相控阵雷达天线方向图仿真研究
- 格式:pdf
- 大小:395.52 KB
- 文档页数:3
相控阵雷达多通道天线方向图建模与仿真徐海峰;卞春蓉【摘要】相控阵雷达天线方向图建模是相控阵雷达系统建模仿真中的关键技术之一。
本文从理论上分析了天线方向图函数,提出了一种相控阵雷达多通道天线方向图建模与仿真算法。
基于相控阵天线的矩形平面模型,我们通过配置不同的天线阵元矩阵参数,最终获得了不同通道的天线方向图。
文中的算法不仅能够较为便捷地获取常规的和差通道天线方向图,而且能够获取其它任意通道天线方向图。
仿真结果验证了建模方法和数学模型的正确性。
%Antenna pattern modeling for phased array radar is one of the key technologies in modeling and simulation for phased array radar systems. In this paper,we analyze the antenna pattern function theoretically,and propose a modeling and simulation algorithm in multi-channel antenna pattern for phased array radar. Based on rectangular planar model of phased array radar,we get the antenna pattern in different channels by configuring different matrix parameters of antenna array elements. Using this algorithm, we not only obtain sum-difference channel antenna pattern easily, but also get antenna pattern in any other channels. The simulation result shows that the modeling method and mathematical models are right.【期刊名称】《南京师大学报(自然科学版)》【年(卷),期】2014(000)002【总页数】5页(P28-32)【关键词】相控阵雷达;多通道;天线方向图【作者】徐海峰;卞春蓉【作者单位】南京电子技术研究所,江苏南京210039;南京师范大学数学科学学院,江苏南京210023【正文语种】中文【中图分类】TN958.92相控阵天线具有波束快速扫描、波束形状快速变化、空间定向与空域滤波以及天线与平台共形能力等诸多优点,因此现代军用雷达多采用相控阵体制[1-3].随着相控阵雷达的广泛应用,相控阵雷达系统的建模与仿真对数字化雷达系统的优化设计、飞行训练对抗作战的战术设计和作战的效能评估等多个领域具有重要意义.而相控阵天线建模与仿真是整个相控阵雷达系统建模与仿真的关键环节,天线方向图仿真的准确与否直接影响到整个相控阵雷达系统仿真的准确性和精度.相控阵天线指天线单元分布在一个平面上,由数千个天线阵元组成,加之天线波束的电扫描,使得相控阵雷达天线增益求解复杂且计算量巨大.目前在一些仿真系统领域采用的是载入方向图数据库方法,它主要根据相控阵天线参数事先建立天线方向图数据库,仿真时以数据文件的方式进行预先装载,然后通过查表调用数据库中对应的数据并进行插值来获取数值.由于预先存储的数据量巨大,而且不能够完全实际覆盖相控阵雷达的所有天线特性,这种方法大大降低了仿真的真实性,不能很好地满足仿真系统要求[4].本文介绍了一种根据相控阵天线阵面形状、阵元个数和排列方式、阵元间距以及阵元幅相加权等相关参数来进行相控阵天线方向图仿真的方法,该方法通过配置不同的天线阵元矩阵参数,能够灵活地获取不同通道天线方向图,大大提高了仿真的真实性,很好地满足相控阵雷达仿真系统要求.1 相控阵雷达天线方向图数学模型一个平面相控阵天线可以分为若干子平面相控阵天线或者多个线阵,平面相控阵天线中各个天线单元一般按矩形或三角格阵排列[3,5](在后续章节中如果不特别注明,均使用矩形格阵进行数学建模).假设一个平面相控阵天线由M×N个阵元组成(文中天线排列为横向和纵向排列),如图1所示,沿y方向(横向)的N个阵元以间距dy均匀排列,步进相位为αy;沿z方向(纵向)的M个阵元以间距dz均匀排列,步进相位为αz,从而形成矩形栅格的平面阵(如图2所示).图1 矩形平面相控阵天线阵元图Fig.1 Array element of rectangular planar phased array antenna图2 矩形平面相控阵天线坐标关系Fig.2 Coordinate system of rectangular planar phased array antenna假设波束指向角所在位置的方向余弦为(cosαx,cosαy,cosαz),θ为俯仰角,φ为方位角,根据三角函数坐标转换关系:根据方向图乘积原理,天线方向图函数D(θ,φ)可以表示成单元天线的方向图函数f(θ,φ)和阵因子F(θ,φ)的乘积:其中f(θ,φ)称为单元天线的方向函数,即元因子.通常认为所有的天线阵元具有相同的方向函数,即f(θ,φ)=1.F(θ,φ)称为阵因子,它与阵中每个阵元的位置、幅度和相位有关.因此在阵列天线中,方向性主要由阵因子来决定.相邻单元的空间相位差:z轴方向:y轴方向:其中(λ为波长).同理,可得到第(i,j)号阵元与第(0,0)号阵元(参考阵元)的空间相位差为:若将天线在z轴方向的相邻单元相位差记为β,y轴方向的相邻单元相位差记为α,假设所有阵元幅度均为I0,则得到天线方向图函数:结合式(1),用(θ,φ)来表示天线方向图函数:假设第(m,n)号阵元幅度为Imn,最终可从式(7)得到相控阵天线方向图函数:2 相控阵雷达天线方向图建模仿真2.1 阵元数目相控阵天线阵元个数通过孔径长度和阵元间距来确定,假设已知z方向孔径长度为Dz,阵元间距为dz;y方向孔径长度为Dy,阵元间距为dy,则阵元数目:2.2 加权处理相控阵天线方向图一般采用幅度加权的方法,利用不同的加权类型和窗函数,控制阵因子中每个阵元的幅度,以便达到降低相控阵天线副瓣电平的目的.假设Wmn为(m,n)号阵元的加窗权值,经过加窗处理后该阵元的幅度:2.3 天线阵元矩阵系数对于常规的和、方位差、俯仰差通道而言[6],可将相控阵天线阵面等分为4个象限A、B、C、D(即4个子阵面区),如图3所示.和通道为4个象限中所有阵元的合成:方位差通道为A、C两象限所有阵元合成减去B、D两象限所有阵元合成:俯仰差通道为A、B象限所有阵元合成减去C、D两象限所有阵元合成:为简化起见,定义K为天线阵元矩阵系数,矩阵中每一个kmn对应于天线中的(m,n)号阵元,其中kmn∈{-1,1}.假设天线阵面为8×8的阵元排布,则和通道的天线阵元矩阵系数:方位差通道的天线阵元矩阵系数:俯仰差通道的天线阵元矩阵系数:依据天线阵元矩阵系数定义,我们可对该定义进行推广,令kmn∈{-1,0,1},其中0表示无效阵元,-1和1表示有效阵元,就可以得到不同孔径形式(如圆或椭圆孔径等)、不同通道(常规的和差通道以及子阵通道等)的天线阵元矩阵系数. 例如,我们要得到如图3所示的A象限天线阵元矩阵系数,只需将B、C、D象限中所有阵元置为0,即K=(kmn)8×8,其中m≤4 且n≤4 时,kmn=1;m>4 或 n >4 时,kmn=0.2.4 多通道天线方向图函数根据式(8)和式(10),我们可以得到天线波束指向角(θ0,φ0)时天线方向图函数(其中,K为任意通道的天线阵元矩阵系数):图3 平面相控阵天线象限定义Fig.3 Definition of quadrants of phased array antenna3 仿真结果仿真参数:平面矩形栅格排布,椭圆孔径形状,横向最大40个阵元(采用80、60、40、20进行对比仿真),纵向最大20个阵元,横向纵向阵元间距均为0.5个波长,30 db契比雪夫加权,单个阵元幅度误差5%,相位误差5%,波束指向中心方位0°,俯仰0°.图4和图5表明,在阵元间距一定的情况下,阵元数目越多,3 db波束宽度越窄,副瓣性能越好.波束指向角(0°,0°)时,当横向阵元为20、40、60 和 80 时,波束宽度分别对应为6.822 0°、3.219 8°、2.112 4°、1.588 2°.图4 80×20个阵元和通道Fig.4 Σ-channel antenna pattern(80×20)图5 横向阵元个数为80、60、40、20的方位向切面图Fig.5 Azimuth drawingof antenna pattern with different elements number图6~图9为横向40个阵元纵向20个阵元的方位差、俯仰差通道方向图,其方位通道和差交点处增益-4.175 5°,角度差3.759 2°,方位波束宽度3.219 8°;俯仰通道和差交点增益-4.075 8°,角度差7.709 4°,俯仰波束宽度6.68°.图6 40×20个阵元方位差通道Fig.6 Azimuth-difference channel antenna pattern(40×20)图7 40×20个阵元方位差通道切面图Fig.7 Drawing of azimuth-difference channel antenna pattern(40×20)图8 40×20个阵元俯仰差通道Fig.8 Elevation-difference channel antenna pattern(40×20)图9 40×20个阵元俯仰差通道切面图Fig.9 Drawing of elevation-difference channel antenna pattern(40×20)4 结语本文讨论了矩形栅格的天线方向图的数学模型,利用天线阵元矩阵系数得到了一个普适性的多通道天线方向图函数,并通过一组天线阵元参数进行仿真验证,分别得到和、方位差、俯仰差通道的天线方向图,随后对天线方向图的一些特性参数进行了对比分析.该算法能够灵活地获取不同通道天线方向图,可以很好地满足相控阵雷达仿真系统的设计要求,已经在一些仿真系统中得到应用.[参考文献][1] Robert J Mailloux.Phased Array Antenna Handbook[M].2nded.MA:Artech House,2005.[2] John D Kraus,Ronald J Marhefka.Antennas for all Applications [M].New York:McGraw-Hill Companies,INC,2011.[3]张光义.相控阵雷达原理[M].北京:国防工业出版社,2009.[4]陈志杰,李永祯,戴幻尧,等.相控阵天线方向图的建模与实时仿真方法[J].计算机仿真,2011,28(3):31-35.[5]毕明雪,赵运弢,钱博.正六边形平面相控阵天线的仿真研究[J].电子技术,2007,39(4):113.[6]李文臣,李青山,马飞.相位和差单脉冲相控阵天线方向图仿真与性能分析[J].中国电子科学研究院学报,2011,6(4):336-339.。
第37卷第1期2020年1月机㊀㊀电㊀㊀工㊀㊀程JournalofMechanical&ElectricalEngineeringVol.37No.1Jan.2020收稿日期:2019-05-26基金项目:国家自然科学基金资助项目(51490664)作者简介:顾叶青(1979-)ꎬ男ꎬ江苏苏州人ꎬ研究员级高级工程师ꎬ主要从事有源相控阵雷达天线结构设计方面的研究ꎮE ̄mail:13913365261@139.comDOI:10.3969/j.issn.1001-4551.2020.01.011有源相控阵天线结构仿真分析∗顾叶青ꎬ孙为民ꎬ余㊀觉(南京电子技术研究所ꎬ江苏南京210039)摘要:针对当前有源相控阵天线设计过程中亟需进行合理的结构力学仿真ꎬ以确保天线的环境适应性要求㊁精度以及刚强度性能的问题ꎬ分别对天线结构力学仿真㊁有限元模型修正和结构优化分析过程进行了分析ꎮ结合舰载㊁机载㊁车载㊁星载等不同雷达天线结构的特点ꎬ阐述了未来雷达天线结构力学仿真的重点在于强冲击㊁振动疲劳㊁动态载荷等作用下的天线刚强度分析ꎬ以及天线系统功能一体化优化设计ꎻ利用两个工程设计案例ꎬ讨论了有限元模型修正以及结构尺寸优化在有源相控阵天线结构设计中的应用效果ꎮ研究结果表明:对有限元模型进行适当的修正ꎬ可显著提高相控阵天线力学仿真的精度ꎻ通过对天线结构进行尺寸优化ꎬ能够在确保天线力学性能的前提下实现轻量化ꎮ关键词:有源相控阵天线ꎻ结构力学仿真ꎻ模型修正ꎻ结构优化中图分类号:TH114ꎻO342㊀㊀㊀㊀文献标识码:A文章编号:1001-4551(2020)01-0059-05StructuresimulationfortheactivephasedarrayantennaGUYe ̄qingꎬSUNWei ̄minꎬYUJue(NanjingResearchInstituteofElectronicTechnologyꎬNanjing210039ꎬChina)Abstract:Aimingatthisproblemthatreasonablemechanicssimulationhasbeendevelopedasanessentialapproachinthedesignofstructureofactivephasedarrayantennatomeettherequirementsofenvironmentaladaptabilityꎬaccuracyandperformanceꎬtheprocessesofstructuralsimulationꎬfiniteelementmodelcorrectionꎬandstructuraloptimizationfortheantennawererespectivelyreviewed.Thestructurecharacteris ̄ticsofshipborneꎬairborneꎬvehicle ̄borneꎬspaceborneꎬandmissile ̄borneantennaswerealldiscussed.Itwaspointedoutthatthefuturefo ̄cuseslieinthemechanicalanalysesandstructurallyintegrateddesignoftheantennaunderstrongimpactꎬvibrationfatigueanddynamicload ̄ing.Twoengineeringexampleswerepresentedinordertointroducetheapplicationeffectsoffiniteelementmodelcorrectionandsizeoptimi ̄zationintheengineeringdesignoftheactivephasedarrayantenna.Theresultsindicatethatthefiniteelementmodelcorrectioncanimprovetheaccuracyofmechanicssimulationofthephasedarrayantennasignificantlyꎬandthesizeoptimizationcanhelptoachievelighterantennastructurewithequalmechanicalperformance.Keywords:activephasedarrayantennaꎻstructuralsimulationꎻmodelcorrectionꎻstructuraloptimization0㊀引㊀言随着现代信息战争需求和科技的不断发展ꎬ有源相控阵体制在可靠性㊁隐身性㊁抗干扰能力和多目标攻击能力等方面均有大幅度提升ꎬ已成为现代雷达产品的主流ꎮ有源相控阵天线已越来越多地应用于陆基㊁海基㊁空基㊁以及天基雷达中ꎮ有源相控阵天线内部安装有T/R组件㊁子阵组件㊁馈电网络㊁电源等大量电子设备ꎬ与一般反射面天线相比ꎬ其天线结构除承受风载㊁冰雪㊁自重等载荷ꎬ还必须要能够承受安装在其内部的电子设备的重量ꎮ这些设备的重量往往是天线结构自重的数倍ꎬ约占天线阵面总重的2/3ꎮ因此ꎬ这些都对天线结构的刚强度(尤其是动载荷作用下的刚强度)提出了更高的要求[1 ̄2]ꎮ由于现代有源相控阵天线结构和功能日趋复杂ꎬ成本㊁研制周期等限制条件均会对天线整体结构的试验产生制约ꎮ针对这一问题ꎬ利用以有限元理论为基础的力学仿真技术ꎬ模拟理论模型和大型试验模型已经成为主流的科研手段ꎮ本文将对有源相控阵天线的结构力学仿真㊁有限元模型修正以及结构优化分析过程进行综合评述ꎬ最后针对两个工程案例进行具体讨论ꎮ1㊀天线结构力学仿真分析1.1㊀天线结构仿真的主要内容天线结构的力学仿真计算步骤主要包括:(1)结构模型化(创建天线结构的几何模型以及划分有限元网格)ꎻ(2)施加边界条件(施加约束条件㊁施加载荷条件)ꎻ(3)设置天线结构的材料特性及定义单元属性ꎻ(4)设置分析参数并提交分析ꎻ(5)计算结果的处理等ꎮ天线结构力学仿真的类型主要有: (1)静力学仿真分析ꎮ通过常规的静力计算对天线结构的静态强度进行校核ꎻ(2)动力学仿真分析ꎮ研究时变/频变载荷对天线结构整体或部件力学性能的影响ꎬ分析过程中需考虑阻尼㊁惯性等效应的作用ꎻ(3)屈曲分析ꎮ研究天线结构在特定载荷下的稳定性ꎬ确定天线结构失稳的临界载荷等问题[3]ꎮ对各类天线结构力学性能有限元建模㊁仿真过程进行归纳ꎬ天线结构力学仿真应遵循的准则有: (1)天线结构件的取舍不应改变原有真实受力状况下的传力路径ꎻ(2)单元的选取要能够代表天线结构中相应部位的真实应力状态ꎻ(3)有限元网格的剖分应适应应力梯度的变化ꎬ以保证数值解的收敛ꎻ(4)元素的连接处理应反映节点位移的真实情况(连续或不连续)ꎻ(5)相关元素的参数选取应保证天线结构的刚度等效ꎻ(6)边界约束条件的处理应符合天线结构的真实支撑状态ꎻ(7)质量的堆聚应满足质量㊁质心㊁惯性矩及惯性积的等效要求ꎻ(8)当量阻尼计算应符合能量等价要求ꎻ(9)天线结构中载荷的简化不应跨越主要受力构件ꎮ1.2㊀典型天线结构力学仿真特点典型天线阵面力学仿真图如图1所示ꎮ不同使用环境条件下的雷达产品ꎬ其承受的环境载荷形式各不相同ꎬ进行天线结构力学仿真的侧重点也有所不同ꎬ具体如下:图1㊀典型天线阵面力学仿真(1)舰载有源相控阵天线必须要承受舰上武器系统发射㊁轮机组及水下冲击等引起的振动冲击载荷ꎮ为了避免舰载天线结构发生共振破坏ꎬ要求整个天线阵面装舰后ꎬ其固有频率避开舰体外部干扰力的频率[4]ꎮ同时ꎬ对于舰载相控阵天线ꎬ强冲击环境条件是天线仿真校核的重点ꎻ(2)由于飞机上振动工况居多ꎬ机载雷达天线结构在仿真设计中ꎬ通常要进行动力学分析ꎬ以给出产品在振动载荷作用下的加速度响应和应力响应[5]ꎮ但是ꎬ对于机载雷达天线在振动载荷作用下的疲劳破坏形式㊁破坏机理以及振动疲劳寿命评估ꎬ还需进一步重点关注ꎻ(3)对于车载高机动有源相控阵天线ꎬ在结构力学仿真过程中ꎬ通常需进行风载荷作用下的强度校核ꎮ其中ꎬ天线阵面的风压分布由经验公式获得[6]ꎬ利用有限元软件可仿真计算出天线阵面的应力分布ꎮ但是ꎬ在风载荷动态脉动以及雷达天线转动条件下ꎬ天线阵面的风压分布会发生持续变化ꎬ导致天线阵面根部支耳㊁车体撑腿等连接关键区出现应力幅ꎬ可能导致雷达系统产生结构疲劳ꎮ因此ꎬ动态风载荷仿真是未来车载天线设计校核的重点ꎮ此外ꎬ星载㊁弹载有源相控阵天线ꎬ其体积和重量往往都有严格限制ꎬ天线结构力学仿真是关键环节ꎮ通常有源相控阵天线受内部设备布局的限制ꎬ无法通06 机㊀㊀电㊀㊀工㊀㊀程第37卷过直接增加天线结构厚度的方法提高天线结构的刚强度ꎮ一个较好的解决方法是巧妙合理地利用阵面内大量的电子设备结构ꎬ通过功能结构一体化设计ꎬ将离散结构设计为连续的阵面骨架受力结构ꎬ从而减轻重量ꎬ增加天线阵面整体或局部的刚强度[7]ꎮ可利用的电功能件包括T/R组件㊁电源组件㊁子阵㊁射频馈线网络㊁走线层等ꎻ结构功能件包括冷却水道管网㊁各种形式的导轨结构以及各种走线支架等ꎮ通过天线系统功能结构一体化设计优化和系统仿真技术ꎬ可以减轻天线重量ꎮ2㊀天线结构有限元模型修正2.1㊀模型修正基本理论在对天线结构进行有限元建模分析的过程中ꎬ不仅要对实际天线结构系统进行离散化ꎬ还需要对天线结构的几何特征㊁边界约束条件等作力学上的等效简化ꎮ当结构的形状或受力情况复杂时ꎬ等效简化所得的仿真结果可能与实际结果存在明显差异ꎮ此外ꎬ不同的简化方式往往也会造成完全不同的仿真结果ꎮ因此ꎬ为了提高有限元仿真的精度ꎬ增强仿真结果与真实结果的逼近程度ꎬ有必要对有限元模型进行修正分析[8]ꎮ有限元模型修正是以实际结构试验或工作的响应为目标ꎬ以有限元模型的各种力学特征为修正对象ꎬ以合理的修正理论及修正算法为基础和手段ꎬ以一定的收敛准则为判别标准的系统工程ꎮ有限元模型的物理和力学特征主要包括材料参数㊁连接方式㊁加载方式㊁边界条件和阻尼模式等ꎮ有限元模型修正理论包括有限元误差理论㊁修正变量及其敏感度分析理论ꎬ以及目标函数构建方法ꎮ误差是有限元模型修正的前提ꎬ其主要包括3类: (1)对连续的工程结构进行离散化ꎬ可产生阶次误差ꎬ其随着阶次提高而降低ꎻ(2)建模过程中ꎬ对实际结构进行简化所产生的结构误差ꎮ例如ꎬ在有限元模型中ꎬ忽略圆角导致模型的质量㊁刚度矩阵与实际存在差异ꎻ(3)对非线性的材料属性或边界条件进行常量化或线性化ꎬ导致参数误差[9]ꎮ为了减小误差ꎬ通常选取结构的设计参数ꎬ如密度㊁弹性模量㊁截面积㊁惯性矩等作为修正变量ꎬ对有限元模型进行改进ꎮ在修正过程中ꎬ预先对修正变量进行敏感度分析ꎬ遴选出对结构响应影响较为关键的变量ꎬ可减小计算分析的工作量ꎮ假设结构的响应输出F满足:F=f(p)ꎬp=[p1ꎬp2 pn](1)式中:p n个设计参数组成的向量矩阵ꎻp0 设计参数的初始设计值ꎮ则设计参数对输出响应的敏感度系数矩阵为:S=∂f∂pp=p0(2)目标函数是描述有限元模型静动特性与试验模型相应特性相关程度的表达式ꎮ有限元模型修正的目标ꎬ就是通过对修正变量进行设计改进ꎬ从而使目标函数的值趋于最小ꎬ实现有限元模型与试验模型的响应吻合ꎮ有限元模型修正流程图如图2所示ꎮ图2㊀有限元模型修正流程图2.2㊀模型修正案例某星载天线子阵面结构如图3所示ꎮ图3㊀某星载天线子阵面结构其尺寸为700mmˑ400mmˑ60mmꎬ主要由辐射单元层㊁复合材料框架层和有源模块层组成ꎮ其中ꎬ复材框架层为天线主受力构件ꎬ辐射单元与有源模块分别安装于框架两侧ꎮ天线子阵面的安装边界条件为左右对称ꎬ共10个螺栓连接点ꎮ为了确保天线电性能的实现ꎬ本文对阵面结构在动态载荷下的刚强度进行仿真ꎮ利用Hypermesh软件ꎬ建立子阵面有限元模型(图3)ꎮ复合材料蜂窝夹芯板采用壳单元建立ꎬ芯层采用体单元和壳单元共同建立ꎮ蜂窝板和天线单元间有电路板ꎬ采用体单元建立ꎮ安装于蜂窝板上的有源模块ꎬ采用壳单元建立ꎮ利用PATRAN和NASTRAN软件ꎬ对结构进行z方向的频响分析ꎬ并依次记录下激振频率分别为10Hz㊁20Hz 80Hz条件下ꎬ结构上某测点的加速度响应值ꎮ进一步ꎬ笔者在子阵面冲击试验台中ꎬ利用加速度传感器ꎬ实测激振频率在10Hz~80Hz条件下该测点的加速度响应ꎮ测点加速度仿真值与试验值对比如表1所示ꎮ16第1期顾叶青ꎬ等:有源相控阵天线结构仿真分析表1㊀测点加速度仿真值与试验值对比频率/Hz加速度试验值/(mm s-2)加速度仿真值/(mm s-2)模型修正前模型修正后相对偏差/(%)模型修正前模型修正后1041227.2841181.6641227.650.1110.0012062455.7162170.6962457.950.4560.00430169161.17167326.2169174.401.0850.00840191229.77187209.8191255.102.1020.01350229134.98220555.8229178.303.7440.01960300961.44281107.9301028.206.5970.02270472897.19413869.5472963.8012.4820.014801174143.38867267.31173886.0026.1360.022㊀㊀从表1可以看出:仿真与试验测试结果之间存在较为明显的差异ꎬ且随着激励频率的提高ꎬ仿真值与试验值的差距急剧增大ꎬ两者之间的相对偏差最大达到26.136%ꎮ为了提高有限元仿真的精度ꎬ本文对有限元模型进行修正ꎮ定义有限元模型修正的目标函数为ꎬ仿真及试验结果在各个频率点下测点加速度的均方差ꎮ实际分析中ꎬ共选取8个测点ꎬ目标函数如下:Y=18ð8i=11jð8j=1aeiꎬj-asiꎬjaeiꎬjæèçöø÷2ð8j=11j(3)式中:i 测点编号ꎻj 频率点编号ꎻaeiꎬj 测点i在j频率下的加速度试验值ꎻasiꎬj 测点i在j频率下的加速度仿真值ꎮ通过分析ꎬ本文选取了蜂窝材料属性ꎬ以及螺栓刚度分量等81个参数作为初始修正变量ꎮ进一步ꎬ在敏感度分析的基础上ꎬ将修正变量的个数缩减到35个ꎮ被忽略的变量主要包括螺栓的侧向抗压刚度㊁抗弯刚度以及剪切刚度ꎮ将修正后的模型再次进行运算ꎬ可得到测点在不同激励频率下的加速度响应(如表1所示)ꎮ显然ꎬ此时修正模型与试验模型的响应效果吻合度非常好ꎬ仿真值与试验值的相对偏差最大不超过0.022%ꎮ可见ꎬ相比模型修正前ꎬ有限元仿真的精度提升达1188倍ꎮ3㊀天线结构优化分析3.1㊀结构优化基本理论理想的雷达天线结构设计ꎬ需满足刚强度指标ꎬ符合结构轻薄化㊁成本低廉㊁可靠性好等优点ꎮ随着有限元法和数学规划理论的发展ꎬ使人们不仅有了强大的结构分析工具软件ꎬ还有了一套系统的优化设计方法[10]ꎮ从设计对象和变量的特点来看ꎬ结构优化设计可分为3个层次:(1)尺寸优化ꎮ是在确定的形状下ꎬ对构件的截面㊁性质等进行优化ꎬ其设计变量通常为截面尺寸㊁截面积㊁惯性矩等ꎻ(2)形状优化ꎮ主要用来确定结构的边界或内部的几何形状ꎬ达到改善结构的受力状况和应力分布ꎬ降低局部区域应力集中的目的ꎻ(3)拓扑优化ꎮ一般旨在寻求结构刚度在设计空间最佳的分布形式ꎬ或结构最佳的传力形式ꎮ工程中的大多数优化问题属于带约束条件的非线性数学规划问题ꎮ非线性规划问题的求解方法大致分为3类:(1)可行方向法ꎮ从可行点出发ꎬ每次迭代都沿着下降的方向进行搜索ꎬ从而求出目标函数值下降的新可行点ꎻ(2)罚函数法ꎮ根据约束函数和目标函数ꎬ构造具有惩罚效果的目标函数序列ꎬ从而将约束问题转化为无约束问题ꎬ逐渐逼近优化问题的最优解ꎻ(3)基于序列近似的思想ꎬ可将原目标函数的求解转化为对序列子问题的优化求解ꎮ例如ꎬ对目标函数进行二次泰勒展开ꎬ并将约束条件线性化ꎬ将原非线性数学规划问题转化为二次规划问题ꎮ近年来ꎬ通过模拟生物行为或自然现象ꎬ形成了一系列具有自组织性㊁自适应性的智能优化算法ꎬ如遗传算法㊁模拟退火算法㊁蚁群算法和粒子群算法等ꎬ为求解复杂的工程优化设计问题提供了新的技术手段ꎮ3.2㊀结构优化案例本文结合某工程实例进行具体详细的说明ꎮ某天线系统骨架结构如图4所示ꎮ图4㊀某天线系统骨架结构图4中ꎬ该天线要求在保证雷达阵面精度的情况下ꎬ使天线阵面尽量实现轻量化ꎬ需要对天线结构进行26 机㊀㊀电㊀㊀工㊀㊀程第37卷尺寸优化ꎮ因此ꎬ建立该天线结构的有限元模型ꎮ优化设计的主要目标为天线舱骨架的重量ꎮ优化的约束条件为ꎬ天线阵面在25m/s风速的正风载荷作用下ꎬ不考虑结构自重ꎬ阵面最大变形量ɤ8mmꎮ定义优化模型的各个要素如下:(1)设计变量为每层天线舱骨架钢梁的截面尺寸ꎬ梁宽Wꎬ梁高H和厚度T(T=t1=t2)ꎬ截面梁有12个品种ꎬ共36个设计变量ꎬ变量的优化范围为其初始值的ʃ60%ꎻ(2)目标函数为天线舱骨架重量(Weight)ꎻ(3)设计约束条件为天线阵面在目标正风载荷作用下的最大容许变形量(8mm)ꎮ通过仿真分析ꎬ本文得到前18个敏感度影响因子如图5所示ꎮ图5㊀前18个敏感度影响因子天线阵面重量迭代优化过程如图6所示ꎮ图6㊀天线阵面重量迭代优化过程根据最终结果可知:优化后骨架重量为320tꎬ相对初始状态减重达到120tꎬ结构重量减轻了27.3%ꎬ结构优化效果显著ꎮ4㊀结束语本文对有源相控阵天线的结构力学仿真㊁有限元模型修正ꎬ以及结构优化分析过程进行了综合评述ꎻ针对不同形式的雷达产品ꎬ分别阐述了其进行力学结构仿真的特点ꎬ和需要重点关注的问题ꎮ具体有:(1)舰载雷达天线结构仿真ꎮ未来的研究重点在于强冲击环境下的力学性能校核ꎻ(2)机载天线力学仿真ꎮ需要重点关注振动载荷作用下的疲劳仿真ꎻ(3)考虑到车载天线的服役环境ꎬ其力学仿真应当主要关注动态风载荷条件下的强度校核ꎻ(4)受制于体积和重量的约束ꎬ星载和弹载雷达结构仿真未来的关注点则在于系统功能结构一体化优化设计ꎮ最后ꎬ本文针对两个工程案例进行了详细讨论ꎬ利用有限元模型修正ꎬ使某星载天线子阵面结构仿真的精度最高提升达1188倍ꎻ而通过对某地面雷达天线做尺寸优化ꎬ可使其在确保刚强度性能的条件下ꎬ结构减重达27.3%ꎮ参考文献(References):[1]㊀唐宝富ꎬ钟剑锋ꎬ顾叶青.有源相控阵雷达天线结构设计[M].西安:西安电子科技大学出版社ꎬ2016.[2]㊀杨㊀静ꎬ王志海.某车载雷达天线骨架结构优化设计[J].电子机械工程ꎬ2015ꎬ31(2):52 ̄58.[3]㊀龙㊀凯ꎬ贾长治ꎬ李宝峰.Patran2010与Nastran2010有限元分析从入门到精通[M].北京:机械工业出版社ꎬ2011.[4]㊀方㊀同ꎬ薛㊀璞.振动理论及应用[M].西安:西北工业大学出版社ꎬ1998.[5]㊀郭先松ꎬ孔令兵ꎬ刘小飞.机载预警雷达天线发展趋势及关键技术[J].现代雷达ꎬ2015ꎬ37(12):19 ̄24.[6]㊀王春圆.巨型射电望远镜风荷载特性的数值模拟研究[D].哈尔滨:哈尔滨工业大学机电工程学院ꎬ2012.[7]㊀曾天俊.军民两用雷达天线薄壁件关键制造技术路径研究[J].机电信息ꎬ2015(36):112 ̄114.[8]㊀杨玉霞ꎬ李艳钰.基于贝叶斯方法的收割机发动机盖有限元模型修正[J].农业化研究ꎬ2019(9):250 ̄260.[9]㊀张㊀欣ꎬ于㊀澜ꎬ张㊀淼.数学规划法在有限元模型修正中的应用[J].长春工程学院学报ꎬ2018ꎬ19(4):119 ̄124.[10]㊀胡㊀峰ꎬ王志海.基于优化驱动法的雷达天线结构设计与仿真优化[J].机械工程与自动化ꎬ2015(3):40 ̄42[编辑:程㊀浩]本文引用格式:顾叶青ꎬ孙为民ꎬ余㊀觉.有源相控阵天线结构仿真分析[J].机电工程ꎬ2020ꎬ37(1):59-63.GUYe ̄qingꎬSUNWei ̄minꎬYUJue.Structuresimulationfortheactivephasedarrayantenna[J].JournalofMechanical&ElectricalEngineeringꎬ2020ꎬ37(1):59-63.«机电工程»杂志:http://www.meem.com.cn36 第1期顾叶青ꎬ等:有源相控阵天线结构仿真分析。
计 算 机 仿 真2014 年 8 月第 31 卷 第 8 期文章编号: 1006 - 9348( 2014) 08 - 0006 - 04相控阵雷达系统功能仿真及应用陶秋峰,谷 雨,方 韬,彭冬亮( 杭州电子科技大学信息与控制研究所,浙江 杭州 310018)摘要: 在国土防空预警网优化问题的研究中,相控阵雷达具有频率捷变等特点和多目标跟踪能力,是构成国土防空预警网的 重要组成部分。
以雷达组网、组网雷达资源管理及相关算法测试为背景,嵌入到雷达组网仿真平台中并获得实测数据,提供 了一种相控阵雷达功能仿真方法,重点讨论了波位编排、目标检测和相控阵雷达的任务调度算法等模块的实现。
最后仿真 系统对三个普通目标以及一个隐身目标在雷达扫描空域的搜索、验证、跟踪、失跟等雷达事件进行了仿真结果分析,验证了 相控阵雷达系统和相关算法的有效性。
关键词: 相控阵雷达; 搜索; 跟踪; 功能仿真; 波位; 任务调度 中图分类号: TN955文献标识码: BFunctional Simulation on Phased Array Rada r Sy st e m and its A pp li cat i o nTAO Qiu - f e n g ,G U Yu ,FANG T a o ,P E NG Dong - li an g( I nst i tute of I nf o rm at i o n and C o ntr o l ,H an g z h o u Dianz i U n i vers i ty ,H an g z h o u Z he ji an g 310018,C h i na)A BS T RA C T : Bas ed on the back ground of mu l t i - r adar network and resources management and re l ated a l g o r i thm ,i n order to embed in the radar network s i m u l at i o n p l atf o rm and o bta i n the m easured data ,th i s paper pres ents a funct i o n - al s i mu l at i o n of phased array radar . A key d i sc uss i o n is put on the ach i evement of the beam arrangement m o de l ,tar - get detect i o n m o de l and phased array radar task sc hedu li n g a l g o r i thm m o de l . S i mu l at i o ns are c o mp l eted for three common targets and a stea l th target in radar scann i n g a i rspac e to test the funct i o na li t i es ,s uc h as searc h i n g ,va li da - t i n g ,trac ki n g and l o s i n g . S i mu l at i o n resu l ts verify the effect i veness of the phased array radar system and the c o rre - sp o nd i n g a l go r i thms . KEY WO RDS: Phased array radar ; Searc h; T rac ki n g ; F unct i o na l s i m u l at i o n ; Beam p o s i t i o n ; Tas k sc hedu li n g相控阵雷达,文献[3]针对导弹防御系统中地基相控阵雷达 系统的仿真应用,通过对相控阵雷达系统功能级仿真及相干 视频信号级仿真方法的分析,给出了改进型功能级相控阵雷 达仿真。
相控阵天线方向推导及仿真1、推导线阵天线方向图公式一个接收线阵,由等间距为d 的N 个各向同性单元组成,那么在θ方向,相邻单元接收信号的相位差为Ф=2πdλsinθ,线阵排列情况如图1所示。
图1 线阵排列示意图因为天线辐射方向图可以由天线上各种各样电流源辐射的单独贡献进行矢量叠加而得出,故各单元电压和为:E a =sin (ωt )+sin (ωt +ϕ)+sin (ωt +2ϕ)+⋯+sin[ωt +(N −1)ϕ]将等式两边同时乘以2sin(ϕ2),根据积化和差、和差化积等相关数学公式,可得到如下公式:2sin (ϕ2)E a =cos (ωt −ϕ2)−cos (ωt +ϕ2)+cos (ωt +ϕ2)−cos (ωt −32ϕ)+⋯+cos (ωt +2N −32ϕ)−cos(ωt +2N −12ϕ)整理得,2sin (ϕ2)E a =cos (ωt −ϕ2)−cos (ωt +2N−12ϕ)=2sin(ωt +N −12ϕ)sin(N2ϕ) 最终得到场强方向图,E a =sin[ωt +(N −1)ϕ2⁄]sin(Nϕ2⁄)sin(ϕ2⁄)平方归一化后,得到辐射方向图(阵列因子):|G a (θ)|=sin 2[Nπ(dλ)sinθ]N 2sin 2[π(dλ)sinθ]上式中,当(dλ)sinθ=0,±1,±2,···±n 时|G a (θ)|取得相等的最大值,但是我们只期望看到(dλ)sinθ=0的情况,取其他值产生的栅瓣是我们所不想见到的,为避免这种情况,特令d <λ。
前面的公式中认定主瓣指向为0°,当主瓣指向θ0方向时,则各向同性单元线阵的归一化辐射方向图为:G (θ)=sin 2[Nπ(dλ)(sinθ−sinθ0)]N 2sin 2[π(d λ)(sinθ−sinθ0)]此时,由于−2≤sin (θ)−sin (θ0)≤2,故防止产生栅瓣的条件为d <λ2⁄。
相控阵雷达天线模型及仿真邱丽原【摘要】The importance and the main difficulty of simulation of phased array antenna were given. And a modeling and simulating method was proposed. This method used array factor, directional factor and sidelobe suppression factor to re-spectively resolve the problems of beam configurations, antenna gain and the sidelobe and its change of directional dia-gram, and then synthesized. The simulation model after synthesizing was given. This simulation model ensured the theoreti-cal precision, optimized and reduced the steps and quantities of simulating calculations. Using the simulation model, a sim-ulation calculation instance of the radar antenna of AN/SPY-1D of Aegis system was given.%阐述了相控阵天线仿真的重要性,指出了相控阵天线仿真的主要困难。
提出了一种利用阵因子、方向性因子和旁瓣抑制因子分别解决仿真波束形状、天线增益、方向图旁瓣及其变化等3大问题,并进行综合建模和仿真,给出了综合后的仿真模型。
2019年海军航空工程学院学报2019第34卷第3期Journal of Naval Aeronautical and Astronautical University V ol.34No.3文章编号:1673-1522(2019)03-0277-06DOI:10.7682/j.issn.1673-1522.2019.03.004相控阵天线方向图仿真与分析关成准1,张磊2,谭顺成2,叶文3(1.91411部队,辽宁旅顺116041;2.海军航空大学,山东烟台264001;3.国防大学联合勤务学院,北京100036)摘要:相控阵天线目前广泛应用于雷达中,促进了多目标、多任务雷达的发展。
但随着电扫描角度的变化,其诸多指标也随之变化,对雷达的性能产生直接影响,因而对相控阵天线方向图进行实时定量分析具有重要意义。
文章基于相控阵天线的基本原理,利用LabVIEW语言开发了相控阵天线方向图仿真软件。
软件设置了相控阵天线各影响参数的输入控件,通过图形和数值2种方式进行仿真结果的显示,并以表格文件存储。
通过不同条件下的仿真结果对比分析,软件可合理有效地对相控阵天线方向图进行实时定量的仿真分析,可应用于相控阵雷达的性能分析和评估中。
关键词:相控阵天线;LabVIEW;仿真分析中图分类号:TN95文献标志码:A雷达天线是雷达的重要组成部分,直接影响着雷达的探测距离、角度分辨率、抗干扰能力等[1]。
相控阵天线技术相对于传统的机械扫描雷达天线,具有扫描速度快、波束控制灵活的特点[2],促进了多目标、多任务雷达发展;同时,由于其一般由很多固态TR组件组成分布式发射和接收机,具有可靠性高、稳定性好的优势。
为了提高作战能力,现代舰艇和飞机大量装备了相控阵体制雷达[3-4]。
但相控阵雷达在提高雷达性能的同时,由于其工作机理的原因,造成了其应用的复杂性,如随着电扫描角度的变化,其波束宽度、增益、副瓣等均发生变化,对于雷达的探测距离、角度分辨率、测角精度以及抗干扰能力均产生实时的影响[5-7]。
阵列天线方向图及其MATLAB仿真一.实验目的1.了解阵列天线的波束形成原理写出方向图函数2.运用MATLAB仿真阵列天线的方向图曲线3.变换各参量观察曲线变化并分析参量间的关系二.实验原理1.阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。
阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。
^2.方向图原理:对于单元数很多的天线阵,用解析方法计算阵的总方向图相当繁杂。
假如一个多元天线阵能分解为几个相同的子阵,则可利用方向图相乘原理比较简单地求出天线阵的总方向图。
一个可分解的多元天线阵的方向图,等于子阵的方向图乘上以子阵为单元阵列天线天线阵的方向图。
这就是方向图相乘原理。
一个复杂的天线阵可考虑多次分解,即先分解成大的子阵,这些子阵再分解为较小的子阵,直至得到单元数很少的简单子阵为止,然后再利用方向图相乘原理求得阵的总方向图。
这种情况适应于单元是无方向性的条件,当单元以相同的取向排列并自身具有非均匀辐射的方向图时,则天线阵的总方向图应等于单元的方向图乘以阵的方向图。
三.源程序及相应的仿真图1.方向图随n变化的源程序clear;sita=-pi/2::pi/2;lamda=;]d=lamda/4;n1=20;beta=2*pi*d*sin(sita)/lamda;z11=(n1/2)*beta;z21=(1/2)*beta;f1=sin(z11)./(n1*sin(z21));F1=abs(f1);figure(1);plot(sita,F1,'b');hold on;n2=25;:beta=2*pi*d*sin(sita)/lamda;z12=(n2/2)*beta;z22=(1/2)*beta;f2=sin(z12)./(n2*sin(z22));F2=abs(f2);plot(sita,F2,'r');hold on;n3=30;beta=2*pi*d*sin(sita)/lamda;z13=(n3/2)*beta;z23=(1/2)*beta;>f3=sin(z13)./(n3*sin(z23));F3=abs(f3);plot(sita,F3,'k')hold off;grid on;xlabel('theta/radian');ylabel('amplitude');title('方向图与阵列个数的关系'); legend('n=20','n=25','n=30');·结果分析:随着阵列个数n的增加,方向图衰减越快,效果越好;2.方向图随lamda变化的源程序clear;sita=-pi/2::pi/2;n=20;d=;lamda1=;beta=2*pi*d*sin(sita)/lamda1;z11=(n/2)*beta;z21=(1/2)*beta;f1=sin(z11)./(n*sin(z21));~F1=abs(f1);%·½ÏòͼÇúÏßfigure(1);lamda2=;beta=2*pi*d*sin(sita)/lamda2;z12=(n/2)*beta;z22=(1/2)*beta;f2=sin(z12)./(n*sin(z22));F2=abs(f2);lamda3=;beta=2*pi*d*sin(sita)/lamda3;z13=(n/2)*beta;,z23=(1/2)*beta;f3=sin(z13)./(n*sin(z23));F3=abs(f3)plot(sita,F1,'b',sita,F2,'r',sita,F3,'k');grid on;xlabel('theta/radian');ylabel('amplitude');title('方向图与波长的关系');legend('lamda=','lamda=','lamda=');四.,随着波长lamda的增大,方向图衰减越慢,收敛性越五.结果分析:不是很好;3.方向图随d变化的源程序clear;sita=-pi/2::pi/2;n=20;lamda=;d1=;beta=2*pi*d1*sin(sita)/lamda;z11=(n/2)*beta;z21=(1/2)*beta;【f1=sin(z11)./(n*sin(z21));F1=abs(f1);%·½ÏòͼÇúÏßfigure(1);plot(sita,F1,'b');hold on;d2=;beta=2*pi*d2*sin(sita)/lamda;z12=(n/2)*beta;z22=(1/2)*beta;f2=sin(z12)./(n*sin(z22));F2=abs(f2);-plot(sita,F2,'r');hold on;d3=;beta=2*pi*d3*sin(sita)/lamda;z13=(n/2)*beta;z23=(1/2)*beta;f3=sin(z13)./(n*sin(z23));F3=abs(f3)plot(sita,F3,'k')hold off;grid on;xlabel('theta/radian');ylabel('amplitude');title('·½ÏòͼÓëÌìÏßÕóÁмä¸ôdµÄ¹ØÏµ'); legend('d1=','d=','d=');结果分析;随着阵元之间间隔的增加,方向图衰减越快,主次瓣的差距越大,次瓣衰减越快,效果越好。
2X2相控阵天线仿真分析温州大学 张文杰(wjzhg@)一、仿真分析软件HFSS13.0二、基本单元天线特性作为相控阵天线的基本单元,贴片天线的结构如下:2.1如下图,单元天线的回波损耗约‐20dB,中心频率0.889GHz2.2天线的增益方向图最大增益约7.2dB,最大辐射方向在Z轴方向,。
‐3dB夹角约81°.天线输入阻抗约(40+j2)ΩZ=(0.8+j0.04)X50=(40+j2)Ω三、2X2相控阵天线的模拟分析3.1相控阵天线布局四个单元呈矩形分布:上面二个,下面二个。
上面二个天线的中心矩为160mm(X方向,矢量U) ; 上下二个天线的中心矩为130mm(y方向,矢量V)。
z方向为平面法线方向。
设垂直矢量为U,水平矢量为V。
V矢量保持相位为0°不变,U矢量可在-90°到90°之间通过移向控制板设定或连续扫描。
理想状态下,即忽略连线及功率分配器阻抗适配引入的损耗和天线间相互干扰的情况下,几种典型情况仿真分析如下。
3.2 UV矢量同相位情况UV矢量同相位均为0°,天线总增益约13dB,X,Y方向‐3dB夹角为47°左右3.3 U 矢量为90°时U 矢量为90°时,天线总增益约12dB ,X 方向‐3dB 夹角为61°(‐52~9°),Y 方向约57°(‐30~27°)。
见下图。
3.4 V矢量为0°U矢量为‐90°时V矢量为0°U矢量为‐90°时,天线总的最大增益约12dB。
‐3dB角X方向59.5°(‐9.5~50°),Y方向约57°(‐30~27°)3.5 相控阵天线主要特点总结1、当V 矢量保持相位0°不变,U 矢量相位在‐90~90°之间扫描时,‐3dB 辐射角约为102°(‐52~50°)。
一种实用相控阵天线仿真系统研究王建伟发布时间:2022-02-25T06:12:12.646Z 来源:《基层建设》2021年30期作者:王建伟[导读] 天线是雷达系统的重要组成部分,天线的建模与仿真是影响雷达各分系统仿真重要部分江南机电设计研究所摘要:天线是雷达系统的重要组成部分,天线的建模与仿真是影响雷达各分系统仿真重要部分。
本文以相控阵雷达为背景,基于数字仿真技术,针对相控阵雷达天线系统,研究了相控阵雷达天线的总体结构和功能模块,阐述了主要分系统的实现方案。
采用该方法建立的数字仿真平台可用来研究阵面布局、低副瓣、阵列方向图、导弹跟踪初期主天线散焦等多种电子对抗突防措施下的相控阵雷达天线系统的性能,为科学决策提供技术支撑。
主题词:相控阵天线低副瓣方向图1 前言自20世纪30年代雷达问世以来,雷达技术在第二次世界大战中获得了高速发展。
雷达作为一种可主动地对远距离目标进行全天候探测的信息获取装备,在国防建设与经济建设中获得了广泛应用[1]。
20世纪60年代,为适应对人造卫星及导弹武器系统的需要,相控阵雷达技术获得了很大发展。
由于技术进步和研制成本的降低,相控阵雷达技术迅速在军事领域得到了广泛的应用。
然而,随着探测目标的发展、观测任务的增加,作为雷达对立面的目标和雷达工作的电磁环境也变的更加复杂。
如何在各种干扰环境下准确的探测到目标,即完成先敌发现、先敌打击已成为相控阵雷达需要迫切解决的任务。
本文就是在这种背景下,结合实际工程应用中的相控阵天线的阵面布局、低副瓣、阵列方向图、导弹跟踪初期主天线散焦,设计了一种实用的相控阵天线数字仿真系统,本系统可以为工程实际应用提供理论技术支撑。
2 系统组成及工作原理相控阵天线数字仿真系统主要由阵面布局、低副瓣(幅度加权、相位加权),自适应置零、方向图综合处理、主天线散焦、辅助天线测角等模块组成。
数字仿真系统组成原理框图如图1所示:该数字仿真系统设计的主要工作过程为:在初始化阶段,通过界面输入相控阵天线的布局、副瓣设计指标和数字移相器指标等设计参数。