并联电容器组熔断器
- 格式:pdf
- 大小:149.13 KB
- 文档页数:6
一起由熔断器引发的高压并联电容补偿柜事故分析0 引言在电力系统中,为了降低电网电能传输过程中的损耗,提高电网运行的经济性,电网中大量的感性负荷需要进行容性无功功率就地补偿,实现无功就地平衡。
此变电所为水泥企业,主要负荷为电动机(电动机采用变频器软启动),尽管容性无功功率电源的种类较多,但目前国内用得较普遍的是并联电容器,它可根据需要由若干电容器串联、并联组成,容量可大可小,既可以集中使用,又可以分散使用,且可分相补偿,随时投入、切除部分或全部电容器。
在电力系统的变电站中,由于负荷的自然变化,并联电容器成为投切最频繁的电气设备。
由于产品制造原因或设计、运行、维护不当等因素造成严重的并联电容器损坏事故,会给电网带来巨大的损失[1-4]。
1 事故经过2015年7月14日12时26分,某公司110kV总降变电所10kV电容器柜第一组出现短路事故,导致电容补偿开关柜中的断路器跳闸,过电流Ⅰ段动作。
此次事故造成电容器柜发生爆炸,柜门由于柜内压力而变形,一台电容器外壳出现鼓肚变形。
有一名变电所值班人员在巡检中经过电容器柜时被弧光烧伤,事态较严重。
事故现场照片见图1。
事后对现场发生事故的电容器柜内电容器容值进行测量,第一组3台电容器容值分别为A1:61.5uF、B1:45.5uF、C1:45. 8uF;第二组3台电容器容值分别为A2:45.6uF、B2:45.5uF、C2:45.6uF;第三组3台电容器容值分别为A3:45.6uF、B3:45.5uF、C3:45.5uF;根据单台电容器的额定电容量45.16uF进行判断,只要电容器内部有1串短路,电容量就已达60.21uF,可见有1台电容器已经损坏。
图1 事故现场照片该电容器柜运行方式为自动和手动两种投切方式,事故时投切方式为采用控制器自动投切。
现场查看继电保护设置:电容补偿开关柜微机保护装置中,过电流Ⅰ段、过电流Ⅱ段均投入,详见图2;跳闸时动作值分别为Ia=9522A、Ib=9523A、Ic=9478A,详见图3;但是欠电压、过电压保护均为退出状态,详见图4、图5。
浅析变电站并联电容器组的工作原理摘要:电容器组作为变电站的重要组成部分如今已得到广泛的应用。
电容器组主要分为并联和串联两种,两者的区别是并联耐压值不变,容量升高;串联耐压值升高,容量降低。
本文将以220kV某变电站并联电容器组为主要内容进行展开,从其组成部分、工作原理、运维要求方面对并联电容器组进行浅析,帮助运维人员更好的进行日常运维工作。
关键词:并联电容器组、工作原理、运维要求1、并联电容器组的主要组成部分此次220kV某变电站的并联电容器组电压等级为35kV,布置于变电站低压母线末端。
其电气连接如图-1所示:图-1并联电容器组电气连接图由上图可知,其主要构成部分为:TV:放电线圈;QG:接地开关;C:并联容器;L:串联电抗器;FV:氧化锌避雷器;QS:隔离开关。
电容器组是由多种电气元件组成的电力设备。
电容器组具有容量大、单元数量多、电压等级高等特点。
各部分作用如下:(1)C:并联电容器:用来对电力系统进行无功补偿,以提高电网功率因数,减少线损、改善电压质量等,达到充分发挥供电设备效率的目的。
(2)TV:放电线圈:为了释放断电时的残余电荷和运行中抽取电容器保护用电压,放电线圈在三相电压失衡时,会产生一个开口三角电压,输入电压继电器,然后由保护动作选择跳闸或报警。
(3)FV:氧化锌避雷器:为了预防操作过电压。
(4)L:串联电抗器:用于抑制高次谐波及降低合闸涌流,避免电容器造成过电流和受到合闸涌流的冲击。
2、并联电容器组的工作原理并联电容器组的工作原理如下:电力系统运行时,通过将具有容性功率负荷的电容器与感性功率负荷的电抗器并联在同一电路上,纯电感分量不消耗能量在两负荷之间交换。
此时,感性负荷功率所需的无功功率由并联电容器容性负荷输出的无功功率进行补偿,电力系统的感性无功功率等到补偿。
在系统中纯电感分量交换中的产生的功率是容性的无功功率,同一电源下电感电流与电容电流相位差180°,并联电容器组以后,电感能量交换与电容进行,无功功率不再进入电源和远距离输电线路上,从而减少了系统的无功功率,降低线路损耗,提高了系统的功率因数、改善电压的质量。
中华人民共和国电力行业标准高压并联电容器单台保护用熔断器DL442-91订货技术条件中华人民共和国能源部1991-09-20发布1992-05-01实施1总则1.1范围本标准适用于频率50Hz的高压并联电容器的单台外部保护用熔断器(以下简称熔断器)。
1.2名词术语1.2.1熔断器当通过电流超过规定值足够长时间时,其熔体熔断并使回路断开的设备。
1.2.2熔体熔断器动作时预定熔化的导电体。
1.2.3熔丝包括熔体的一种部件,在熔断器动作以后和熔断器恢复使用以前要求更换的部件。
1.2.4管体放置熔丝的管状物。
1.2.5指示装置用来指示熔断器动作与否的一种装置。
1.2.6同型号熔断器具有相同的结构、尺寸和材料,用于同一额定电压和开断容量,包含了一定范围内的不同额定电流的熔丝,这些熔丝仅在熔体的尺寸上有所不同,这样的熔断器称为同型号熔断器。
1.2.7熔断器的额定电压(U nf)熔断器的正常工作电压(有效值),其值应与被保护的单台电容器额定电压相一致。
1.2.8熔断器的最高电压(U nf)熔断器可以长期使用的最高电压(有效值)。
1.2.9熔丝的额定电流(I nf)熔丝组装成熔断器后可以长期使用的工作电流(有效值)。
1.2.10熔断器的额定电流熔断器可长期使用的工作电流(有效值),其值应不低于该型号中最大规格的熔丝的额定电流。
1.2.11电容器元件由电介质和电极所构成的电容器的最小单元部件。
1.2.12 单台电容器将电容器元件装于单个外壳中,有引出端子的组装体。
1.2.13 电容器组电气上连接在一起的一组单台电容器。
1.2.14 电容器当不必特别强调“单台电容器”或“电容器组”时的用语。
1.2.15 电容器的耐受爆破能量电容器内部发生极间或极对外壳内部击穿时,不引起电容器外壳及套管破裂的最大能量。
1.2.16 电容器外壳的10%破坏几率曲线在电容器内部电弧作用下,用电流与时间关系来表示的电容器箱壳有10%的几率发生破坏或漏油的曲线。
熔断器电流选用工作电流额定值,选用一定要计算。
照明线路安装时,略大全部电流和。
单台电机运行时,小于额流二点五。
多台电机运行时,小于总和二点五。
减压起动电动机,小于二倍额定流。
绕线式的电动机,小于额流一点五。
变压器的低压侧,小于额流一点五。
并联电容器组群,小于额流一点八。
电焊机装的熔体,小于负流二点五。
电子整流元器件,一点五七额定流。
选择熔断器主要是选择其熔体的额定电流。
熔体的额定电流应通过计算合理选择。
(1)照明电路白炽灯:熔体额定电流=1.1×被保护电路上所有白炽灯工作电流之和。
日光灯和高压水银荧光灯:熔体额定电流=1.5×被保护电路上所有日光灯和高压水银荧光灯工作电流之和。
(2)电动机1)单台直接起动电动机:熔体额定电流=(1.5~2.5)×电动机额定电流。
注:对不频繁起动的电动机取较小的系数,频繁起动的电动机取较大的系数。
2)多台小容量电动机共用线路:熔体额定电流=(1.5~2.5)×最大容量的电动机额定电流+所有电动机额定电流之和。
3)减压起动电动机:熔体额定电流=(1.5~2)×电动机额定电流。
4)绕线式电动机:熔体额定电流=(1.2~1.5)×电动机额定电流。
(3)配电变压器低压侧:熔体额定电流=(1.0~1.5)×变压器低压侧额定电流。
高压侧:熔体额定电流=(2~3)×变压器高压侧额定电流(当变压器容量为100~1000kV·A时系数取2,低于100kV·A时系数取大于2小于3的值)。
(4)电力电容器每台高压电力电容器或每台低压电力电容器都单独设熔丝保护,熔体额定电流=(1.5~2.5)×电容器额定电流;电力电容器组,熔体额定电流=(1.3~1.8)×电容器组额定电流。
(5)电焊机熔体额定电流=(1.5~2.5)×负荷电流。
(6)电子整流元件熔体额定电流≥1.57×整流元件额定电流。
并联电容器补偿装置基本知识无功补偿容量计算的基本公式: Q = Ptg φ1——tg φ2=P1cos 11cos 12212---ϕϕ tg φ1、tg φ2——补偿前、后的计算功率因数角的正切值 P ——有功负荷Q ——需要补偿的无功容量 并联电容器组的组成1.组架式并联电容器组:并联电容器、隔离开关接地开关或隔离带接地、放电线圈、串联电抗器、氧化锌避雷器、并联电容器专用熔断器、组架等;2.集合式并联电容器组无容量抽头:并联电容器、隔离开关接地开关或隔离带接地、放电线圈、串联电抗器、氧化锌避雷器、组架等; 并联电容器支路内串接串联电抗器的原因:变电所中只装一组电容器时,一般合闸涌流不大,当母线短路容量不大于80倍电容器组容量时,涌流将不会超过10倍电容器组额定电流;可以不装限制涌流的串联电抗器;由于现在系统中母线的短路容量普遍较大,且变电所内同时装设两组以上的并联电容器组的情况较多,并联电容器组投入运行时,所受到的合闸涌流值较大,因而,并联电容器组需串接串联电抗器;串联电抗器的另一个主要作用是当系统中含有高次谐波时,装设并联电容器装置后,电容器回路的容性阻抗会将原有高次谐波含量放大,使其超过允许值,这时应在电容器回路中串接串联电抗器,以改变电容器回路的阻抗参数,限制谐波的过分放大; 串联电抗器电抗率的选择对于纯粹用于限制涌流的目的,串联电抗器的电抗率可选择为0.1~1%即可;对于用于限制高次谐波放大的串联电抗器;其感抗值的选择应使在可能产生的任何谐波下,均使电容器回路的总电抗为感性而不是容性,从而消除了谐振的可能;电抗器的感抗值按下列计算:XL=K错误!式中XL——串联电抗器的感抗,Ω;XC——补偿电容器的工频容抗, Ω;K——可靠系数,一般取1.2~1.5;对于5次谐波而言,则X L =1.2~1.5×错误!=0.048 ~0.06XC一般定为0.045 ~0.06XC = 4.5 %~ 6 % XC对于3次谐波而言,则X L =12%~13% XC电抗器的端电压和容量的选择电抗器的端电压=电容器的相电压×电抗率每相电抗器的容量=每相电容器容量×电抗率电抗器的额定电压为并联电容器组的额定电压电抗器的种类:油浸铁心式:CKS或CKD, 可用于户内、户外;干式空心电抗器CKGKL,可用于户内、户外;干式铁心电抗器CKGSC,干式产品中体积最小,且三相同体,但目前无35kV级产品,只能用于户内;干式半心电抗器:直径比空心产品小,可用于户内、户外;并联电容器额定电压的选择由于串联电抗器的接入,引起电容器上的基波电压升高,其值为——电容器的额定电压相电压,kV;式中 UC——系统额定相电压, kV;UφA——串联电抗率对于并联电容器组接线方式为星形接线或双星形接线,电容器额定电压如下10kV: 6%串联电抗率,电容器额定相电压11/√3 kV12~13%串联电抗率,电容器额定相电压12/√3 kV35kV: 6%串联电抗率,电容器额定相电压38.5/√3 kV12~13%串联电抗率,电容器额定相电压42/√3 kV上述选择是在系统额定电压分别为10kV和35kV的情况下,如系统额定电压有所上升,则并联电容器的额定电压也相应升高;氧化锌避雷器的选择和使用氧化锌避雷器的接线方式Ⅰ型接线Ⅲ型接线特点:1. Ⅰ型接线方式:优点:比较简单,但对避雷器的特性要求高,当发生一相接地时,要求非接地的两只避雷器能通过三相电容器积蓄的能量;缺点:相间过电压保护水平较高,因为是由两只避雷器对地残压之和决定的;2. Ⅲ型接线避雷器直接并接在电容器极间,保护配合直接,不受其他因数的影响,但这种方式要求避雷器的通流容量比较大;选用原则:10kV:通流容量35kV:通流容量隔离开关、接地开关及隔离带接地开关的选择用途:隔离开关做隔离之用10kV:户内:GN19-10/400, 630,1250户外:GW4-10/400, 630,1250 或GW4-10W/630爬电比距≥2.5cm/kV GW1-10/400尽量少采用35 kV:户内:GN2-35/400, 630,1250户外:GW4-35/630,1250或GW4-35W/630爬电比距≥2.5cm/kV隔离开关做接地之用10kV:户内:GN19-10/400, 630,1250户外:GW4-10/400, 630,1250或GW4-10W/630爬电比距≥2.5cm/kVGW1-10/400,63035 kV:户内:GN2-35/400, 630,1250户外:GW4-35/630,1250或GW4-35W/630爬电比距≥2.5cm/kV隔离开关带接地10kV:户内:GN24-10D/400,630,1250户外:GW4-10D/400,630,1250或GW4-10DW/630爬电比距≥2.5cm/kV35 kV:户外:GW4-35D/630,1250或GW4-35DW/630爬电比距≥2.5cm/kV隔离开关额定电流的选择隔离开关的额定电流=电容器额定相电流×1.5,再适当加一些余度如果用户对动、热稳定电流有要求,则应首先满足动热稳定的要求放电线圈的选择放电线圈的放电容量>每相电容器容量放电线圈的额定相电压=电容器的额定相电压放电线圈的种类:油浸式:价格较低,但由于用于绝缘的油同空气通过呼吸器相连,使绝缘油会由于呼吸的原因而受潮,同时产品内的绝缘油会对环境造成污染及存在火灾隐患;全封闭式:绝缘油与空气不直接接触,杜绝了绝缘油受潮的可能,但价格较高,同时产品内的绝缘油仍会对环境造成污染及存在火灾隐患;干式:彻底改变了绝缘种类,不会对环境造成污染,也不存在大的火灾隐患,但价格较高;且目前国内35kV级还没有此类产品;并联电容器单台用熔断器熔断器的额定电流=1.5×并联电容器额定电流并联电容器组接线种类单星形接线零序电压开口三角电压保护差动电压保护双星形接线中性点不平衡电流保护带容量抽头的并联电容器补偿装置近几年来,由于以下的原因,对集合式并联电容器提出了新的要求:用户新建变电所, 主变压器负荷小, 而无功补偿容量按满负荷配置, 全部投入时会发生过补偿的现象;周期性负荷变动,如农村电网当高峰及高峰过后需投入的电容器容量便不相同;带容量抽头的集合式并联电容器装置接线图1/2或1/3,2/3容量抽头接线图电抗器前置 1/2容量抽头接线图电抗器前置1/2或1/3,2/3容量抽头接线图电抗器后置 1/2容量抽头接线图电抗器后置电抗器需要抽头的原因:1.组架式高压并联电容器及无功补偿装置特点:构架组成灵活,但占地面积大;2.集合式并联电容器及成套补偿装置2.1 集合式并联电容器的优点:占地面积小,安装维护方便,可靠性高,运行费用省占地面积小:密集型并联电容器的安装占地面积约为组架式成套占地面积1/3~1/4,并且电容器单台容量越大,则占地面积与容量的比值就越小;安装维护方便:由于密封型电容器的台数少,电容器运到现场后,立即就可就位,比组架式成套安装工作量少,成套安装也较为简单,电容器台数少,电容器单元置于油箱内,巡视工作量小,减轻了运行人员的负担;可靠性高:由于对密集型采取了一些行之有效的措施:①采用元件串内熔丝后再并联的方式, 少数元件击穿后由于内熔丝熔断, 电容量变化不大, 电容器仍可继续运行;②适当降低元件工作场强,在绝缘上留有余度;③采用全膜介质,增强箱内外绝缘;从而提高了并联电容器的运行可靠性;自愈式并联电容器的自愈机理:普通金属化膜在介质疵点被击穿时,两极板间即短路放电产生电弧;在电弧高温作用下,击穿点周围的金属化极板补迅速蒸发,在击穿点周围的金属化极板被同时蒸发,在击穿点周围形成一个绝缘区;当绝缘区的半径达到一定尺寸时,电弧熄灭击穿停止,介质绝缘恢复,自愈过程即完成;自愈式并联电容器的特点:优点:体积小,重量轻,具有自愈性能,损耗小,在低压系统已得到广泛运用;缺点:自愈式电容器的金属化层的自愈性是有限的,电容器长期运行介质老化后,若某一点击穿并企图自愈时,因介电强度不够,不能迅速自愈,电弧产生的热量会引起该点邻近层介质发热,介电强度下降,从而发生击穿并企图自愈而又不能自愈;这样就引发邻近多层介质的企图自愈和击穿;击穿使电流增大,自愈使电流减小,结果电流在较长一段时间不会剧烈增加,若使用串联熔丝进行保护,熔丝不一定会熔断,而连续自愈和击穿产生的大量气体却使电容器外壳鼓肚,直到发生外壳爆裂事故;因此金属化自愈式电容器不能象箔式电容器那样使用串联熔丝作为防爆的安全保护,而要使用压力保护或热保护,此种保护方式的响应时间要比熔丝长,因而金属化并联电容器的保护性能不如箔式电容器液体介质为绝缘油的并联电容器;另外由于电容器本身的自愈作用,电容器的容量会随着时间的推移而有所减小,因而,金属化高压并联电容器在高电压领域的使用和推广还需要进一步努力;。
电容器保护1 概述在变电所的中、低压侧通常装设并联电容器组,以补偿系统无功功率的不足,从而提高电压质量,降低电能损耗,提高系统运行的稳定性。
并联电容器组可以接成星形,也可接成三角形。
在大容量的电容器组中,为限制高次谐波的放大作用,可在每组电容器组中串接一只小电抗器。
1.电容器组常见的故障和异常运行情况如下:(1)电容器组和断路器之间连接线的短路;(2)电容器内部极间短路;(3)电容器组中多台电容器故障;(4)电容器组过负荷;(5)电容器组的母线电压升高;(6)电容器组失压。
2. 电容器组应配置的如下的保护装置:(1)单台电容器应设置专用熔断器组不同接线方式不同的保护方式:星形接线的电容器组可采用开口三角形电压保护;多段串联的星形接线电容器组也可采用电压差动保护或桥式差电流保护;双星形接线的电容器组可采用中性线不平衡电压保护或不平衡电流保护;(2)对电容器组的过电流和内部连接线的短路,应设置过电流保护。
当有总断路器及分组断路器时,电流速断作用于总断路器跳闸;(3)电容器装置组设置母线过电压保护,带时限动作于信号或跳闸。
在设有自动投切装置时,可不另设过电压保护;(4)电容器组宜设置失压保护,当母线失压时自动将电容器组切除。
2 并联电容器组的通用保护单台并联电容器的最简单、有效的保护方式是采用熔断器。
这种保护简单、价廉、灵敏度高、选择性强,能迅速隔离故障电容器,保证其他完好的电容器继续运行。
但由于熔断器抗电容充电涌流的能力不佳,不适应自动化要求等原因,对于多台串并联的电容器组保护必须采用更加完善的继电保护方式。
上图为并联电容器组的主接线图。
电容器组通用保护方式有如下几种:(1)电抗器限流保护与电容器串联的电抗器,具有限制短路电流、防止电容器合闸时充电涌流及放电电流过大损坏电容器。
除此之外,电抗器还能限制对高次谐波的放大作用,防止高次谐波对电容器的损坏。
(2)避雷器的过压保护与电容器并联的避雷器用于吸收系统过电压的冲击波,防止系统过电压,损坏电容器。
BRW(N)型并联电容器单台保护用熔断器一、概述BRW(N)型并联电容器单台保护用熔断器主要适用于电力系统中做高压并联电容器的单台过流保护用,即用来切断故障电容器,以保证无故障电容器的正常运行。
二、使用条件1、环境温度:-40℃~+50℃;2、海拔高度:不超过1000m;3、适用于无火灾、爆炸危险、化学腐蚀、严重污秽的场所。
三、产品型号及意义四、技术参数五、结构与工作原理该熔断器是由外消弧管、内消弧管、熔丝及尾线弹出装置所构成。
其中,外消弧管是由环氧玻璃丝布管和反白钢纸管复合而成,主要起绝缘、耐爆和有效开断额定容性电流的作用;内消弧管可以在开断瞬间聚集足够压力的非可燃气体,以提高开断能力,故用以开断小容性电流,尾线弹出装置根据应用的条件不同而分为外绷簧式和防摆式结构。
防摆式结构又根据所配套的电容器摆放形式的不同划分为适应电容器直立摆放和电容器卧式摆放的两种形式。
外绷簧式为采用不锈钢弹簧作为熔断器熔丝的绷紧弹簧,当熔断器正常工作时,弹簧处于绷紧储能状态,熔丝过流熔断时,弹簧释放能量,使熔丝残余尾线迅速被拉出外消弧管,配合内、外消弧管产生的气体在电流过零时,将电弧熄灭,保证故障电容器与系统可靠脱离。
此种结构一般多用于框架式结构的电容成套装置上。
防摆式结构是将外绷簧改为带有绝缘防摆管的内拉簧式结构,即将弹簧内置于防摆管内,熔丝通过拉簧拉紧固定后与电容器端子连接。
当熔丝过流熔断时,已储能的拉簧能量释放,迅速将残余的尾线拉入防摆管内,同时防摆管在固定点辅助扭簧的作用下,向外侧移动,也促使断口的迅速扩大,保证熔断器的可靠开断。
防摆管起避免残余尾线与电容器网门及柜门相碰,消除安全隐患。
六、熔丝额定电流选择公式BRW(N)型并联电容器单台保护用熔断器安装示意图。
变电站10kV高压并联电容器熔断器频繁熔断的分析孟 行(国网天津市电力公司宁河供电分公司)摘 要:针对变电站10kV高压并联电容器组的熔断器熔断故障问题,通过故障排查与原因分析,提出解决故障的有效改进措施。
科学选择熔断器类型与额定电流,加强继电保护,加装高次谐波电抗器,谨防熔断故障问题的再度发生,为其他变电站10kV高压并联电容器组的检修与故障处理提供科学借鉴与参考。
关键词:变电站;10kV高压;并联电容器组;熔断器0 引言在熔断器应用环节,电容器具有保护作用,可对电容器组实施过流保护,及时切除发生故障的电容器,维护无故障装置的稳定运行,防止故障问题被扩大。
变电站10kVⅠ段电容器组熔断器熔断,要求电力人员及时对电容器组进行检修,及时发现熔断器熔断故障问题原因,再经过绝缘与特性试验后更换熔断器,保障高压并联电容器的稳定运行。
1 熔断器故障处理与原因分析1 1 故障处理为了更好地降低电网运行期间的有功损耗,保持电网稳定运行,有必要根据电网实际情况提升10kV电力系统电压质量,科学配置高压并联电容器,以此用来补偿无功功率。
以某变电站实际情况来看,10kV母线对于接线方式的选择,一般会采取单母线分段的形式,平均每段安装600kvar电容器组,各组容量分别为200kvar和400kvar,按照系统运行的无功功率需求进行调节控制。
短期内变电站中出现了三次熔断器的熔断故障问题。
故障发生之后电容器被退出运行,期间没有任何异常情况,对三相电容值进行平衡测量,得知绝缘试验已经合格,排除电容器自身故障问题,及时更换熔断器,随后设备正常投入运行[1]。
1 2 原因分析1 2 1 接线方式不合理并联电容器成套装置主要包含电容器与配套设备,在控制器的作用下完成自动投切与装置保护,在电容器的外部安装熔断器,使其同电容器进行串联。
面对电容器故障问题时,熔断器可以用来切除电容器。
选择星型接线方式,将电抗器的电抗率设为5%,将电容器和熔断器实施串联,并将其与放电线圈并联,发现直接并联的接线方式可以保障放电回路的完整,维护设备与人员安全。
变电站并联电容器组接线方式及保护问题的探讨摘要:根据电力系统的需要确定变电站并联电容器组总容量,并联电容器组的可靠安全运行直接影响到电力系统电压的稳定,并可减少无功功率的跨区域输送从而降低输电线路的电能损耗和提高输电线路的输送容量。
为保证并联电容器组的安全运行,本文对并联电容器组接线方式及保护问题进行探讨。
关键词:电容器;接线方式;保护;电力系统1.引言并联电容器组是变电站容性无功补偿装置,并联电容器组一般采用油浸式户内布置或户外布置。
在电力系统中主要起着调整电压的作用,对电网的安全运行提供有利的保障,为保证变电站高压电力电容器的安全、可靠性的运行,首先要确保电容器的质量安全,其次要正确的选择并联电容器组接线方式和保护形式。
2.电容器组接线并联电容器组接线有两类:星形类和三角形类。
但在国家标准《并联电容器装置设计规范》(GB50227-2008)条文4.1.2条第1款中规定:“并联电容器组应采用星形接线。
在中性点非直接接地的电网中,星形接线电容器组的中性点不应接地。
”由于三角形接线在技术上存在不安全因素,单串联段的三角形接线并联电容器组,发生极间全击穿的几率比较大,图1为极间短路的示意图,图中故障点的能量包含三部分,一是故障相健全电容器的涌放电流(如图1中曲线1所示),二是其他健全两相电容器的涌放电流(如图1中曲线2所示),三是系统的短路电流(如图1中曲线3所示)。
电容器油箱的耐爆容量远远小于这三部分能量的总和,导致油箱爆炸。
星形电容器组发生相间击穿故障时,由于受到健全相容抗的限制作用,系统的工频电流(如图2中曲线1所示)极大的降低,其最大值一般不大于电容器额定电流的3倍,并且没有其他两相电容器的涌放电流,只有同相健全电容器的涌放电流(如图2中曲线2、3所示),电容器油箱的耐爆容量远大于系统和同相健全电容器对故障点提供的能量,所以电容器油箱爆炸机率较少。
综合比较后得出以下结论:并联电容器组接线应采用星形接线。
并联电容器组运维细则1运行规定1.1 一般规定1.1.1 并联电容器组新装投运前,除各项试验合格并按一般巡视项目检查外,还应检查放电回路,保护同路、通风装置完好。
构架式电容器装置每只电容器应编号,在上部三分之一处贴45℃〜50°C试温蜡片。
在额定电压下合闸冲击三次,每次合闸间隔时间5分钟,应将电容器残留电压放完时方可进行下次合闸。
1.1.2 并联电容器组放电装置应投入运行,断电后在5s内应将剩余电压降到50伏以下。
1.1.3 运行中的并联电容器组电抗器室温度不应超过35℃,当室温超过35℃时,干式三相重迭安装的电抗器线圈表面温度不应超过85βC,单独安装不应超过75℃。
1.1.4 并联电容器组外熔断器的额定电流应不小于电容器额定电流的 1.43倍选择,并不宜大于额定电流的1.55倍。
更换外熔断器时应注意选择相同型号及参数的外熔断器。
每台电容器必须有安装位置的唯一编号。
1.1.5 电容器引线与端子间连接应使用专用线夹,电容器之间的连接线应采用软连接,宜采取绝缘化处理。
1.1.6 室内并联电容器组应有良好的通风,进入电容器室宜先开启通风装置。
1.1.7 电容器围栏应设置断开点,防止形成环流,造成围栏发热。
1.1.8 电容器室不宜设置采光玻璃,门应向外开启,相邻两电容器的门应能向两个方向开启。
电容器室的进、排风口应有防止风雨和小动物进入的措施。
1.1.9 室内布置电容器装置必须按照有关消防规定设置消防设施,并设有总的消防通道,应定期检查设施完好,通道不得任意堵塞。
1.1.10 吸湿器(集合式电容器)的玻璃罩杯应完好无破损,能起到长期呼吸作用,使用变色硅胶,罐装至顶部1/6〜1/5处,受潮硅胶不超过2/3,并标识2/3位置,硅胶不应自上而下变色,上部不应被油浸润,无碎裂、粉化现象。
油封完好,呼或吸状态下,内油面或外油面应高于呼吸管口。
1.1.11 非密封结构的集合式电容器应装有储油柜,油位指示应正常,油位计内部无油垢,油位清晰可见,储油柜外观应良好,无渗油、漏油现象。
表格数据说明:一、1.65倍系数的确定根据1、根据GB/T15576中规定,“电容器应保证在1.1倍的额定电压下长期运行,通常元器件及辅件的选择应满足1.3倍电容器额定电流条件下连续运行,但应考虑电容器最大电容量可达1.10Cn,这时电容器的最大电流可达1.43倍额定电流,则元器件及辅件的选择应满足1.43倍电容器额定电流条件下连续运行。
该过电流是谐波及高至1.10Un的过电压共同作用的结果。
”关于这一点,在GB 3983.1中也曾提及。
当将电容器(单元或组)接入并与别的已通电的电容器相并联时,熔断器装置会承受高幅值及高频率的过渡过电流和由此产生的热量。
并且,在某些情况下电容器需要频繁投切操作,这时,就必须选择足以能承受住这些条件的熔断器。
此外,熔断器应该保证其时间-电流特性满足装置在正常过载的情况下,熔芯不熔化。
又根据在GB13539.2中的规定,对熔断器的时间-电流特性在电流方向允许有±10%的误差。
所以,在此建议电容器容量为300kVar以下时选择电容器额定电流1.65倍的熔断器。
1.5倍系数的确定根据当电容器组容量达到300kVar及以上时,因为容量比较大,所以其在系统中并不需要频繁的投切,此时,熔断器应能保证电容器投入时,不会因瞬间涌流过大而误动作即可。
所以,电容器容量达到300kVar及以上时,选择的熔断器额定电流为电容器额定电流的1.5倍。
二、图文分析从下图中可以看出,以晶闸管投切为投切开关时,几乎为零涌流。
接触器(天水接触器)投切时,涌流也限制在10倍电容器额定电流以内,再对比熔断器的时间—电流特性曲线(金米勒),可以看出,金米勒熔断器满足在过渡过电流情况下不熔断这一要求。
现以50kVar电容器补偿为例:蓝线为额定电流In=72A,绿线表示过载时的电流Ir=1.43*72=103A,在这种情况下,选择100A的熔芯已经略显不足,所以,选择125A的熔芯。
图1 时间-电流曲线图图2 接触器投切电容器涌流波形图图3 晶闸管投切电容器涌流波形图三、晶闸管投切电容器应采用快速熔断器,当其上级选用隔离开关熔断器组时,熔断器组的熔芯采用普通熔芯。
(1)熔断器的安秒特性熔断器的动作是靠熔体的熔断来实现的,当电流较大时,熔体熔断所需的时间就较短.而电流较小时,熔体熔断所需用的时间就较长,甚至不会熔断。
因此对熔体来说,其动作电流和动作时间特性即熔断器的安秒特性,为反时限特性,如图所示。
图熔断器的安秒特性每一熔体都有一最小熔化电流。
相应于不同的温度,最小熔化电流也不同。
虽然该电流受外界环境的影响,但在实际应用中可以不加考虑。
一般定义熔体的最小熔断电流与熔体的额定电流之比为最小熔化系数,常用熔体的熔化系数大于1.25,也就是说额定电流为10A的熔体在电流12。
5A以下时不会熔断.熔断电流与熔断时间之间的关系如表1-2所示。
从这里可以看出,熔断器只能起到短路保护作用,不能起过载保护作用。
如确需在过载保护中使用,必须降低其使用的额定电流,如8A的熔体用于10A的电路中,作短路保护兼作过载保护用,但此时的过载保护特性并不理想。
表1-2熔断电流与熔断时间之间的关系(2)熔断器的选择主要依据负载的保护特性和短路电流的大小选择熔断器的类型。
对于容量小的电动机和照明支线,常采用熔断器作为过载及短路保护,因而希望熔体的熔化系数适当小些。
通常选用铅锡合金熔体的RQA系列熔断器.对于较大容量的电动机和照明干线,则应着重考虑短路保护和分断能力。
通常选用具有较高分断能力的RM10和RL1系列的熔断器;当短路电流很大时,宜采用具有限流作用的RT0和RTl2系列的熔断器。
熔体的额定电流可按以下方法选择:1)保护无起动过程的平稳负载如照明线路、电阻、电炉等时,熔体额定电流略大于或等于负荷电路中的额定电流.2)保护单台长期工作的电机熔体电流可按最大起动电流选取,也可按下式选取:IRN ≥(1.5~2.5)IN式中IRN--熔体额定电流;IN--电动机额定电流.如果电动机频繁起动,式中系数可适当加大至3~3.5,具体应根据实际情况而定.3)保护多台长期工作的电机(供电干线)IRN ≥(1。
并联电容器组熔断器“群爆”故障的典型案例处理
摘要:首先对变电站内可能引起并联电容器组熔断器“群爆”的因素进行了详细的调研与排查,根据其呈现的特征,提出了故障分析的方法以及整改方案;通过整改方案的落实,避免了该变电站电容器组熔断器“群爆”的情况再次发生。
实践证明:规范地安装电容器组及加强运行的管理和维护,可以避免补偿电容器组熔断器“群爆”的情况发生。
关键词:并联电容器组;熔断器;群爆
礼经电器
1引言
作者实地考察了多次发生并联电容器组熔断器“群爆”的两个变电站,对变电站的运行日志所涉及到的运行参数进行了比较详细的分析研究。
处理问题的态度是十分谨慎的,因为它关系到变电站的稳定运行,影响着电力系统的降损节能、电能质量以及整改措施实施过程中所需的资金等问题。
根据电容器组熔断器“群爆”的特征,提出了与其故障相应的分析方法以及整改方案,整改之后,效果是显著的,没有再发生类似问题。
对于帮助解决并联电容器组熔断器“群爆”的问题是十分有益的。
2发生多次并联电容器组熔断器“群爆”的两个变电站的基本情况
2.1变电站的基本情况
两个变电站的情况基本相似,均靠近城区,污染相对比较严重,属110kV降压变电站,由三种电压等级,即110kV、35kV,10kV。
35kV、10kV都采用单母分段,中压侧负荷较重,低压侧存在一定的有电镀冶炼直供负荷。
2.2变电站并联电容器组与系统的接线、实际布置礼经电器
按照设计要求,在变电站的低压母线上,等容量装设并联电容器组,每组均通过隔离开关、断路器、电抗器等与10kV母线相连。
隔离开关、断路器位于10kV户内配电装置的开关柜内,电抗器、电流互感器、并联电容器组等位于装设电容器的栅栏房内。
每段母线接一组并联电容器,每组按三相星形连接,每相由多个电容器一端经熔断器、另一端在中性点并联。
其中一组的实际布置(半露天)见图1。
3并联电容器组熔断器“群爆”的特征
案例:某一变电站,2001年4月30日8时54分,天气阴,伴有大风暴雨,风向为东南,突然,蜂鸣器响,“10kVⅡ段配电装
置”、“掉牌未复归”光子牌亮。
经检查发现:在主控制室,电容器的速断保护信号继电器动作掉牌;在电容器组房内,靠近外侧的10kVⅡ段与电容器串联的电抗器接地极击断,飞出1米左右,电抗器本体有三处(散热器)喷油着火;A、B相熔断器全部熔断,C相熔断器完好,电容器房内雨水遍地,电容器组A相全部、B相的部分经过了雨水冲刷。
经临时灭火、处理喷油后,分别汇报给低调、工区负责人。
[FS:Page]
4故障分析
我们知道,电容器组的保护分为内部保护和外部保护。
内部保护作为单台电容器串、并联元件的保护,在电容器内部故障时切断电源,防止电容器爆破甚至引起火灾事故。
外部保护用以切断电容器回路中的短路故障,且作为内部保护的后备保护。
单台熔断器保护是电容器组内部保护的一种。
故障分析:经调查1)安装了熔断特性一致的熔断器;2)系统电压的运行长期基本对称;3)在变电站装设了消谐装置;4)尽管低压侧存在一定的电镀冶炼直供负荷,经省电业局中试所定期测定报告查出,电网中高次谐波成分没有超标;5)尽管污染相对比较严重,但在运行中电容器组的中性点还没有直接接地;6)电容器组的保护定期校验工作规范。
从以上情况看出,可以排除熔断特性不一致的熔断器、系统电压的运行不对称、高次谐波成分高、系统共振、由于电容器组中性点直接接地的同时,发生10kV单相接地等因素造成的电容器群
爆。
由于电容器的速断保护动作,可以推断出在电容器组内部发生了相间短路。
在空气相对污染比较严重环境下,由于电容器组的安装屋顶偏小,靠近外侧的电容器组A相全部、B相的部分经过了雨水冲刷,在大风(本站此时为东南方向)暴雨天气,A相全部、B相的部分电容器极间经雨水和污垢接通造成短路,导致了A B 相母线相间短路,其结果造成了电容器的速断保护动作。
一方面电容器组中未经电容器极间短接部分,通过熔断器、AB 相母线经电容器的短路放电,导致了相应相的熔断器部分熔断即“群爆”,其短路回路如图2中1方向所示;另一方面,由于电容器是储能元件,此时存在电压,经电容器极间短接的部分则由电源通过电抗器、熔断器经母线短路,由于电路的瞬间短路,在电抗器上产生了较大的电流变化率di/dt,随之在电抗器线圈与地之间产生了过电压Ldi/dt,在此电压的作用下,电抗器接地极击断,飞出1m左右,电抗器本体有三处
(散热器)喷油着火,其短路回路如图2中2方向所示。
上述的情况造成的损失是惨重的,其一造成了电容器组的A、B相的熔断器全部群爆、电抗器本体有三处(散热器)喷油着火,毁坏了电气设备,影响了电力系统的经济运行;其二造成了10kV母线短路,危及到了电力系统的稳定运行以及电能质量。
5整改方案及实施
礼经电器
从以上分析可知:发生事故的原因是由于在污染比较严重的情况下,大风暴雨冲刷电容器造成的母线短路。
在便于巡视和良好通风的前提下解决问题的途径是:①减少环境污染对电容器组的影响,②避免大风暴雨冲刷电容器组。
[FS:Page]
经过慎重考虑,采取加大电容器组室的房顶,尤其在外侧应注意屋檐的角度。
通过整改方案的落实,该变电站电容器组熔断器“群爆”的情况再也没有发生过。
6结论
为了防止电容器组熔断器群爆问题的发生,做好以下工作是非常必要的:
①安装熔断特性一致的熔断器;②加强系统电压的运行管理;③在变电站装设消谐装置;④加强对电网中高次谐波成分的管理;
⑤加强电容器组的中性点平时的清洁维护;⑥保证电容器组的保护定期校验工作规范化。
同时设计过程中,在便于巡视和良好通
风的前提下,应充分考虑电容器组的防尘、防雨水问题。
这样就可能避免电容器组熔断器群爆以及相关问题的发生。
参考文献:
[1]靳龙章,丁毓山.电网无功补偿实用技术[M].中国水利水电出版社,1993年3月
[2]李致恒等.城乡电力网无功补偿技术[M].水利水电出版社,1988年9月
[3]陈维贤.内部过电压基础[M].电力工业出版社,1981年12月
[4]能源部西北电力设计院.电气工程设计手册电气二次部分[M].水利水电出版社,1990年9月。