钢结构 压弯构件
- 格式:ppt
- 大小:2.39 MB
- 文档页数:30
钢结构——拉弯构件和压弯构件钢结构是指采用钢材作为主要构造材料的建筑结构。
在钢结构中,常见的构件有拉弯构件和压弯构件。
拉弯构件主要承受拉力,而压弯构件则主要承受压力。
本文将分别介绍拉弯构件和压弯构件的特点、设计和应用。
拉弯构件是指同时承受拉力和弯矩的构件。
它们常常用于桥梁、塔架等需要抵抗拉力的结构中。
拉弯构件受力时,在受拉面上会产生拉应变,而在另一侧会产生压应变。
拉弯构件的设计目标是在满足强度和刚度的要求下,最大程度地减小构件重量。
为了实现这一目标,拉弯构件通常采用I型、H型或者箱型截面,这些截面具有较大的截面面积和惯性矩,能够提供足够的强度和刚度。
拉弯构件的设计需要考虑以下几个因素:首先是受力情况。
拉弯构件在受力时,应根据实际情况确定构件的截面形状和尺寸,以满足承受拉力和弯矩的要求。
其次是构件的材料选择。
常见的拉弯构件材料有普通碳素钢和高强度钢。
高强度钢具有较高的强度和刚度,能够减小构件的截面尺寸和重量。
最后是构件的连接方式。
拉弯构件的连接方式有焊接、螺栓连接和铆接等,设计时需要选择适合的连接方式以满足受力要求。
压弯构件是指同时受到压力和弯矩作用的构件。
它们通常用于承担压力的柱子和梁等结构中。
压弯构件在受力时,产生的主要应力是压应力和弯曲应力。
与拉弯构件相比,压弯构件的设计更加复杂,需要考虑稳定性问题。
在设计过程中,需要根据实际情况确定构件的截面形状和尺寸,以满足承受压力和弯矩的要求,并保证构件的稳定性。
常见的压弯构件截面有角钢、工字钢和管材等。
与拉弯构件相比,压弯构件的设计更注重稳定性。
在设计压弯构件时,需要考虑构件的临界压弯强度,即其能够承受的最大弯矩和压力。
为了提高构件的稳定性,常见的设计方法有增大截面尺寸、采用合适的截面形状、设置剪力加强构件等。
此外,还需要考虑构件的支撑条件和边界约束等因素,以保证压弯构件在受力过程中不发生屈曲或失稳。
拉弯构件和压弯构件在钢结构设计和应用中都起着重要的作用。
钢结构压弯构件在钢结构的世界里,压弯构件是一种至关重要的组成部分。
它们在建筑结构、桥梁工程以及各类工业设施中都扮演着不可或缺的角色。
那么,究竟什么是钢结构压弯构件呢?让我们一起来揭开它的神秘面纱。
钢结构压弯构件,简单来说,就是既承受压力又承受弯矩的钢结构部件。
想象一下一根柱子,它不仅要支撑上方的重量(承受压力),还要抵抗来自不同方向的力导致的弯曲(承受弯矩),这根柱子就是一个典型的压弯构件。
为了更好地理解压弯构件的工作原理,我们先来看一看压力和弯矩分别是什么。
压力,就像是有人从上往下压在一个物体上,使物体有被压扁的趋势。
而弯矩呢,则像是有人在物体的一端用力扭动,让物体产生弯曲变形。
当这两种力同时作用在一个钢结构构件上时,就形成了复杂的受力情况。
在实际应用中,压弯构件的形式多种多样。
比如常见的工字钢梁,它的上翼缘承受压力,下翼缘承受拉力,而腹板则主要承受剪力,同时整个梁还要抵抗弯矩的作用。
还有柱子,特别是在多层建筑中,柱子不仅要承受上部结构传来的压力,还要抵抗水平风荷载或地震作用产生的弯矩。
那么,如何确保钢结构压弯构件在复杂的受力情况下能够安全可靠地工作呢?这就需要对其进行详细的设计和计算。
设计师们会根据结构的使用要求、荷载情况以及材料的性能等因素,运用各种力学理论和计算公式,来确定压弯构件的尺寸、形状和材料强度等参数。
在设计过程中,稳定性是一个非常关键的问题。
由于压弯构件同时承受压力和弯矩,容易发生失稳现象。
失稳就像是一根细长的柱子在受到较大压力时突然弯曲甚至折断。
为了防止失稳,设计师们需要考虑构件的长细比、截面形状和支撑条件等因素。
比如,通过增加构件的截面尺寸或者设置有效的支撑,可以提高压弯构件的稳定性。
材料的选择对于压弯构件的性能也有着重要影响。
通常,高强度的钢材能够提供更好的承载能力,但同时也要考虑到钢材的韧性、可焊性等性能。
此外,钢材的质量和加工工艺也会直接关系到压弯构件的强度和可靠性。
《钢结构设计原理》拉弯压弯构件钢结构设计原理中,拉弯压弯构件是常见的构件形式之一、拉弯压弯构件是指在外载荷作用下既承受拉力又承受弯曲力矩的构件,常用的有钢梁和钢柱。
钢梁是常见的拉弯压弯构件之一、在实际工程中,钢梁经常用于搭建桥梁、大跨度厂房和高层建筑等结构中。
钢梁在使用过程中要承受自身重量、荷载、温差等多种载荷作用。
当荷载作用在钢梁上时,钢梁会发生拉力和弯曲力矩的作用。
在设计钢梁时,需要根据工程的要求和材料的力学性能计算钢梁的截面尺寸和稳定性,确保钢梁在使用过程中能够满足强度和刚度的要求。
钢柱作为另一种常用的拉弯压弯构件,广泛应用于大型建筑和工业设备中。
钢柱在使用过程中会承受垂直于轴向的载荷和弯曲力矩的作用。
在设计钢柱时,需要根据工程要求和材料力学性能计算钢柱的稳定性和强度。
通过对钢柱的截面尺寸和轴向力的计算,来确定钢柱的抗弯能力和稳定性,确保钢柱能够安全承载荷载并保持结构的稳定性。
在拉弯压弯构件的设计过程中,需要考虑材料的力学性能和结构的安全性。
一般来说,拉弯压弯构件在应力的作用下会发生塑性变形,因此在设计过程中需要进行塑性分析和强度校核。
通过计算构件的截面尺寸、截面形状和钢材的屈服强度等参数,可以确定构件的强度和稳定性,并根据要求进行合理的优化设计。
此外,拉弯压弯构件的连接是设计过程中的另一个关键问题。
拉弯压弯构件的连接方式对结构的强度和稳定性有着重要影响。
合理的连接方式能够提高结构的整体性能,提高结构的耐久性和可靠性。
综上所述,拉弯压弯构件在钢结构设计原理中具有重要的地位。
通过合理的设计和优化,能够使得拉弯压弯构件满足结构强度、稳定性和经济性的要求,确保结构的安全可靠性。
同时,合理的连接方式也对拉弯压弯构件的稳定性和耐久性有着重要影响,因此需要在设计中予以重视。
钢结构设计原理第六章拉弯和压弯构件首先介绍拉弯构件。
拉弯构件主要受到正弯矩和拉力的作用。
在设计拉弯构件时,需要考虑结构的受力特点,根据结构所受到的相应受力,选择合适的杆件截面形状。
在选择截面形状时,需要综合考虑截面的承载能力、弹性变形能力和抗扭刚度等因素。
根据拉弯构件的受力特点,可以选择T形截面、双角截面、工字型截面等形式,以提高结构的强度和刚度。
接下来是压弯构件的设计原理。
压弯构件主要受到负弯矩和压力的作用。
在设计压弯构件时,同样需要综合考虑结构的受力特点,并选择合适的杆件截面形状。
在选择截面形状时,需要考虑截面的承载能力、塑性变形能力和抗扭刚度等因素。
压弯构件的常用截面形状包括工字型截面、双角截面、矩形截面等形式。
除了截面形状的选择原则外,还需要对拉弯和压弯构件进行强度计算。
计算时需要考虑截面的承载能力和结构所受到的荷载。
拉弯构件的强度计算一般通过确定杆件的等效长度来进行,根据拉弯构件的长度和截面形状,选择合适的等效长度,然后根据相应的拉弯构件等效长度和所受到的荷载,计算出截面的承载能力。
压弯构件的强度计算一般需要采用压杆稳定性原理进行,根据杆件的截面形状、弹性模量和地面特性等因素,计算出截面的临界压力。
若所受压力小于临界压力,则认为结构是稳定的。
总结来说,设计拉弯和压弯构件时,需要综合考虑结构的受力特点,并选择合适的杆件截面形状。
在选择截面形状时,需要综合考虑截面的承载能力、弹性变形能力和抗扭刚度等因素。
此外,还需要进行强度计算,以确保构件的稳定性和安全性。
钢结构拉弯和压弯构件——性能分析与设计姓名:张世谦班级:土木工程14-3班时间:2016年11月4日一、概述1、拉弯、压弯构件的类型同时承受轴向力和弯矩的构件称为压弯(或压弯)构件。
弯矩可能由轴向力的偏心作用、端弯矩作用或横向荷载作用三种因素形成。
2、拉弯、压弯构件的破坏形式拉弯构件需要计算其强度和刚度(限制长细比)压弯构件需要计算强度、整体稳定(弯矩作用平面内稳定和弯矩作用平面外稳定)、局部稳定和刚度(限制长细比)。
二、强度1、考虑刚才的性能,拉弯和压弯构件是以截面出现塑性铰作为其强度极限。
2、轴向力不变而弯矩增加,截面应力发展过程:边缘纤维的最大应力达到屈服点;最大应力一侧塑性部分深入截面;两侧均有部分塑性深入截面;全截面进入塑性,此时达到承载能力的极限状态。
3、全截面屈服准则:中和轴在腹板范围内(N<=A W F Y )时:1M M N N 14a 12(2p 22=+∙++pxxa )中和轴在翼缘范围内(N>A W f Y )时:1)12(2)14N N P =∙+++PXXM M a a (考虑截面塑性部分发展:1M M N N x xp =+nxγ令Np=A n f y ,M px =g x W nx f y 并引入抗力分项系数得拉弯和压弯构件得强度计算式:f W M nxx x n ≤+γA N承受双向弯矩的拉弯或压弯构件:f W M W M nyx y nx x x n ≤++γγA N式中 A n ——净截面面积:W nx 、W ny ——对X 轴y 轴的净截面抵抗矩:γx 、γy ——截面塑性发展系数。
三、压弯构件的稳定(一)、弯矩作用平面内的稳定:压弯构件的截面尺寸通常由稳定承载力确定计算压弯构件弯矩作用平面内极限承载力的方法有两大类: 一类是边缘屈服准则的计算方法,另类是精度更高的数值计算方法。
1、边缘纤维屈服准则:yExxlx x f N N W xA N =-+)1(M ϕϕ x ϕ——在弯矩作用下平面内德轴心受压构件整体稳定系数较适用于格构式构件,对于粗实腹杆偏于安全,对细长实腹杆偏于不安全2、最大强度准则:容许截面塑性深入,以具有各种初始缺陷的构件为计算模型,求解其极限承载能力+考虑截面的塑性发展,借用边缘纤维屈服准则公式yExxlx x f N N W x A N =-+)1(M ϕϕ根据极限承载力曲线,得出近似相关公式:yExf N N =-+)8.01(W M A N pxxx ϕW px ——截面塑性模量仅适用于弯矩沿杆长均匀分布的两端铰支压弯构件3、规范规定的实腹式压弯构件整体稳定计算式采用等效弯矩βmx M x (M X 为最大弯矩,βmx ≤1)考虑其他荷载作用情况,采用W px =g x W lx 考虑部分塑性深入截面以及引入考虑分析系数g R 得规范所采用实腹式压弯构件弯矩平面内的稳定计算式f N N W M Exlxx x mx ≤-+)8.01(A N'X γβϕN ——轴向压力MX ——所计算构件段范围内的最大弯矩x ϕ——轴心受压构件的稳定系数W lx ——最大受压纤维的毛截面模量N ’Ex ——参数,为欧拉临界力除以抗力分项系数(不分钢种,取γ=1.1),N ’Ex=π2EA/(R γ 1.12x λ)mx β——等效弯矩系数(二)、弯矩作用平面外的稳定1、构件在弯矩作用平面外没有足够的支撑以阻止其产生侧向位移和扭转时,构件可能发生弯扭屈曲而破坏,称为压弯构件弯矩作用平面外的整体失稳; 弯扭失稳临界条件)()1)(N N 12E =-∙--crxx Z Ey Ey y M M N N N N ( 根据Ey N /N Z 不同比值可得相关曲线:2、压弯构件整体稳定系数fb 近似计算公式:工字型截面(含H 型钢) 双轴对称时:2354400007.12yyb f ∙-=λϕ单轴对称时:23514000)1.02(07.12y yb lxbf Ah W ∙∙+-=λαϕ式中:)/(211b I I I +=α1I 和2I 分别为受压翼缘和受拉翼缘对y 轴的惯性矩3、压弯构件整体稳定系数fb 近似计算公式:T 形截面弯矩使翼缘受压时: 双角钢T 形:235/0017.01by y f λϕ-=两板组合T形(含T型钢):235/0022.01b yyfλϕ-=弯矩使翼缘受拉时:235/0005.00.1b yyfλϕ-=(三)、双向弯曲实腹式压弯构件的整体稳定弯矩作用在两个主轴平面内称为双向弯曲压弯构件同轴心受压构件相同的方法,通过限制翼缘和腹板的宽厚比来保证压弯构件中板件的局部稳定四、压弯构件(框架柱)的设计(一)、框架柱的计算高度端部约束条件比较简单的单根压弯构件,利用计算长度系数m直接得到计算长度:mll=框架住计算长度根据上下端构件间约束情况计算(二)、实腹式压弯构件的设计1、截面形式实腹式压弯构件,要接受力大小、使用要求和构造要求选择合适的截面形式弯矩较小时,截面形式与一般轴心受压构件相同弯矩较大时,宜采用在弯矩作用平面内截面高度较大的双轴对称截面或单轴对称截面1、截面选择及验算步骤:强度验算、整体稳定验算、局部稳定验算、刚度验算2、构造要求压弯构件的翼缘宽厚比必须满足局部稳定的要求,否则翼缘屈曲必然导致构件整体失稳压弯构件的腹板高厚比不满足局部稳定要求时,可考虑较薄的腹板或者设置纵向加劲肋等(三)、格构式压弯构件的设计截面高度要求较大的压弯构件常采用格构式形式,且由于存在较大剪力,通常采用缀条式弯矩不大或正负弯矩绝对值相差不大时可用对称截面正负弯矩绝对值相差较大时常采用不对称截面,受压较大一侧采用较大的肢件1、弯矩绕虚轴作用的格构式压弯构件格构式压弯构件弯矩作用平面内整体稳定:yExxlx x mx x f N N W M ≤-+)'1(A N ϕβϕ分肢的稳定计算:弯矩绕虚轴作用的格构式构件,弯矩作用平面外的整体稳定性由分肢稳定计算保证将整个构件视为一平行桁架,两个分肢为桁架体系的弦杆,分肢所受轴心力计算:aM a y x +=21N N12N N N -=缀条式分肢按轴心压杆计算,分肢计算长度: 缀材平面内取缀条体系的节间长度 缀条平面外整体构件两侧向支撑点间的距离2、弯矩绕实轴作用的格构式压弯构件弯矩绕实轴作用格构式压弯构件受力性能同实腹式压弯构件完全相同,构件绕实轴产生弯曲失稳计算弯矩作用平面外的整体稳定时,长细比应取换算长细比,整体稳定系数取fb=1.03、双向受弯的格构式压弯构件整体稳定计算公式:f W M N N W M ly y ty Exx lx x mx ≤+-+βϕβϕ)'1(A N x分肢的稳定计算: a M x 21a y N N +=y M y I y I y ∙++=111111y1//I M12N N N -=12y M y y M M -=4、格构式的横隔及分肢的局部稳定格构柱无论截面大小,均应设置横隔设置方法同轴心受压格构柱格构柱分肢局部稳定同腹式柱五、框架中梁与柱的连接在框架结构中,梁与柱的连接节点一般用刚接,少数情况用铰接。