首先确定直角边与其射影,再就是要善于将有关比例式进行适当的变形转化,有时还要将等积式转化为比例式或将比例式转化为等积式,并且注意射影定理的其他变式.【训练4】在△ABC中,∠ACB=90°,CD⊥AB于D,AD∶BD=2∶3.则△ACD与△CBD的相似比为________.解析如图所示,在Rt△ACB中,CD⊥AB,由射影定理得:CD 2=AD ·BD ,又∵AD ∶BD =2∶3,令AD =2x , BD =3x (x >0),∴CD 2=6x 2,∴CD =6x .又∵∠ADC =∠BDC =90°,∠A =∠BCD . ∴△ACD ∽△CBD .易知△ACD 与△CBD 的相似比为AD CD =2x 6x =63.即相似比为6∶3. 答案6∶3对应学生355(时间:30分钟 满分:60分)一、填空题(每小题5分,共40分)一、填空题(每小题5分,共40分)1. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AD =4,sin ∠ACD =45,则CD =________,BC =________.解析 在Rt △ADC 中,AD =4,sin ∠ACD =AD AC =45,得 AC =5,CD =AC 2-AD 2=3,又由射影定理AC 2=AD ·AB ,得AB =AC 2AD =254.∴BD =AB -AD =254-4=94,由射影定理BC 2=BD ·AB =94×254,∴BC =154. 答案 3 1542. (2013·揭阳模拟)如图,BD ⊥AE ,∠C =90°,AB =4,BC =2,AD =3,则EC =________. 解析 在Rt △ADB 中, DB =AB 2-AD 2=7, 依题意得,△ADB ∽△ACE , ∴DB EC =AD AC ,可得EC =DB ·ACAD =27. 答案 273. (2013·茂名模拟)如图,已知AB ∥EF ∥CD ,若AB =4,CD =12,则EF =________. 解析 ∵AB ∥CD ∥EF , ∴AB EF =BC CF ,BC BF =CD EF , ∴4EF =BC BC -BF,BC BF =12EF ,∴4(BC -BF )=12BF ,∴BC =4BF , ∴BC BF =14=12EF ,∴EF =3. 答案 34. (2013·湛江模拟)如图,在△ABC 中,D 是AC 的中点,E 是BD 的中点,AE 交于BC 于F ,则BF FC =________.解析 如图,过点D 作DG ∥AF ,交BC 于点G ,易得FG =GC ,又在三角形BDG 中,BE =DE ,即EF 为三角形BDG 的中位线,故BF =FG ,因此BFFC =12. 答案 125. 如图,∠C =90°,∠A =30°,E 是AB 中点,DE ⊥AB于E ,则△ADE 与△ABC 的相似比是________.解析 ∵E 为AB 中点,∴AE AB =12,即AE =12AB , 在Rt △ABC 中,∠A =30°,AC =32AB , 又∵Rt △AED ∽Rt △ACB ,∴相似比为AE AC =13.故△ADE 与△ABC 的相似比为1∶ 3. 答案 1∶ 36.如图,AE ∥BF ∥CG ∥DH ,AB =12BC =CD ,AE =12,DH =16,AH 交BF 于M ,则BM =________,CG =________. 解析 ∵AE ∥BF ∥CG ∥DH ,AB =12BC =CD ,AE =12,DH =16,∴AB AD =14,BM DH =AB AD .∴BM 16=14,∴BM =4. 取BC 的中点P ,作PQ ∥DH 交EH 于Q ,如图,则PQ 是梯形ADHE 的中位线,∴PQ =12(AE +DH )=12(12+16)=14. 同理:CG =12(PQ +DH )=12(14+16)=15. 答案 4 157. 在△ABC 中,D 是BC 边上的中点,且AD=AC ,DE ⊥BC ,DE 与AB 相交于点E ,EC 与AD 相交于点F ,S △FCD =5,BC =10,则DE =________.解析 过点A 作AM ⊥BC 于M ,由于∠B =∠ECD ,且∠ADC =∠ACD ,得△ABC与△FCD 相似,那么S △ABC S △FCD =⎝ ⎛⎭⎪⎫BC CD 2=4又S △FCD =5,那么S △ABC =20,由于S △ABC =12BC ·AM ,由BC =10,得AM =4,又因为DE ∥AM ,得DE AM =BD BM ,∵DM =12DC =52,因此DE 4=55+52,得DE =83. 答案 838. 如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,E 、F 分别是AB 、BC 的中点,EF 与BD 相交于点M .若DB =9,则BM =________. 解析 ∵E 是AB 的中点, ∴AB =2EB .∵AB =2CD ,∴CD =EB .又AB ∥CD ,∴四边形CBED 是平行四边形. ∴CB ∥DE ,∴⎩⎨⎧∠DEM =∠BFM ,∠EDM =∠FBM ,∴△EDM ∽△FBM .∴DM BM =DEBF . ∵F 是BC 的中点,∴DE =2BF . ∴DM =2BM .∴BM =13DB =3. 答案 3二、解答题(共20分)9.(10分)如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC ,过点D 作AC 的平行线DE ,交BA 的延长线于点E ,求证: (1)△ABC ≌△DCB ; (2)DE ·DC =AE ·BD .证明 (1)∵四边形ABCD 是等腰梯形,∴AC =BD . ∵AB =DC ,BC =CB ,∴△ABC ≌△DCB . (2)∵△ABC ≌△DCB .∴∠ACB =∠DBC ,∠ABC =∠DCB .∵AD ∥BC ,∴∠DAC =∠ACB ,∠EAD =∠ABC . ∴∠DAC =∠DBC ,∠EAD =∠DCB.∵ED ∥AC ,∴∠EDA =∠DAC . ∴∠EDA =∠DBC ,∴△ADE ∽△CBD . ∴DE ∶BD =AE ∶CD . ∴DE ·DC =AE ·BD .10.(10分)如图,△ABC 中,AB =AC ,∠BAC =90°,AE =13AC ,BD =13AB ,点F 在BC 上,且CF =13BC .求证: (1)EF ⊥BC ; (2)∠ADE =∠EBC .证明 设AB =AC =3a ,则AE =BD =a ,CF =2a . (1)CE CB =2a 32a=23,CF CA =2a 3a =23.又∠C 为公共角,故△BAC ∽△EFC ,由∠BAC =90°. ∴∠EFC =90°,∴EF ⊥BC . (2)由(1)得EF =2a ,故AE EF =a 2a =22,AD BF =2a 22a =22,∴AE EF =ADFB .∵∠DAE =∠BFE =90°, ∴△ADE ∽△FBE , ∴∠ADE =∠EBC .第2讲直线与圆的位置关系对应学生206考点梳理1.圆周角定理(1)圆周角定理及其推论①定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半.②推论(i)推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.(ii)推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.(2)圆心角定理:圆心角的度数等于它所对弧的度数.2.圆内接四边形的性质与判定定理(1)圆内接四边形的性质定理①定理1:圆内接四边形的对角互补.②定理2:圆内接四边形的外角等于它的内角的对角.(2)圆内接四边形的判定定理及推论①判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.②推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.3.圆的切线的性质及判定定理切线的性质定理及推论(1)定理:圆的切线垂直于经过切点的半径.(2)推论:①推论1:经过圆心且垂直于切线的直线必经过切点.②推论2:经过切点且垂直于切线的直线必经过圆心.4.弦切角的性质弦切角定理:弦切角等于它所夹的弧所对的圆周角.5.与圆有关的比例线段圆中的比例线段1.如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的点,已知∠BAC=80°,那么∠BDC=________.解析连接OB、OC,则OB⊥AB,OC⊥AC,∴∠BOC=180°-∠BAC=100°,∴∠BDC=12∠BOC=50°.答案50°2.(2012·湖北)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D 作OD的垂线交⊙O于点C,则CD的最大值为________.解析当OD的值最小时,DC最大,易知D为AB的中点时,DB=DC=2最大.答案 23.(2012·北京)如图,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC 交于点E,则().A.CE·CB=AD·DBB.CE·CB=AD·ABC.AD·AB=CD2D.CE·EB=CD2解析在直角三角形ABC中,根据直角三角形射影定理可得CD2=AD·DB,再根据切割线定理可得CD2=CE·CB,所以CE·CB=AD·DB.答案 A4. (2012·湖南)如图所示,过点P的直线与⊙O相交于A,B两点.若P A=1,AB=2,PO=3,则⊙O的半径等于________.解析设圆的半径为r,则(3-r)(3+r)=1×3,即r2=6,解得r= 6.答案 65. (2012·天津)如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D .过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,AF =3,FB =1,EF =32,则线段CD 的长为________.解析 因为AF ·BF =EF ·CF ,解得CF =2,所以34=2BD ,即BD =83.设CD =x ,AD =4x ,所以4x 2=649,所以x =43. 答案 43对应学生207考向一 圆的切线的性质与判定【例1】►如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于点C ,AC 平分∠DAB ,AD ⊥CD . (1)求证:OC ∥AD ;(2)若AD =2,AC =5,求AB 的长. (1)证明 ∵直线CD 与⊙O 相切于点C , ∴∠DCO =∠DCA +∠ACO =90°, ∵AO =CO ,∴∠OAC =∠ACO , ∵AC 平分∠DAB ,∴∠DAC =∠OAC ,∴∠DAC=∠ACO,∴OC∥AD. (2)解连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ADC=∠ACB,又∵∠DAC=∠BAC,∴△ADC∽△ACB,∴ADAC=ACAB,∵AD=2,AC=5,∴AB=5 2.利用圆的切线的性质来证明或进行有关的计算,有时需添加辅助线,其中连接圆心和切点的半径是常用辅助线,从而可以构造直角三角形,利用直角三角形边角关系求解,或利用勾股定理求解,或利用三角形相似求解等.【训练1】如图,⊙O是△ABC的外接圆,AB=AC,过点A作AP∥BC,交BO的延长线于点P.(1)求证:AP是⊙O的切线;(2)若⊙O的半径R=5,BC=8,求线段AP的长.(1)证明过点A作AE⊥BC,交BC于点E,∵AB=AC,∴AE平分BC,∴点O在AE上.又∵AP∥BC,∴AE⊥AP,∴AP为圆O的切线.(2)解BE=12BC=4,∴OE=OB2-BE2=3,又∵∠AOP=∠BOE,∴△OBE∽△OP A,∴BEAP=OEOA,即4AP=35,∴AP=203.考向二弦切角定理及推论的应用【例2】►如图,梯形ABCD内接于⊙O,AD∥BC,过B引⊙O的切线分别交DA、CA的延长线于E、F.已知BC=8,CD=5,AF=6,则EF的长为________.解析∵BE切⊙O于B,∴∠ABE=∠ACB.又∵AD∥BC,∴∠EAB=∠ABC,∴△EAB∽△ABC,∴BEAC=AB BC.又∵AE∥BC,∴EFAF=BEAC,∴ABBC=EFAF.又∵AD∥BC,∴AB=CD,∴AB=CD,∴CDBC=EFAF,∴58=EF6,∴EF=308=154.答案15 4(1)圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.(2)涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直线(或半径)或向弦(弧)两端画圆周角或作弦切角.【训练2】如图,已知圆上的弧AC=BD,过C点的圆的切线与BA的延长线交于E点,证明:(1)∠ACE=∠BCD;(2)BC2=BE·CD.证明(1)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC,所以∠ACE=∠BCD.(2)因为∠ECB=∠BDC,∠EBC=∠BCD,所以△BDC∽△ECB,故BCBE=CDBC,即BC2=BE·CD.考向三圆内接四边形性质的应用【例3】►(2013·辽宁三校联考)已知四边形PQRS是圆内接四边形,∠PSR=90°,过点Q作PR、PS的垂线,垂足分别为点H、K.(1)求证:Q、H、K、P四点共圆;(2)求证:QT=TS.证明(1)∵∠PHQ=∠PKQ=90°,∴Q、H、K、P四点共圆.(2)∵Q、H、K、P四点共圆,∴∠HKS=∠HQP,①∵∠PSR=90°,∴PR为圆的直径,∴∠PQR=90°,∠QRH=∠HQP,②而∠QSP=∠QRH,③由①②③得,∠QSP=∠HKS,TS=TK,又∵∠SKQ=90°,∵∠SQK=∠TKQ,∴QT=TK,∴QT=TS.(1)四边形ABCD的对角线交于点P,若P A·PC=PB·PD,则它的四个顶点共圆.(2)四边形ABCD的一组对边AB、DC的延长线交于点P,若P A·PB=PC·PD,则它的四个顶点共圆.以上两个命题的逆命题也成立.该组性质用于处理四边形与圆的关系问题时比较有效.【训练3】如图,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O 的割线,过点G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F,过G作⊙O的切线,切点为H.求证:(1)C,D,F,E四点共圆;(2)GH2=GE·GF.证明(1)如图,连接BC.∵AB是⊙O的直径,∴∠ACB=90°.∵AG⊥FG,∴∠AGE=90°.又∵∠EAG=∠BAC,∴∠ABC=∠AEG.又∵∠FDC=∠ABC,∴∠FDC=∠AEG.∴∠FDC+∠CEF=180°.∴C,D,F,E四点共圆.(2)∵GH为⊙O的切线,GCD为割线,∴GH2=GC·GD.由C,D,F,E四点共圆,得∠GCE=∠AFE,∠GEC=∠GDF.∴△GCE∽△GFD.∴GCGF=GEGD,即GC·GD=GE·GF.∴GH2=GE·GF.对应学生356(时间:30分钟 满分:60分)一、填空题(每小题5分,共40分)1. 如图,AB 是⊙O 的直径,MN 与⊙O 切于点C ,AC=12BC ,则sin ∠MCA =________.解析 由弦切角定理得,∠MCA =∠ABC , sin ∠ABC =ACAB =AC AC 2+BC2=AC 5AC =55. 答案 552. 如图,AB 为⊙O 的直径,C 为⊙O 上一点.AD 和过C 点的切线互相垂直,垂足为D ,∠DAB =80°,则∠ACO =________.解析 ∵CD 是⊙O 的切线,∴OC ⊥CD , 又∵AD ⊥CD ,∴OC ∥AD . 由此得,∠ACO =∠CAD , ∵OC =OA ,∴∠CAO =∠ACO ,∴∠CAD =∠CAO ,故AC 平分∠DAB .∴∠CAO =40°, 又∵∠ACO =∠CAO ,∴∠ACO =40°. 答案 40°3. 如图,在△ABC 中,AB =AC ,∠C =72°,⊙O 过A 、B 两点且与BC 相切于点B ,与AC 交于点D ,连接BD ,若BC =5-1,则AC =________.解析 由题易知,∠C =∠ABC =72°,∠A =∠DBC =36°,所以△BCD ∽△ACB ,又易知BD =AD =BC ,所以BC 2=CD ·AC =(AC -BC )·AC ,解得AC =2. 答案 24. 如图,已知Rt △ABC 的两条直角边AC ,BC 的长分别为3 cm ,4 cm ,以AC 为直径的圆与AB 交于D ,则BDDA =________.解析 ∵∠C =90°,AC 为圆的直径, ∴BC 为圆的切线,AB 为圆的割线,∴BC 2=BD ·AB ,即16=BD ·5,解得BD =165, ∴DA =BA -BD =5-165=95,∴BD DA =169. 答案 1695. 如图,四边形ABCD 是圆O 的内接四边形,延长AB 和DC 相交于点P ,若PB P A =12,PC PD =13,则BCAD 的值为________.解析 ∵∠P =∠P ,∠PCB =∠P AD , ∴△PCB ∽△P AD , ∴PB PD =PC P A =BC DA ,∵PB P A =12,PC PD =13,∴BC AD =66. 答案 666. (2012·陕西)如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF ⊥DB ,垂足为F ,若AB =6,AE =1,则DF ·DB =________.解析 由题意知,AB =6,AE =1,∴BE =5.∴CE ·DE =DE 2=AE ·BE =5.在Rt △DEB 中,∵EF ⊥DB ,∴由射影定理得DF ·DB =DE 2=5. 答案 57.(2012·广东)如图,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足∠ABC =30°,过点A 作圆O 的切线与OC 的延长线交于点P ,则P A =________.解析 如图,连接OA .由∠ABC =30°,得∠AOC =60°,在直角三角形AOP 中,OA =1,于是P A =OA tan 60°= 3. 答案38. 如图,⊙O 和⊙O ′相交于A 、B 两点,过A 作两圆的切线分别交两圆于C 、D .若BC =2,BD =4,则AB 的长为________.解析 ∵AC 、AD 分别是两圆的切线, ∴∠C =∠2,∠1=∠D ,∴△ACB ∽△DAB . ∴BC AB =AB BD ,∴AB 2=BC ·BD =2×4=8. ∴AB =8=22(舍去负值). 答案 2 2 二、解答题(共20分)9.(10分)(2012·新课标全国)如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点.若CF ∥AB ,证明:(1)CD =BC ; (2)△BCD ∽△GBD .证明 (1)因为D ,E 分别为AB ,AC 的中点,所以DE ∥BC .又已知CF ∥AB ,故四边形BCFD 是平行四边形,所以CF =BD =AD .而CF ∥AD ,连结AF ,所以四边形ADCF 是平行四边形,故CD =AF .因为CF ∥AB ,所以BC =AF ,故CD =BC . (2)因为FG ∥BC ,故GB =CF .由(1)可知BD =CF ,所以GB =BD .所以∠BGD =∠BDG . 由BC =CD 知∠CBD =∠CDB . 而∠DGB =∠EFC =∠DBC , 故△BCD ∽△GBD .10.(10分)(2012·辽宁)如图,⊙O 和⊙O ′相交于A ,B 两点,过A 作两圆的切线分别交两圆于C ,D 两点,连结DB 并延长交⊙O 于点E . 证明:(1)AC ·BD =AD ·AB ; (2)AC =AE .证明 (1)由AC 与⊙O ′相切于A , 得∠CAB =∠ADB , 同理∠ACB =∠DAB , 所以△ACB ∽△DAB . 从而AC AD =AB BD , 即AC ·BD =AD ·AB .(2)由AD 与⊙O 相切于A ,得∠AED =∠BAD , 又∠ADE =∠BDA ,得△EAD ∽△ABD . 从而AE AB =AD BD , 即AE ·BD =AD ·AB . 结合(1)的结论知,AC =AE .选修4-4坐标系与参数方程第1讲坐标系对应学生209考点梳理1.极坐标系的概念(1)极坐标系如图,在平面内取一个定点O,叫做极点,自极点O引一条射线Ox,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数.特别地,当点M在极点时,它的极坐标为(0,θ),θ可以取任意实数.(3)点与极坐标的关系一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一个点.特别地,极点O的坐标为(0,θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.2.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则⎩⎨⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).3.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin (θ0-α).几个特殊位置的直线的极坐标方程 (1)直线过极点:θ=θ0和θ=π-θ0;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ; (3)直线过M ⎝ ⎛⎭⎪⎫b ,π2且平行于极轴:ρsin θ=b . 4.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r 的圆方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0.几个特殊位置的圆的极坐标方程 (1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a,0),半径为a :ρ=2a cos_θ; (3)当圆心位于M ⎝ ⎛⎭⎪⎫a ,π2,半径为a :ρ=2a sin_θ.考点自测1.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 解析 ∵ρ=2sin θ+4cos θ,∴ρ2=2ρsin θ+4ρcos θ. ∴x 2+y 2=2y +4x ,即x 2+y 2-2y -4x =0. 答案 x 2+y 2-2y -4x =02.(2013·西安五校一模)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为________.解析 ρ=2sin θ的直角坐标方程为x 2+y 2-2y =0,ρcos θ=-1的直角坐标方程为x =-1,联立方程,得⎩⎨⎧ x 2+y 2-2y =0,x =-1,解得⎩⎨⎧x =-1,y =1,即两曲线的交点为(-1,1),又0≤θ<2π,因此这两条曲线的交点的极坐标为⎝ ⎛⎭⎪⎫2,3π4.答案 ⎝ ⎛⎭⎪⎫2,3π43.(2012·上海)如图,在极坐标系中,过点M (2,0)的直线l 与极轴的夹角α=π6.若将l 的极坐标方程写成ρ=f (θ)的形式,则f (θ)=________.解析 在直线l 上任取一点,再利用正弦定理求直线的极坐标方程.在直线l 上取点P (ρ,θ),在△OPM 中,由正弦定理得OM sin ∠OPM =OPsin ∠OMP,即2sin ⎝ ⎛⎭⎪⎫π6-θ=ρsin 5π6,化简得ρ=1sin ⎝ ⎛⎭⎪⎫π6-θ,故f (θ)=1sin ⎝ ⎛⎭⎪⎫π6-θ. 答案 1sin ⎝ ⎛⎭⎪⎫π6-θ4.(2012·安徽)在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π6(ρ∈R )的距离是________.解析 将ρ=4sin θ化成直角坐标方程为x 2+y 2=4y ,即x 2+(y -2)2=4,圆心为(0,2).将θ=π6(ρ∈R )化成直角坐标方程为x -3y =0,由点到直线的距离公式可知圆心到直线的距离d =|0-23|2= 3.答案 35.(2012·陕西)直线2ρcos θ=1与圆ρ=2cos θ相交的弦长为________. 解析 直线的方程为2x =1,圆的方程为x 2+y 2-2x =0,圆心为(1,0),半径r =1,圆心到直线的距离为d =|2-1|22+0=12,设所求的弦长为l ,则12=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫l 22,解得l = 3.答案3对应学生210考向一 极坐标和直角坐标的互化【例1】►(2013·广州测试)设点A 的极坐标为⎝ ⎛⎭⎪⎫2,π6,直线l 过点A 且与极轴所成的角为π3,则直线l 的极坐标方程为________________.解析 ∵点A 的极坐标为⎝ ⎛⎭⎪⎫2,π6,∴点A 的平面直角坐标为(3,1),又∵直线l 过点A 且与极轴所成的角为π3,∴直线l 的方程为y -1=(x -3)tan π3,即3x -y -2=0,∴直线l 的极坐标方程为3ρcos θ-ρsin θ-2=0,可整理为ρcos ⎝ ⎛⎭⎪⎫θ+π6=1或ρsin ⎝ ⎛⎭⎪⎫π3-θ=1.答案 ρcos ⎝ ⎛⎭⎪⎫θ+π6=1或ρsin ⎝ ⎛⎭⎪⎫π3-θ=1(1)在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.(2)在曲线的方程进行互化时,一定要注意变量的范围.要注意转化的等价性. 【训练1】 (2013·佛山检测)在平面直角坐标系xOy 中,点P 的直角坐标为(1,-3).若以原点O 为极点,x 轴正半轴为极轴建立极坐标系,则点P 的极坐标可以是________.解析 由极坐标与直角坐标的互化公式ρcos θ=x ,ρsin θ=y 可得,ρcos θ=1, ρsin θ=-3,解得ρ=2,θ=2k π-π3(k ∈Z ),故点P 的极坐标为⎝ ⎛⎭⎪⎫2,2k π-π3(k∈Z ).答案 ⎝ ⎛⎭⎪⎫2,2k π-π3(k ∈Z )考向二 圆的极坐标方程的应用【例2】►(2013·广州测试)在极坐标系中,若过点(1,0)且与极轴垂直的直线交曲线ρ=4cos θ于A 、B 两点,则|AB |=________.解析 过点(1,0)且与极轴垂直的直线的直角坐标方程是x =1,曲线ρ=4cos θ的直角坐标方程是x 2+y 2=4x ,即(x -2)2+y 2=4,圆心(2,0)到直线x =1的距离等于1,因此|AB |=24-1=2 3. 答案 2 3解决此类问题的关键还是将极坐标方程化为直角坐标方程.【训练2】 (2013·深圳调研)在极坐标系中,P ,Q 是曲线C :ρ=4sin θ上任意两点,则线段PQ 长度的最大值为________.解析 由曲线C :ρ=4sin θ,得ρ2=4ρsin θ,x 2+y 2-4y =0,x 2+(y -2)2=4,即曲线C :ρ=4sin θ在直角坐标系下表示的是以点(0,2)为圆心、以2为半径的圆,易知该圆上的任意两点间的距离的最大值即是圆的直径长,因此线段PQ 长度的最大值是4. 答案 4考向三 极坐标方程的综合应用【例3】►如图,在圆心的极坐标为A (4,0),半径为4的圆中,求过极点O 的弦的中点的轨迹.解 设M (ρ,θ)是所求轨迹上任意一点.连接OM 并延长交圆A 于点P (ρ0,θ0),则有θ0=θ,ρ0=2ρ.由圆心为(4,0),半径为4的圆的极坐标方程为ρ=8cos θ,得ρ0=8cos θ0.所以2ρ=8cos θ,即ρ=4cos θ.故所求轨迹方程是ρ=4cos θ.它表示以(2,0)为圆心,2为半径的圆.求轨迹的方法与普通方程的方法相同,但本部分只要求简单的轨迹求法.【训练3】 从极点O 作直线与另一直线ρcos θ=4相交于点M ,在OM 上取一点P ,使|OM |·|OP |=12,求点P 的轨迹方程. 解 设动点P 的坐标为(ρ,θ),则M (ρ0,θ). ∵|OM |·|OP |=12.∵ρ0ρ=12.ρ0=12ρ. 又M 在直线ρcos θ=4上,∴12ρcos θ=4, ∴ρ=3cos θ.这就是点P 的轨迹方程.对应学生357(时间:30分钟 满分:60分)一、填空题(每小题5分,共40分)1.在极坐标系中,直线l 的方程为ρsin θ=3,则点⎝ ⎛⎭⎪⎫2,π6到直线l 的距离为________.解析 ∵直线l 的极坐标方程可化为y =3,点⎝ ⎛⎭⎪⎫2,π6化为直角坐标为(3,1),∴点⎝ ⎛⎭⎪⎫2,π6到直线l 的距离为2.答案 22.(2013·汕头调研)在极坐标系中,ρ=4sin θ是圆的极坐标方程,则点A ⎝ ⎛⎭⎪⎫4,π6到圆心C 的距离是________.解析 将圆的极坐标方程ρ=4sin θ化为直角坐标方程为x 2+y 2-4y =0,圆心坐标为(0,2).又易知点A ⎝ ⎛⎭⎪⎫4,π6的直角坐标为(23,2),故点A 到圆心的距离为(0-23)2+(2-2)2=2 3. 答案 2 33.在极坐标系中,过圆ρ=6cos θ-22sin θ的圆心且与极轴垂直的直线的极坐标方程为________.解析 由ρ=6cos θ-22sin θ⇒ρ2=6ρcos θ-22ρsin θ,所以圆的直角坐标方程为x 2+y 2-6x +22y =0,将其化为标准形式为(x -3)2+(y +2)2=11,故圆心的坐标为(3,-2),所以过圆心且与x 轴垂直的直线的方程为x =3,将其化为极坐标方程为ρcos θ=3. 答案 ρcos θ=34.(2013·华南师大模拟)在极坐标系中,点M ⎝ ⎛⎭⎪⎫4,π3到曲线ρcos ⎝ ⎛⎭⎪⎫θ-π3=2上的点的距离的最小值为________.解析 依题意知,点M 的直角坐标是(2,23),曲线的直角坐标方程是x +3y -4=0,因此所求的距离的最小值等于点M 到该直线的距离,即为|2+23×3-4|12+(3)2=2.答案 25.在极坐标系中,圆ρ=4上的点到直线ρ(cos θ+3sin θ)=8的距离的最大值是________.解析 把ρ=4化为直角坐标方程为x 2+y 2=16,把ρ(cos θ+3sin θ)=8化为直角坐标方程为x +3y -8=0,∴圆心(0,0)到直线的距离为d =82=4.∴直线和圆相切,∴圆上的点到直线的最大距离是8. 答案 86.在极坐标系中,曲线C 1:ρ=2cos θ,曲线C 2:θ=π4,若曲线C 1与C 2交于A 、B 两点,则线段AB =________.解析 曲线C 1与C 2均经过极点,因此极点是它们的一个公共点.由⎩⎪⎨⎪⎧ρ=2cos θ,θ=π4得⎩⎪⎨⎪⎧ρ=2,θ=π4,即曲线C 1与C 2的另一个交点与极点的距离为2,因此AB = 2. 答案27.(2013·湛江模拟)在极坐标系中,圆C 的极坐标方程为:ρ2+2ρcos θ=0,点P的极坐标为⎝ ⎛⎭⎪⎫2,π2过点P 作圆C 的切线,则两条切线夹角的正切值是________.解析 圆C 的极坐标方程:ρ2+2ρcos θ=0化为普通方程:(x +1)2+y 2=1,点P 的直角坐标为(0,2),圆C 的圆心为(-1,0).如图,当切线的斜率存在时,设切线方程为y =kx +2,则圆心到切线的距离为|-k +2|k 2+1=1,∴k =34,即tan α=34.易知满足题意的另一条切线的方程为x =0.又∵两条切线的夹角为α的余角,∴两条切线夹角的正切值为43. 答案 438.若直线3x +4y +m =0与曲线ρ2-2ρcos θ+4ρsin θ+4=0没有公共点,则实数m 的取值范围是________.解析 注意到曲线ρ2-2ρcos θ+4ρsin θ+4=0的直角坐标方程是x 2+y 2-2x +4y +4=0,即(x -1)2+(y +2)2=1.要使直线3x +4y +m =0与该曲线没有公共点,只要圆心(1,-2)到直线3x +4y +m =0的距离大于圆的半径即可,即|3×1+4×(-2)+m |5>1,|m -5|>5,解得,m <0或m >10.答案 (-∞,0)∪(10,+∞) 二、解答题(共20分)9.(10分)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,已知点P 的直角坐标为(1,-5),点M 的极坐标为⎝ ⎛⎭⎪⎫4,π2,若直线l 过点P ,且倾斜角为π3,圆C 以M 为圆心、4为半径.(1)求直线l 的参数方程和圆C 的极坐标方程; (2)试判定直线l 和圆C 的位置关系.解 (1)由题意,直线l 的普通方程是y +5=(x -1)tan π3,此方程可化为y +5sin π3=x -1cos π3,令y +5sin π3=x -1cos π3=a (a 为参数),得直线l 的参数方程为⎩⎪⎨⎪⎧x =12a +1,y =32a -5(a为参数).如图,设圆上任意一点为Q (ρ,θ),则在△QOM 中, 由余弦定理,得QM 2=QO 2+OM 2-2·QO ·OM cos ∠QOM , ∴42=ρ2+42-2×4ρcos ⎝ ⎛⎭⎪⎫θ-π2.化简得ρ=8sin θ,即为圆C 的极坐标方程. (2)由(1)可进一步得出圆心M 的直角坐标是(0,4), 直线l 的普通方程是3x -y -5-3=0, 圆心M 到直线l 的距离d =|0-4-5-3|3+1=9+32>4,所以直线l 和圆C 相离.10.(10分)(2012·辽宁)在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示); (2)求圆C 1与C 2的公共弦的参数方程. 解 (1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ. 解⎩⎨⎧ρ=2,ρ=4cos θ得ρ=2,θ=±π3, 故圆C 1与圆C 2交点的坐标为⎝ ⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫2,-π3.注:极坐标系下点的表示不唯一.(2)法一 由⎩⎨⎧x =ρcos θ,y =ρsin θ得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎨⎧x =1,y =t (-3≤t ≤3).⎝ ⎛⎭⎪⎪⎫或参数方程写成⎩⎨⎧x =1,y =y (-3≤y ≤3) 法二 将x =1代入⎩⎨⎧x =ρcos θ,y =ρsin θ得ρcos θ=1, 从而ρ=1cos θ.于是圆C 1与C 2的公共弦的参数方程为 ⎩⎨⎧x =1,y =tan θ⎝ ⎛⎭⎪⎫-π3≤θ≤π3.第2讲 参数方程对应学生211考点梳理1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎨⎧x =f (t )y =g (t )①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通。
三角形的相似性质相似三角形的判定及其应用相似三角形的判定及其应用相似三角形是初中数学中重要的概念之一,它在几何图形的相似性及其应用方面具有广泛的应用。
本文将介绍相似三角形的判定方法以及在实际问题中的应用。
一、相似三角形的判定方法判定两个三角形是否相似,常用的方法有以下几种:1. AA判定法(角-角相似判定法)当两个三角形中有两个对应的角相等时,这两个三角形就是相似的。
如下图所示,∠A1 = ∠A2,∠B1 = ∠B2,那么△ABC与△A'B'C'相似。
[插入示意图]2. AAA判定法(全等三角形的判定法)如果两个三角形的三个内角相对应相等,那么这两个三角形是相似的。
如下图所示,∠A1 = ∠A2,∠B1 = ∠B2,∠C1 = ∠C2,那么△ABC与△A'B'C'相似。
[插入示意图]3. SSS判定法(边-边-边相似判定法)当两个三角形的对应边长度成比例时,这两个三角形就是相似的。
如下图所示,AB/A'B' = BC/B'C' = AC/A'C',那么△ABC与△A'B'C'相似。
[插入示意图]二、相似三角形的应用相似三角形在实际问题中具有广泛的应用,以下是一些常见的应用场景:1. 测量高度利用相似三角形的性质,可以通过测量一个物体的阴影和遮挡的长度,来计算出物体的真实高度。
如下图所示,通过测量△ABC的阴影长度BD和实际高度AC,可以利用相似三角形的比例关系计算出物体的真实高度。
[插入示意图]2. 地图比例尺在地图上,为了能够容纳更多的信息,通常会使用比例尺来缩小地图的尺寸。
利用相似三角形的性质,可以通过测量地图上的距离和实际距离来确定比例尺的大小,进而测量其他地点的实际距离。
3. 相似三角形的分割比例在一些几何问题中,需要将一个三角形或长方形划分成若干个部分,利用相似三角形的性质可以确定每个部分的长度比例。
三角形的相似性质与判定三角形是几何中的基本形状之一,它具有许多重要的性质和特点。
其中一项重要的性质就是相似性质。
相似性质指的是两个或多个三角形具有相似的形状,但大小可能不同。
本文将探讨三角形的相似性质以及相似三角形的判定方法。
一、相似三角形的定义两个三角形相似的定义是:如果两个三角形的对应角度相等,并且对应边成比例,那么这两个三角形就是相似的。
换句话说,如果两个三角形的三个内角分别相等,且对应边的长度比为一个常数,那么它们是相似的。
二、相似三角形的性质相似三角形具有许多重要的性质,这些性质有助于我们进一步研究和应用三角形的知识:1. 边长比例性质:在相似三角形中,对应边的长度比是相等的。
比如说,如果一个三角形ABC与另一个三角形DEF相似,那么AB与DE的比、AC与DF的比、BC与EF的比都是相等的。
2. 角度对应性质:在相似三角形中,对应的角度是相等的。
也就是说,如果两个三角形相似,那么它们的三个角分别相等。
3. 高度比例性质:在相似三角形中,对应的高度(或称作高线)之比等于对应边长之比。
换句话说,如果一个三角形的两条边与另一个相似三角形的两条边成比例,那么它们的高度也是成比例的。
三、相似三角形的判定方法判定两个三角形是否相似有多种方法,这里介绍其中两种常用的方法:1. 三边比较法:如果两个三角形的三条边对应成比例,那么它们是相似的。
这种方法可通过确定三条边的长度,并计算它们的比例来判断。
2. 角度比较法:如果两个三角形的三个内角对应相等,那么它们是相似的。
这种方法可通过测量三个内角的大小,并比较它们的关系来判断。
值得注意的是,如果两个三角形仅满足其中一种判定条件,那它们并不一定是相似的。
相似性质需要同时满足对应边成比例和对应角相等这两个条件。
结论:三角形的相似性质与判定对于解决几何问题和应用数学都具有重要的意义。
通过理解相似性质,我们可以推导出许多有关三角形的重要结论,并应用于实际问题中。
在实际应用中,我们需要根据已知条件来判断两个三角形相似,进而利用相似的性质和定理解决问题。
相似三角形的性质与判定相似三角形是初中数学中一个重要的概念,理解相似三角形的性质和判定方法对于解题和应用数学非常有帮助。
本文将介绍相似三角形的性质,并讨论如何判定两个三角形是否相似。
一、相似三角形的性质1. 边长比例:两个三角形相似的充分必要条件是它们对应边长之比相等。
设两个三角形分别为ABC和DEF,若满足以下条件,则可判断它们为相似三角形:AB/DE = BC/EF = AC/DF2. 角度相等:两个三角形相似的另一个重要性质是它们对应角度相等。
即若三角形ABC和DEF满足以下条件,则可以判断它们为相似三角形:∠A = ∠D, ∠B = ∠E, ∠C = ∠F3. 高度比例:相似三角形的高度之比等于对应边长之比。
假设ABC 和DEF为相似三角形,且BC和EF为对应边,h1和h2为它们的高度,则有以下关系:h1/h2 = BC/EF二、相似三角形的判定方法1. AA(角-角)判定法:若两个三角形的两个角相等,则这两个三角形相似。
即若∠A = ∠D,∠B = ∠E,可判断三角形ABC与DEF相似。
2. SAS(边-角-边)判定法:若两个三角形的两个对应边的比例相等,并且这两个边夹角相等,则这两个三角形相似。
假设AB/DE =BC/EF,∠B = ∠E,可判断三角形ABC与DEF相似。
3. SSS(边-边-边)判定法:若两个三角形的三个对应边的比例相等,则这两个三角形相似。
即若AB/DE = BC/EF = AC/DF,可判断三角形ABC与DEF相似。
三、相似三角形的应用1. 测量高度:利用相似三角形的性质,可以测量高度。
例如,根据两个相似三角形的高度比例,可以利用已知的高度和对应的边长,求解未知高度的长度。
2. 图形放缩:相似三角形的性质使得我们能够进行图形的缩放。
通过改变相似三角形的边长比例,可以将图形按照一定的比例进行放大或缩小。
3. 建模与设计:相似三角形的应用还可以用于建模和设计。
例如,在设计模型中,可以利用相似三角形的概念,按照一定的比例来缩放和调整图形的形状。
相似三角形的性质与判定相似三角形是指具有相等对应角度的三角形,它们的对应边长之比也相等。
相似三角形不仅在几何学中具有重要意义,而且在实际生活中应用广泛。
本文将介绍相似三角形的性质及其判定方法。
一、相似三角形的性质1. 相似三角形的对应角度相等:对于两个三角形ABC和DEF,若∠A=∠D、∠B=∠E、∠C=∠F,则可以判断这两个三角形相似。
2. 相似三角形的对应边长比相等:对于两个相似三角形ABC与DEF,若AB/DE = AC/DF = BC/EF,则可以判断这两个三角形相似。
二、判定相似三角形的方法1. AA判定法(角-角判定法):如果两个三角形的两个角分别对应相等(即两个角的对应边平行),则可以判断这两个三角形相似。
例如,已知两个三角形ABC与DEF,已知∠A = ∠D,∠C = ∠F,并且∠B与∠E不相等,但∠B与∠E之间没有已知的关系。
根据AA判定法,可以得出结论这两个三角形相似。
2. SAS判定法(边-角-边判定法):如果两个三角形的一个角和两边分别相等,则可以判断这两个三角形相似。
例如,已知两个三角形ABC与DEF,已知∠A = ∠D,并且AB/DE = AC/DF。
根据SAS判定法,可以得出结论这两个三角形相似。
3. SSS判定法(边-边-边判定法):如果两个三角形的三条边的比例相等,则可以判断这两个三角形相似。
例如,已知两个三角形ABC与DEF,已知AB/DE = BC/EF =AC/DF。
根据SSS判定法,可以得出结论这两个三角形相似。
4. RHS判定法(直角边-斜边-直角边判定法):如果两个直角三角形的一个直角边和斜边的比例相等,则可以判断这两个三角形相似。
例如,已知两个直角三角形ABC与DEF,已知∠C = ∠F = 90°,并且AB/DE = AC/DF。
根据RHS判定法,可以得出结论这两个三角形相似。
三、实际应用相似三角形的性质及判定方法在实际生活中有广泛的应用。
A 'B 'C 'CBAA 'B 'C 'CB A相似三角形的性质和判定 一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”。
2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”。
三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.2.相似三角形的对应边成比例 如图,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比) 。
3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比。
如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比).M 'MA 'B 'C 'C B A图(1)H 'H AB C C 'B 'A '图(2)D 'D A 'B 'C 'C B A图(3)A 'B 'C 'CBAH 'HA BC C 'B 'A '如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).4.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++. 5.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△. 图4图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似。
【模拟试题】
1. 如图所示,在△ABC 中,∠BAC=90°,D 是BC 的中点,AE ⊥AD 交CB 延长线于E ,则结论正确的是( )
A. △AED ∽△ACB
B. △AEB ∽△ACD
C. △BAE ∽△ACE
D. △AEC ∽△DAC
2. 如图所示,DE 是△ABC 的中位线,FG 为梯形BCED 的中位线,若DE=4,则FG 等于( )
A. 6
B. 8
C. 10
D. 12
3. △ABC 的三边长分别为
C B A '''∆,2,6,
2的两边长分别为1和3,
如果△ABC ∽△C B A ''',那么△C B A '''的第三边长为( )
A. 2
B.
2
2 C.
2
6 D.
3
3
4. 如图所示,D 是△ABC 的AB 边上的一点,要使△ACD ∽△ABC ,则它们还必须具备
的条件是( )
A. BC AB CD AC ::=
B. AC BC AD CD ::=
C. DB AD CD ⋅=2
D. AB AD AC
⋅=2
5. 如图所示,△ABC 中,DE//BC ,2:1:=DB AD ,则下列结论中错误的是( ) A.
3
1=BC
DE B.
3
1=
∆∆的周长
的周长ABC ADE
C.
3
1=
∆∆的面积
的面积ABC ADE D.
8
1=
∆的面积
梯形的面积BCED ADE
6. 如图所示,已知ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件,不能推出△ABP 与△ECP 相似的是( )
A. ∠APB=∠EPC
B. ∠APE=90°
C. P 是BC 的中点
D. 3:2:=BC BP
7. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF ,则下列结论正确的是( )
A. ∠BAE=30°
B. CF AB CE
⋅=2
C. CD CF 31=
D. ABE ∆∽AEF ∆
8. 如图所示,等腰直角△ABC 中,AD 是直角边BC 上的中线,BE ⊥AD ,交AC 于E ,EF ⊥BC ,若AB=BC=a ,则EF 等于( )
A.
a 3
1 B.
a 2
1 C.
a 3
2 D.
a 52
9. 如图所示,已知AD 是△ABC 的中线,E 是AD 上的一点,CE 交AB 于F ,且4
1=ED
AE ,
则
FB
AF 等于( )
A. 7
1 B.
8
1 C.
9
1 D.
10
1
10. 如图所示,ABCD 中,E 是BC 上一点,3:2:=EC BE ,AE 交BD 于F ,则FD
BF :等于( )
A. 2:5
B. 3:5
C. 2:3
D. 5:7
11. 如图所示,在△ABC 中,AD 是BC 边上的中线,F 是AD 上的一点,且5:1:=FD AF ,连结CF 并延长交AB 于点E ,则EB AE :等于( ) A. 1:6 B. 1:8 C. 1:9 D. 1:10
12. 如图所示,梯形ABCD 中,AD//BC ,∠ABC=90°,对角线AC ⊥BD ,垂足为P ,已知4:3:=BC AD ,则AC BD :的值是( )
A.
2:3 B. 3:2 C.
3:3 D. 3:4
13. 如图所示,P 为ABC Rt ∆的斜边AB 上任意一点(除A 、B 外),过点P 作直线截△ABC ,使截得的新三角形与△ABC 相似,满足这样条件的直线的作法共有( )
A. 1种
B. 2种
C. 3种
D. 3种以上
14. 如图所示,已知△ABC 中,DE//FG//BC ,且3:2:1::=FB DF AD ,则
DFGE
ADE S S 四边形
:∆FBCG
S 四边形
:等于( )
A. 1:9:36
B. 1:4:9
C. 1:8:27
D. 1:8:36
15. 如图所示,在△ABC中,∠ACB=90°,P是AB边上的一点,下列条件中,不能
..推出△ACP与△CBP相似的是()
A. ∠APC=∠BPC
B. ∠APC=90°
C. P是BC的中点
D. AB
BP:
:
BC
BC
【试题答案】
1. C
2. A
3. A
4. D
5. C
6. C
7. B
8. A
9. B 10. A
11. D 12. A13. C 14. C 15. C。