则A是 f (x)当 x 的极限. 记为: lim f ( x) A. x
或者记为:当 x 时,f ( x) A.
从定义中得到: x X 包含了 x X 和x X .
所以: x 包含了 x 和 x . 于是有
定理:lim f ( x) A lim f ( x) A且 lim f ( x) A.
x
x
x
则有:lim(2 1 ) 2, limarctan x 不存在.
x
x
x
.
7
注意: 证明极限存在时,关键是任意给定 0, 寻找X.
求X的方法: 由 f (x) A 解出x
几何解释:
Aε f (x) Aε
AA
X
A X
或者记为:当 x 时,f ( x) A.
则有:lim (2 1 ) 2, limarctan x π
x
x
x
2
对于 y 2 1 ,lim (2 1 ) 2,lim (2 1 ) 2,那么 lim(2 1 ) ?
x x
x
x
或者从x0的两边同时接近于x0.
.
12
函数极限的几何意义
lim f ( x) A 0, 0, 使得当
xБайду номын сангаас x0
0 x x0 时, 恒有 f ( x) A 成立.
0
当 x U ( x0 ) 时,
函数f(x)的图形完全
y
y f (x)
落在以直线y=A为中
定义:如果 0, X 0, 使当 x X 时,恒有 f (x) A ,