现代混凝土综述
- 格式:doc
- 大小:39.00 KB
- 文档页数:7
混凝土细观力学研究进展综述共3篇混凝土细观力学研究进展综述1混凝土作为一种重要的基础建材,其力学性能的研究一直是混凝土材料科学领域的重要研究内容。
近年来,随着人们对工程结构安全性的要求越来越高,混凝土细观力学研究在材料科学领域变得越来越重要。
混凝土细观力学研究的基本思路是将混凝土看成是由一系列的微观单元构成的,通过对这些微观单元的力学响应进行分析、研究和计算,以揭示混凝土的力学性能。
混凝土的微观单元主要包括水泥石、骨料、孔隙等,因为这些单元的形态、大小和分布等因素会影响混凝土的宏观力学性能。
混凝土细观力学研究的核心问题之一是混凝土的力学损伤与破坏。
在混凝土中,由于微观单元之间的相互作用和外部加载作用等因素,混凝土可能发生微裂纹、裂缝扩展、局部破坏等过程,这些过程将直接影响混凝土的宏观力学性能。
因此,深入研究混凝土力学损伤与破坏机理,对于深入理解混凝土的力学性能、提高混凝土的力学性能具有重要意义。
近年来,混凝土细观力学研究在许多方面取得了重要进展。
首先是在混凝土力学损伤与破坏机理的研究上,在微观单元尺度上,人们通过数值模拟、实验研究等手段,发现混凝土的破坏过程是由微裂纹、裂缝扩展到宏观破坏的连续过程,其中裂缝扩展是破坏过程中最主要的损伤形式。
其次,在混凝土本构关系的研究上,人们根据微观单元的力学响应,通过多尺度分析方法建立了混凝土的本构关系,这对于混凝土宏观力学性能的计算和分析具有重要意义。
此外,混凝土的疲劳损伤与寿命研究、混凝土在高温下的性能等也是混凝土细观力学研究领域中重要的研究方向。
总的来说,混凝土细观力学研究在深入理解混凝土力学性能、提高混凝土工程结构安全等方面具有重要的科学意义和工程应用价值。
未来,混凝土细观力学研究领域需要继续深化相关理论和数值模拟技术,探究混凝土的力学性能与微观单元结构的关系,为混凝土工程结构的优化设计和施工提供更加精准的理论基础。
混凝土细观力学研究进展综述2随着现代科技和工程实践的发展,混凝土作为一种最基础的建筑材料,已经被广泛应用于建筑结构和基础工程中。
超高性能混凝土(UHPC)基本性能研究综述共3篇超高性能混凝土(UHPC)基本性能研究综述1近年来,超高性能混凝土(UHPC)在建筑工程领域中得到了广泛的应用。
相比于普通混凝土,UHPC具有更高的抗压强度、抗拉强度、抗渗透性、抗冻融性以及耐久性。
本文将对UHPC的基本性能进行综述。
1. 抗压强度UHPC的抗压强度一般在150 MPa到250 MPa之间,而普通混凝土的抗压强度通常在20 MPa到40 MPa之间。
这是因为UHPC采用了多种添加剂和超细粉料,使得其微观结构更加精密,可以有效地抵抗压力。
2. 抗拉强度UHPC的抗拉强度通常在10 MPa到15 MPa之间,而普通混凝土的抗拉强度只有1 MPa到2 MPa。
这也是由于UHPC的微观结构更加紧密,能够有效地抵抗拉力。
3. 抗渗透性UHPC的抗渗透性比普通混凝土更好,主要是由于UHPC中使用了高品质的细石颗粒,能够有效地填充混凝土中的微小孔隙,减少渗透的可能性。
4. 抗冻融性UHPC的抗冻融性也比普通混凝土更好,这是由于UHPC中采用了特殊的添加剂来延缓水的渗透和凝结,使得混凝土孔隙中的水不会在冷冻过程中膨胀。
5. 耐久性UHPC的耐久性比普通混凝土更好,这是由于UHPC中添加了特殊的化学成分,可以在一定程度上延缓混凝土的老化过程,从而改善混凝土的耐久性。
综上所述,超高性能混凝土在工程建设中具有重要的应用价值。
随着科学技术的不断进步,UHPC的性能将会得到进一步的提升和改进,为建筑工程的发展做出更大的贡献。
超高性能混凝土(UHPC)基本性能研究综述2超高性能混凝土(UHPC)是一种新型高强低碳建筑材料,它雷同名字,具有出色的力学性能、耐久性和抗冲击性能,是目前替换传统混凝土的一种趋势。
本文将对UHPC的基本性能进行综述。
一、力学性能UHPC的力学性能高于传统混凝土。
表现在以下方面:1. 抗压强度: UHPC的抗压强度通常为150-250 MPa之间,是普通混凝土的10倍以上,并且在高应变下表现出极佳的稳定性。
大体积混凝土结构施工技术综述大体积混凝土结构施工技术综述摘要:进入21世纪90年代后,建筑施工技术飞速发展,混凝土体积由几百立方米逐渐增大到几万立方米,因此,对于大体积混凝土施工提出了更高的要求。
现代建筑中时常涉及到的大体积混凝土施工,如高层楼房基础、大型设备基础、水利大坝等,它主要的特点是体积大,一般实体最小尺寸大于或等于1m。
由于其体积大,表面小,水泥水化热释放比较集中,内部温升比较快,当混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用,所以必须从根本上分析它,来保证施工的质量。
关键词:大体积混凝土温度裂缝施工措施一、大体积混凝土的裂缝大体积混凝土内出现的裂缝按深度的不同,分为贯穿裂缝、深层裂缝及表面裂缝三种。
贯穿裂缝是由混凝土表面裂缝发展为深层裂缝,最终形成贯穿裂缝。
它切断了结构的断面,可能破坏结构的整体性和稳定性,其危害性是较严重的;而深层裂缝部分地切断了结构断面,也有一定危害性;表面裂缝一般危害性较小。
但出现裂缝并不是绝对地影响结构安全,它都有一个最大允许值。
处于室内正常环境的一般构件最大裂缝宽度≤0.3mm;处于露天或室内高湿度环境的构件最大裂缝宽度≤0.2mm。
对于地下或半地下结构,混凝土的裂缝主要影响其防水性能。
一般当裂缝宽度在0.1~0.2mm时,虽然早期有轻微渗水,但经过一段时间后,裂缝可以自愈。
如超过0.2~0.3mm,则渗漏水量将随着裂缝宽度的增加而迅速加大。
所以,在地下工程中应尽量避免超过0.3mm贯穿全断面的裂缝。
如出现这种裂缝,将大大影响结构的使用,必须进行化学灌浆加固处理。
大体积混凝土施工阶段所产生的温度裂缝,一方面是混凝土内部因素:由于内外温差而产生的;另一方面是混凝土的外部因素:结构的外部约束和混凝土各质点间的约束,阻止混凝土收缩变形,混凝土抗压强度较大,但抗拉能力却很小,所以温度应力一旦超过混凝土能承受的抗拉强度时,即会出现裂缝。
这种裂缝的宽度在允许限值内,一般不会影响结构的强度,但却对结构的耐久性有所影响,因此必须予以重视和加以控制。
关于混凝土结构安全性的综述摘要:混凝土结构的安全性涉及到结构的设计、施工过程等很多方面,主要对近期混凝土安全性设计、评价方法、影响因素和改进措施等方面做了综述。
关键词:混凝土结构安全性综述中图分类号:tu528 文献标识码:a 文章编号:1007-3973(2012)005-007-021 结构安全性的定义结构安全性是指在正常施工和正常使用下混凝土结构及其构件承受可能出现的各种外界作用、并能防止破环、倒塌、保护人员和设备安全的能力,包括在偶然突发事件发生时和发生后,仍能保持必要的整体稳定性的能力。
结构安全性是结构工程最重要的质量指标,也是做好建筑结构的安全控制,确保施工和使用时安全度和可靠性要求,确保人民群众生命财产安全,构建社会主义和谐社会时土木工程界科研人员、设计及施工人员需要考虑的最重要的因素之一。
2 结构安全性设计的设计方法2.1结构构件承载能力安全程度的设计在进行结构设计时,我们习惯上用结构构件的安全系数来衡量构件的安全性。
但是安全系数并不是一成不变的,他随着时间也在不断演变,对应的结构设计方法也在不断变化。
从解放初期的容许应力设计方法到1989年开始实施也是现行规范gbj 10-89颁布的多安全系数极限设计方法。
虽然对安全性有了很大程度的提高,但是实际上安全系数只能代表安全性的一个方面或者一个部分,即使仅以构件承载力的安全程度而言,还必须与材料强度标准值的取值大小和荷载标准值及构件承载力与内力分析计算的保守程度合在一起考虑。
2.2 结构的整体牢固性和构造要求结构的整体牢固性要求局部破坏的情况下,不致于引起大范围的连续倒塌,应能在各种不测事件发生时,能将破坏尽可能局限在最小程度。
结构的这种能力主要依靠必要的构造措施以及合理的结构方案来体现,使结构整体具有足够的延性和冗余度。
不同结构类型在整体性上有重大差别。
同样满足承载力安全度要求的现浇钢筋混凝土结构和钢结构要比砖混结构的安全性好很多。
钢筋混凝土结构文献综述范文英文回答:Reinforced Concrete Structure Literature Review.Reinforced concrete (RC) is a composite material that combines the strength and durability of concrete with the tensile strength of steel reinforcement. RC structures are widely used in construction due to their versatility, durability, and cost-effectiveness.Properties of Reinforced Concrete.Compressive Strength: Concrete is strong in compression, but weak in tension.Tensile Strength: Steel reinforcement provides the tensile strength that concrete lacks.Bond Strength: The bond between concrete and steel iscrucial for the performance of RC structures.Durability: Concrete is resistant to fire, moisture, and weathering. Steel reinforcement can corrode if not properly protected.Design and Analysis of RC Structures.The design and analysis of RC structures involves considering various factors, including:Material properties (concrete strength, steel yield strength, bond strength)。
混凝土的结构设计理论与方法综述混凝土作为一种广泛应用于建筑工程中的材料,其结构设计是保证建筑物安全可靠的重要环节。
本文将对混凝土的结构设计理论与方法进行综述,并探讨其在实际工程中的应用。
一、混凝土结构设计理论1. 强度理论混凝土结构的设计首要考虑其强度,常用的强度理论有极限强度设计和工作状态设计。
极限强度设计是根据混凝土的抗压、抗拉强度等力学性能,计算出结构在极限状态下的承载能力。
工作状态设计则考虑混凝土结构在使用过程中的变形和应力,保证结构在可接受的范围内工作。
2. 破坏理论混凝土结构在受到承载时,可能发生破坏,破坏理论研究的是结构在破坏前的力学行为。
常用的破坏理论有弹性极限理论、塑性极限理论和破碎力学理论等。
这些理论可以帮助工程师预测结构在受力过程中的破坏形式,从而选择合适的结构设计方案。
3. 建筑结构理论混凝土结构的设计需要考虑建筑结构的整体性能。
建筑结构理论主要研究结构的稳定性、刚度和振动等性能。
在混凝土结构设计中,需要合理选择结构形式、尺寸和布置,以满足建筑物的使用要求。
二、混凝土结构设计方法1. 统计学方法统计学方法是根据混凝土材料的强度分布特性,通过统计学方法得到结构的安全系数。
这种方法适用于结构规模大、建设周期长的工程,在统计学方法中,常用的计算方法有可靠性设计和极限状态设计。
2. 实测数据方法混凝土结构设计时,可以利用实测数据进行分析和计算。
实测数据方法是通过对已建成的混凝土结构进行监测和测试,获得结构的应力、变形等参数,从而验证设计的合理性和可行性。
3. 数值模拟方法随着计算机技术的不断发展,数值模拟方法在混凝土结构设计中得到广泛应用。
通过建立数学模型和使用有限元等数值方法,可以模拟结构在受力过程中的变形和应力分布情况,从而指导结构设计的优化。
三、混凝土结构设计的应用1. 房屋建筑混凝土结构在房屋建筑中得到广泛应用,比如楼房、别墅等。
在房屋建筑中,混凝土可以灵活运用,既可以作为承重结构,也可以作为装饰材料,从而实现安全、美观和经济效益的结合。
frp筋混凝土综述随着建筑行业的不断发展,混凝土作为一种重要的建筑材料,得到了广泛的应用。
但是,传统的混凝土存在一些问题,如易受环境影响、耐久性差等。
因此,人们开始研究新型的混凝土材料和技术,其中frp筋混凝土作为一种新型的混凝土材料,引起了人们的广泛关注。
一、frp筋混凝土的概念frp筋混凝土是一种以纤维增强复合材料(frp)筋为主要加筋材料的混凝土。
其与传统的钢筋混凝土相比,具有很多优点,如重量轻、耐久性好、易于施工等。
二、frp筋混凝土的特点1.重量轻由于frp筋的密度比钢筋小,因此frp筋混凝土的重量比钢筋混凝土轻很多。
这对减轻建筑物自重、提高建筑物抗震性能、降低建筑物成本等方面都具有重要意义。
2.耐久性好frp材料具有很好的耐久性能,不容易受到腐蚀、疲劳等因素的影响。
因此,frp筋混凝土的使用寿命比钢筋混凝土长很多。
3.易于施工frp筋混凝土的施工比钢筋混凝土更加简单,因为frp材料可以直接切割、弯曲等,而且不需要进行防锈处理。
4.环保frp材料不含重金属等有害物质,因此对环境的影响比钢筋混凝土更小。
三、frp筋混凝土的应用1.桥梁frp筋混凝土可以用于桥梁的加筋和修复,可以提高桥梁的承载能力和耐久性。
2.建筑frp筋混凝土可以用于建筑物的柱、墙、梁等部位的加固和修复,可以提高建筑物的抗震性能和耐久性。
3.地下工程frp筋混凝土可以用于地下工程的加筋和修复,可以提高地下工程的承载能力和耐久性。
4.其他领域frp筋混凝土还可以用于船舶、飞机、汽车等领域,可以提高产品的强度和耐久性。
四、frp筋混凝土的研究进展1.材料目前,国内外研究机构对frp筋混凝土的材料进行了广泛的研究,主要包括frp筋、混凝土和粘结剂等。
2.设计frp筋混凝土的设计方法是一个重要的研究方向。
目前,国内外研究机构对frp筋混凝土的设计方法进行了广泛的研究,主要包括弯曲、剪切、拉伸等方面。
3.施工frp筋混凝土的施工方法也是一个重要的研究方向。
活性粉末混凝土性能综述活性粉末混凝土是一种新型的混凝土材料,具有优良的性能和广泛的应用前景。
本文将从活性粉末混凝土的性能特点、制备工艺、应用领域等方面进行综述,以期为相关研究和应用提供参考。
1.高强度:活性粉末混凝土具有良好的强度性能,其抗压强度和抗折强度均远高于普通混凝土。
这使得活性粉末混凝土可以用于需要高强度材料的工程项目,如桥梁、高层建筑等。
2.耐久性好:活性粉末混凝土在极端环境下具有良好的耐久性,可耐受酸碱侵蚀、高温、低温等恶劣条件。
这使得其在特殊环境下的应用领域更加广泛。
3.良好的抗裂性能:由于活性粉末混凝土内部微观结构的特殊性,其抗裂性能较好,可以有效防止裂缝的产生和扩张,提高了材料的整体性能。
4.可持续性:活性粉末混凝土采用的原材料可以是废弃物和工业副产品,因此具有可持续性和环保性,符合当今社会对于可持续发展的需求。
二、活性粉末混凝土的制备工艺活性粉末混凝土的制备工艺主要包括原材料的选取、配比设计以及混凝土的制备过程。
首先是原材料的选取,主要包括水泥、粉煤灰、矿渣粉等。
这些原料中的一些可以是废弃物和工业副产品,具有可持续性和环保性。
其次是配比设计,通过对各种原料按照一定比例进行混合,制定出最佳的配比方案,以确保混凝土的性能达到设计要求。
最后是混凝土的制备过程,通常采用搅拌机将各种原料进行混合,并加入适量的水进行搅拌,最终形成活性粉末混凝土。
活性粉末混凝土具有优良的性能特点,因此在建筑工程中有着广泛的应用前景。
主要应用领域包括:1.桥梁工程:桥梁是属于高强度和耐久性要求较高的工程。
活性粉末混凝土的高强度和耐久性使得其在桥梁工程中有着较好的应用前景。
活性粉末混凝土具有良好的性能特点和广泛的应用前景,是一种具有发展潜力的新型建筑材料。
随着科技的不断进步和工艺的不断完善,相信活性粉末混凝土将在未来的建筑工程中发挥越来越重要的作用。
钢筋混凝土结构文献综述范文英文回答:Reinforced concrete structures have been widely used in the construction industry due to their excellent strength and durability. As a civil engineer, I have conducted a comprehensive literature review on reinforced concrete structures, and I would like to share my findings.Firstly, one of the key aspects of reinforced concrete structures is the design and analysis. Numerous studies have focused on the development of design codes and guidelines to ensure the structural safety and performance. For example, the American Concrete Institute (ACI) provides the ACI 318 Building Code Requirements for Structural Concrete, which is widely adopted in the industry. This code covers various aspects of design, including load calculations, material properties, and detailing requirements.Furthermore, researchers have investigated different types of reinforcement materials and their effects on the behavior of reinforced concrete structures. Steel reinforcement bars, also known as rebars, are commonly used due to their high strength and ductility. However, alternative reinforcement materials, such as fiber-reinforced polymers (FRP), have gained attention in recent years. These materials offer advantages such as corrosion resistance and lightweight, but their behavior and design considerations differ from traditional steel reinforcement.In addition to design and materials, studies have also explored the behavior of reinforced concrete structures under different loading conditions. For instance, researchers have investigated the flexural behavior of reinforced concrete beams, the shear strength of reinforced concrete columns, and the seismic performance of reinforced concrete buildings. These studies aim to improve the understanding of structural behavior and develop more efficient and reliable design methods.Moreover, the durability of reinforced concretestructures has been a significant concern. Exposure to harsh environmental conditions, such as chloride attack and carbonation, can lead to degradation of the concrete and corrosion of the reinforcement. Researchers have developed various techniques to enhance the durability, including the use of high-performance concrete, corrosion inhibitors, and protective coatings.Overall, the literature review on reinforced concrete structures has provided valuable insights into the design, materials, behavior, and durability aspects. By incorporating the findings from these studies, engineers can optimize the design and construction process, ensuring the safety and longevity of reinforced concrete structures.中文回答:钢筋混凝土结构由于其出色的强度和耐久性,在建筑行业中得到了广泛应用。
大体积混凝土施工技术研究文献综述
大体积混凝土施工技术是现代建筑工程中的重要领域,其研究
涉及到材料科学、结构工程、施工技术等多个方面。
在过去的几十
年里,许多学者和工程师对大体积混凝土施工技术进行了深入的研究,形成了大量的文献综述。
首先,从材料科学的角度来看,大体积混凝土的研究主要集中
在混凝土的配合比设计、材料选用和掺合料的应用等方面。
许多研
究表明,使用高性能混凝土和掺合料可以显著改善大体积混凝土的
性能,提高其抗压强度、抗渗性和耐久性。
此外,针对大体积混凝
土的裂缝控制和收缩变形等问题,也有许多研究成果值得关注。
其次,从结构工程的角度来看,大体积混凝土在桥梁、水利工程、核电站等领域的应用越来越广泛。
因此,大量的文献综述涉及
到大体积混凝土结构的设计原理、施工工艺和加固修复技术等内容。
这些研究为工程实践提供了重要的理论支持和技术指导。
此外,施工技术是大体积混凝土研究的另一个重要方面。
文献
综述中涉及到了大型模板支撑系统、浇筑工艺、温度控制和养护技
术等内容。
这些研究为大体积混凝土施工提供了重要的参考和指导,
有助于提高工程质量和施工效率。
总的来说,大体积混凝土施工技术的研究文献综述涵盖了材料科学、结构工程和施工技术等多个方面,为相关领域的学术研究和工程实践提供了重要的理论和实践支持。
希望未来能够有更多的学者和工程师投入到这一领域的研究中,推动大体积混凝土施工技术的不断创新和发展。
混凝土工程1混凝土工程综述本工程使用的混凝土种类主要为普通混凝土;特种混凝土工程包括:防水混凝土(S8)、冬施混凝土。
混凝土的强度等级主要为C35、C30、C25。
混凝土总体施工程序:根据设计图纸确定混凝土品种、强度等级、部位、数量→确定现场搅拌或使用商品混凝土→向搅拌站提出混凝土的技术要求→确定混凝土的输送方式→布置输送管路、道路→确定混凝土浇筑方案→原材料检验→混凝土拌制→混凝土运输→混凝土浇筑与振捣→留置混凝土试块→混凝土养护→(拆模)→现浇结构外观及尺寸允许偏差检验→混凝土施工检验→结构实体混凝土强度检验→结构实体钢筋保护层检验→混凝土子分部工程验收。
2混凝土运输和浇筑的通用技术措施混凝土运至浇筑地点,应符合浇筑时规定的坍落度,当有离析现象时,必须在浇筑前进行二次搅拌。
预拌混凝土坍落度未经检验合格,不准进入垂直运输。
混凝土应以最少的转载次数和最短的时间,从搅拌地点运至浇筑地点。
混凝土采用泵送,柱混凝土坍落度以160-180mm为宜,梁板混凝土以120mm以下为宜。
为保证混凝土外观质量,要求商品混凝土搅拌站在混凝土内掺入粉煤灰;为加快模板周转,混凝土中加入高效早强减水剂。
采用泵送混凝土应符合下列规定:1.混凝土的供应,必须保证混凝土输送泵能连续工作;2.输送管线宜直,转弯宜缓,接头应严密。
如管道向下倾斜,应防止混入空气,产生阻塞;3.泵送前应先用适量的与混凝土成分相同的水泥浆或水泥砂浆润滑输送管内壁;雨季泵送间歇时间超过45min或当混凝土出现离析现象时,应立即用压力水或其他方法冲洗管内残留的混凝土;4.在泵送过程中,受料斗内应具有足够的混凝土,以防止吸入空气产生阻塞。
在地基或基土上浇筑混凝土时,应清除淤泥和杂物,并应有排水措施和防水措施。
对模板及其支架、钢筋和予埋件必须进行检查,并做好记录,符合设计要求后方能浇筑混凝土。
在浇筑混凝土前,对模板内的杂物和钢筋上的油污等应清理干净,对模板的缝隙和孔洞应予堵严;对木模板应浇水湿润,但不得有积水。
多层混凝土框架结构设计文献综述多层混凝土框架结构设计是现代建筑设计中常见的一种设计方式,它具有结构稳定性好、抗震性强、施工方便等优点。
近年来,很多学者对此进行了深入的研究,并进行了大量的实验和分析。
本文将对多层混凝土框架结构设计的相关文献进行综述,并总结出目前研究中的主要问题和发展趋势。
首先,很多学者在多层混凝土框架结构设计中采用了各种不同的材料和结构形式,以提高结构的稳定性和抗震性。
例如,孙勇等(2024)在其研究中使用了高强度混凝土和高强度钢筋,增加了结构的承载能力和抗震性能。
另外,郑佳等(2024)研究表明,使用剪力墙作为结构的一部分,可以有效地提高结构的抗震性能。
其次,在多层混凝土框架结构设计中,结构的几何形态也是一个重要的考虑因素。
徐春等(2024)通过对不同结构形态的比较研究发现,合理的结构形态可以降低结构的应力集中程度,提高结构的整体稳定性。
此外,赵梦等(2024)在其研究中发现,采用多层剪切墙的结构形式可以有效地提高结构的整体刚度和抗震性能。
再次,很多学者在多层混凝土框架结构设计中使用了各种不同的分析方法和计算模型,以评估结构的性能。
张强等(2024)通过有限元分析,研究了不同结构参数对结构响应的影响,并提出了相应的优化方案。
王明等(2024)在其研究中使用了基于性能的设计方法,以优化结构的抗震性能。
最后,多层混凝土框架结构设计的研究还有一些亟待解决的问题。
例如,如何在设计中兼顾经济性和可持续性是一个重要的问题。
另外,如何在设计中考虑结构的耐久性和环境适应性也是一个挑战。
综上所述,多层混凝土框架结构设计是一个复杂而重要的研究领域。
通过对相关文献的综述,可以看出在该领域已经取得了一些重要的进展。
然而,仍然有一些问题需要进一步研究和解决。
相信随着技术的进步和学者的努力,多层混凝土框架结构设计将会取得更大的进展。
混凝土类综述概述混凝土是一种常见的建筑材料,广泛应用于各种建筑和基础设施项目中。
它由水泥、骨料、细骨料和掺合料等成分混合而成,具有高强度、耐久性和耐火性等优点。
本文将对混凝土的种类、材料特性、施工方法和质量控制等方面进行综述。
混凝土的种类根据不同的应用要求和材料配比,混凝土可分为普通混凝土、重力混凝土、轻质混凝土和高性能混凝土等几种主要类型。
1.普通混凝土是最常见的建筑混凝土,通常用于普通建筑结构和一般道路的施工。
2.重力混凝土是一种高密度的混凝土,用于承受大型结构的重量和压力,如水坝、核电站等。
3.轻质混凝土是一种密度较低的混凝土,适用于需要减轻结构负荷的建筑,如楼板、屋顶等。
4.高性能混凝土具有更高的强度和耐久性,广泛应用于大桥、高楼等需要长寿命和高强度的结构。
混凝土的材料特性混凝土的材料特性主要取决于水泥、骨料、细骨料和掺合料等材料的性质。
1.水泥是混凝土中的粘合剂,它与水发生反应形成坚固的胶凝体。
常用的水泥包括硅酸盐水泥、硫铝酸盐水泥和普通硅酸盐水泥等。
2.骨料是混凝土中的主要载荷材料,用于提供混凝土的强度和抗压能力。
常见的骨料包括碎石、砂石和矿渣等。
3.细骨料是混凝土中的填充材料,用于调整混凝土的工作性能和密实性。
常用的细骨料包括砂石、粉煤灰和矿渣粉等。
4.掺合料是混凝土中的辅助材料,用于改善混凝土的性能,如延缓凝结时间、提高抗裂能力等。
常见的掺合料包括矿物掺合料、化学掺合料和粉煤灰等。
混凝土的施工方法混凝土的施工包括材料准备、配料、搅拌、浇注、养护等多个环节。
1.材料准备:通过选购合适的水泥、骨料、细骨料和掺合料等材料,并进行质量检验和储存。
2.配料:按照设计配比,将水泥、骨料、细骨料和掺合料等准备好的材料按一定比例进行称量混合。
3.搅拌:使用混凝土搅拌机将配料好的材料进行充分搅拌,直至混凝土均匀一致。
4.浇注:将混凝土浇注到预定的模板或施工位置上,并通过振捣工具排出气泡和杂质。
5.养护:对新浇筑的混凝土进行湿润养护,以确保混凝土的充分硬化和强度发展。
现代混凝土综述姓名: X X X学号: 2016XXXXXX任课老师: X X X班级:现代混凝土课程教学班现代混凝土综述混凝土作为重要的建筑材料,经历了普通混凝土—高强度混凝土—高性能混凝土的发展过程。
最初,混凝土技术的优劣是以强度作为主要依据的。
特别是上世纪70年代末,由于减水剂和高活性混凝土掺合料的开发和应用,使高强混凝土的制备进入了一个新阶段,采用普通混凝土施工工艺,已能较容易配制出80~100 MPa的高强混凝土。
但是,随着破坏造成的结构崩塌事故在各地接连发生,使人们意识到混凝土强度增加带来的脆性问题已影响到高强混凝土的使用安全。
特别是诸如海洋、核电站、高层、大跨度建筑工程领域提出的各种苛刻的要求,迫使混凝土朝着高性能化方向发展。
目前,混凝土的高性能化已引起各国土木建筑与材料工程界的高度重视。
据预测,今后的100~200年内,混凝土将成为最主要的工程结构材料,而高性能混凝土将占主导地位。
资料表明,从公元前2世纪采用天然火山灰、石灰、碎石拌制天然混凝土开始,用于一般的民用建筑,到1824年,英国人JAspdin发明了波特兰水泥,即烧制硅酸盐水泥、1861年,法国花匠J.Manier发明了制造钢筋混凝土结构的方法,1867年出现钢筋混凝土结构构件,1940年开始采用了预应力混凝土技术,从此混凝土技术有了突飞猛进的发展,为建造高层建筑和大跨度桥梁提供了物质基础。
这个时期的混凝土性能,大多以满足强度要求和如何获得较高强度的混凝土,作为科研和生产的主要工作目标。
进一步的研究成果表明,如今,尚且没有能够完全取代混凝土作为结构材料的其它材料,混凝土材料在今后50年内还将是应用最广、用量最大的建筑材料。
目前,全世界水泥年产量达15亿吨以上,我国水泥年产量达5.1亿吨,占世界产量的三分之一。
由水泥作为主要胶凝材料的混凝土,其特殊的性能及施工工艺的简单易行,已成为现代工程建设、影响人们生活方式的主要建筑材料。
然而,工业技术的发展源于它的发展基础、且由于同时存在着它自身发展过程的缺欠,存在着人们认识能力的原因等,使得混凝土材料在给我们带来现代文明的同时,也造成许多问题。
如资源的无节制的消耗和生产带来的环境污染问题。
不能不引起各方面的极大关注和重视。
混凝土结构的耐久性能与其工作环境有关,工程实践表明,在长期环境因素作用下,混凝土构件远低于设计寿命,这不仅是原设计理论估计的不足,也反映了环境变化的复杂性。
因此,混凝土构建过早的出现裂缝甚至倒塌。
混凝土耐久性达不到要求,要花费大量财力用于工程维修和重建,如在美国,今后混凝土工程维修和重建费用高达3000亿美元。
配制新的混凝土和拆除建筑废弃的混凝土,都将增加能源消耗和环境负担。
仅美国每年大约有6000万吨废弃混凝土,日本每年约有1600万吨废弃混凝土,我国的情况也未必乐观。
可见废旧建筑材料的数量之大,令人惊叹。
混凝土结构的耐久性能与其工作环境有关,工程实践表明,在长期环境因素作用下,混凝土构件远低于设计寿命,这不仅是原设计理论估计的不足,也反映了环境变化的复杂性。
可持续发展是人类社会发展中的重要认识成果,其本质是努力应用科学的、技术的和经济的知识,去消除由于无节制的技术发展所造成的负面影响。
可持续发展的主要方面是通过保护和不必要的消耗来更有效地利用资源,控制使用资源,使其可达到良性循环,或利用消耗材料的数量达到最小限度。
因此,高性能混凝土材料的可持续发展,其出路在于应用现代混凝土的科学技术来增加混凝土的使用寿命,同时提高材料和构件的耐久性,尽量减少造成修补或拆除的浪费,尽可能的利用工业副产品和废弃物,尽量减少自然资源和能源消耗,减少对环境的污染。
(1)高性能混凝土,其性能与所处时代的发展相适应,又随着社会生产、生活的发展需要而发展,它有着鲜明的时代特征,即不能超越现实的可能,又必须按照时代的需要而发展。
(2)高性能可持续性发展,是人们使生产和生活更加科学化为我们工作提出了一个行为准则。
(3)混凝土的高性能不仅是产品自身的高性能,还包括生产的全过程。
实现高性能必须有高性能的生产保证。
可持续发展的要求要保护资源和环境,这不仅是要求产品自身、同时也要求生产的全过程都需要面临资源消耗和环境保护的问题,这是一个全行业的系列化问题,也就是关于绿色高性能混凝土的研究、生产与应用。
如果说现实的高性能混凝土的自身发展尚存在问题的话,那就是它必须受到可持续发展大前提的约束。
从现代人类的工程建设史上来看,相对于砌体结构、木结构和钢、铁结构而言,混凝土结构是一种新兴结构,它的应用也不过一百多年的历史。
但有的考古学者认为,水泥的起源约在公元前5—10万年,以后在公元前3000年,用熟石膏和石灰混合在一起建造了著名埃及的金字塔,这是现存的最早的混凝土结构物。
其后在古希腊和罗马时代,用这种水泥建造了很多建筑物和公路。
进入近代以来,经过了J.Smeaton,J.Parker等人的试作阶段,1824年英国的烧瓦工人Joseph Aspdin调配石灰岩和粘土,首先烧成了人工的硅酸盐水泥,并取得专利,成为水泥工业的开端。
以后,对如何克服混凝土抗拉强度很低这一问题进行了研究,1854年法国技师J.L.Lambot将铁丝网敛入混凝土中制成了小船,并于第二年在巴黎博览会上展出,这可以说是最早的RC制品。
从此以后,Francois Conigne,Wilkinson等人改进了Lambot的制品,到1867年法国技师Joseph Monier取得了用格子状配筋制作桥面板的专利,RC工艺迅速地向前发展。
1867这一年,是全世界公认为最早的RC桥架设的一年。
1877年美国的Thaddeus H yatt调查了梁的力学性质,1887年德国的Konen提出了用混凝土承担压力和用钢筋承担拉力的设计方案,德国的J.Baushinger确认了混凝土中的钢筋不受锈蚀等问题,于是RC结构又有了新的发展。
总而言之,混凝土结构是在19世纪中期开始得到应用的,由于当时水泥和混凝土的质量都很差,同时设计计算理论尚未建立,所以发展比较缓慢。
直到19世纪末以后,随着生产的发展,以及试验工作的开展、计算理论的研究、材料及施工技术的改进,这一技术才得到了较快的发展。
目前已成为现代工程建设中应用最广泛的建筑材料之一。
在工程应用方面,混凝土结构最初仅在最简单的结构物如拱、板等中使用。
随着水泥和钢材工业的发展。
混凝土和钢材的质量不断改进、强度逐步提高。
例如在美国20世纪60年代使用的混凝土抗压强度平均为28N/mm2,20世纪70年代提高到42 N/mm2 ,近年来一些特殊需要的结构混凝土抗压强度可达80—100 N/mm2,而实验室做出的抗压强度最高已达266 N/mm2。
前苏联20世纪70年代使用钢材平均屈服强度为380 MPa,20世纪80年代提高到420 N/mm2;美国在20世纪70年代钢材平均屈服强度已达420 N/mm2。
预应力钢筋所用强度则更高。
这些均为进一步扩大钢筋混凝土的应用范围创造了条件,特别是自20世纪70年代以来,很多国家巳把高强度钢筋和高强度混凝土用于大跨、重型、高层结构中,在减轻自重、节约钢材上取得了良好的效果。
为改善钢筋混凝土自重大的缺点,世界各国已经大力研究发展了各种轻质混凝土(由胶结料、多孔粗骨科、多孔或密实的细骨科与水拌制而成),其干容重一般不大于18kN/m3,如陶粒混凝土、浮石混凝土、火山渣混凝土、膨胀矿渣混凝土等。
轻质混凝土可在预制和现浇的建筑结构中采用,例如可制成预制大型壁板、屋面板、折板以及现浇的薄壳、大跨、高层结构。
但在应用中应当考虑到它的一些特殊性能(弹性模量低、收缩、徐变大等)。
目前国外轻质混凝土用于承重结构的强度等级为C30~C60,其容重一般为14~18kN/m3。
国内常用的强度等级为C20、C30,也可配制C40或更高的强度,其容重一般为12~18kN/m3。
由轻混凝土制成的结构自重较普通混凝土可减少20~30%,由于自重减轻,结构地震作用减小,因此在地震区采用轻质混凝土结构可有效地减小地震力,节约材料和造价。
二次世界大战后,国外建筑工业化的发展很快,已从采用一般的标准设计定向工业化建筑体系,趋向于做到一件多用或仅用较少几种类型的构件(如梁板合一构件、墙柱合一构件等)就能建造成各类房屋。
实践充分显示出建筑工业化在加快建设速度、降低建筑造价、保证施工质量等方面的巨大优越性。
在大力发展装配或钢筋混凝土结构体系的同时,有些国家还采用了工具式模板、机械化现浇与预制相结合,即装配整体式钢筋混凝土结构体系。
所有这些都显示了近代钢筋混凝土结构设计和施工水平日新月异的,迅速发展。
在19世纪末20世纪初,我国也开始有了钢筋混凝土建筑物,如上海市的外滩、广州市的沙面等,但工程规模很小,建筑数量也很少。
解放以后,我国在落后的国民经济基础上进行了大规模的社会主义建设。
随着工程建设的发展及国家进一步的改革开放,混凝土结构在我国各项工程建设中得到迅速的发展和广泛的应用。
我国20世纪70年代起,在一般民用建设中巳较广泛地采用定型化、标准化的装配式钢筋混凝土构件,并随着建筑工业化的发展以及墙体改革的推行,发展了装配式大板居住建筑,在多高层建筑中还广泛采用大模剪力墙承重结构外加挂板或外砌砖墙结构体系。
各地还研究了框架轻板体系,最轻的每平方米仅为3~5kN。
由于这种结构体系的自重大大减轻,不仅节约材料消耗,而且对于结构抗震具有显著的优越性。
改革开放后,混凝土高层建筑在我国也有了较大的发展。
继20世纪70年代北京饭店、广州白云宾馆和一批高层住宅(如北京前三门大街、上海漕溪路住宅建筑群)的兴建以后,80年代,高层建筑的发展加快了步伐,结构体系更为多样化,层数增多,高度加大,已逐步在世界上占据领先地位;目前国内最高的混凝土结构建筑是广州的中天广场,80层322m高,为框架—筒体结构;香港的中环广场达78层374m,三角形平面筒中筒结构,是世界上最高的混凝土建筑;广州国际大厦63层199m,是80年代世界上最高的部分预应力混凝土建筑。
随着高层建筑的发展,高层建筑结构分析方法和试验研究工作,在我国得到了极为迅速的发展,许多方面已达到或接近于国际先进水平。
在大跨度的公共建筑和工业建筑中,常采用钢筋混凝土桁架、门式刚架、拱、薄壳等结构形式。
在工业建设中已经广泛地采用了装配式钢筋混凝土及预应力混凝土。
为了节约用地;在工业建筑中多层工业厂房所占比重有逐渐增多的趋势,在多层工业厂房中除现浇框架结构体系以外,装配整体式多层框架结构体系已被普遍采用。
并发展了整体预应力装配式板柱体系,由于其构件类型少,装配化程度高、整体性好、平面布置灵活,是一种有发展前途的结构体系。
同时升板结构、滑模结构也有所发展。